Skip to content
logo
Percona Operator for MySQL
Design and architecture
Initializing search
    percona/k8spxc-docs
    percona/k8spxc-docs
    • Welcome
      • System Requirements
      • Design and architecture
      • Comparison with other solutions
      • Install with Helm
      • Install with kubectl
      • Install on Minikube
      • Install on Google Kubernetes Engine (GKE)
      • Install on Amazon Elastic Kubernetes Service (AWS EKS)
      • Install on Microsoft Azure Kubernetes Service (AKS)
      • Install on OpenShift
      • Generic Kubernetes installation
      • Multi-cluster and multi-region deployment
      • Application and system users
      • Changing MySQL Options
      • Anti-affinity and tolerations
      • Labels and annotations
      • Local Storage support
      • Defining environment variables
      • Load Balancing with HAProxy
      • Load Balancing with ProxySQL
      • Transport Encryption (TLS/SSL)
      • Data at rest encryption
      • Telemetry
      • Backup and restore
      • Upgrade Database and Operator
      • Horizontal and vertical scaling
      • Monitor with Percona Monitoring and Management (PMM)
      • Add sidecar containers
      • Restart or pause the cluster
      • Crash recovery
      • Debug and troubleshoot
      • How to install Percona XtraDB Cluster in multi-namespace (cluster-wide) mode
      • How to upgrade Percona XtraDB Cluster manually
      • How to use private registry
      • Custom Resource options
      • Percona certified images
      • Operator API
      • Frequently Asked Questions
      • Old releases (documentation archive)
      • Release notes index
      • Percona Operator for MySQL based on Percona XtraDB Cluster 1.12.0 (2022-12-07)
      • Percona Operator for MySQL based on Percona XtraDB Cluster 1.11.0 (2022-06-03)
      • Percona Distribution for MySQL Operator 1.10.0 (2021-11-24)
      • Percona Distribution for MySQL Operator 1.9.0 (2021-08-09)
      • Percona Kubernetes Operator for Percona XtraDB Cluster 1.8.0 (2021-05-26)
      • Percona Kubernetes Operator for Percona XtraDB Cluster 1.7.0 (2021-02-02)
      • Percona Kubernetes Operator for Percona XtraDB Cluster 1.6.0 (2020-09-09)
      • Percona Kubernetes Operator for Percona XtraDB Cluster 1.5.0 (2020-07-21)
      • Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0 (2020-04-29)
      • Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0 (2020-01-06)
      • Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0 (2019-09-20)
      • Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0 (2019-07-15)
      • Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0 (2019-05-29)

    Design overview¶

    Percona XtraDB Cluster integrates Percona Server for MySQL running with the XtraDB storage engine, and Percona XtraBackup with the Galera library to enable synchronous multi-primary replication.

    The design of the Operator is highly bound to the Percona XtraDB Cluster high availability implementation, which in its turn can be briefly described with the following diagram.

    image

    Being a regular MySQL Server instance, each node contains the same set of data synchronized accross nodes. The recommended configuration is to have at least 3 nodes. In a basic setup with this amount of nodes, Percona XtraDB Cluster provides high availability, continuing to function if you take any of the nodes down. Additionally load balancing can be achieved with the HAProxy router, which accepts incoming traffic from MySQL clients and forwards it to backend MySQL servers.

    Note

    Optionally the Operator allows using ProxySQL daemon instead of HAProxy, which provides SQL-aware database workload management and can be more more efficient in comparison with other load balancers.

    To provide high availability operator uses node affinity to run Percona XtraDB Cluster instances on separate worker nodes if possible. If some node fails, the pod with it is automatically re-created on another node.

    image

    To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC) is used to implement the automatic storage provisioning to pods. If a failure occurs, the Container Storage Interface (CSI) should be able to re-mount storage on a different node. The PVC StorageClass must support this feature (Kubernetes and OpenShift support this in versions 1.9 and 3.9 respectively).

    The Operator functionality extends the Kubernetes API with PerconaXtraDBCluster object, and it is implemented as a golang application. Each PerconaXtraDBCluster object maps to one separate Percona XtraDB Cluster setup. The Operator listens to all events on the created objects. When a new PerconaXtraDBCluster object is created, or an existing one undergoes some changes or deletion, the operator automatically creates/changes/deletes all needed Kubernetes objects with the appropriate settings to provide a proper Percona XtraDB Cluster operation.

    Contact Us

    For free technical help, visit the Percona Community Forum.

    To report bugs or submit feature requests, open a JIRA ticket.

    For paid support and managed or consulting services , contact Percona Sales.


    Last update: 2023-02-09
    Back to top
    Percona LLC and/or its affiliates, © 2009 - 2022
    Made with Material for MkDocs

    Cookie consent

    We use cookies to recognize your repeated visits and preferences, as well as to measure the effectiveness of our documentation and whether users find what they're searching for. With your consent, you're helping us to make our documentation better.