
Page 1

Operator for PostgreSQL 2.6.0
(March 17, 2025)

Documentation

Page 2

Table of Contents

About

Percona Operator for PostgreSQL

Comparison with other solutions

Design and architecture

Get help from Percona

Quickstart guide

Overview

1 Quick install

With kubectl

With Helm

2 Connect to PostgreSQL

3 Insert data

4 Make a backup

5 Monitor the database with PMM

What's next

Installation

System requirements

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE)

Install on Amazon Elastic Kubernetes Service (AWS EKS)

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

Configuration

Application and system users

Exposing the cluster

Changing PostgreSQL options

Anti-affinity and tolerations

Labels and annotations

Transport encryption (TLS/SSL)

Page 3

Telemetry

Management

Upgrade PostgreSQL and the Operator

Upgrade from version 1 to version 2

Using data volumes

Using backup and restore

Using standby

Back up and restore

About backups

Configure storage for backups

Make scheduled backups

Make on-demand backup

Restore from a backup

Backup encryption

Speed up backups

Backup retention

Delete the unneeded backup

High availability and scaling

Add sidecar containers

Restart or pause the cluster

Monitor the database with PMM

How-to

Install the database with customized parameters

Run Initialization SQL commands at cluster creation time

Deploy a standby cluster for Disaster Recovery

Introduction

Deploy standby cluster based on backups

Deploy standby cluster based on streaming replication

Failover

Change PostgreSQL primary instance

How to use private registry

Add custom PostgreSQL extensions

Provide Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

Use PostgreSQL tablespaces with Percona Operator for PostgreSQL

Page 4

Delete the Operator

Monitor Kubernetes

Use PostGIS extension

Troubleshooting

Initial troubleshooting

Check storage

Exec into the container

Check the logs

Reference

Custom Resource options

Percona certified images

Versions compatibility

Copyright and licensing information

Trademark policy

Release Notes

Release notes index

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2025-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)

Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

About

Percona Operator for PostgreSQL

Comparison with other solutions

Design and architecture

Get help from Percona

Quickstart guide

Page 5

Overview

1 Quick install

With kubectl

With Helm

2 Connect to PostgreSQL

3 Insert data

4 Make a backup

5 Monitor the database with PMM

What's next

Installation

System requirements

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE)

Install on Amazon Elastic Kubernetes Service (AWS EKS)

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

Configuration

Application and system users

Exposing the cluster

Changing PostgreSQL options

Anti-affinity and tolerations

Labels and annotations

Transport encryption (TLS/SSL)

Telemetry

Management

Upgrade PostgreSQL and the Operator

Upgrade from version 1 to version 2

Using data volumes

Using backup and restore

Using standby

Back up and restore

Page 6

About backups

Configure storage for backups

Make scheduled backups

Make on-demand backup

Restore from a backup

Backup encryption

Speed up backups

Backup retention

Delete the unneeded backup

High availability and scaling

Add sidecar containers

Restart or pause the cluster

Monitor the database with PMM

How-to

Install the database with customized parameters

Run Initialization SQL commands at cluster creation time

Deploy a standby cluster for Disaster Recovery

Introduction

Deploy standby cluster based on backups

Deploy standby cluster based on streaming replication

Failover

Change PostgreSQL primary instance

How to use private registry

Add custom PostgreSQL extensions

Provide Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

Use PostgreSQL tablespaces with Percona Operator for PostgreSQL

Delete the Operator

Monitor Kubernetes

Use PostGIS extension

Troubleshooting

Initial troubleshooting

Check storage

Exec into the container

Check the logs

Page 7

Reference

Custom Resource options

Percona certified images

Versions compatibility

Copyright and licensing information

Trademark policy

Release Notes

Release notes index

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2025-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)

Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

Page 8

About

Page 9

Percona Operator for PostgreSQL
documentation
The Percona Operator for PostgreSQL automates the creation, modification, or deletion of items in your

Percona Distribution for PostgreSQL environment. The Operator contains the necessary Kubernetes

settings to maintain a consistent PostgreSQL cluster.

Percona Kubernetes Operator is based on best practices for configuration and setup of a Percona

Distribution for PostgreSQL cluster. The benefits of the Operator are many, but saving time and delivering

a consistent and vetted environment is key.

This is the documentation for the latest release, 2.6.0 (Release Notes).

Starting with Percona Kubernetes Operator is easy. Follow our documentation guides, and you’ll be set up

in a minute.

 Installation guides
Want to see it for yourself? Get started

quickly with our step-by-step installation

instructions.

Quickstart guides

 Security and encryption
Rest assured! Learn more about our security

features designed to protect your valuable

data.

Security measures

 Backup management
Learn what you can do to maintain regular

backups of your PostgrgeSQL cluster.

Backup management

 Troubleshooting
Our comprehensive resources will help you

overcome challenges, from everyday issues

to specific doubts.

Diagnostics

https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator

Page 10

Compare various solutions to deploy
PostgreSQL in Kubernetes
There are multiple ways to deploy and manage PostgreSQL in Kubernetes. Here we will focus on

comparing the following open source solutions:

Crunchy Data PostgreSQL Operator (PGO)

CloudNative PG from Enterprise DB

Stackgres from OnGres

Zalando Postgres Operator

Percona Operator for PostgreSQL

Generic

Feature/Product Percona

Operator for

PostgreSQL

Stackgres CrunchyData CloudNativePG

(EDB)

Zalando

Open-source

license

Apache 2.0 AGPL 3 Apache 2.0, but

images are

under Developer

Program

Apache 2.0 MIT

PostgreSQL

versions

12 - 16 14 - 16 13 - 16 12 - 16 11 - 15

Kubernetes

conformance

Various

versions are

tested

Various

versions are

tested

Various

versions are

tested

Various

versions are

tested

AWS EKS

Web-based GUI Percona

Everest

Admin UI Postgres

Operator UI

Maintenance

https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/ongres/stackgres
https://github.com/ongres/stackgres
https://github.com/ongres/stackgres
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/percona/percona-postgresql-operator/
https://github.com/percona/percona-postgresql-operator/
https://github.com/percona/percona-postgresql-operator/
https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/index.html
https://stackgres.io/doc/latest/administration/adminui/
https://github.com/zalando/postgres-operator/blob/master/docs/operator-ui.md
https://github.com/zalando/postgres-operator/blob/master/docs/operator-ui.md

Page 11

Feature/Product Percona

Operator for

PostgreSQL

Stackgres CrunchyData CloudNativePG

(EDB)

Zalando

Operator

upgrade

Database

upgrade

Automated

and safe

Automated

and safe

Manual Manual Manual

Compute

scaling

Horizontal and

vertical

Horizontal

and vertical

Horizontal

and vertical

Horizontal and

vertical

Horizontal

and vertical

Storage scaling Manual Manual Manual Manual Manual,

automated for

AWS EBS

PostgreSQL topologies

Feature/Product Percona Operator

for PostgreSQL

Stackgres CrunchyData CloudNativePG

(EDB)

Zalando

Warm standby

Hot standby

Connection

pooling

Delayed replica

Backups

Feature/Product Percona Operator

for PostgreSQL

Stackgres CrunchyData CloudNativePG

(EDB)

Zalando

Scheduled

backups

Page 12

Feature/Product Percona Operator

for PostgreSQL

Stackgres CrunchyData CloudNativePG

(EDB)

Zalando

WAL archiving

PITR

GCS

S3

Azure

Monitoring

Feature/Product Percona

Operator for

PostgreSQL

Stackgres CrunchyData CloudNativePG

(EDB)

Zalando

Solution Percona

Monitoring and

Management

and sidecars

Exposing

metrics in

Prometheus

format

Prometheus

stack and

pgMonitor

Exposing

metrics in

Prometheus

format

Sidecars

Miscellaneous

Feature/Product Percona

Operator for

PostgreSQL

Stackgres CrunchyData CloudNativePG

(EDB)

Zalando

Customize

PostgreSQL

configuration

Sidecar containers

for customization

Helm

Page 13

Feature/Product Percona

Operator for

PostgreSQL

Stackgres CrunchyData CloudNativePG

(EDB)

Zalando

Transport

encryption

Data-at-rest

encryption

Through

storage class

Through

storage

class

Through

storage class

Through

storage class

Through

storage

class

Create users/roles limited

Page 14

Design overview
The Percona Operator for PostgreSQL automates and simplifies deploying and managing open source

PostgreSQL clusters on Kubernetes. The Operator is based on CrunchyData’s PostgreSQL Operator .

DB Pod N

Kubernetes API Operator

CSI

Storage
Area

Network

Container SuiteCustom Resource
Definitions

clusters
(perconapgcluster)

backup, restore
(perconapgbackups,
perconapgrestores)

pgbouncerprimary
PostgreSQL

replica
PostgreSQL

pgbackrest

PostgreSQL containers deployed with the Operator include the following components:

The PostgreSQL database management system, including:

PostgreSQL Additional Supplied Modules ,

pgAudit PostgreSQL auditing extension,

PostgreSQL set_user Extension Module ,

wal2json output plugin ,

https://access.crunchydata.com/documentation/postgres-operator/v5/
https://access.crunchydata.com/documentation/postgres-operator/v5/
https://access.crunchydata.com/documentation/postgres-operator/v5/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json

Page 15

The pgBackRest Backup & Restore utility,

The pgBouncer connection pooler for PostgreSQL,

The PostgreSQL high-availability implementation based on the Patroni template ,

the pg_stat_monitor PostgreSQL Query Performance Monitoring utility,

LLVM (for JIT compilation).

Each PostgreSQL cluster includes one member availiable for read/write transactions (PostgreSQL primary

instance, or leader in terms of Patroni) and a number of replicas which can serve read requests only

(standby members of the cluster).

To provide high availability from the Kubernetes side the Operator involves node affinity to run

PostgreSQL Cluster instances on separate worker nodes if possible. If some node fails, the Pod with it is

automatically re-created on another node.

https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://github.com/percona/pg_stat_monitor/
https://github.com/percona/pg_stat_monitor/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

Page 16

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

CSI

Percona Distribution for PostgreSQL
Namespace

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A

PersistentVolumeClaim (PVC) is used to implement the automatic storage provisioning to pods. If a failure

occurs, the Container Storage Interface (CSI) should be able to re-mount storage on a different node.

The Operator functionality extends the Kubernetes API with Custom Resources Definitions . These

CRDs provide extensions to the Kubernetes API, and, in the case of the Operator, allow you to perform

actions such as creating a PostgreSQL Cluster, updating PostgreSQL Cluster resource allocations, adding

additional utilities to a PostgreSQL cluster, e.g. pgBouncer for connection pooling and more.

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://www.pgbouncer.org/

Page 17

When a new Custom Resource is created or an existing one undergoes some changes or deletion, the

Operator automatically creates/changes/deletes all needed Kubernetes objects with the appropriate

settings to provide a proper Percona PostgreSQL Cluster operation.

Following CRDs are created while the Operator installation:

perconapgclusters stores information required to manage a PostgreSQL cluster. This includes

things like the cluster name, what storage and resource classes to use, which version of PostgreSQL to

run, information about how to maintain a high-availability cluster, etc.

perconapgbackups and perconapgrestores are in charge for making backups and restore them.

Page 18

Get help from Percona
Our documentation guides are packed with information, but they can’t cover everything you need to know

about Percona Operator for PostgreSQL. They also won’t cover every scenario you might come across.

Don’t be afraid to try things out and ask questions when you get stuck.

Percona’s Community Forum
Be a part of a space where you can tap into a wealth of knowledge from other database enthusiasts and

experts who work with Percona’s software every day. While our service is entirely free, keep in mind that

response times can vary depending on the complexity of the question. You are engaging with people who

genuinely love solving database challenges.

We recommend visiting our Community Forum. It’s an excellent place for discussions, technical insights,

and support around Percona database software. If you’re new and feeling a bit unsure, our FAQ and Guide

for New Users ease you in.

If you have thoughts, feedback, or ideas, the community team would like to hear from you at Any ideas on

how to make the forum better?. We’re always excited to connect and improve everyone’s experience.

Percona experts
Percona experts bring years of experience in tackling tough database performance issues and design

challenges.

We understand your challenges when managing complex database environments. That’s why we offer

various services to help you simplify your operations and achieve your goals.

Service Description

24/7 Expert Support Our dedicated team of database experts is available 24/7 to assist you with any

database issues. We provide flexible support plans tailored to your specific needs.

Hands-On Database

Management

Our managed services team can take over the day-to-day management of your database

infrastructure, freeing up your time to focus on other priorities.

Expert Consulting Our experienced consultants provide guidance on database topics like architecture

design, migration planning, performance optimization, and security best practices.

https://forums.percona.com/t/welcome-to-perconas-community-forum/7
https://forums.percona.com/faq
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522

Page 19

Service Description

Comprehensive Training Our training programs help your team develop skills to manage databases effectively,

offering virtual and in-person courses.

We’re here to help you every step of the way. Whether you need a quick fix or a long-term partnership, we’re

ready to provide your expertise and support.

Page 20

Quickstart guide

Page 21

Overview
Ready to get started with the Percona Operator for PostgreSQL? In this section, you will learn some basic

operations, such as:

Install and deploy an Operator

Connect to PostgreSQL

Insert sample data to the database

Set up and make a manual backup

Monitor the database health with PMM

Next steps

Install the Operator

Page 22

1 Quick install

Page 23

Install Percona Distribution for PostgreSQL
using kubectl
A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The

Operator extends the Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for configuration and setup of a Percona

Distribution for PostgreSQL cluster in a Kubernetes-based environment on-premises or in the cloud.

We recommend installing the Operator with the kubectl command line utility. It is the universal way to

interact with Kubernetes. Alternatively, you can install it using the Helm package manager.

 Install with kubectl Install with Helm

Prerequisites
To install Percona Distribution for PostgreSQL, you need the following:

1. The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes

distributions. Install not already installed, follow its official installation instructions .

2. A Kubernetes environment. You can deploy it on Minikube for testing purposes or using any cloud

provider of your choice. Check the list of our officially supported platforms.

Set up Minikube

Create and configure the GKE cluster

Set up Amazon Elastic Kubernetes Service

Create and configure the AKS cluster

Procedure
Here’s a sequence of steps to follow:

See also

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://github.com/helm/helm
https://github.com/helm/helm
https://github.com/helm/helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Page 24

Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in

Kubernetes by installing the Operator in a custom namespace. For example, let’s name it postgres-

operator :

We will use this namespace further on in this document. If you used another name, make sure to

replace it in the following commands.

1

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Deploy the Operator using the following command:

At this point, the Operator Pod is up and running.

2

$ kubectl apply --server-side -f

https://raw.githubusercontent.com/percona/percona-postgresql-

operator/v2.6.0/deploy/bundle.yaml -n postgres-operator

Expected output

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-operator.crunchydata.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-

operator.crunchydata.com serverside-applied

serviceaccount/percona-postgresql-operator serverside-applied

role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied

rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator

serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

Page 25

You have successfully installed and deployed the Operator with default parameters. You can check them

in the Custom Resource options reference.

Next steps

 Connect to PostgreSQL

Deploy Percona Distribution for PostgreSQL cluster:3

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-

postgresql-operator/v2.6.0/deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Check the Operator and replica set Pods status.

The creation process may take some time. When the process is over your cluster obtains the ready

status.

4

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER

AGE

cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3

143m

Page 26

Install Percona Distribution for PostgreSQL
using Helm
Helm is the package manager for Kubernetes. A Helm chart is a package that contains all the

necessary resources to deploy an application to a Kubernetes cluster.

You can find Percona Helm charts in percona/percona-helm-charts repository in Github.

Prerequisites
To install and deploy the Operator, you need the following:

1. Helm v3 .

2. kubectl command line utility.

3. A Kubernetes environment. You can deploy it locally on Minikube for testing purposes or using any

cloud provider of your choice. Check the list of our officially supported platforms.

Set up Minikube

Create and configure the GKE cluster

Set up Amazon Elastic Kubernetes Service

Installation
Here’s a sequence of steps to follow:

See also

Add the Percona’s Helm charts repository and make your Helm client up to date with it:1

$ helm repo add percona https://percona.github.io/percona-helm-charts/

$ helm repo update

It is a good practice to isolate workloads in Kubernetes via namespaces. Create a namespace:2

$ kubectl create namespace <my-namespace>

https://github.com/helm/helm
https://github.com/helm/helm
https://github.com/helm/helm
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Page 27

You have successfully installed and deployed the Operator with default parameters. You can check them

in the Custom Resource options reference.

You can find in the documentation for the charts which Operator and database parameters can be

customized during installation.

Next steps

Connect to PostgreSQL

Install the Percona Operator for PostgreSQL:

The my-namespace is the name of your namespace. The my-operator parameter is the name of a

new release object which is created for the Operator when you install its Helm chart (use any

name you like).

3

$ helm install my-operator percona/pg-operator --namespace <my-namespace>

Install Percona Distribution for PostgreSQL:

The cluster1 parameter is the name of a new release object which is created for the Percona

Distribution for PostgreSQL when you install its Helm chart (use any name you like).

4

$ helm install cluster1 percona/pg-db -n <my-namespace>

Check the Operator and replica set Pods status.

The creation process is over when both the Operator and replica set Pods report the ready status:

5

$ kubectl get pg -n <my-namespace>

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER

AGE

cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3

143m

https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-db#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-db#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-db#installing-the-chart
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

Page 28

2 Connect to the PostgreSQL cluster
When the installation is done, we can connect to the cluster.

The pgBouncer component of Percona Distribution for PostgreSQL provides the point of entry to the

PostgreSQL cluster. We will use the pgBouncer URI to connect.

The pgBouncer URI is stored in the Secret object, which the Operator generates during the installation.

To connect to PostgreSQL, do the following:

List the Secrets objects

The Secrets object we target is named as <cluster_name>-pguser-<cluster_name> . The

<cluster_name> value is the name of your Percona Distribution for PostgreSQL Cluster. The default

variant is:

1

$ kubectl get secrets -n <namespace>

 via kubectl

cluster1-pguser-cluster1

 via Helm

cluster1-pg-db-pguser-cluster1-pg-db

Retrieve the pgBouncer URI from your secret, decode and pass it as the PGBOUNCER_URI environment

variable. Replace the <secret> , <namespace> placeholders with your Secret object and namespace

accordingly:

The following example shows how to pass the pgBouncer URI from the default Secret object

cluster1-pguser-cluster1 :

2

$ PGBOUNCER_URI=$(kubectl get secret <secret> --namespace <namespace> -o

jsonpath='{.data.pgbouncer-uri}' | base64 --decode)

$ PGBOUNCER_URI=$(kubectl get secret cluster1-pguser-cluster1 --namespace

<namespace> -o jsonpath='{.data.pgbouncer-uri}' | base64 --decode)

http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 29

Congratulations! You have connected to your PostgreSQL cluster.

Next steps

 Insert testing data

Create a Pod where you start a container with Percona Distribution for PostgreSQL and connect to the

database. The following command does it, naming the Pod pg-client and connects you to the

cluster1 database:

It may take some time to create the Pod and connect to the database. As the result, you should see

the following sample output:

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-

postgresql:16 --restart=Never -- psql $PGBOUNCER_URI

Expected output

psql (17.4)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

cluster1=>

Page 30

3 Insert sample data
The next step after connecting to the cluster is to insert some sample data to PostgreSQL.

Create a schema
Every database in PostgreSQL has a default schema called public . A schema stores database objects

like tables, views, indexes and allows organizing them into logical groups.

When you create a table, it ends up in the public schema by default. In recent PostgreSQL versions

(starting from PostgreSQL 15), non-database owners cannot access the public schema. Therefore, you

need to create a new schema to insert the data.

Use the following statement to create a schema

Create a table
After you created a schema, all tables you create end up in this schema if not specified otherwise.

At this step, we will create a sample table Library as follows:

If the schema has not been automatically set to the one you created, set it manually using the following SQL statement:

Replace the demo schema name with your value if you used another name.

CREATE SCHEMA demo;

CREATE TABLE LIBRARY(

ID INTEGER NOT NULL,

NAME TEXT,

SHORT_DESCRIPTION TEXT,

AUTHOR TEXT,

DESCRIPTION TEXT,

CONTENT TEXT,

LAST_UPDATED DATE,

CREATED DATE

);

Tip

SET schema 'demo';

Page 31

Insert the data
PostgreSQL does not have the built-in support to generate random data. However, it provides the

random() function which generates random numbers and generate_series() function which

generates the series of rows and populates them with the numbers incremented by 1 (by default).

Combine these functions with a couple of others to populate the table with the data:

This command does the following:

Fills in the columns id , name , author with the values id , name and name2 respectively;

generates the random md5 hash sum as the values for the columns short_description ,

description and content ;

generates the random number of dates from the current date and time within the last 100 days, and

inserts 100 rows of this data

Now your cluster has some data in it.

Next steps

 Make a backup

INSERT INTO LIBRARY(id, name, short_description, author,

description,content, last_updated, created)

SELECT id, 'name', md5(random()::text), 'name2'

,md5(random()::text),md5(random()::text)

,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100)

,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100 + 100)

FROM generate_series(1,100) id;

Page 32

4 Make a backup
Now your database contains some data, so it’s a good time to learn how to manually make a full backup

of your data with the Operator.

If you are interested to learn more about backups, their types and retention policy, see the Backups section.

Considerations and prerequisites

In this tutorial we use the AWS S3 as the backup storage. You need the following S3-related

information:

The name of S3 bucket;

The endpoint - the URL to access the bucket

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage.

If you don’t have access to AWS, you can use any S3-compatible storage like MinIO . Check the list of

supported storages. Find the storage configuration instructions for each

The Operator uses the pgBackRest tool to make backups. pgBackRest stores the backups and

archives WAL segments in repositories. The Operator has up to four pgBackRest repositories named

repo1 , repo2 , repo3 and repo4 . In this tutorial we use repo2 for backups.

Also, we will use some files from the Operator repository for setting up backups. So, clone the percona-

postgresql-operator repository:

It is important to specify the right branch with -b option while cloning the code on this step. Please be careful.

Configure backup storage

Note

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

Note

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://min.io/docs/minio/linux/index.html
https://min.io/docs/minio/linux/index.html
https://min.io/docs/minio/linux/index.html
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/

Page 33

Encode the S3 credentials and the pgBackRest repository name (repo2 in our setup).1

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>

repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

EOF

$ cat <<EOF | base64

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>

repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

EOF

Create the Secret configuration file and specify the base64-encoded string from the previous step.

The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

2

apiVersion: v1

kind: Secret

metadata:

name: cluster1-pgbackrest-secrets

type: Opaque

data:

s3.conf: <base64-encoded-configuration-contents>

Create the Secrets object from this yaml file. Specify your namespace instead of the <namespace>

placeholder:

3

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

Update your deploy/cr.yaml configuration. Specify the Secret file you created in the

backups.pgbackrest.configuration subsection, and put all other S3 related information in the

backups.pgbackrest.repos subsection under the repository name that you intend to use for

backups. This name must match the name you used when you encoded S3 credentials on step 1.

For example, the S3 storage for the repo2 repository looks as follows:

4

Page 34

Make a backup
For manual backups, you need a backup configuration file.

...

backups:

pgbackrest:

...

configuration:

- secret:

name: cluster1-pgbackrest-secrets

...

repos:

- name: repo2

s3:

bucket: "<YOUR_AWS_S3_BUCKET_NAME>"

endpoint: "<YOUR_AWS_S3_ENDPOINT>"

region: "<YOUR_AWS_S3_REGION>"

Create or update the cluster. Specify your namespace instead of the <namespace> placeholder:5

$ kubectl apply -f deploy/cr.yaml

Edit the example backup configuration file [deploy/backup.yaml]

(https://raw.githubusercontent.com/percona/percona-postgresql-

operator/v2.6.0/deploy/backup.yaml). Specify your cluster name and the repo name.

1

apiVersion: pgv2.percona.com/v2

kind: PerconaPGBackup

metadata:

name: backup1

spec:

pgCluster: cluster2

repoName: repo1

options:

- --type=full

Apply the configuration. This instructs the Operator to start a backup.2

$ kubectl apply -f deploy/backup.yaml -n <namespace>

List the backup3

Page 35

Congratulations! You have made the first backup manually. Want to learn more about backups? See the

Backup and restore section for details like types, retention and how to automatically make backups

according to the schedule.

Next steps

 Monitor the database

$ kubectl get pg-backup -n <namespace>

Page 36

5 Monitor the database
Finally, when we are done with backup, it’s time for one more step. In this section you will learn how to

monitor the health of Percona Distribution for PostgreSQL with Percona Monitoring and Management

(PMM) .

Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. It includes the PMM Server and the number of PMM Clients

running on each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect

to the PMM Server to see database metrics on a number of dashboards. PMM Server and PMM Client are

installed separately.

Install PMM Server
You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual

appliance, or on an AWS instance. Please refer to the official PMM documentation for the installation

instructions.

Install PMM Client
To install PMM Client as a side-car container in your Kubernetes-based environment, do the following:

Note

Get the PMM API key from PMM Server . The API key must have the role “Admin”. You need this key

to authorize PMM Client within PMM Server.

1

https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/dashboards/dashboard-postgresql-instances-overview.html
https://docs.percona.com/percona-monitoring-and-management/2/details/dashboards/dashboard-postgresql-instance-summary.html
https://docs.percona.com/percona-monitoring-and-management/2/details/dashboards/dashboard-postgresql-instances-compare.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

Page 37

The API key is not rotated.

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace

<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and

hostname in the following command:

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d

'{"name":"operator", "role": "Admin"}' "https://<login>:

<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

Specify the API key as the PMM_SERVER_KEY value in the deploy/secrets.yaml secrets file.2

apiVersion: v1

kind: Secret

metadata:

name: cluster1-pmm-secret

type: Opaque

stringData:

PMM_SERVER_KEY: ""

Create the Secrets object using the deploy/secrets.yaml file.3

$ kubectl apply -f deploy/secrets.yaml -n postgres-operator

Update the pmm section in the deploy/cr.yaml file.

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM

Server IP address should be resolvable and reachable from within your cluster.

4

→

→

https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

Page 38

Update the secrets file
The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text

format. But the resulting Secrets Objects contains passwords stored as base64-encoded strings. If you

want to update the password field, you need to encode the new password into the base64 format and pass

it to the Secrets Object.

To encode a password or any other parameter, run the following command:

For example, to set the new PMM API key in the my-cluster-name-secrets object, do the following:

pmm:

enabled: true

image: percona/pmm-client:2.44.0

imagePullPolicy: IfNotPresent

secret: cluster1-pmm-secret

serverHost: monitoring-service

Update the cluster5

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there

are errors on the previous steps:

6

$ kubectl get pods -n postgres-operator

$ kubectl logs <pod_name> -c pmm-client

 Linux

 macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

Page 39

Check the metrics
Let’s see how the collected data is visualized in PMM.

Next steps

What’s next

 Linux

 macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo

-n new_key | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo

-n new_key | base64)'}}'

Log in to PMM server.1

Click PostgreSQL from the left-hand navigation menu. You land on the Instances Overview page.2

Click PostgreSQL → Other dashboards to see the list of available dashboards that allow you to drill

down to the metrics you are interested in.

3

Page 40

What’s next?
Congratulations! You have completed all the steps in the Get started guide.

You have the following options to move forward with the Operator:

Deepen your monitoring insights by setting up Kubernetes monitoring with PMM

Control Pods assignment on specific Kubernetes Nodes by setting up affinity / anti-affinity

Ready to adopt the Operator for production use and need to delete the testing deployment? Use this

guide to do it

You can also try operating the Operator and database clusters via the web interface with Percona

Everest - an open-source web-based database provisioning tool based on Percona Operators. See Get

started with Percona Everest on how to start using it

https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html

Page 41

Installation

Page 42

System requirements
The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is cloud

native and storage agnostic, working with a wide variety of storage classes, hostPath, and NFS.

Supported versions
The Operator 2.6.0 is developed, tested and based on:

PostgreSQL 13.20, 14.17, 15.12, 16.8, 17.2 and 17.4 as the database. Other versions may also work but

have not been tested.

pgBouncer for connection pooling:

version 1.23.1 - for PostgreSQL 17.2

version 1.24.0 - for PostgreSQL 13.20, 14.17, 15.12, 16.8, 17.4

Patroni for high-availability:

version 4.0.5 - for PostgreSQL 17.4

version 4.0.3 - for PostgreSQL 17.2

version 4.0.4 - for PostgreSQL 13.20, 14.17, 15.12, 16.8

Supported platforms
The following platforms were tested and are officially supported by the Operator 2.6.0:

Google Kubernetes Engine (GKE) 1.29 - 1.31

Amazon Elastic Container Service for Kubernetes (EKS) 1.29 - 1.32

OpenShift 4.14 - 4.18

Azure Kubernetes Service (AKS) 1.29 - 1.31

Minikube 1.35.0 with Kubernetes 1.32.0

Other Kubernetes platforms may also work but have not been tested.

Installation guidelines
Choose how you wish to install Percona Operator for PostgreSQL:

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Page 43

with Helm

with kubectl

on Minikube

on Google Kubernetes Engine (GKE)

on Amazon Elastic Kubernetes Service (AWS EKS)

on Azure Kubernetes Service (AKS)

in a general Kubernetes-based environment

Page 44

Install Percona Distribution for PostgreSQL on
Minikube
Installing the Percona Operator for PostgreSQL on Minikube is the easiest way to try it locally without a

cloud provider.

Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervisor,

such as VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test Kubernetes

application locally prior to deploying it on a cloud.

This document describes how to deploy the Operator and Percona Distribution for PostgreSQL on

Minikube.

Set up Minikube

Deploy the Percona Operator for PostgreSQL

Install Minikube , using a way recommended for your system. This includes the installation of the

following three components:

1

kubectl tool,1

a hypervisor, if it is not already installed,2

actual minikube package3

After the installation, initialize and start the Kubernetes cluster. The parameters we pass for the

following command increase the virtual machine limits for the CPU cores, memory, and disk, to

ensure stable work of the Operator:

This command downloads needed virtualized images, then initializes and runs the cluster.

2

$ minikube start --memory=5120 --cpus=4 --disk-size=30g

After Minikube is successfully started, you can optionally run the Kubernetes dashboard, which

visually represents the state of your cluster. Executing minikube dashboard starts the dashboard

and opens it in your default web browser.

3

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Page 45

Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in

Kubernetes by installing the Operator in a custom namespace. For example, let’s name it postgres-

operator :

We will use this namespace further on in this document. If you used another name, make sure to

replace it in the following commands.

1

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Deploy the Operator using the following command:

As the result you have the Operator Pod up and running.

2

$ kubectl apply --server-side -f

https://raw.githubusercontent.com/percona/percona-postgresql-

operator/v2.6.0/deploy/bundle.yaml -n postgres-operator

Expected output

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-operator.crunchydata.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-

operator.crunchydata.com serverside-applied

serviceaccount/percona-postgresql-operator serverside-applied

role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied

rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator

serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

Page 46

Verify the Percona Distribution for PostgreSQL cluster
operation
When creation process is over, the output of the kubectl get pg command shows the cluster status as

ready . You can try to connect to the cluster.

Deploy Percona Distribution for PostgreSQL:

This deploys the default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml and

Custom Resource Options for the configuration options. You can clone the repository with all manifests and

source code by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

3

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-

postgresql-operator/v2.6.0/deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Note

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

The creation process may take some time. When the process is over your cluster will obtain the

ready status. You can check it with the following command:

4

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE

cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml

Page 47

During the installation, the Operator has generated several secrets , including the one with password for

default PostgreSQL user. This default user has the same login name as the cluster name.

Delete the cluster

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are

interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>

with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and

<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>

--template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do

this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-

postgresql:17.4 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following

command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL

interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-

pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.4)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 48

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing

deployment before adopting it for production use), check this HowTo.

If you no longer need the Kubernetes cluster in Minikube, the following are the steps to remove it.

Stop the Minikube cluster:1

$ minikube stop

Delete the cluster

This command deletes the virtual machines, and removes all associated files.

2

$ minikube delete

Page 49

Install Percona Distribution for PostgreSQL
cluster using Everest
Percona Everest is an open source cloud-native database platform that helps developers deploy code

faster, scale deployments rapidly, and reduce database administration overhead while regaining control

over their data, database configuration, and DBaaS costs.

It automates day-one and day-two database operations for open source databases on Kubernetes

clusters. Percona Everest provides API and Web GUI to launch databases with just a few clicks and scale

them, do routine maintenance tasks, such as software updates, patch management, backups, and

monitoring.

You can try it in action by Installing Percona Everest and managing your first cluster .

https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html

Page 50

Install Percona Distribution for PostgreSQL on
Google Kubernetes Engine (GKE)
Following steps help you install the Operator and use it to manage Percona Distribution for PostgreSQL

with the Google Kubernetes Engine. The document assumes some experience with Google Kubernetes

Engine (GKE). For more information on GKE, see the Kubernetes Engine Quickstart .

Prerequisites
All commands from this installation guide can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

1. gcloud . This tool is part of the Google Cloud SDK. To install it, select your operating system on the

official Google Cloud SDK documentation page and then follow the instructions.

2. kubectl . This is the Kubernetes command-line tool you will use to manage and deploy applications.

To install the tool, run the following command:

Create and configure the GKE cluster
You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your

local shell (if you have installed Google Cloud SDK locally on the previous step). The following command

creates a cluster named cluster-1 :

$ gcloud auth login

$ gcloud components install kubectl

$ gcloud container clusters create cluster-1 --project <project ID> --zone us-

central1-a --cluster-version 1.31 --machine-type n1-standard-4 --num-nodes=3

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart
https://cloud.google.com/shell/docs/quickstart
https://cloud.google.com/shell/docs/quickstart

Page 51

You must edit the above command and other command-line statements to replace the <project ID> placeholder with

your project ID (see available projects with gcloud projects list command). You may also be required to edit the

zone location, which is set to us-central1 in the above example. Other parameters specify that we are creating a

cluster with 3 nodes and with machine type of 4 vCPUs.

You may wait a few minutes for the cluster to be generated.

Select Kubernetes Engine → Clusters in the left menu panel:

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

Now you should configure the command-line access to your newly created cluster to make kubectl be

able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image.

You will see the connect statement which configures the command-line access. After you have edited the

statement, you may run the command in your local shell:

Finally, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster.

The following command will give you the ability to create Roles and RoleBindings:

Install the Operator and deploy your PostgreSQL cluster

Note

When the process is over, you can see it listed in the Google Cloud console

$ gcloud container clusters get-credentials cluster-1 --zone us-central1-a --

project <project name>

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-

admin --user $(gcloud config get-value core/account)

Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

https://cloud.google.com/iam
https://cloud.google.com/iam
https://cloud.google.com/iam

Page 52

First of all, use the following git clone command to download the correct branch of the percona-

postgresql-operator repository:

1

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-

operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and

modify the -n postgres-operator parameter with it in the following steps. You can also omit this parameter

completely to deploy everything in the default namespace.

2

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Note

Deploy the Operator using the following command:3

$ kubectl apply --server-side -f deploy/bundle.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

Page 53

As the result you will have the Operator Pod up and running.

Expected output

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-operator.crunchydata.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-

operator.crunchydata.com serverside-applied

serviceaccount/percona-postgresql-operator serverside-applied

role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied

rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator

serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

Deploy Percona Distribution for PostgreSQL:

The creation process may take some time. When the process is over your cluster will obtain the

ready status. You can check it with the following command:

4

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE

cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

Page 54

Verifying the cluster operation
When creation process is over, kubectl get pg -n <namespace> command will show you the cluster

status as ready , and you can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with password for

default PostgreSQL user. This default user has the same login name as the cluster name.

When the creation process is finished, it will look as follows:

Name Status Type Namespace ClusterPods

cluster1-backup-7hsq OK Job pg-opertor cluster10/1

cluster1-instance1-mntz OK Stateful Set pg-opertor cluster11/1

cluster1-pgbouncer OK Deployment pg-opertor cluster11/1

cluster1-repo-host OK Stateful Set pg-opertor cluster11/1

cluster1-repo1-full OK Cron Job pg-opertor cluster10/0

percona-postgresql-operator OK Deployment pg-opertor cluster11/1

You can also track the creation process in Google Cloud console via the Object Browser

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are

interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>

with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and

<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>

--template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do

this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-

postgresql:17.4 --restart=Never -- bash -il

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 55

Removing the cluster
If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing

deployment before adopting it for production use), check this HowTo.

Also, there are several ways that you can delete your Kubernetes cluster in GKE.

You can clean up the cluster with the gcloud command as follows:

The return statement requests your confirmation of the deletion. Type y to confirm.

Just click the Delete popup menu item in the clusters list:

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

The cluster deletion may take time.

Run a container with psql tool and connect its console output to your terminal. The following

command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL

interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-

pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.4)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

$ gcloud container clusters delete <cluster name> --zone us-central1-a --project

<project ID>

Also, you can delete your cluster via the Google Cloud console

Page 56

After deleting the cluster, all data stored in it will be lost!

Warning

Page 57

Install Percona Distribution for PostgreSQL on
Amazon Elastic Kubernetes Service (EKS)
This guide shows you how to deploy Percona Operator for PostgreSQL on Amazon Elastic Kubernetes

Service (EKS). The document assumes some experience with the platform. For more information on the

EKS, see the Amazon EKS official documentation .

Prerequisites

Software installation

The following tools are used in this guide and therefore should be preinstalled:

1. AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can

install it following the official installation instructions for your system .

2. eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on GitHub .

3. kubectl to manage and deploy applications on Kubernetes. Install it following the official installation

instructions .

Also, you need to configure AWS CLI with your credentials according to the official guide .

Creating the EKS cluster

To create your cluster, you will need the following data:

name of your EKS cluster,

AWS region in which you wish to deploy your cluster,

the amount of nodes you would like tho have,

the desired ratio between on-demand and spot instances in the total number of nodes.

spot instances are not recommended for production environment, but may be useful e.g. for testing purposes.

1

→

→

→

→

Note

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/weaveworks/eksctl#installation
https://github.com/weaveworks/eksctl#installation
https://github.com/weaveworks/eksctl#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

Page 58

Install the Operator and Percona Distribution for PostgreSQL
The following steps are needed to deploy the Operator and Percona Distribution for PostgreSQL in your

Kubernetes environment:

After you have settled all the needed details, create your EKS cluster following the official cluster

creation instructions .

After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver on your

cluster. See the official documentation on adding it as an Amazon EKS add-on.

CSI driver is needed for the Operator to work propely, and is not included by default starting from the Amazon EKS

version 1.22. Therefore servers with existing EKS cluster based on the version 1.22 or earlier need to install CSI

driver before updating the EKS cluster to 1.23 or above.

2

Note

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-

operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and

modify the -n postgres-operator parameter with it in the following two steps. You can also omit this

parameter completely to deploy everything in the default namespace.

1

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Note

Deploy the Operator using the following command:2

$ kubectl apply --server-side -f

https://raw.githubusercontent.com/percona/percona-postgresql-

operator/v2.6.0/deploy/bundle.yaml -n postgres-operator

https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

Page 59

As the result you will have the Operator Pod up and running.

Expected output

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-operator.crunchydata.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-

operator.crunchydata.com serverside-applied

serviceaccount/percona-postgresql-operator serverside-applied

role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied

rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator

serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

The operator has been started, and you can deploy your Percona Distribution for PostgreSQL cluster:3

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-

postgresql-operator/v2.6.0/deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Page 60

Verifying the cluster operation
When creation process is over, kubectl get pg command will show you the cluster status as ready ,

and you can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with password for

default PostgreSQL user. This default user has the same login name as the cluster name.

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml and Custom

Resource Options for the configuration options. You can clone the repository with all manifests and source code

by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the

ready status. You can check it with the following command:

Note

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE

cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are

interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>

with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and

<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>

--template='{{.data.password | base64decode}}{{"\n"}}'

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml

Page 61

Removing the cluster
If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing

deployment before adopting it for production use), check this HowTo.

To delete your Kubernetes cluster in EKS, you will need the following data:

name of your EKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the eksctl command as follows (with real names instead of <region>

and <cluster name> placeholders):

The cluster deletion may take time.

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do

this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-

postgresql:17.4 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following

command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL

interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-

pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.4)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

$ eksctl delete cluster --region=<region> --name="<cluster name>"

Page 62

After deleting the cluster, all data stored in it will be lost!

Warning

Page 63

Install Install Percona Distribution for
PostgreSQL on Azure Kubernetes Service (AKS)
This guide shows you how to deploy Percona Operator for PostgreSQL on Microsoft Azure Kubernetes

Service (AKS). The document assumes some experience with the platform. For more information on the

AKS, see the Microsoft AKS official documentation .

Prerequisites
The following tools are used in this guide and therefore should be preinstalled:

1. Azure Command Line Interface (Azure CLI) for interacting with the different parts of AKS. You can

install it following the official installation instructions for your system .

2. kubectl to manage and deploy applications on Kubernetes. Install it following the official installation

instructions .

Also, you need to sign in with Azure CLI using your credentials according to the official guide .

Create and configure the AKS cluster
To create your Kubernetes cluster, you will need the following data:

name of your AKS cluster,

an Azure resource group , in which resources of your cluster will be deployed and managed.

the amount of nodes you would like tho have.

You can create your cluster via command line using az aks create command. The following command

will create a 3-node cluster named cluster1 within some already existing resource group named my-

resource-group :

Other parameters in the above example specify that we are creating a cluster with machine type of

Standard_B4ms and OS disk size reduced to 30 GiB. You can see detailed information about cluster

creation options in the AKS official documentation .

$ az aks create --resource-group my-resource-group --name cluster1 --enable-

managed-identity --node-count 3 --node-vm-size Standard_B4ms --node-osdisk-size 30

--network-plugin kubenet --generate-ssh-keys --outbound-type loadbalancer

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://azureprice.net/vm/Standard_B4ms
https://azureprice.net/vm/Standard_B4ms
https://azureprice.net/vm/Standard_B4ms
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest

Page 64

You may wait a few minutes for the cluster to be generated.

Now you should configure the command-line access to your newly created cluster to make kubectl be

able to use it.

Install the Operator and deploy your PostgreSQL cluster

1. Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in

Kubernetes by installing the Operator in a custom namespace. For example, let’s name it postgres-

operator :

We will use this namespace further on in this document. If you used another name, make sure to

replace it in the following commands.

2. Deploy the Operatorusing the following command:

az aks get-credentials --resource-group my-resource-group --name cluster1

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

$ kubectl apply --server-side -f

https://raw.githubusercontent.com/percona/percona-postgresql-

operator/v2.6.0/deploy/bundle.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

Page 65

At this point, the Operator Pod is up and running.

3. The operator has been started, and you can deploy Percona Distribution for PostgreSQL:

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml and Custom

Resource Options for the configuration options. You can clone the repository with all manifests and source code

by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the

ready status. You can check it with the following command:

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com

serverside-applied

customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-

operator.crunchydata.com serverside-applied

serviceaccount/percona-postgresql-operator serverside-applied

role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied

rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator

serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-

postgresql-operator/v2.6.0/deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Note

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml

Page 66

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get pg command finally shows you

the cluster status as ready , you can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with password for

default PostgreSQL user. This default user has the same login name as the cluster name.

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE

cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are

interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>

with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and

<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>

--template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do

this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-

postgresql:17.4 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following

command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL

interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-

pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 67

Removing the AKS cluster
To delete your cluster, you will need the following data:

name of your AKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the az aks delete command as follows (with real names instead of

<resource group> and <cluster name> placeholders):

It may take ten minutes to get the cluster actually deleted after executing this command.

After deleting the cluster, all data stored in it will be lost!

Sample output

psql (17.4)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

$ az aks delete --name <cluster name> --resource-group <resource group> --yes --

no-wait

Warning

Page 68

Install Percona Distribution for PostgreSQL on
OpenShift
Percona Operator for PostgreSQL is a Red Hat Certified Operator . This means that Percona Operator is

portable across hybrid clouds and fully supports the Red Hat OpenShift lifecycle.

Installing Percona Distribution for PostgreSQL on OpenShift includes two steps:

Installing the Percona Operator for PostgreSQL,

Install Percona Distribution for PostgreSQL using the Operator.

Install the Operator
You can install Percona Operator for MySQL on OpenShift using the web interface (the Operator Lifecycle

Manager), or using the command line interface.

Install the Operator via the Operator Lifecycle Manager (OLM)

Operator Lifecycle Manager (OLM) is a part of the Operator Framework that allows you to install,

update, and manage the Operators lifecycle on the OpenShift platform.

Following steps will allow you to deploy the Operator and PostgreSQL cluster on your OLM installation:

1. Login to the OLM and click the needed Operator on the OperatorHub page:

OperatorHub
Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through Red Hat Marketplace . You can in
developers. After installat ion, the Operator capabilit ies will appear in the Developer Catalog providing a self-service experience.

All Items

�

All Items

AI/ Machine Learning

Application Runtime

Big Data

Cloud Provider

Database

Developer Tools

Development Tools

Drivers and plugins

Integration & Delivery

Logging & Tracing

Modernization & Migration

Monitoring

percona operator for postgresql

Cert if ied

Percona Operator for
PostgreSQL
provided by Percona

Percona Operator for
PostgreSQL manages the
lifecycle of Percona PostgreSQL…

Communit y

Percona Operator for
PostgreSQL
provided by Percona

Percona Operator for
PostgreSQL manages the
lifecycle of Percona PostgreSQL…

Marketplace

Percona Operator for
PostgreSQL
provided by Percona

Percona Operator for
PostgreSQL manages the
lifecycle of Percona PostgreSQL…

You are logged in as a temporary administrat ive user. Update the cluster OAuth configurat ion to allow oth

Project : dima-pxc
Administrator

Home

Operators

Workloads

Networking

Storage

Builds

Compute

User Management

Administrat ion

Then click “Contiune”, and “Install”.

https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework

Page 69

2. A new page will allow you to choose the Operator version and the Namespace / OpenShift project you

would like to install the Operator into.

OperatorHub Operator Installation

Install Operator
Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

Update channel *

Version *

Installat ion mode *

stable

All namespaces on the cluster (default)
Operator will be available in all Namespaces.

A specif ic namespace on the cluster
Operator will be available in a single Namespace only.

provided by Percona

Provide d APIs

PXDB PerconaXtraDBCluste r

Instance of a Percona XtraDB Cluste r

Create Project

An OpenShif t project is an alternat ive representat ion of a Kubernetes namespace.

Learn more about working with projects

Name *

postgres-operator

Display name

Descript ion

�

Cancel Create

2.4.0

If you are going to install the Operator in multi-namespace (cluster-wide) mode, please choose values with -cw

suffix for the update channel and version, and select the “All namespaces on the cluster” radio button for the

installation mode instead of chosing a specific Namespace:

OperatorHub Operator Installation

Install Operator
Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

Update channel *

Version *

Installat ion mode *

stable

All namespaces on the cluster (default)
Operator will be available in all Namespaces.

A specif ic namespace on the cluster
Operator will be available in a single Namespace only.

�

2.6.0-cw

Note

Page 70

Click “Install” button to actually install the Operator.

3. When the installation finishes, you can deploy PostgreSQL cluster. In the “Operator Details” you will

see Provided APIs (Custom Resources, available for installation). Click “Create instance” for the

PerconaPGCluster Custom Resource.

Installed Operators Operator details

Percona Operator for PostgreSQL
 provided by Percona2.4.0

Details YAML Subscript ion Events All instances Percona PGCluster Percona PGBackup Percona PGRestore

Provided APIs

PPGC Percona PGCluster

PerconaPGCluster is the CRD that
defines a Percona PG Cluster

Create instance

PPGB Percona PGBackup

PerconaPGBackup is the CRD that
defines a Percona PostgreSQL Backup

Create instance

PPGR Percona PGRestore

PerconaPGRestore is the CRD that
defines a Percona PostgreSQL Restore

Create instance

PC Postgres Cluster

PostgresCluster is the Schema for the
postgresclusters API

Create instance

You will be able to edit manifest to set needed Custom Resource options, and then click “Create”

button to deploy your database cluster.

Install the Operator via the command-line interface

1. First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

Note

Page 71

2. The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the

deploy/crd.yaml file. Custom Resource Definition extends the standard set of resources which

OpenShift “knows” about with the new items (in our case ones which are the core of the Operator).

Apply it as follows:

This step should be done only once; it does not need to be repeated with any other Operator

deployments.

3. Create the OpenShift namespace for your cluster if needed (for example, let’s name it postgres-

operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and

modify the -n postgres-operator parameter with it in the following two steps. You can also omit this

parameter completely to deploy everything in the default namespace.

4. The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the

deploy/rbac.yaml file. Role-based access is based on defined roles and the available actions which

correspond to each role. The role and actions are defined for Kubernetes resources in the yaml file.

Further details about users and roles can be found in specific OpenShift documentation)

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google OpenShift

Engine can grant user needed privileges with the following command:

5. If you are going to use the operator with anyuid security context constraint please execute the

following command:

$ oc apply --server-side -f deploy/crd.yaml

$ oc create namespace postgres-operator

Note

$ oc apply -f deploy/rbac.yaml -n postgres-operator

Note

$ oc create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --

user=$(gcloud config get-value core/account)

$ sed -i '/disable_auto_failover: "false"/a \ \ \ \ disable_fsgroup: "false"'

deploy/operator.yaml

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html

Page 72

6. Start the Operator within OpenShift:

Optionally, you can add PostgreSQL Users secrets and TLS certificates to OpenShift. If you don’t, the

Operator will create the needed users and certificates automatically, when you create the database

cluster. You can see documentation on Users and TLS certificates if still want to create them yourself.

You can simplify the Operator installation by applying a single deploy/bundle.yaml file instead of running

commands from the steps 2 and 4:

This will automatically create Custom Resource Definition, set up role-based access control and install the

Operator as one single action.

7. After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any time

with the following command:

Creation process will take some time. The process is over when both Operator and replica set Pods

have reached their Running status:

Verifying the cluster operation
When creation process is over, oc get pg command will show you the cluster status as ready , and you

can try to connect to the cluster.

$ oc apply -f deploy/operator.yaml -n postgres-operator

Note

$ oc apply -f deploy/bundle.yaml

$ oc apply -f deploy/cr.yaml -n postgres-operator

$ oc get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE

cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3

143m

Page 73

During the installation, the Operator has generated several secrets , including the one with password for

default PostgreSQL user. This default user has the same login name as the cluster name.

Use oc get secrets command to see the list of Secrets objects. The Secrets object you are

interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>

with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and

<namespace> placeholders with your values:

2

$ oc get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> --

template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do

this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ oc run -i --rm --tty pg-client --image=perconalab/percona-distribution-

postgresql:17.4 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following

command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL

interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-

pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.4)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 74

Install Percona Distribution for PostgreSQL on
Kubernetes
Following steps will allow you to install the Operator and use it to manage Percona Distribution for

PostgreSQL in a Kubernetes-based environment.

First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

1

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

Note

The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the

deploy/crd.yaml file. Custom Resource Definition extends the standard set of resources which

Kubernetes “knows” about with the new items (in our case ones which are the core of the Operator).

Apply it as follows:

This step should be done only once; it does not need to be repeated with any other Operator

deployments.

2

$ kubectl apply --server-side -f deploy/crd.yaml

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-

operator):

To use a different namespace, specify another name instead of postgres-operator in the above command, and

modify the -n postgres-operator parameter with it in the following two steps. You can also omit this

parameter completely to deploy everything in the default namespace.

3

$ kubectl create namespace postgres-operator

Note

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

Page 75

The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the

deploy/rbac.yaml file. Role-based access is based on defined roles and the available actions which

correspond to each role. The role and actions are defined for Kubernetes resources in the yaml file.

Further details about users and roles can be found in Kubernetes documentation .

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google

Kubernetes Engine can grant user needed privileges with the following command:

4

$ kubectl apply -f deploy/rbac.yaml -n postgres-operator

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --

user=$(gcloud config get-value core/account)

Start the Operator within Kubernetes:

Optionally, you can add PostgreSQL Users secrets and TLS certificates to Kubernetes. If you don’t, the

Operator will create the needed users and certificates automatically, when you create the database

cluster. You can see documentation on Users and TLS certificates if still want to create them yourself.

5

$ kubectl apply -f deploy/operator.yaml -n postgres-operator

After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any time

with the following command:

The creation process may take some time. When the process is over your cluster will obtain the

ready status. You can check it with the following command:

6

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE

cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

Page 76

Verifying the cluster operation
When creation process is over, the output of the kubectl get pg command shows the cluster status as

ready . You can now try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with password for

default PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are

interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>

with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and

<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>

--template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do

this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-

postgresql:17.4 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following

command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL

interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-

pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.4)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 77

Deleting the cluster
If you need to delete the cluster (for example, to clean up the testing deployment before adopting it for

production use), check this HowTo.

Page 78

Configuration

Page 79

Users
Operator provides a feature to manage users and databases in your PostgreSQL cluster. This document

describes this feature, defaults and ways to fine tune your users.

Defaults
When you create a PostgreSQL cluster with the Operator and do not specify any additional users or

databases, the Operator will do the following:

Create a database that matches the name of your PostgreSQL cluster.

Create an unprivileged PostgreSQL user with the name of the cluster. This user has access to the

database created in the previous step.

Create a Secret with the login credentials and connection details for the PostgreSQL user which is in

relation to the database. This is stored in a Secret named <clusterName>-pguser-<clusterName> .

These credentials include:

user : The name of the user account.

password : The password for the user account.

dbname : The name of the database that the user has access to by default.

host : The name of the host of the database. This references the Service of the primary PostgreSQL

instance.

port : The port that the database is listening on.

uri : A PostgreSQL connection URI that provides all the information for logging into the PostgreSQL

database via pgBouncer

jdbc-uri : A PostgreSQL JDBC connection URI that provides all the information for logging into the

PostgreSQL database via the JDBC driver.

As an example, using our cluster1 PostgreSQL cluster, we would see the following created:

A database named cluster1 .

A PostgreSQL user named cluster1 .

A Secret named cluster1-pguser-cluster1 that contains the user credentials and connection

information.

Custom Users and Databases

Page 80

Users and databases can be customized in spec.users section in the Custom Resource. Section can be

changed at the cluster creation time and adjusted over time. Note the following:

If spec.users is set during the cluster creation, the Operator will not create any default users or

databases except for PostgreSQL. If you want additional databases, you will need to specify them.

For each user added in spec.users , the Operator will create a Secret of the <clusterName>-pguser-

<userName> format (such default Secret naming can be altered for the user with the

spec.users.secretName option). This Secret will contain the user credentials.

If no databases are specified, dbname and uri will not be present in the Secret.

If at least one option under the spec.users.databases is specified, the first database in the list will

be populated into the connection credentials.

The Operator does not automatically drop users in case of removed Custom Resource options to

prevent accidental data loss.

Similarly, to prevent accidental data loss Operator does not automatically drop databases (see how to

actually drop a database here).

Role attributes are not automatically dropped if you remove them. You need to set the inverse attribute

to actually drop them (e.g. NOSUPERUSER).

The special postgres user can be added as one of the custom users; however, the privileges of this

user cannot be adjusted.

If the top-level autoCreateUserSchema option is set to true (defalt value), each user will have have

automatically created schemas in the cluster for all databases listed for this user under the

users.databases .

Creating a New User

Change PerconaPGCluster Custom Resource (e.g. by editing your YAML manifest in the

deploy/cr.yaml configuration file):

Apply the changes (e.g. with the usual `kubctl apply -f deploy/cr.yaml’ command) will create the new user:

The user will only be able to connect to the default postgres database.

The credentials of this user are populated in the <clusterName>-pguser-perconapg secret. There are

no connection credentials.

...

spec:

users:

- name: perconapg

Page 81

The user is unprivileged.

The following example shows how to create a new pgtest database and let perconapg user access it.

The appropriate Custom Resource fragment will look as follows:

If you inspect the <clusterName>-pguser-perconapg Secret after applying the changes, you will see

dbname and uri options populated there, and the database is created as well.

Adjusting privileges

You can set role privileges by using the standard role attributes that PostgreSQL provides and adding

them to the spec.users.options subsection in the Custom Resource. The following example will make

the perconapg a superuser. You can add the following to the spec in your deploy/cr.yaml :

Apply changes with the usual `kubctl apply -f deploy/cr.yaml’ command.

To actually revoke the superuser privilege afterwards, you will need to do and apply the following change:

If you want to add multiple privileges, you can use a space-separated list as follows:

...

spec:

users:

- name: perconapg

databases:

- pgtest

...

spec:

users:

- name: perconapg

databases:

- pgtest

options: "SUPERUSER"

...

spec:

users:

- name: perconapg

databases:

- pgtest

options: "NOSUPERUSER"

https://www.postgresql.org/docs/current/role-attributes.html
https://www.postgresql.org/docs/current/role-attributes.html
https://www.postgresql.org/docs/current/role-attributes.html

Page 82

postgres User

By default, the Operator does not create the postgres user. You can create it by applying the following

change to your Custom Resource:

This will create a Secret named <clusterName>-pguser-postgres that contains the credentials of the

postgres account.

Deleting users and databases

The Operator does not delete users and databases automatically. After you remove the user from the

Custom Resource, it will continue to exist in your cluster. To remove a user and all of its objects, as a

superuser you will need to run DROP OWNED in each database the user has objects in, and DROP ROLE in

your PostgreSQL cluster.

For databases, you should run the DROP DATABASE command as a superuser:

Managing user passwords

If you want to rotate user’s password, just remove the old password in the correspondent Secret: the

Operator will immediately generate a new password and save it to the appropriate Secret. You can remove

the old password with the kubectl patch secret command:

...

spec:

users:

- name: perconapg

databases:

- pgtest

options: "CREATEDB CREATEROLE"

...

spec:

users:

- name: postgres

DROP OWNED BY perconapg;

DROP ROLE perconapg;

DROP DATABASE pgtest;

Page 83

Also, you can set a custom password for the user. Do it as follows:

Superuser and pgBouncer

For security reasons we do not allow superusers to connect to cluster through pgBouncer by default. You

can connect through primary service (read more in exposure documentation).

Otherwise you can use the proxy.pgBouncer.exposeSuperusers Custom Resource option to enable

superusers connection via pgBouncer.

$ kubectl patch secret <clusterName>-pguser-<userName> -p '{"data":

{"password":""}}'

$ kubectl patch secret <clusterName>-pguser-<userName> -p '{"stringData":

{"password":"<custom_password>", "verifier":""}}'

Page 84

Exposing cluster
The Operator provides entry points for accessing the database by client applications. The database

cluster is exposed with regular Kubernetes Service objects configured by the Operator.

This document describes the usage of Custom Resource manifest options to expose the clusters

deployed with the Operator.

PgBouncer
We recommend exposing the cluster through PgBouncer, which is enabled by default.

DB Pod 1 DB Pod 3DB Pod 2

R
ea

d

R
ea

d

R
ea

d W
rite

Write Write

W
rit

e
Client Application

pgBouncer (DB proxy)

You can disable pgBouncer by setting proxy.pgBouncer.replicas to 0.

The following example deploys two pgBouncer nodes exposed through a LoadBalancer Service object:

The Service will be called <clusterName>-pgbouncer :

proxy:

pgBouncer:

replicas: 2

image: percona/percona-postgresql-operator:2.6.0-ppg14-pgbouncer

expose:

type: LoadBalancer

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

Page 85

You can connect to the database using the External IP of the load balancer and port 5432 .

If your application runs inside the Kubernetes cluster as well, you might want to use the Cluster IP Service

type in proxy.pgBouncer.expose.type , which is the default. In this case to connect to the database use

the internal domain name - cluster1-pgbouncer.<namespace>.svc.cluster.local .

Exposing the cluster without PgBouncer
You can connect to the cluster without a proxy.

DB Pod 1 DB Pod NDB Pod 2

Client Application

R
ea

d W
rite

PrimaryReplica Replica

Write Write

R
ea

d

R
ea

d

For that use <clusterName>-ha Service object:

$ kubectl get service

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

...

cluster1-pgbouncer LoadBalancer 10.88.8.48 34.133.38.186 5432:30601/TCP 20m

...

$ kubectl get service

Page 86

The cluster1-ha service points to the active primary. In case of failover to the replica node, will change

the endpoint automatically. Also, you can use cluster1-replicas service to make read requests to

PostgreSQL replica instances.

To change the Service type, use expose.type in the Custom Resource manifest. For example, the

following manifest will expose this service through a load balancer:

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

...

cluster1-ha ClusterIP 10.88.8.121 <none> 5432/TCP 115s

...

cluster1-replicas ClusterIP 10.88.8.115 <none> 5432/TCP 2m16s

spec:

...

expose:

type: LoadBalancer

Page 87

Changing PostgreSQL options
Despite the Operator’s ability to configure PostgreSQL and the large number of Custom Resource options,

there may be situations where you need to pass specific options directly to your cluster’s PostgreSQL

instances. For this purpose, you can use the PostgreSQL dynamic configuration method provided by

Patroni. You can pass PostgreSQL options to Patroni through the Operator Custom Resource, updating it

with deploy/cr.yaml configuration file).

Custom PostgreSQL configuration options should be included into the

patroni.dynamicConfiguration.postgresql.parameters subsection as follows:

Please note that configuration changes will be automatically applied to the running instances as soon as

you apply Custom Resource changes in a usual way, running the kubectl apply -f deploy/cr.yaml

command.

You can apply custom configuration in this way for both new and existing clusters.

Normally, options should be applied to PostgreSQL instances dynamically without restart, except the

options with the postmaster context . Changing options which have context=postmaster will cause

Patroni to initiate restart of all PostgreSQL instances, one by one. You can check the context of a specific

option using the SELECT name, context FROM pg_settings; query to to see if the change should

cause a restart or not.

The Operator passes options to Patroni without validation, so there is a theoretical possibility of the cluster malfunction

caused by wrongly configured PostgreSQL instances. Also, this configuration method is used for PostgreSQL options

only and cannot be applied to change other Patroni dynamic configuration options . It means that options in the

parameters subsection under patroni.dynamicConfiguration.postgresql will be applied, and everything else in

patroni.dynamicConfiguration.postgresql will be ignored.

...

patroni:

dynamicConfiguration:

postgresql:

parameters:

max_parallel_workers: 2

max_worker_processes: 2

shared_buffers: 1GB

work_mem: 2MB

Note

https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html

Page 88

Using host-based authentication (pg_hba)
PostgreSQL Host-Based Authentication (pg_hba) allows controlling access to the PostgreSQL database

based on the IP address or the host name of the connecting host. You can configure pg_hba through the

Custom Resource patroni.dynamicConfiguration.postgresql.pg_hba subsection as follows:

As you may guess, this example allows all hosts to connect to any database with MD5 password-based

authentication.

Obviously, you can connect both dynamicConfiguration.postgresql.parameters and

dynamicConfiguration.postgresql.pg_hba subsections:

The changes will be applied after you update Custom Resource in a usual way:

...

patroni:

dynamicConfiguration:

postgresql:

pg_hba:

- host all all 0.0.0.0/0 md5

...

patroni:

dynamicConfiguration:

postgresql:

parameters:

max_parallel_workers: 2

max_worker_processes: 2

shared_buffers: 1GB

work_mem: 2MB

pg_hba:

- local all all trust

- host all all 0.0.0.0/0 md5

- host all all ::1/128 md5

- host all mytest 123.123.123.123/32 reject

$ kubectl apply -f deploy/cr.yaml

Page 89

Binding Percona Distribution for PostgreSQL
components to specific Kubernetes/OpenShift
Nodes
The operator does good job automatically assigning new Pods to nodes with sufficient resources to

achieve balanced distribution across the cluster. Still there are situations when it is worth to ensure that

pods will land on specific nodes: for example, to get speed advantages of the SSD equipped machine, or

to reduce network costs choosing nodes in a same availability zone.

Appropriate sections of the deploy/cr.yaml file (such as proxy.pgBouncer) contain keys which can be

used to do this, depending on what is the best for a particular situation.

Affinity and anti-affinity
Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which

already has Pods with specific labels, or has specific labels itself (so called “Node affinity”). Particularly,

Pod anti-affinity is good to reduce costs making sure several Pods with intensive data exchange will

occupy the same availability zone or even the same node - or, on the contrary, to make them land on

different nodes or even different availability zones for the high availability and balancing purposes. Node

affinity is useful to assign PostgreSQL instances to specific Kubernetes Nodes (ones with specific

hardware, zone, etc.).

Pod anti-affinity is controlled by the affinity.podAntiAffinity subsection, which can be put into

proxy.pgBouncer and backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration

file.

podAntiAffinity allows you to use standard Kubernetes affinity constraints of any complexity:

You can see the explanation of these affinity options in Kubernetes documentation .

affinity:

podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- weight: 1

podAffinityTerm:

labelSelector:

matchLabels:

postgres-operator.crunchydata.com/cluster: keycloakdb

postgres-operator.crunchydata.com/role: pgbouncer

topologyKey: kubernetes.io/hostname

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

Page 90

Topology Spread Constraints
Topology Spread Constraints allow you to control how Pods are distributed across the cluster based on

regions, zones, nodes, and other topology specifics. This can be useful for both high availability and

resource efficiency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection, which

can be put into proxy.pgBouncer and backups.pgbackrest.repoHost sections of the

deploy/cr.yaml configuration file as follows:

You can see the explanation of these affinity options in Kubernetes documentation .

Tolerations
Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is

expressed as a key with and operator , which is either exists or equal (the latter variant also requires

a value the key is equal to). Moreover, toleration should have a specified effect , which may be a self-

explanatory NoSchedule , less strict PreferNoSchedule , or NoExecute . The last variant means that if a

taint with NoExecute is assigned to node, then any Pod not tolerating this taint will be removed from the

node, immediately or after the tolerationSeconds interval, like in the following example.

You can use instances.tolerations and backups.pgbackrest.jobs.tolerations subsections in

the deploy/cr.yaml configuration file as follows:

The Kubernetes Taints and Toleratins contains more examples on this topic.

topologySpreadConstraints:

- maxSkew: 1

topologyKey: my-node-label

whenUnsatisfiable: DoNotSchedule

labelSelector:

matchLabels:

postgres-operator.crunchydata.com/instance-set: instance1

tolerations:

- effect: NoSchedule

key: role

operator: Equal

value: connection-poolers

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Page 91

Labels and annotations
Labels and annotations are used to attach additional metadata information to Kubernetes

resources.

Labels and annotations are rather similar. The difference between them is that labels are used by

Kubernetes to identify and select objects, while annotations are assigning additional non-identifying

information to resources. Therefore, typical role of Annotations is facilitating integration with some

external tools.

Setting labels and annotations in the Custom Resource
You can set labels and/or annotations as key/value string pairs in the Custom Resource metadata section

of the deploy/cr.yaml . For PostgreSQL, pgBouncer and pgBackRest Pods, use

instances.metadata.annotations / instances.metadata.labels ,

proxy.pgbouncer.metadata.annotations / proxy.pgbouncer.metadata.labels , or

backups.pgbackrest.metadata.annotations / backups.pgbackrest.metadata.labels keys as

follows:

For PostgreSQL and pgBouncer Services, use expose.annotations / expose.labels or

proxy.pgbouncer.expose.annotations / proxy.pgbouncer.expose.labels keys as follows:

apiVersion: pgv2.percona.com/v2

kind: PerconaPGCluster

...

spec:

...

instances:

- name: instance1

replicas: 3

metadata:

annotations:

my-annotation: value1

labels:

my-label: value2

...

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

Page 92

You can also use the top-level spec metadata.annotations and metadata.labels options to set

annotations and labels at a global level, for all resources created by the Operator:

The easiest way to check which labels are attached to a specific object with is using the additional --

show-labels option of the kubectl get command. Checking the annotations is not much more

difficult: it can be done as in the following example:

Settings labels and annotations to the Operator Pod
You can assign labels and/or annotations to the Pod of the Operator itself by editing the

deploy/operator.yaml configuration file before applying it during the installation.

apiVersion: pgv2.percona.com/v2

kind: PerconaPGCluster

...

spec:

...

expose:

annotations:

my-annotation: value1

labels:

my-label: value2

...

apiVersion: pgv2.percona.com/v2

kind: PerconaPGCluster

...

spec:

...

metadata:

annotations:

my-global-annotation: value1

labels:

my-global-label: value2

...

$ kubectl get service cluster1-pgbouncer -o jsonpath='{.metadata.annotations}'

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml

Page 93

Special annotations
Metadata can be used as an additional way to influence the Operator behavior by setting special

annotations.

Customizing Patroni version

Starting from the Operator 2.6.0, Percona distribution for PostgreSQL comes with Patroni 4.x, which

introduces breaking changes compared to previously used 3.x versions. To maintain backward

compatibility, the Operator needs to detect the Patroni version used in the image. For this, it runs a

temporary Pod named cluster_name-patroni-version-check with the following default resources:

User can disable this auto-detection feature by manually setting the Patroni version via the following

annotation in the metadata part of the Custom Resource (it should contain “4” for Patroni 4.x or “3” for

Patroni 3.x):

apiVersion: apps/v1

kind: Deployment

...

spec:

...

template:

metadata:

labels:

app.kubernetes.io/component: operator

app.kubernetes.io/instance: percona-postgresql-operator

app.kubernetes.io/name: percona-postgresql-operator

app.kubernetes.io/part-of: percona-postgresql-operator

pgv2.percona.com/control-plane: postgres-operator

...

Resources:

Requests:

memory: 32Mi

cpu: 50m

Limits:

memory: 64Mi

cpu: 100m

Page 94

apiVersion: pgv2.percona.com/v2

kind: PerconaPGCluster

metadata:

name: cluster1

annotations:

pgv2.percona.com/custom-patroni-version: "4"

...

Page 95

Transport layer security (TLS)
The Percona Operator for PostgreSQL uses Transport Layer Security (TLS) cryptographic protocol for the

following types of communication:

Internal - communication between PostgreSQL instances in the cluster

External - communication between the client application and the cluster

The internal certificate is also used as an authorization method for PostgreSQL Replica instances.

TLS security can be configured in following ways:

the Operator can generate long-term certificates automatically at cluster creation time,

you can generate certificates manually.

Additionally, you can force your database cluster to use only encrypted channels for both internal and external

communications. This effect is achieved by setting the tlsOnly Custom Resource option to true .

Allow the Operator to generate certificates automatically
The Operator is able to generate long-term certificates automatically and turn on encryption at cluster

creation time, if there are no certificate secrets available. Just deploy your cluster as usual, with the

kubectl apply -f deploy/cr.yaml command, and certificates will be generated.

With the Operator versions before 2.5.0, autogenerated certificates for all database clusters were based on the same

generated root CA. Starting from 2.5.0, the Operator creates root CA on per-cluster basis.

Check connectivity to the cluster
You can check TLS communication with use of the psql , the standard interactive terminal-based frontend

to PostgreSQL. The following command will spawn a new pg-client container, which includes needed

command and can be used for the check (use your real cluster name instead of the <cluster-name>

placeholder):

Note

Note

Page 96

Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal to

check connectivity over the encrypted channel (please use real cluster-name, PostgreSQL user login and

password):

Now you should see the prompt of PostgreSQL interactive terminal:

$ cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

name: pg-client

spec:

replicas: 1

selector:

matchLabels:

name: pg-client

template:

metadata:

labels:

name: pg-client

spec:

containers:

- name: pg-client

image: perconalab/percona-distribution-postgresql:17.4

imagePullPolicy: Always

command:

- sleep

args:

- "100500"

volumeMounts:

- name: ca

mountPath: "/tmp/tls"

volumes:

- name: ca

secret:

secretName: <cluster_name>-ssl-ca

items:

- key: ca.crt

path: ca.crt

mode: 0777

EOF

$ kubectl exec -it deployment/pg-client -- bash -il

[postgres@pg-client /]$ PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt psql

postgres://<postgresql-user>:<postgresql-password>@<cluster-name>-pgbouncer.

<namespace>.svc.cluster.local

Page 97

Generate certificates manually

Provide pre-existing certificates to the Operator

To allow the Operator to use custom certificates, simply create the appropriate Secrets in your cluster

namespace before deploying the cluster with the kubectl apply -f deploy/cr.yaml command. The

Secret should contain the TLS key (tls.key), TLS certificate (tls.crt) and the CA certificate (ca.crt)

to use:

For example, if you have files named ca.crt , my_tls.key , and my_tls.crt stored on your local

machine, you could run the following command to create a Secret named cluster1.tls in the

postgres-operator namespace:

You should use two sets of certificates: one set is for external communications, and another set is for

internal ones. A secret created for the external use must be added to the

secrets.customTLSSecret.name field of your Custom Resource. A certificate generated for internal

communications must be added to the secrets.customReplicationTLSSecret.name field in your

Custom Resource. You can do it in the deplou/cr.yaml configuration file as follows:

$ psql (17.4)

Type "help" for help.

pgdb=>

apiVersion: v1

kind: Secret

metadata:

name: cluster1-cert

type: Opaque

data:

ca.crt: <value>

tls.crt: <value>

tls.key: <value>

$ kubectl create secret generic -n postgres-operator cluster1.tls \

--from-file=ca.crt=ca.crt \

--from-file=tls.key=my_tls.key \

--from-file=tls.crt=my_tls.crt

Page 98

Don’t forget to apply changes as usual:

Provide custom root CA certificate to the Operator

You can also provide a custom root CA certificate to the Operator. In this case the Operator will not

generate one itself, but will use the user-provided CA. Particularly, this can be useful if you would like to

have several database clusters with certificates generated by the Operator based on the same root CA.

To make the Operator using custom root certificate, create a separate secret with this certificate and

specify this secret in Custom Resource options.

For example, if you have files named my_tls.key and my_tls.crt stored on your local machine, you

could run the following command to create a Secret named cluster1-ca-cert in the postgres-

operator namespace:

You also need to specify details about this secret in your deploy/cr.yaml manifest:

Now, when you create the cluster with the kubectl apply -f deploy/cr.yaml command, the Operator

should use the root CA certificate you had provided.

spec:

...

secrets:

customTLSSecret:

name: cluster1-cert

customReplicationTLSSecret:

name: replication1-cert

...

$ kubectl apply -f deploy/cr.yaml

$ kubectl create secret generic -n postgres-operator cluster1-ca-cert \

--from-file=tls.crt=my_tls.crt \

--from-file=tls.key=my_tls.key

...

secrets:

customRootCATLSSecret:

name: cluster1-ca-cert

items:

- key: "tls.crt"

path: "root.crt"

- key: "tls.key"

path: "root.key"

Page 99

This approach allows using root CA certificate auto-generated by the Operator for some other clusters, but it needs

caution. If the cluster with auto-generated certificate has delete-ssl finalizer enabled, the certificate will be deleted at

the cluster deletion event even if it was manually provided to some other cluster.

Generate custom certificates for the Operator yourself

The good option to find out the certificates specifics needed for the Operator would be to look at

certificates, generated by the Operator automatically. Supposing that your cluster name is cluster1 , you

can examine the auto-generated CA certificate (ca.crt) after deploying the cluster as follows:

You can check the auto-generated TLS certificate (tls.crt) in a similar way:

Warning

$ kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.ca\.crt}' | base64

--decode | openssl x509 -text -noout

Expected output

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

ec:f3:d6:f5:35:5c:97:0c:66:cc:90:ed:e6:4b:0a:07

Signature Algorithm: ecdsa-with-SHA384

Issuer: CN = postgres-operator-ca

Validity

Not Before: Dec 24 13:58:21 2023 GMT

Not After : Dec 21 14:58:21 2033 GMT

Subject: CN = postgres-operator-ca

Subject Public Key Info:

...

...

$ kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.tls\.crt}' | base64

--decode | openssl x509 -text -noout

Page 100

While sharing the same ca.crt , certificates for external communications (referenced in the

secrets.customTLSSecret.name Custom Resource option) and certificates for internal ones

(referenced in the secrets.customReplicationTLSSecret.name Custom Resource option) can’t share

the same tls.crt . The tls.crt for external communications should have a Common Name (CN)

setting that matches the primary Service name (CN = cluster1-

primary.default.svc.cluster.local. in the above example). Similarly, the tls.crt for internal

communications should have a Common Name (CN) setting that matches the preset replication user:

CN=_crunchyrepl .

Expected output

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

59:f3:44:09:f1:73:b3:8e:ba:d4:a0:52:cc:fb:9c:1f

Signature Algorithm: ecdsa-with-SHA384

Issuer: CN = postgres-operator-ca

Validity

Not Before: Dec 24 13:58:21 2023 GMT

Not After : Dec 23 14:58:21 2024 GMT

Subject: CN = cluster1-primary.default.svc.cluster.local.

Subject Public Key Info:

Public Key Algorithm: id-ecPublicKey

Public-Key: (256 bit)

pub:

04:b1:2f:37:1b:ca:ab:5f:19:38:24:69:11:54:82:

10:49:fd:00:3c:26:ef:83:32:82:b1:73:96:e8:9d:

eb:2f:60:89:ea:3a:cb:95:a7:0a:2e:46:63:ce:29:

87:17:1a:d4:3e:c5:5a:90:8c:71:3b:23:75:21:42:

09:60:81:da:c1

ASN1 OID: prime256v1

NIST CURVE: P-256

X509v3 extensions:

X509v3 Key Usage: critical

Digital Signature, Key Encipherment

X509v3 Basic Constraints: critical

CA:FALSE

X509v3 Authority Key Identifier:

3C:25:65:88:F2:CD:29:37:05:06:7C:E8:F3:C4:2B:CD:9B:DC:5E:74

X509v3 Subject Alternative Name:

DNS:cluster1-primary.default.svc.cluster.local., DNS:cluster1-

primary.default.svc, DNS:cluster1-primary.default, DNS:cluster1-primary, DNS:cluster1-

replicas.default.svc.cluster.local., DNS:cluster1-replicas.default.svc, DNS:cluster1-

replicas.default, DNS:cluster1-replicas

Signature Algorithm: ecdsa-with-SHA384

...

Page 101

One of the options to create certificates yourself is to use CloudFlare PKI and TLS toolkit . Supposing

that your cluster name is cluster1 and the desired namespace is postgres-operator , certificates

generation may look as follows:

You can find more on genrating certificates this way in official Kubernetes documentation .

``` {.bash data-prompt="$" }

$ export CLUSTER_NAME=cluster1

$ export NAMESPACE=postgres-operator

$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca

{

"CN": "*",

"key": {

"algo": "ecdsa",

"size": 384

}

}

EOF

$ cat <<EOF > ca-config.json

{

"signing": {

"default": {

"expiry": "87600h",

"usages": ["digital signature", "key encipherment", "content commitment"]

}

}

}

EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem  -ca-key=ca-key.pem -config=./ca-

config.json - | cfssljson -bare server

{

"hosts": [

"localhost",

"${CLUSTER_NAME}-primary",

"${CLUSTER_NAME}-primary.${NAMESPACE}",

"${CLUSTER_NAME}-primary.${NAMESPACE}.svc.cluster.local",

"${CLUSTER_NAME}-primary.${NAMESPACE}.svc"

],

"CN": "${CLUSTER_NAME}-primary.${NAMESPACE}.svc.cluster.local", 

"key": {

"algo": "ecdsa",

"size": 384

}

}

EOF

```

https://cfssl.org/
https://cfssl.org/
https://cfssl.org/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/

Page 102

Don’t forget that you should generate certificates twice: one set is for external communications, and

another set is for internal ones!

Check your certificates for expiration

1. First, check the necessary secrets names (cluster1-cluster-cert and cluster1-replication-

cert by default):

You will have the following response:

2. Now use the following command to find out the certificates validity dates, substituting Secrets names

if necessary:

The resulting output will be self-explanatory:

Keep certificates after deleting the cluster
In case of cluster deletion, objects, created for SSL (Secret, certificate, and issuer) are not deleted by

default.

$ kubectl get secrets

NAME TYPE DATA AGE

cluster1-cluster-cert Opaque 3 11m

...

cluster1-replication-cert Opaque 3 11m

...

$ {

kubectl get secret/cluster1-replication-cert -o jsonpath='{.data.tls\.crt}'

| base64 --decode | openssl x509 -noout -dates

kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.ca\.crt}' |

base64 --decode | openssl x509 -noout -dates

}

notBefore=Jun 28 10:20:19 2023 GMT

notAfter=Jun 27 11:20:19 2024 GMT

notBefore=Jun 28 10:20:18 2023 GMT

notAfter=Jun 25 11:20:18 2033 GMT

Page 103

If the user wants the cleanup of objects created for SSL, there is a finalizers.percona.com/delete-ssl

Custom Resource option, which can be set in deploy/cr.yaml : if this finalizer is set, the Operator will

delete Secret, certificate and issuer after the cluster deletion event.

Page 104

Telemetry
The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona,

which helps us to determine where to focus the development and what is the uptake for each release of

Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid field)

Kubernetes version

Platform (is it Kubernetes or Openshift)

Is PMM enabled, and the PMM Version

Operator version

PostgreSQL version

PgBackRest version

Was the Operator deployed with Helm

Are sidecar containers used

Are backups used

We do not gather anything that identify a system, but the following thing should be mentioned: Custom

Resource ID is a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it

at scheduled times to obtain fresh information about version numbers and valid image paths needed for

the upgrade.

The landing page for this service, check.percona.com , explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

if you don’t use helm for installation, you have to edit the operator.yaml before applying it with the

kubectl apply -f deploy/operator.yaml command. Open the operator.yaml file with your text

editor, find the DISABLE_TELEMETRY environment variable and set it to "true"

$ helm install my-db percona/pg-db --version 2.6.0 --namespace my-namespace --set

disable_telemetry="true"

https://check.percona.com/
https://check.percona.com/
https://check.percona.com/

Page 105

...

- name: DISABLE_TELEMETRY

value: "true"

...

Page 106

Management

Page 107

Upgrade Database and Operator
Starting from the version 2.2.0 Percona Operator for PostgreSQL allows upgrades to newer 2.x versions.

Upgrading from the 1.x branch of the Operator to 2.x versions ca be done in several ways and is completely different

from the normal upgrade scenario due to substantial changes in the architecture.

Upgrading to a newer version typically involves two steps:

1. Upgrading the Operator and Custom Resource Definition (CRD) ,

2. Upgrading the Database Management System (Percona Distribution for PostgreSQL).

Alternatively, it is also possible to carry on minor version upgrades of Percona Distribution for PostgreSQL

without the Operator upgrade.

Upgrading the Operator and CRD
The Operator version includes three numbers: major , minor , and patch (for example, the Operator

version 2.6.0 has major version 2 , minor version 6 , and patch version 0). Only the incremental update

to a nearest major.minor version of the Operator is supported. To update to a newer version, which

differs from the current major.minor version by more than one, make several incremental updates

sequentially.

For example, to upgrade the CRD and Operator from the version 2.4.0 to 2.6.0, the following sequence of

upgrades will be the shortest recommended path:

1. upgrading the CRD and Operator from 2.4.0 to 2.5.1,

2. upgrading from 2.5.1 to 2.6.0.

You can find Operator versions listed here.

CRD supports last 3 minor versions of the Operator, which means it is compatible with the newest

Operator version and the two older versions. If the Operator is older than the CRD by no more than two

versions, you should be able to continue using the old Operator version. But updating the CRD and

Operator is the recommended path.

Using newer CRD with older Operator is useful to upgrade multiple single-namespace Operator

deployments in one Kubernetes cluster, where each Operator controls a database cluster in its own

namespace. In this case upgrading Operator deployments will look as follows:

Note

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Page 108

upgrade the CRD (not 3 minor versions far from the oldest Operator installation in the Kubernetes

cluster) first

upgrade the Operators in each namespace incrementally to nearest minor version (e.g. first 2.4.0 to

2.5.1, then 2.5.1 to 2.6.0)

Manual upgrade

You can upgrade the Operator and CRD as follows, considering the Operator uses postgres-operator

namespace, and you are upgrading to the version 2.6.0.

1. First update the CRD for the Operator, taking it from the official repository on Github (it is important to

use --server-side flag when applying deploy/crd.yaml), and do the same for the Role-based

access control. Applying the new CRD manifest must be done with server-side flag (otherwise you

can encounter a number of errors caused by applying the CRD client-side: the command may fail, the

built-in PosgreSQL extensions can be lost during such upgrade, etc.).

In case of cluster-wide installation, use deploy/cw-rbac.yaml instead of deploy/rbac.yaml .

2. Now you should Apply a patch to your deployment, supplying necessary image name with a newer

version tag. You can find the proper image names and version tags for the current Operator version in

the list of certified images. For older versions, please refer to the old releases documentation archive

).

Updating to the 2.6.0 version should look as follows:

3. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout

process in real time with the kubectl rollout status command with the name of your cluster:

$ kubectl apply --server-side -f

https://raw.githubusercontent.com/percona/percona-postgresql-

operator/v2.6.0/deploy/crd.yaml

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-

postgresql-operator/v2.6.0/deploy/rbac.yaml -n postgres-operator

Note

$ kubectl -n postgres-operator patch deployment percona-postgresql-operator \

-p'{"spec":{"template":{"spec":{"containers":

[{"name":"operator","image":"percona/percona-postgresql-operator:2.6.0"}]}}}}'

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/

Page 109

Upgrade via Helm

If you have installed the Operator using Helm, you can upgrade the Operator with the helm upgrade

command.

You can use helm upgrade to upgrade the Operator. But the database management system (Percona Distribution for

PostgreSQL) should be upgraded in the same way whether you used Helm to install it or not.

1. Update the Custom Resource Definition for the Operator, taking it from the official repository on

Github, and do the same for the Role-based access control:

2. If you installed the Operator with no customized parameters , the upgrade can be done as follows:

The my-operator parameter in the above example is the name of a release object which which

you have chosen for the Operator when installing its Helm chart.

If the Operator was installed with some customized parameters , you should list these options in

the upgrade command.

$ kubectl rollout status deployments percona-postgresql-operator -n postgres-

operator

Expected output

deployment "percona-postgresql-operator" successfully rolled out

Note

$ kubectl apply --server-side --force-conflicts -f

https://raw.githubusercontent.com/percona/percona-postgresql-

operator/v2.6.0/deploy/crd.yaml

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-

postgresql-operator/v2.6.0/deploy/rbac.yaml -n postgres-operator

$ helm upgrade my-operator percona/pg-operator --version 2.6.0

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart

Page 110

You can get list of used options in YAML format with the helm get values my-operator -a > my-

values.yaml command, and this file can be directly passed to the upgrade command as follows:

Upgrade via Operator Lifecycle Manager (OLM)

If you have installed the Operator on the OpenShift platform using OLM, you can upgrade the Operator

within it.

1. List installed Operators for your Namespace to see if there are upgradable items.

Installed Operators

Installed Operators are represented by ClusterServiceVersions within this Namespace.

Name Search by name...

Name Status

Percona Operator for
PostgreSQL

2.4.0 provided by Percona

Succeeded

/

Upgrade available

2. Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and

finally “Approve” to upgrade the Operator.

Upgrading Percona Distribution for PostgreSQL
Before the Operator version 2.4, you could upgrade Percona Distribution for PostgreSQL from one minor

version to another (such as upgrading from 15.5 to 15.7, or from 16.1 to 16.3). Starting from the Operator

2.4 you can also upgrade from one PostgreSQL major version to another (for example, upgrade from

PostgreSQL 15.5 to PostgreSQL 16.3). Minor version upgrade and major version upgrade are technically

different tasks with different scenarios.

Note

$ helm upgrade my-operator percona/pg-operator --version 2.6.0 -f my-values.yaml

Page 111

Upgrading a PostgreSQL cluster upgrade may result in downtime, as well as failover caused by updating the primary

instance.

Minor version upgrade

Upgrading Percona Distribution for PostgreSQL minor version (for example, 16.1 to 16.3) can be done as

follows:

1. Apply a patch to your Custom Resource, setting necessary Custom Resource version and image

names with a newer version tag.

Check the version of the Operator you have in your Kubernetes environment. Please refer to the Operator upgrade

guide to upgrade the Operator and CRD first, if needed.

Patching Custom Resource is done with the kubectl patch pg command. Actual image names can

be found in the list of certified images. For example, updating cluster1 cluster to the 2.6.0 version

should look as follows:

The following image names in the above example were taken from the list of certified images:

percona/percona-postgresql-operator:2.6.0-ppg17.4-postgres ,

percona/percona-postgresql-operator:2.6.0-ppg17.4-pgbouncer1.24.0 ,

percona/percona-postgresql-operator:2.6.0-ppg17.4-pgbackrest2.54.2 ,

percona/pmm-client:2.44.0 .

Note

Note

$ kubectl -n postgres-operator patch pg cluster1 --type=merge --patch '{

"spec": {

"crVersion":"2.6.0",

"image": "percona/percona-postgresql-operator:2.6.0-ppg17.4-postgres",

"proxy": { "pgBouncer": { "image": "percona/percona-postgresql-

operator:2.6.0-ppg17.4-pgbouncer1.24.0" } },

"backups": { "pgbackrest": { "image": "percona/percona-postgresql-

operator:2.6.0-ppg17.4-pgbackrest2.54.2" } },

"pmm": { "image": "percona/pmm-client:2.44.0" }

}}'

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

Page 112

The above command upgrades various components of the cluster including PMM Client. It is highly recommended

 to upgrade PMM Server before upgrading PMM Client. If it wasn’t done and you would like to avoid PMM Client

upgrade, remove it from the list of images, reducing the last of two patch commands as follows:

The deployment rollout will be automatically triggered by the applied patch. The update process is

successfully finished when all Pods have been restarted.

Major version upgrade

Major version upgrade allows you to jump from one database major version to another (for example,

upgrade from PostgreSQL 15.5 to PostgreSQL 16.3).

Warning

$ kubectl -n postgres-operator patch pg cluster1 --type=merge --patch '{

"spec": {

"crVersion":"2.6.0",

"image": "percona/percona-postgresql-operator:2.6.0-ppg17.4-postgres",

"proxy": { "pgBouncer": { "image": "percona/percona-postgresql-operator:2.6.0-

ppg17.4-pgbouncer1.24.0" } },

"backups": { "pgbackrest": { "image": "percona/percona-postgresql-operator:2.6.0-

ppg17.4-pgbackrest2.54.2" } }

}}'

$ kubectl get pods -n postgres-operator

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-backup-4vwt-p5d9j 0/1 Completed 0 97m

cluster1-instance1-b5mr-0 4/4 Running 0 99m

cluster1-instance1-b8p7-0 4/4 Running 0 99m

cluster1-instance1-w7q2-0 4/4 Running 0 99m

cluster1-pgbouncer-79bbf55c45-62xlk 2/2 Running 0 99m

cluster1-pgbouncer-79bbf55c45-9g4cb 2/2 Running 0 99m

cluster1-pgbouncer-79bbf55c45-9nrmd 2/2 Running 0 99m

cluster1-repo-host-0 2/2 Running 0 99m

percona-postgresql-operator-79cd8586f5-2qzcs 1/1 Running 0 120m

https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html

Page 113

Major version upgrades feature is currently a tech preview, and it is not recommended for production environments.

Also, currently the major version upgrade only works if the images in Custom Resource (deploy/cr.yaml manifest)

are specified without minor version numbers:

It will not work for images specified like percona/percona-postgresql-operator:2.4.0-ppg15.7-postgres .

The upgrade is triggered by applying the YAML file which refers to the special Operator upgrade image and

contains the information about the existing and desired major versions. An example of this file is present

in deploy/upgrade.yaml :

As you can see, the manifest includes image names for the database cluster components (PostgreSQL,

pgBouncer, and pgBackRest). You can find them in the list of certified images for the current Operator

release. For older versions, please refer to the old releases documentation archive).

After you apply the YAML manifest as usual (by running kubectl apply -f deploy/upgrade.yaml

command), the actual upgrade takes place:

1. The Operator pauses the cluster, so the cluster will be unavailable for the duration of the upgrade,

2. The cluster is specially annotated with pgv2.percona.com/allow-upgrade :

<PerconaPGUpgrade.Name> annotation,

3. Jobs are created to migrate the data,

Note

...

image: percona/percona-postgresql-operator:2.4.0-ppg15-postgres

postgresVersion: 15

...

apiVersion: pgv2.percona.com/v2

kind: PerconaPGUpgrade

metadata:

name: cluster1-15-to-16

spec:

postgresClusterName: cluster1

image: percona/percona-postgresql-operator:2.6.0-upgrade

fromPostgresVersion: 15

toPostgresVersion: 16

toPostgresImage: percona/percona-postgresql-operator:2.6.0-ppg16.8-postgres

toPgBouncerImage: percona/percona-postgresql-operator:2.6.0-ppg16.8-

pgbouncer1.24.0

toPgBackRestImage: percona/percona-postgresql-operator:2.6.0-ppg16.8-

pgbackrest2.54.2

https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/

Page 114

4. The cluster starts up after the upgrade finishes.

If the upgrade fails for some reason, the cluster will stay in paused mode. Resume the cluster manually to check what

went wrong with upgrade (it will start with the old version). You can check the PerconaPGUpgrade resource with

kubectl get perconapgupgrade -o yaml command, and check the logs of the upgraded Pods to debug the issue.

During the upgrade data are duplicated in the same PVC for each major upgrade, and old version data are

not deleted automatically. Make sure your PVC has enough free space to store data. You can remove data

at your discretion by executing into containers and running the following commands (example for

PostgreSQL 15):

You can also delete the PerconaPGUpgrade resource (this will clean up the jobs and Pods created during

the upgrade):

Upgrading PostgreSQL extensions

If there are custom PostgreSQL extensions installed in the cluster, they need to be taken into account: you

need to build and package each custom extension for the new PostgreSQL major version. During the

upgrade the Operator will install extensions into the upgrade container.

The only built-in extension which demands special treatment after the database upgrade is

pg_stat_monitor one. It is used to provide query analytics for Percona Monitoring and Management

(PMM), if enabled in the Custom Resource (deploy/cr.yaml manifest):

If you need it, do the following after the database uprgade (this manual step is not required for the

Operator versions 2.6.0 and newer):

Note

$ rm -rf /pgdata/pg15

$ rm -rf /pgdata/pg15_wal

$ kubectl delete perconapgupgrade cluster1-15-to-16

extensions:

...

builtin:

pg_stat_monitor: true

...

Page 115

1. Find the primary instance of your PostgreSQL cluster. You can do this using Kubernetes Labels as

follows (replace the <namespace> placeholder with your value):

PostgreSQL primary is labeled as master , while other PostgreSQL instances are labeled as replica .

2. Login to a primary instance (cluster1-instance1-ttm9-0 in the above example) as an

administrative user:

3. Execute the following SQL statement:

Upgrade from the Operator version 1.x to version 2.x
The Operator version 2.x has a lot of differences compared to the version 1.x. This makes upgrading from

version 1.x to version 2.x quite different from a normal upgrade. In fact, you have to migrate the cluster

from version 1.x to version 2.x.

There are several ways to do such version 1.x to version 2.x upgrade. Choose the method based on your

downtime preference and roll back strategy:

$ kubectl get pods -n <namespace> -l postgres-

operator.crunchydata.com/cluster=cluster1 \

-L postgres-operator.crunchydata.com/instance \

-L postgres-operator.crunchydata.com/role | grep instance1

Sample output

cluster1-instance1-bmdp-0 4/4 Running 0 2m23s cluster1-

instance1-bmdp replica

cluster1-instance1-fm7w-0 4/4 Running 0 2m22s cluster1-

instance1-fm7w replica

cluster1-instance1-ttm9-0 4/4 Running 0 2m22s cluster1-

instance1-ttm9 master

$ kubectl exec -n <namespace> -ti cluster1-instance1-ttm9-0 -c database --

psql postgres

postgres=# alter extension pg_stat_monitor update;

Page 116

Pros Cons

Data Volumes migration - re-use the volumes that

were created by the Operator version 1.x

The simplest

method

- Requires downtime

- Impossible to roll back

Backup and restore - take the backup with the

Operator version 1.x and restore it to the cluster

deployed by the Operator version 2.x

Allows you to

quickly test version

2.x

Provides significant downtime in

case of migration

Replication - replicate the data from the Operator

version 1.x cluster to the standby cluster deployed by

the Operator version 2.x

- Quick test of v2

cluster

- Minimal downtime

during upgrade

Requires significant computing

resources to run two clusters in

parallel

Page 117

Upgrade from version 1 to version 2

Page 118

Upgrade using data volumes

Prerequisites:
The following conditions should be met for the Volumes-based migration:

You have a version 1.x cluster with spec.keepData: true in the Custom Resource

You have both Operators deployed and allow them to control resources in the same namespace

Old and new clusters must be of the same PostgreSQL major version

This migration method has two limitations. First of all, this migration method introduces a downtime. Also,

you can only reverse such migration by restoring the old cluster from the backup. See other migration

methods if you need lower downtime and a roll back plan.

Prepare version 1.x cluster for the migration

Remove all Replicas from the cluster, keeping only primary running. It is required to assure that

Volume of the primary PVC does not change. The deploy/cr.yaml configuration file should have

it as follows:

1

...

pgReplicas:

hotStandby:

size: 0

Apply the Custom Resource in a usual way:2

$ kubectl apply -f deploy/cr.yaml

When all Replicas are gone, proceed with removing the cluster. Double check that spec.keepData is

in place, otherwise the Operator will delete the volumes!

3

$ kubectl delete perconapgcluster cluster1

Find PVC for the Primary and pgBackRest :4

$ kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Page 119

A third PVC used to store write-ahead logs (WAL) may also be present if external WAL volumes were

enabled for the cluster.

Expected output

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

cluster1 Bound pvc-940cdc23-cd4c-4f62-ac3a-dc69850042b0 1Gi RWO

standard-rwo 57m

cluster1-pgbr-repo Bound pvc-afb00490-5a45-45cb-a1cb-10af8e48bb13 1Gi RWO

standard-rwo 57m

Permissions for pgBackRest repo folders are managed differently in version 1 and version 2. We

need to change the ownership of the backrest folder on the Persistent Volume to avoid errors

during migration. Running a chown command within a container fixes this problem. You can use the

following manifest to execute it:

Apply it as follows:

5

chown-pod.yaml

apiVersion: v1

kind: Pod

metadata:

name: chown-pod

spec:

volumes:

- name: backrestrepo

persistentVolumeClaim:

claimName: cluster1-pgbr-repo

containers:

- name: task-pv-container

image: ubuntu

command:

- chown

- -R

- 26:26

- /backrestrepo/cluster1-backrest-shared-repo

volumeMounts:

- mountPath: "/backrestrepo"

name: backrestrepo

$ kubectl apply -f chown-pod.yaml -n pgo

Page 120

Execute the migration to version 2.x
The old cluster is shut down, and Volumes are ready to be used to provision the new cluster managed by

the Operator version 2.x.

Install the Operator version 2 (if not done yet). Pick your favorite method from our documentaion.1

Run the following command to show the names of PVC belonging to the old cluster:2

$ kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

Expected output

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

cluster1 Bound pvc-db9bf618-04d5-4807-948d-e32e81098575 1Gi RWO

standard-rwo 87m

cluster1-pgbr-repo Bound pvc-37d93aa9-bf02-4295-bbbc-c1f834ed6045 1Gi RWO

standard-rwo 87m

Now edit the Custom Resource manifest (deploy/cr.yaml configuration file) of the version 2.x

cluster: add fields to the dataSource.volumes subsection, pointing to the PVCs of the version 1.x

cluster:

3

...

dataSource:

volumes:

pgDataVolume:

pvcName: cluster1

directory: cluster1

pgBackRestVolume:

pvcName: cluster1-pgbr-repo

directory: cluster1-backrest-shared-repo

Do not forget to set the proper PostgreSQL major version. It must be the same version that was used

in version 1 cluster. You can set the version in the corresponding image sections and

postgresVersion . The following example sets version 14:

4

Page 121

The new cluster will be provisioned shortly using the volume of the version 1.x cluster. You should remove

the spec.datasource.volumes section from your manifest.

spec:

image: percona/percona-postgresql-operator:2.6.0-ppg14-postgres

postgresVersion: 14

proxy:

pgBouncer:

image: percona/percona-postgresql-operator:2.6.0-ppg14-pgbouncer

backups:

pgbackrest:

image: percona/percona-postgresql-operator:2.6.0-ppg14-pgbackrest

Apply the manifest:5

$ kubectl apply -f deploy/cr.yaml

Page 122

Upgrade using backup and restore
This method allows you to migrate from the version 1.x to version 2.x cluster by restoring (actually

creating) a new version 2.x PostgreSQL cluster using a backup from the version 1.x cluster.

To make sure that all transactions are captured in the backup, you need to stop the old cluster. This brings downtime to

the application.

Prepare the backup

Restore the backup as a version 2.x cluster
Restore from S3 / Google Cloud Storage for backups repository

Note

Create the backup on the version 1.x cluster, following the official guide for manual (on-demand)

backups. This involves preparing the manifest in YAML and applying it in the ususal way:

1

$ kubectl apply -f deploy/backup/backup.yaml

Pause or delete the version 1.x cluster to ensure that you have the latest data.

Before deleting the cluster, make sure that the spec.keepBackups Custom Resource option is set to true . When

it’s set, local backups will be kept after the cluster deletion, so you can proceed with deleting your cluster as

follows:

2

Warning

$ kubectl delete perconapgcluster cluster1

To restore from the S3 or Google Cloud Storage for backups (GCS) repository, you should first

configure the spec.backups.pgbackrest.repos subsection in your version 2.x cluster Custom

Resource to point to the backup storage system. Just follow the repository documentation instruction

for S3 or GCS. For example, for GCS you can define the repository similar to the following:

1

https://docs.percona.com/percona-operator-for-postgresql/1.0/backups.html#making-on-demand-backup
https://docs.percona.com/percona-operator-for-postgresql/1.0/backups.html#making-on-demand-backup
https://docs.percona.com/percona-operator-for-postgresql/1.0/pause.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/operator.html#spec-keepbackups

Page 123

spec:

backups:

pgbackrest:

repos:

- name: repo1

gcs:

bucket: MY-BUCKET

region: us-central1

Create and configure any required Secrets or desired custom pgBackrest configuration as described

in the backup documentation for te Operator version 2.x.

2

Set the repository path in the backups.pgbackrest.global subsection. By default it is

/backrestrepo/<clusterName>-backrest-shared-repo :

3

spec:

backups:

pgbackrest:

global:

repo1: /backrestrepo/cluster1-backrest-shared-repo

Set the spec.dataSource option to create the version 2.x cluster from the specific repository:

You can also provide other pgBackRest restore options, e.g. if you wish to restore to a specific point-

in-time (PITR).

4

spec:

dataSource:

postgresCluster:

repoName: repo1

Create the version 2.x cluster:5

$ kubectl apply -f cr.yaml

Page 124

Migrate using Standby
This method allows you to migrate from version 1.x to version 2.x by creating a new version 2.x

PostgreSQL cluster in a “standby” mode, mirroring the version 1.x cluster to it continuously. This method

can provide minimal downtime, but requires additional computing resources to run two clusters in parallel.

This method only works if the version 1.x cluster uses Amazon S3 or S3-compatible storage , or Google

Cloud storage (GCS) for backups. For more information on standby clusters, please refer to this article

.

Migrate to version 2
There is no need to perform any additional configuration on version 1.x cluster, you will only need to

configure the version 2.x one.

Configure spec.backups.pgbackrest.repos Custom Resource option to point to the backup

storage system. For example, for GCS, the repository would be defined similar to the following:

1

spec:

backups:

pgbackrest:

repos:

- name: repo1

gcs:

bucket: MY-BUCKET

region: us-central1

Create and configure any required secrets or desired custom pgBackrest configuration as described

in the backup documentation for the version 2.x.

2

Set the repository path in backups.pgbackrest.global section of the Custom Resource

configuration file. By default it will be /backrestrepo/<clusterName>-backrest-shared-repo :

3

spec:

backups:

pgbackrest:

global:

repo1: /backrestrepo/cluster1-backrest-shared-repo

Enable the standby mode in spec.standby and point to the repository:4

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/storage
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html

Page 125

Promote version 2.x cluster
Once the standby cluster is up and running, you can promote it.

You can use version 2.x cluster now. Also the 2.x version is now managing the object storage with

backups, so you should not start your old cluster.

Create the replication user
Right after disabling standby, run the following SQL commands as a PostgreSQL superuser. For example,

you can login as the postgres user, or exec into the Pod and use psql :

add the managed replication user

allow for the replication user to execute the functions required as part of “rewinding”

spec:

standby:

enabled: true

repoName: repo1

Create the version 2.x cluster:5

$ kubectl apply -f deploy/cr.yaml

Delete version 1.x cluster, but ensure that spec.keepBackups is set to true .1

$ kubectl delete perconapgcluster cluster1

Promote version 2.x cluster by disabling the standby mode:2

spec:

standby:

enabled: false

CREATE ROLE _crunchyrepl WITH LOGIN REPLICATION;

Page 126

The above step will be automated in upcoming releases.

GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO

_crunchyrepl;

GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO _crunchyrepl;

GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO _crunchyrepl;

GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint,

boolean) TO _crunchyrepl;

Page 127

Back up and restore

Page 128

About backups
In this section you will learn how to set up and manage backups of your data using the Operator.

You can make backups in two ways:

On-demand. You can do them manually at any moment.

Schedule backups. Configure backups and their schedule in the deploy/cr.yaml file. The Operator

makes them automatically according to the schedule.

What you need to know

Backup repositories

To make backups, the Operator uses the open source pgBackRest backup and restore utility.

When the Operator creates a new PostgreSQL cluster, it also creates a special pgBackRest repository to

facilitate the usage of the pgBackRest features. You can notice an additional repo-host Pod after the

cluster creation.

A pgBackRest repository consists of the following Kubernetes objects:

A Deployment,

A Secret that contains information specific to the PostgreSQL cluster (e.g. SSH keys, AWS S3 keys,

etc.),

A Pod with a number of supporting scripts,

A Service.

In the /deploy/cr.yml file, pgBackRest repositories are listed in the backups.pgbackrest.repos

subsection. You can have up to 4 repositories as repo1 , repo2 , repo3 , and repo4 .

Backup types

You can make the following types of backups:

full : A full backup of all the contents of the PostgreSQL cluster,

differential : A backup of only the files that have changed since the last full backup,

incremental : Default. A backup of only the files that have changed since the last full or differential

backup.

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/

Page 129

Backup storage

You have the following options to store PostgreSQL backups:

Cloud storage:

Amazon S3, or any S3-compatible storage,

Google Cloud Storage,

Azure Blob Storage

A Persistent Volume attached to the pgBackRest Pod.

Next steps
Ready to move forward? Configure backup storage

Page 130

Configure backup storage
Configure backup storage for your backup repositories in the backups.pgbackrest.repos section of the

deploy/cr.yaml configuration file.

Follow the instructions relevant to the cloud storage or Persistent Volume you are using for backups.

Page 131

 S3-compatible backup storage

To use Amazon S3 or any S3-compatible storage for backups, you need to have the following S3-

related information:

The name of S3 bucket;

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage. These are stored in an encoded form in

Kubernetes Secrets along with other sensitive information.

For S3-compatible storage other than native Amazon S3, you will also need to specify the endpoint - the

actual URI to access the bucket - and the URI style (see below).

The pgBackRest tool does backups based on write-ahead logs (WAL) archiving. If you are using an S3 storage in a

region located far away from the region of your PostgreSQL cluster deployment, it could lead to the delay and

impossibility to create a new replica/join delayed replica if the primary restarts. A new WAL file is archived in 60

seconds at the backup start by default , causing both full and incremental backups fail in case of long delay.

To prevent issues with PostgreSQL archiving and have faster restores, it’s recommended to use the same S3 region for

both the Operator and backup options. Additionally, you can replicate the S3 bucket to another region with tools like

Amazon S3 Cross Region Replication .

Configuration steps

Note

Encode the S3 credentials and the pgBackRest repository name that you will use for backups. In this

example, we use AWS S3 key and S3 key secret and repo2 .

1

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html

Page 132

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>

repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

EOF

$ cat <<EOF | base64

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>

repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

EOF

Create the Secret configuration file and specify the base64-encoded string from the previous step.

The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

This Secret can store credentials for several repositories presented as separate data keys.

2

apiVersion: v1

kind: Secret

metadata:

name: cluster1-pgbackrest-secrets

type: Opaque

data:

s3.conf: <base64-encoded-configuration-contents>

Note

Create the Secrets object from this YAML file. Replace the <namespace> placeholder with your value:3

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

Update your deploy/cr.yaml configuration. Specify the Secret file you created in the

backups.pgbackrest.configuration subsection, and put all other S3 related information in the

backups.pgbackrest.repos subsection under the repository name that you intend to use for

backups. This name must match the name you used when you encoded S3 credentials on step 1.

4

Page 133

Provide pgBackRest the directory path for backup on the storage. You can pass it in the

backups.pgbackrest.global subsection via the pgBackRest path option (prefix it’s name with the

repository name, for example repo1-path). Also, if your S3-compatible storage requires additional

repository options for the pgBackRest tool, you can specify these parameters in the same

backups.pgbackrest.global subsection with standard pgBackRest option names, also prefixed

with the repository name.

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global
https://pgbackrest.org/configuration.html#section-repository
https://pgbackrest.org/configuration.html#section-repository
https://pgbackrest.org/configuration.html#section-repository

Page 134

 Amazon S3 storage

For example, the S3 storage for the repo2 repository looks as follows:

To use this feature, add annotation to the spec part of the Custom Resource and also add pgBackRest custom

configuration option to the backups subsection as follows:

 S3-compatible storage

For example, the S3-compatible storage for the repo2 repository looks as follows:

...

backups:

pgbackrest:

...

configuration:

- secret:

name: cluster1-pgbackrest-secrets

...

global:

repo2-path: /pgbackrest/postgres-operator/cluster1/repo2

...

repos:

- name: repo2

s3:

bucket: "<YOUR_AWS_S3_BUCKET_NAME>"

region: "<YOUR_AWS_S3_REGION>"

Using AWS EC2 instances for backups makes it possible to automate access to AWS S3 buckets based

on IAM roles for Service Accounts with no need to specify the S3 credentials explicitly.

spec:

crVersion: 2.6.0

metadata:

annotations:

eks.amazonaws.com/role-arn: arn:aws:iam::1191:role/role-pgbackrest-access-s3-

bucket

...

backups:

pgbackrest:

image: percona/percona-postgresql-operator:2.6.0-ppg16-pgbackrest

global:

repo2-s3-key-type: web-id

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html

Page 135

 Google Cloud Storage

To use Google Cloud Storage (GCS) as an object store for backups, you need the following

information:

a proper GCS bucket name. Pass the bucket name to pgBackRest via the gcs.bucket key in the

backups.pgbackrest.repos subsection of deploy/cr.yaml .

your service account key for the Operator to access the storage.

Configuration steps

The repo2-storage-verify-tls option in the above example enables TLS verification for

pgBackRest (when set to y or simply omitted) or disables it, when set to n .

The repo2-s3-uri-style option should be set to path if you use S3-compatible storage

(otherwise you might see “host not found error” in your backup job logs), and is not needed for

Amazon S3.

...

backups:

pgbackrest:

...

configuration:

- secret:

name: cluster1-pgbackrest-secrets

...

global:

repo2-path: /pgbackrest/postgres-operator/cluster1/repo2

repo2-storage-verify-tls=y

repo2-s3-uri-style: path

...

repos:

- name: repo2

s3:

bucket: "<YOUR_AWS_S3_BUCKET_NAME>"

endpoint: "<YOUR_AWS_S3_ENDPOINT>"

region: "<YOUR_AWS_S3_REGION>"

Create or update the cluster. Replace the <namespace> placeholder with your value:5

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Create your service account key following the official Google Cloud instructions .1

https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/storage
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/iam/docs/creating-managing-service-account-keys

Page 136

Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin → Service Accounts in the left

menu panel, then click your account and open the KEYS tab):

my-service-account

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.
Learn more about setting organization policies for service accounts

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the
Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

ADD KEY

DETAILS PERMISSIONS KEYS METRICS LOGS

Click the ADD KEY button, choose Create new key and choose JSON as a key type. These actions will

result in downloading a file in JSON format with your new private key and related information (for

example, gcs-key.json).

2

Create the Kubernetes Secret . The Secret consists of base64-encoded versions of two files: the

gcs-key.json file with the Google service account key you have just downloaded, and the special

gcs.conf configuration file.

Create the gcs.conf configuration file. The file contents depends on the repository name for

backups in the deploy/cr.yaml file. In case of the repo3 repository, it looks as follows:

Encode both gcs-key.json and gcs.conf files.

3

→

[global]

repo3-gcs-key=/etc/pgbackrest/conf.d/gcs-key.json

→

 Linux

 MacOS

base64 --wrap=0 <filename>

base64 -i <filename>

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 137

Create the Kubernetes Secret configuration file and specify your cluster name and the base64-

encoded contents of the files from previous steps. The following is the example of the

cluster1-pgbackrest-secrets.yaml Secret file:

 Info This Secret can store credentials for several repositories presented as separate data keys.

→

apiVersion: v1

kind: Secret

metadata:

name: cluster1-pgbackrest-secrets

type: Opaque

data:

gcs-key.json: <base64-encoded-json-file-contents>

gcs.conf: <base64-encoded-conf-file-contents>

Create the Secrets object from the Secret configuration file. Replace the <namespace> placeholder

with your value:

4

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

Update your deploy/cr.yaml configuration. Specify your GCS credentials Secret in the

backups.pgbackrest.configuration subsection, and put GCS bucket name into the bucket

option in the backups.pgbackrest.repos subsection. The repository name must be the same as

the name you specified when you created the gcs.conf file.

Also, provide pgBackRest the directory path for backup on the storage. You can pass it in the

backups.pgbackrest.global subsection via the pgBackRest path option (prefix it’s name with the

repository name, for example repo3-path).

For example, GCS storage configuration for the repo3 repository would look as follows:

5

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global

Page 138

 Azure Blob Storage (tech preview)

To use Microsoft Azure Blob Storage for storing backups, you need the following:

a proper Azure container name.

Azure Storage credentials. These are stored in an encoded form in the Kubernetes Secret .

Configuration steps

...

backups:

pgbackrest:

...

configuration:

- secret:

name: cluster1-pgbackrest-secrets

...

global:

repo3-path: /pgbackrest/postgres-operator/cluster1/repo3

...

repos:

- name: repo3

gcs:

bucket: "<YOUR_GCS_BUCKET_NAME>"

Create or update the cluster. Replace the <namespace> placeholder with your value:6

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Encode the Azure Storage credentials and the pgBackRest repo name that you will use for backups

with base64. In this example, we are using repo4 .

1

https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 139

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0

[global]

repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>

repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

$ cat <<EOF | base64

[global]

repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>

repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

Create the Secret configuration file and specify the base64-encoded string from the previous step.

The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

This Secret can store credentials for several repositories presented as separate data keys.

2

apiVersion: v1

kind: Secret

metadata:

name: cluster1-pgbackrest-secrets

type: Opaque

data:

azure.conf: <base64-encoded-configuration-contents>

Note

Create the Secrets object from this yaml file. Replace the <namespace> placeholder with your value:3

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

Update your deploy/cr.yaml configuration. Specify the Secret file you have created in the previous step

in the backups.pgbackrest.configuration subsection. Put Azure container name in the

backups.pgbackrest.repos subsection under the repository name that you intend to use for

backups. This name must match the name you used when you encoded Azure credentials on step 1.

Also, provide pgBackRest the directory path for backup on the storage. You can pass it in the

backups.pgbackrest.global subsection via the pgBackRest path option (prefix it’s name with the

repository name, for example repo4-path).

4

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global

Page 140

 Persistent Volume

Percona Operator for PostgreSQL uses Kubernetes Persistent Volumes to store Postgres data. You can

also use them to store backups. A Persistent volume is created at the same time when the Operator

creates PostgreSQL cluster for you. You can find the Persistent Volume configuration in the

backups.pgbackrest.repos section of the cr.yaml file under the repo1 name:

For example, the Azure storage for the repo4 repository looks as follows.

...

backups:

pgbackrest:

...

configuration:

- secret:

name: cluster1-pgbackrest-secrets

...

global:

repo4-path: /pgbackrest/postgres-operator/cluster1/repo4

...

repos:

- name: repo4

azure:

container: "<YOUR_AZURE_CONTAINER>"

Create or update the cluster. Replace the <namespace> placeholder with your value:5

$ kubectl apply -f deploy/cr.yaml -n <namespace>

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services

Page 141

Next steps
Make an on-demand backup

Make a scheduled backup

This configuration is sufficient to make a backup.

...

backups:

pgbackrest:

...

global:

repo1-path: /pgbackrest/postgres-operator/cluster1/repo1

...

repos:

- name: repo1

volume:

volumeClaimSpec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 1Gi

Page 142

Make scheduled backups
Backups schedule is defined on the per-repository basis in the backups.pgbackrest.repos subsection

of the deploy/cr.yaml file.

You can supply each repository with a schedules.<backup type> key equal to an actual schedule that

you specify in crontab format.

1. Update the cluster:

Next steps
Restore from a backup

Useful links
Backup retention

Before you start, make sure you have configured a backup storage.1

Configure backup schedule in the deploy/cr.yaml file. The schedule is specified in crontab format

as explained in Custom Resource options. The repository name must be the same as the one you

defined in the backup storage configuration. The following example shows the schedule for repo1

repository:

2

...

backups:

pgbackrest:

...

repos:

- name: repo1

schedules:

full: "0 0 * * 6"

differential: "0 1 * * 1-6"

...

$ kubectl apply -f deploy/cr.yaml

Page 143

Making on-demand backups
To make an on-demand backup manually, you need a backup configuration file. You can use the example

of the backup configuration file deploy/backup.yaml :

Here’s a sequence of steps to follow:

apiVersion: pgv2.percona.com/v2

kind: PerconaPGBackup

metadata:

name: backup1

spec:

pgCluster: cluster1

repoName: repo1

options:

- --type=full

Before you start, make sure you have configured a backup storage.1

In the deploy/backup.yaml configuration file, specify the cluster name and the repository name to

be used for backups. The repository name must be the same as the one you defined in the backup

storage configuration. It must also match the repository name specified in the

backups.pgbackrest.manual subsection of the deploy/cr.yaml file.

2

If needed, you can add any pgBackRest command line options .3

Make a backup with the following command (modify the -n postgres-operator parameter if your

database cluster resides in a different namespace):

4

$ kubectl apply -f deploy/backup.yaml -n postgres-operator

Expected output

perconapgbackup.pgv2.percona.com/backup1 created

Making a backup takes time. You can track the process with kubectl get pg-backup command.

When finished, backup should obtain the Succeeded status:

5

$ kubectl get pg-backup backup1 -n postgres-operator

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/backup.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/backup.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/backup.yaml
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

Page 144

To list available backups, run:

Next steps
Restore from a backup

Useful links
Backup retention

Expected output

NAME CLUSTER REPO DESTINATION STATUS TYPE COMPLETED AGE

backup1 cluster1 repo1 Succeeded incr 3m38s 3m53s

Tip

$ kubectl get pg-backup -n postgres-operator

Page 145

Restore the cluster from a previously saved
backup
The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-

time-recovery. There are two ways to restore a cluster:

restore to a new cluster using the dataSource.postgresCluster subsection,

restore in-place to an existing cluster (note that this is destructive).

Restore to a new PostgreSQL cluster
Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL cluster

that can run alongside an existing one. There are several scenarios where using this technique is helpful:

Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting

this is creating a clone.

Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To create a new PostgreSQL cluster from either an active one, or a former cluster whose pgBackRest

repository still exists, edit the dataSource.postgresCluster subsection options in the Custom Resource

manifest of the new cluster (the one you are going to create). The content of this subsection should copy

the backups keys of the original cluster - ones needed to carry on the restore:

dataSource.postgresCluster.clusterName should contain the source cluster name,

dataSource.postgresCluster.clusterNamespace should contain the namespace of the source

cluster (it is needed if the new cluster will be created in a different namespace, and you will need the

Operator deployed in multi-namespace/cluster-wide mode to make such cross-namespace restore),

dataSource.postgresCluster.options allow you to set the needed pgBackRest command line

options,

dataSource.postgresCluster.repoName should contain the name of the pgBackRest repository,

while the actual storage configuration keys for this repository should be placed into

dataSource.pgbackrest.repo subsection,

dataSource.pgbackrest.configuration.secret.name should contain the name of a Kubernetes

Secret with credentials needed to access cloud storage, if any.

Page 146

The following example bootstraps a new cluster from a backup, which was made on the cluster1

cluster deployed in percona-db-1 namespace. For simplicity, this backup uses repo1 repository from

the Persistent Volume backup storage example, which needs no cloud credentials. The resulting

deploy/cr.yaml manifest for the new cluster should contain the following lines:

Creating the new cluster in its namespace (for example, percona-db-2) with such a manifest will initiate

the restoration process:

Restore to an existing PostgreSQL cluster
To restore the previously saved backup, use a backup restore configuration file. The example of the backup

configuration file is deploy/restore.yaml :

The following keys are the most important ones:

pgCluster specifies the name of your cluster,

repoName specifies the name of one of the 4 pgBackRest repositories, already configured in the

backups.pgbackrest.repos subsection,

options passes through any pgBackRest command line options .

...

dataSource:

postgresCluster:

clusterName: cluster1

repoName: repo1

clusterNamespace: percona-db-1

...

$ kubectl apply -f deploy/cr.yaml -n percona-db-2

apiVersion: pgv2.percona.com/v2

kind: PerconaPGRestore

metadata:

name: restore1

spec:

pgCluster: cluster1

repoName: repo1

options:

- --type=time

- --target="2022-11-30 15:12:11+03"

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

Page 147

To start the restoration process, run the following command (modify the -n postgres-operator

parameter if your database cluster resides in a different namespace):

Specifying which backup to restore

When there are multiple backups, the Operator will restore the latest full backup by default.

if you want to restore to some previous backup, not the last one, follow these steps:

1. Find the label of the backup you want to restore. For this, you can list available backups with kubectl

get pg-backup command, and then get detailed information about the backup of your interest with

kubectl describe pg-backup <BACKUP NAME> . The output should look as follows:

The “Backup Name” status field will contain needed backup label.

2. Now use a backup restore configuration file with additional --set=<backup_label> pgBackRest

option. For example, the following yaml file will result in restoring to a backup labeled 20240628-

074416F :

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

Name: cluster1-backup-c55w-f858g

Namespace: default

Labels: <none>

Annotations: pgv2.percona.com/pgbackrest-backup-job-name: cluster1-backup-

c55w

pgv2.percona.com/pgbackrest-backup-job-type: replica-create

API Version: pgv2.percona.com/v2

Kind: PerconaPGBackup

Metadata:

Creation Timestamp: 2024-06-28T07:44:08Z

Generate Name: cluster1-backup-c55w-

Generation: 1

Resource Version: 1199

UID: 92a8193c-6cbd-4cdf-82e5-a4623bf7f2d9

Spec:

Pg Cluster: cluster1

Repo Name: repo1

Status:

Backup Name: 20240628-074416F

Backup Type: full

...

Page 148

3. Start the restoration process, as usual:

Restore the cluster with point-in-time recovery
Point-in-time recovery functionality allows users to revert the database back to a state before an

unwanted change had occurred.

For this feature to work, the Operator initiates a full backup immediately after the cluster creation, to use it as a basis

for point-in-time recovery when needed (this backup is not listed in the output of the kubectl get pg-backup

command).

You can set up a point-in-time recovery using the normal restore command of pgBackRest with few

additional spec.options fields in deploy/restore.yaml :

set --type option to time ,

set --target to a specific time you would like to restore to. You can use the typical string formatted

as <YYYY-MM-DD HH:MM:DD> , optionally followed by a timezone offset: "2021-04-16 15:13:32+00"

(+00 in the above example means UTC),

optional --set argument followed with a pgBackRest backup ID allows you to choose the backup

which will be the starting point for point-in-time recovery. This option must be specified if the target is

one or more backups away from the current moment. You can look through the available backups with

the pgBackRest info command to find out the proper backup ID.

apiVersion: pgv2.percona.com/v2

kind: PerconaPGRestore

metadata:

name: restore1

spec:

pgCluster: cluster1

repoName: repo1

options:

- --type=immediate

- --set=20240628-074416F

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

Note

https://pgbackrest.org/command.html#command-info
https://pgbackrest.org/command.html#command-info
https://pgbackrest.org/command.html#command-info

Page 149

After obtaining the Pod name with kubectl get pods command, you can run pgbackrest --stanza=db info

command on the appropriate Pod as follows:

Then find ID of the needed backup in the output:

Now you can put this backup ID to the backup restore configuration file as follows:

The example may look as follows:

pgBackRest backup ID example

$ kubectl -n postgres-operator exec -it cluster1-instance1-hcgr-0 -c database --

pgbackrest --stanza=db info

stanza: db

status: ok

cipher: none

db (prior)

wal archive min/max (16): 0000000F000000000000001C/0000002000000036000000C5

full backup: 20240401-173403F

timestamp start/stop: 2024-04-01 17:34:03+00 / 2024-04-01 17:36:57+00

wal start/stop: 000000120000000000000022 / 000000120000000000000024

database size: 31MB, database backup size: 31MB

repo1: backup set size: 4.1MB, backup size: 4.1MB

incr backup: 20240401-173403F_20240415-201250I

timestamp start/stop: 2024-04-15 20:12:50+00 / 2024-04-15 20:14:19+00

wal start/stop: 00000019000000000000005C / 00000019000000000000005D

database size: 46.0MB, database backup size: 25.7MB

repo1: backup set size: 6.1MB, backup size: 3.8MB

backup reference list: 20240401-173403F

incr backup: 20240401-173403F_20240415-201430I

...

apiVersion: pgv2.percona.com/v2

kind: PerconaPGRestore

metadata:

name: restore1

spec:

pgCluster: cluster1

repoName: repo1

options:

- --set="20240401-173403F"

Page 150

Latest succeeded backup available with the kubectl get pg-backup command has a “Latest restorable time”

information field handy when selecting a backup to restore. Tracking latest restorable time is turned on by default, and

you can easily query the backup for this information as follows:

After setting these options in the backup restore configuration file, start the restoration process:

Make sure you have a backup that is older than your desired point in time. You obviously can’t restore from a time

where you do not have a backup. All relevant write-ahead log files must be successfully pushed before you make the

restore.

Providing pgBackRest with a custom restore command
There may be cases where it is needed to control what files are restored from the backup and apply fine-

grained filtering to them. For such scenarios there is a possibility to overwrite the restore_command used

in PosgreSQL archive recovery . You can do it in the patroni.dynamicConfiguration subsection of

the Custom Resource as follows:

apiVersion: pgv2.percona.com/v2

kind: PerconaPGRestore

metadata:

name: restore1

spec:

pgCluster: cluster1

repoName: repo1

options:

- --type=time

- --target="2022-11-30 15:12:11+03"

Note

$ kubectl get pg-backup <backup_name> -n postgres-operator -o

jsonpath='{.status.latestRestorableTime}'

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

Note

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY

Page 151

The %f template in the above example is replaced by the name of the file to retrieve from the archive, and

%p is replaced by the copy destination path name on the server. See PostgreSQL official documentation

 for more low-level details about this feature.

Fix the cluster if the restore fails
The restore process changes database files, and therefore restoring wrong information or causing restore

fail by misconfiguring can put the database cluster in non-operational state.

For example, adding wrong pgBackRest arguments to PerconaGPRestore custom resource breaks

existing database installation while the restore hangs.

In this case it’s possible to remove the restore annotation from the Custom Resource correspondent to

your cluster. Supposing that your cluster cluster1 was deployed in postgres-operator namespace,

you can do it with the following command:

Alternatively, you can temporarily delete the database cluster by removing the Custom Resource (check

the finalizers.percona.com/delete-pvc finalizer is not turned on, otherwise you will not retain your

data!), and recreate the cluster back by running kubectl apply -f deploy/cr.yaml -n postgres-

operator command you have used to deploy the it previously.

One more reason of failed restore to consider is the possibility of a corrupted backup repository or

missing files. In this case, you may need to delete the database cluster by removing the Custom Resource,

find the startup PVC to delete it and recreate again.

patroni:

dynamicConfiguration:

postgresql:

parameters:

restore_command: "pgbackrest --stanza=db archive-get %f \"%p\""

$ kubectl annotate -n postgres-operator pg cluster1 postgres-

operator.crunchydata.com/pgbackrest-restore-

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY

Page 152

Configure backup encryption
Backup encryption is a security best practice that helps protect your organization’s confidential

information and prevents unauthorized access.

The pgBackRest tool used by the Operator allows encrypting backups using AES-256 encryption. The

approach is repository-based: pgBackRest encrypts the whole repository where it stores backups.

Encryption is enabled if a user-supplied encryption key was passed to pgBackRest with the -repo-

cypher-pass option when configuring the backup storage.

 Limitation: You cannot change encryption settings after the backups are established. You must

create a new repository to enable encryption or change the encryption key.

This document describes how to configure backup encryption.

Generate the encryption key
You should use a long, random encryption key. You can generate it using OpenSSL as follows:

Configure backup storage
Follow the general backup storage configuration instruction relevant to the backup storage you are using.

The only difference is in encoding your cloud credentials and the pgBackRest repository name to be used

for backups: you also add the encryption key to the configuration file as the repo-cipher-pass option.

The repo name within the option must match the pgBackRest repo name.

The following example shows the configuration for S3-compatible storage and the pgBackRest repo name

repo2 (other cloud storages are configured similarly).

1. Encode the storage configuration file.

$ openssl rand -base64 48

Page 153

2. Create the Secrets configuration file and the Secrets object as described in steps 2-3 of the S3-

compatible backup storage configuration. Follow the instructions relevant to the backup storage you

are using.

3. Update the deploy/cr.yaml configuration. Specify the following information:

The Secret name you created in the backups.pgbackrest.configuration subsection

All storage-related information in the backups.pgbackrest.repos subsection under the

repository name that you intend to use for backups. This name must match the name you used

when you encoded S3 credentials on step 1.

The cipher type in the pgbackrest.global subsection

The following example shows the configuration for the S3-compatible storage and the pgBackRest

repo name repo2 :

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>

repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>

EOF

$ cat <<EOF | base64

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>

repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>

EOF

Page 154

4. Apply the changes. Replace the <namespace> placeholder with your value.

Make a backup

Make an on-demand backup Make a scheduled backup

backups:

pgbackrest:

...

configuration:

- secret:

name: cluster1-pgbackrest-secrets

...

repos:

- name: repo2

s3:

bucket: "<YOUR_AWS_S3_BUCKET_NAME>"

endpoint: "<YOUR_AWS_S3_ENDPOINT>"

region: "<YOUR_AWS_S3_REGION>"

global:

cipher-type: aes-256-cbc

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Page 155

Speed-up backups with pgBackRest
asynchronous archiving
Backing up a database with high write-ahead logs (WAL) generation can be rather slow, because

PostgreSQL archiving process is sequential, without any parallelism or batching. In extreme cases backup

can be even considered unsuccessful by the Operator because of the timeout.

The pgBackRest tool used by the Operator can, if necessary, solve this problem by using the WAL

asynchronous archiving feature.

You can set up asynchronous archiving in your storage configuration file for pgBackRest. Turn on the

additional archive-async flag, and set the process-max value for archive-push and archive-get

commands. Your storage configuration file may look as follows:

No modifications are needed aside of setting these additional parameters. You can find more information

about WAL asynchronous archiving in gpBackRest official documentation and in this blog post .

s3.conf

[global]

repo2-s3-key=REPLACE-WITH-AWS-ACCESS-KEY

repo2-s3-key-secret=REPLACE-WITH-AWS-SECRET-KEY

repo2-storage-verify-tls=n

repo2-s3-uri-style=path

archive-async=y

spool-path=/pgdata

[global:archive-get]

process-max=2

[global:archive-push]

process-max=4

https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/

Page 156

Backup retention
The Operator supports setting pgBackRest retention policies for full and differential backups. When a full

backup expires according to the retention policy, pgBackRest cleans up all the files related to this backup

and to the write-ahead log. Thus, the expiration of a full backup with some incremental backups based on

it results in expiring of all these incremental backups.

You can control backup retention by the following pgBackRest options:

--<repo name>-retention-full number of full backups to retain,

--<repo name>-retention-diff number of differential backups to retain.

You can also specify retention type for full backups as <repo name>-retention-full-type , setting it to

either count (the number of full backups to keep) or time (the number of days to keep a backup for).

You can set both backup type and retention policy for each of 4 repositories as follows.

Differential retention can be set in a similar way:

backups:

pgbackrest:

...

global:

repo1-retention-full: "14"

repo1-retention-full-type: time

...

backups:

pgbackrest:

...

global:

repo1-retention-diff: "3"

...

Page 157

Delete the unneeded backup
The maximum amount of stored backups is controlled by the retention policies. Older backups are

automatically deleted.

Manual deleting of a previously saved backup requires not more than the backup name. This name can be

taken from the list of available backups returned by the following command:

When the name is known, backup can be deleted as follows:

Delete backups on cluster deletion
You can enable percona.com/delete-backups finalizer in the Custom Resource (turned off by default)

to ensure that all backups are removed when the cluster is deleted. If the finalizer is enabled, the Operator

will delete all the backups from all the configured repos on cluster deletion. Besides removing all the

physical backup files, finalizer will also delete all pg-backup objects.

warning !!!

$ kubectl get pg-backup

$ kubectl delete pg-backup/<backup-name>

This `percona.com/delete-backups` finalizer is in tech preview state, and it is

not yet recommended for production environments.

Page 158

High availability and scaling
One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an

application scaling. Scaling an application results in adding resources or Pods and scheduling them to

available Kubernetes nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to

PostgreSQL nodes; horizontal scaling is about adding more nodes to the cluster. High availability looks

technically similar, because it also involves additional nodes, but the reason is maintaining liveness of the

system in case of server or network failures.

Vertical scaling

Scale compute

There are multiple components that Operator deploys and manages: PostgreSQL instances, pgBouncer

connection pooler, etc. To add or reduce CPU or Memory you need to edit corresponding sections in the

Custom Resource. We follow the structure for requests and limits that Kubernetes provides .

To add more resources to your PostgreSQL instances edit the following section in the Custom Resource:

Use our reference documentation for the Custom Resource options for more details about other

components.

Scale storage

Kubernetes manages storage with a PersistentVolume (PV), a segment of storage supplied by the

administrator, and a PersistentVolumeClaim (PVC), a request for storage from a user. In Kubernetes v1.11

the feature was added to allow a user to increase the size of an existing PVC object (considered stable

since Kubernetes v1.24). The user cannot shrink the size of an existing PVC object.

Scaling with Volume Expansion capability

spec:

...

instances:

- name: instance1

replicas: 3

resources:

limits:

cpu: 2.0

memory: 4Gi

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Page 159

Certain volume types support PVCs expansion (exact details about PVCs and the supported volume types

can be found in Kubernetes documentation).

You can run the following command to check if your storage supports the expansion capability:

The Operator versions 2.5.0 and higher will automatically expand such storage for you when you change

the appropriate options in the Custom Resource.

For example, you can do it by editing and applying the deploy/cr.yaml file:

Apply changes as usual:

Automated scaling with auto-growable disk

The Operator 2.5.0 and newer is able to detect if the storage usage on the PVC reaches a certain

threshold, and trigger the PVC resize. Such autoscaling needs the upstream “auto-growable disk” feature

turned on when deploying the Operator. This is done via the PGO_FEATURE_GATES environment variable

set in the deploy/operator.yaml manifest (or in the appropriate part of deploy/bundle.yaml):

$ kubectl describe sc <storage class name> | grep AllowVolumeExpansion

Expected output

AllowVolumeExpansion: true

spec:

...

instances:

...

dataVolumeClaimSpec:

resources:

requests:

storage: <NEW STORAGE SIZE>

$ kubectl apply -f cr.yaml

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims

Page 160

When the support for auto-growable disks is turned on, the auto grow will be working automatically if the

maximum value available for the Operator to scale up is set in the

spec.instances[].dataVolumeClaimSpec.resources.limits.storage Custom Resource option:

High availability
Percona Operator allows you to deploy highly-available PostgreSQL clusters. High-availability

implementation is based on the Patroni template, which uses PostgreSQL streaming replication. The

cluster includes a number of replicas, one of which is a primary PostgreSQL instance: it is available for

writes, and streams changes to other replicas (standby servers in terms of PostgreSQL). Streaming

replication used in this configuration is asynchronous by default, which means transferring data to a

different instance without waiting for a confirmation of its receiving. Alternatively, a synchronous

replication can be used, where the data transfer waits for a confirmation of its successful processing on

the standby. If the primary server crashes then some transactions that were committed may not have

been replicated to the standby server, causing data loss (the amount of data loss is proportional to the

replication delay at the time of failover). Synchronous replication is slower but minimizes the data loss

possibility in case if the primary server crash.

There are two ways how to control the number replicas in your HA cluster:

...

subjects:

- kind: ServiceAccount

name: percona-postgresql-operator

namespace: pg-operator

...

spec:

containers:

- env:

- name: PGO_FEATURE_GATES

value: "AutoGrowVolumes=true"

...

spec:

...

instances:

...

dataVolumeClaimSpec:

resources:

requests:

storage: 1Gi

limits:

storage: 5Gi

Page 161

1. Through changing spec.instances.replicas value

2. By adding new entry into spec.instances

Using spec.instances.replicas

For example, you have the following Custom Resource manifest:

This will provision a cluster with two nodes - one Primary and one Replica. Add the node by changing the

manifest…

…and applying the Custom Resource:

The Operator will provision a new replica node. It will be ready and available once data is synchronized

from Primary.

Using spec.instances

Each instance’s entry has its own set of parameters, like resources, storage configuration, sidecars, etc.

When you add a new entry into instances, this creates replica PostgreSQL nodes, but with a new set of

parameters. This can be useful in various cases:

Test or migrate to new hardware

Blue-green deployment of a new configuration

Try out new versions of your sidecar containers

For example, you have the following Custom Resource manifest:

spec:

...

instances:

- name: instance1

replicas: 2

spec:

...

instances:

- name: instance1

replicas: 3

$ kubectl apply -f deploy/cr.yaml

Page 162

Now you have a goal to migrate to new disks, which are coming with the new-ssd storage class. You can

create a new instance entry. This will instruct the Operator to create additional nodes with the new

configuration keeping your existing nodes intact.

Using Synchronous replication

Synchronous replication offers the ability to confirm that all changes made by a transaction have been

transferred to one or more synchronous standby servers. When requesting synchronous replication, each

commit of a write transaction will wait until confirmation is received that the commit has been written to

the write-ahead log on disk of both the primary and standby server. The drawbacks of synchronous

replication are increased latency and reduced throughput on writes.

spec:

...

instances:

- name: instance1

replicas: 2

dataVolumeClaimSpec:

storageClassName: old-ssd

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 100Gi

spec:

...

instances:

- name: instance1

replicas: 2

dataVolumeClaimSpec:

storageClassName: old-ssd

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 100Gi

- name: instance2

replicas: 2

dataVolumeClaimSpec:

storageClassName: new-ssd

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 100Gi

Page 163

You can turn on synchronous replication by customizing the patroni.dynamicConfiguration Custom

Resource option.

Enable synchronous replication by setting synchronous_mode option to on .

Use synchronous_node_count option to set the number of replicas (PostgreSQL standby servers)

which should operate in syncrhonous mode (the default value is 1).

The result in your deploy/cr.yaml manifest may look as follows:

You will have the desired amount of replicas switched to synchronous replication after applying changes

as usual, with kubectl apply -f deploy/cr.yaml command.

Find more options useful to tune how your database cluster should operate in synchronous mode in the

official Patroni documentation .

...

patroni:

dynamicConfiguration:

synchronous_mode: "on"

synchronous_node_count: 2

...

https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode
https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode
https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode
https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode

Page 164

Using sidecar containers
The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this

feature to run debugging tools, some specific monitoring solutions, etc.

Custom sidecar containers can easily access other components of your cluster .

Therefore they should be used carefully and by experienced users only.

Adding a sidecar container
You can add sidecar containers to PostgreSQL instance and pgBouncer Pods. Just use sidecars

subsection in the instances or proxy.pgBouncer Custom Resource section in the deploy/cr.yaml

configuration file. In this subsection, you should specify at least the name and image of your container,

and possibly a command to run:

Apply your modifications as usual:

Obviously, you cannot name your sidecar container by duplicating an already existing container name in

the Pod. Use kubectl describe pod command to check which names are already in use. For example,

PostgreSQL instance Pods cannot have custom sidecar containers named as database , pgbackrest ,

pgbackrest-config , and replication-cert-copy .

Note

spec:

instances:

....

sidecars:

- image: busybox

command: ["/bin/sh"]

args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep

5; done"]

name: my-sidecar-1

....

$ kubectl apply -f deploy/cr.yaml

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

Page 165

More options suitable for the sidecars subsection can be found in the Custom Resource options reference.

Running kubectl describe command for the appropriate Pod can bring you the information about the

newly created container:

Getting shell access to a sidecar container
You can login to your sidecar container as follows:

Note

$ kubectl describe pod cluster1-instance1

Expected output

Name: cluster1-instance1-n8v4-0

....

Containers:

....

my-sidecar-1:

Container ID: docker://f0c3437295d0ec819753c581aae174a0b8d062337f80897144eb8148249ba742

Image: busybox

Image ID: docker-

pullable://busybox@sha256:139abcf41943b8bcd4bc5c42ee71ddc9402c7ad69ad9e177b0a9bc4541f14924

Port: <none>

Host Port: <none>

Command:

/bin/sh

Args:

-c

while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done

State: Running

Started: Thu, 11 Nov 2021 10:38:15 +0300

Ready: True

Restart Count: 0

Environment: <none>

Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fbrbn (ro)

....

$ kubectl exec -it cluster1-instance1n8v4-0 -c my-sidecar-1 -- sh

/ #

Page 166

Pause/resume and standby mode for a
PostgreSQL cluster

Pause and resume
Sometimes you may need to temporarily shut down (pause) your cluster and restart it later, such as during

maintenance.

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully stops

the cluster:

To start the cluster after it was paused, revert the spec.pause key to false .

Troubleshooting tip

If you’re pausing the cluster when there is a running backup, the Operator won’t pause it for you. It will

print a warning about running backups. In this case delete a running backup job and retry.

Put in standby mode
You can also put the cluster into a standby (read-only) mode instead of completely shutting it down.

This is done by a special spec.standby key. Set it to true for read-only state. To resume the normal

cluster operation, set it to false .

spec:

.......

pause: true

```yaml

spec:

.......

standby: false

```

https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html

Page 167

Monitor with Percona Monitoring and
Management (PMM)
In this section you will learn how to monitor the health of Percona Distribution for PostgreSQL with

Percona Monitoring and Management (PMM) .

Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. It includes the PMM Server and the number of PMM Clients

running on each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect

to the PMM Server to see database metrics on a number of dashboards. PMM Server and PMM Client are

installed separately.

Install PMM Server
You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual

appliance, or on an AWS instance. Please refer to the official PMM documentation for the installation

instructions.

Install PMM Client
To install PMM Client as a side-car container in your Kubernetes-based environment, do the following:

Note

Get the PMM API key from PMM Server . The API key must have the role “Admin”. You need this key

to authorize PMM Client within PMM Server.

1

https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/dashboards/dashboard-postgresql-instances-overview.html
https://docs.percona.com/percona-monitoring-and-management/2/details/dashboards/dashboard-postgresql-instance-summary.html
https://docs.percona.com/percona-monitoring-and-management/2/details/dashboards/dashboard-postgresql-instances-compare.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

Page 168

The API key is not rotated.

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace

<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and

hostname in the following command:

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d

'{"name":"operator", "role": "Admin"}' "https://<login>:

<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

Specify the API key as the PMM_SERVER_KEY value in the deploy/secrets.yaml secrets file.2

apiVersion: v1

kind: Secret

metadata:

name: cluster1-pmm-secret

type: Opaque

stringData:

PMM_SERVER_KEY: ""

Create the Secrets object using the deploy/secrets.yaml file.3

$ kubectl apply -f deploy/secrets.yaml -n postgres-operator

Update the pmm section in the deploy/cr.yaml file.

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM

Server IP address should be resolvable and reachable from within your cluster.

4

→

→

https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

Page 169

Update the secrets file
The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text

format. But the resulting Secrets Objects contains passwords stored as base64-encoded strings. If you

want to update the password field, you need to encode the new password into the base64 format and pass

it to the Secrets Object.

To encode a password or any other parameter, run the following command:

For example, to set the new PMM API key in the my-cluster-name-secrets object, do the following:

pmm:

enabled: true

image: percona/pmm-client:2.44.0

imagePullPolicy: IfNotPresent

secret: cluster1-pmm-secret

serverHost: monitoring-service

Update the cluster5

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there

are errors on the previous steps:

6

$ kubectl get pods -n postgres-operator

$ kubectl logs <pod_name> -c pmm-client

 Linux

 macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

Page 170

Check the metrics
Let’s see how the collected data is visualized in PMM.

 Linux

 macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo

-n new_key | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo

-n new_key | base64)'}}'

Log in to PMM server.1

Click PostgreSQL from the left-hand navigation menu. You land on the Instances Overview page.2

Click PostgreSQL → Other dashboards to see the list of available dashboards that allow you to drill

down to the metrics you are interested in.

3

Page 171

How-to

Page 172

Install Percona Distribution for PostgreSQL with
customized parameters
You can customize the configuration of Percona Distribution for PostgreSQL and install it with customized

parameters.

To check available configuration options, see deploy/cr.yaml and Custom Resource Options.

 kubectl

To customize the configuration when installing with kubectl , do the following:

1. Clone the repository with all manifests and source code by executing the following command:

2. Edit the required options and apply your modified deploy/cr.yaml file as follows:

 Helm

To install Percona Distribution for PostgreSQL with custom parameters using Helm, use the following

command:

You can pass any of the Operator’s Custom Resource options as a --set key=value[,key=value]

argument.

The following example deploys a PostgreSQL 17.4 based cluster in the my-namespace namespace, with

enabled Percona Monitoring and Management (PMM) :

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ helm install --set key=value

$ helm install my-db percona/pg-db --version 2.6.0 --namespace my-namespace \

--set postgresVersion=17.4 \

--set pmm.enabled=true

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://docs.percona.com/percona-monitoring-and-management/2/index.html
https://docs.percona.com/percona-monitoring-and-management/2/index.html
https://docs.percona.com/percona-monitoring-and-management/2/index.html

Page 173

How to run initialization SQL commands at
cluster creation time
The Operator can execute a custom sequence of PostgreSQL commands when creating the databse

cluster. This sequence can include both SQL commands and meta-commands of the PostgreSQL

interactive shell (psql). This feature may be useful to push any customizations to the cluster: modify user

roles, change error handling, set and use variables, etc.

psql interactive terminal will execute these initialization statements when the cluster is created, after

creating custom users and databases specifed in the Custom Resource.

To set SQL initialization sequence you need creating a special ConfigMap with it, and reference this

ConfigMap in the databaseInitSQL subsection of your Custom Resource options.

The following example uses initialization SQL command to add a new role to a PostgreSQL database

cluster:

1. Create YAML manifest for the ConfigMap as follows:

The namespace field should point to the namespace of your database cluster, and the init.sql key

contains the sequence of commands, which will be passed to the psql.

Create the ConfigMap by applying your manifest:

2. Update the databaseInitSQL part of the deploy/cr.yaml Custom Resource manifest as follows:

my_init.yaml

apiVersion: v1

kind: ConfigMap

metadata:

name: cluster1-init-sql

namespace: postgres-operator

data:

init.sql: CREATE ROLE someonenew WITH createdb superuser login password

'someonenew';

$ kubectl apply -f my_init.yaml

https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-OPTION-FILE
https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-OPTION-FILE
https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-OPTION-FILE
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

Page 174

Now, SQL commands will be executed when you create the cluster by apply the manifest:

The psql command is executed the standard input and the file flag (psql -f -). If the command returns

0 exit code, SQL will not be run again. When psql returns with an error exit code, the Operator will continue

attempting to execute it as part of its reconcile loop until success. You can fix errors in the SQL sequence,

for example by interactive kubectl edit configmap cluster1-init-sql -n postgres-namespace

command.

You can use following psql meta-command to make sure that any SQL errors would make psql to return the error code:

...

databaseInitSQL:

key: init.sql

name: cluster1-init-sql

...

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

Note

\set ON_ERROR_STOP

\echo Any error will lead to exit code 3

Page 175

Deploy a standby cluster for Disaster
Recovery

Page 176

How to deploy a standby cluster for Disaster
Recovery
Disaster recovery is not optional for businesses operating in the digital age. With the ever-increasing

reliance on data, system outages or data loss can be catastrophic, causing significant business

disruptions and financial losses.

With multi-cloud or multi-regional PostgreSQL deployments, the complexity of managing disaster recovery

only increases. This is where the Percona Operators come in, providing a solution to streamline disaster

recovery for PostgreSQL clusters running on Kubernetes. With the Percona Operators, businesses can

manage multi-cloud or hybrid-cloud PostgreSQL deployments with ease, ensuring that critical data is

always available and secure, no matter what happens.

Operators automate routine tasks and remove toil. For standby, the Percona Operator for PostgreSQL

version 2 provides the following options:

1. pgBackrest repo based standby. The standby cluster will be connected to a pgBackRest cloud repo, so

it will receive WAL files from the repo and apply them to the database.

2. Streaming replication. The standby cluster will use an authenticated network connection to the

primary cluster to receive WAL records directly.

3. Combination of (1) and (2). The standby cluster is configured for both repo-based standby and

streaming replicaton. It bootstraps from the pgBackRest repo and continues to receive WAL files as

they are pushed to the repo, and can also directly receive them from primary. Using this approach

ensures the cluster will still be up to date with the pgBackRest repo if streaming falls behind.

Page 177

Standby cluster deployment based on
pgBackRest
The pgBackRest repo-based standby is the simplest one. The following is the architecture diagram:

DB Pod N

pgBackRest

Operator

cluster1

Backup storageDB Pods

pgBackRest

Operator

cluster2 (standby)

DB Pods

pgBackrest repo based standby

1. This solution describes two Kubernetes clusters in different regions, clouds or running in hybrid mode

(on-premises and cloud). One cluster is Main and the other is Disaster Recovery (DR)

2. Each cluster includes the following components:

a. Percona Operator

b. PostgreSQL cluster

c. pgBackrest

d. pgBouncer

3. pgBackrest on the Main site streams backups and Write Ahead Logs (WALs) to the object storage

4. pgBackrest on the DR site takes these backups and streams them to the standby cluster

Deploy disaster recovery for PostgreSQL on Kubernetes

Page 178

Configure Main site

1. Deploy the Operator using your favorite method. Once installed, configure the Custom Resource

manifest, so that pgBackrest starts using the Object Storage of your choice. Skip this step if you

already have it configured.

2. Configure the backups.pgbackrest.repos section by adding the necessary configuration. The

below example is for Google Cloud Storage (GCS):

The main-pgbackrest-secrets value contains the keys for GCS. Read more about the configuration

in the backup and restore tutorial.

3. Once configured, apply the custom resource:

The backups should appear in the object storage. By default pgBackrest puts them into the

pgbackrest folder.

Configure DR site

The configuration of the disaster recovery site is similar to that of the Main site, with the only difference in

standby settings.

The following manifest has standby.enabled set to true and points to the repoName where backups

are (GCS in our case):

spec:

backups:

configuration:

- secret:

name: main-pgbackrest-secrets

pgbackrest:

repos:

- name: repo1

gcs:

bucket: MY-BUCKET

$ kubectl apply -f deploy/cr.yaml

Expected output

perconapgcluster.pg.percona.com/standby created

Page 179

Deploy the standby cluster by applying the manifest:

metadata:

name: standby

spec:

...

backups:

configuration:

- secret:

name: standby-pgbackrest-secrets

pgbackrest:

repos:

- name: repo1

gcs:

bucket: MY-BUCKET

standby:

enabled: true

repoName: repo1

$ kubectl apply -f deploy/cr.yaml

Expected output

perconapgcluster.pg.percona.com/standby created

Page 180

Standby cluster deployment based on
streaming replication
The following diagram explains how the standby based on streaming replication works:

Primary
DB Pod

Operator

Cluster 1 (Main)

Replica
DB Pods

Primary
DB Pod

Operator

Cluster 2 (DR)

Replica
DB Pods

1. This solution describes two Kubernetes clusters in different regions, clouds, data centers or even two

namespaces, or running in hybrid mode (on-premises and cloud). One cluster is Main site, and the

other is Disaster Recovery site (DR)

2. Each site supposedly includes Percona Operator and for sure includes PostgreSQL cluster.

3. In the DR site the cluster is in Standby mode

4. We set up streaming replication between these two clusters

Deploy disaster recovery for PostgreSQL on Kubernetes

Page 181

Configure Main site

1. Deploy the Operator using your favorite method.

2. The Main cluster needs to expose it, so that standby can connect to the primary PostgreSQL instance.

To expose the primary PostgreSQL instance, use the spec.expose section:

Use here a Service type of your choice. For example, ClusterIP is sufficient for two clusters in

different Kubernetes namespaces.

3. Once configured, apply the custom resource:

The service that you should use for connecting to standby is called -ha (main-ha in my case):

Configure DR site

To get the replication working, the Standby cluster would need to authenticate with the Main one. To get

there, both clusters must have certificates signed by the same certificate authority (CA). Default

replication user _crunchyrepl will be used.

In the simplest case you can copy the certificates from the Main cluster. You need to look out for two files:

main-cluster-cert

main-replication-cert

Copy them to the namespace where DR cluster is going to be running and reference under spec.secrets

(in the following example they were renamed, replacing “main” with “dr”):

spec:

...

expose:

type: ClusterIP

$ kubectl apply -f deploy/cr.yaml -n main-pg

Expected output

perconapgcluster.pg.percona.com/standby created

main-ha ClusterIP 10.118.227.214 <none> 5432/TCP 163m

Page 182

If you are generating your own certificates, just remember the following rules:

1. Certificates for both Main and Standby clusters must be signed by the same CA

2. customReplicationTLSSecret must have a Common Name (CN) setting that matches

_crunchyrepl , which is a default replication user.

You can find more about certificates in the TLS doc.

Apart from setting certificates correctly, you should also set standby configuration.

standby.enabled controls if it is a standby cluster or not

standby.host must point to the primary node of a Main cluster. In this example it is a main-ha

Service in another namespace.

Deploy the standby cluster by applying the manifest:

Once both clusters are up, you can verify that replication is working.

1. Insert some data into Main cluster

2. Connect to the DR cluster

To connect to the DR cluster, use the credentials that you used to connect to Main. This also verifies that

the connection is working. You should see whatever data you have in the Main cluster in the Disaster

Recovery.

spec:

secrets:

customTLSSecret:

name: dr-cluster-cert

customReplicationTLSSecret:

name: dr-replication-cert

standby:

enabled: true

host: main-ha.main-pg.svc

$ kubectl apply -f dr-cr.yaml -n dr-pg

Expected output

perconapgcluster.pg.percona.com/standby created

Page 183

Failover
In case of the Main site failure or in other cases, you can promote the standby cluster. The promotion

effectively allows writing to the cluster. This creates a net effect of pushing Write Ahead Logs (WALs) to

the pgBackrest repository. It might create a split-brain situation where two primary instances attempt to

write to the same repository. To avoid this, make sure the primary cluster is either deleted or shut down

before trying to promote the standby cluster.

Once the primary is down or inactive, promote the standby through changing the corresponding section:

Now you can start writing to the cluster.

Split brain
There might be a case, where your old primary comes up and starts writing to the repository. To recover

from this situation, do the following:

1. Keep only one primary with the latest data running

2. Stop the writes on the other one

3. Take the new full backup from the primary and upload it to the repo

Automate the failover
Automated failover consists of multiple steps and is outside of the Operator’s scope. There are a few

steps that you can take to reduce the Recovery Time Objective (RTO). To detect the failover we

recommend having the 3rd site to monitor both DR and Main sites. In this case you can be sure that Main

really failed and it is not a network split situation.

Another aspect of automation is to switch the traffic for the application from Main to Standby after

promotion. It can be done through various Kubernetes configurations and heavily depends on how your

networking and application are designed. The following options are quite common:

1. Global Load Balancer - various clouds and vendors provide their solutions

2. Multi Cluster Services or MCS - available on most of the public clouds

3. Federation or other multi-cluster solutions

spec:

standby:

enabled: false

Page 184

Change the PostgreSQL primary instance
The Operator uses PostgreSQL high-availability implementation based on the Patroni template . This

means that each PostgreSQL cluster includes one member availiable for read/write transactions

(PostgreSQL primary instance, or leader in terms of Patroni) and a number of replicas which can serve

read requests only (standby members of the cluster).

You may wish to manually change the primary instance in your PostgreSQL cluster to achieve more

control and meet specific requirements in various scenarios like planned maintenance, testing failover

procedures, load balancing and performance optimization activities. Primary instance is re-elected during

the automatic failover (Patroni’s “leader race” mechanism), but still there are use cases to controll this

process manually.

In Percona Operator, the primary instance election can be controlled by the patroni.switchover section

of the Custom Resource manifest. It allows you to enable switchover targeting a specific PostgreSQL

instance as the new primary, or just running a failover if PostgreSQL cluster has entered a bad state.

This document provides instructions how to change the primary instance manually.

For the following steps, we assume that you have the PostgreSQL cluster up and running. The cluster

name is cluster1 .

1. Check the information about the cluster instances. Cluster instances are defined in the

spec.instances Custom Resource section. By default you have one cluster instance named

instance1 with 3 PostgreSQL instances in it. You can check which cluster instances you have. Do

this using Kubernetes Labels as follows (replace the <namespace> placeholder with your value):

PostgreSQL primary is labeled as master , while other PostgreSQL instances are labeled as replica .

$ kubectl get pods -n <namespace> -l postgres-

operator.crunchydata.com/cluster=cluster1 \

-L postgres-operator.crunchydata.com/instance \

-L postgres-operator.crunchydata.com/role | grep instance1

Sample output

cluster1-instance1-bmdp-0 4/4 Running 0 2m23s cluster1-

instance1-bmdp replica

cluster1-instance1-fm7w-0 4/4 Running 0 2m22s cluster1-

instance1-fm7w replica

cluster1-instance1-ttm9-0 4/4 Running 0 2m22s cluster1-

instance1-ttm9 master

https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements
https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements
https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements

Page 185

2. Now update the following options in the patroni.switchover subsection of the Custom Resource:

You can do it with kubectl patch command, specifying the name of the instance that you want to

be the new primary. For example, let’s set the cluster1-instance1-bmdp as a new PostgreSQL

primary:

3. Trigger the switchover by adding the annotation to your Custom Resource. The recommended way is

to set the annotation with the timestamp, so you know when switchover took place. Replace the

<namespace> placeholder with your value:

The --overwrite flag in the above command allows you to overwrite the annotation if it already

exists (useful if that’s not the first switchover you do).

4. Verify that the cluster was annotated (replace the <namespace> placeholder with your value, as

usual):

patroni:

switchover:

enabled: true

targetInstance: <instance-name>

$ kubectl -n <namespace> patch pg cluster1 --type=merge --patch '{

"spec": {

"patroni": {

"switchover": {

"enabled": true,

"targetInstance": "cluster1-instance1-bmdp"

}

}

}

}'

$ kubectl annotate --overwrite -n <namespace> pg cluster1 postgres-

operator.crunchydata.com/trigger-switchover="$(date)"

$ kubectl get pg cluster1 -o yaml -n <namespace>

Page 186

5. Now, check instances of your cluster once again to make sure the switchover took place:

6. Set patroni.switchover.enabled Custom Resource option to false once the switchover is done:

Sample output

apiVersion: pgv2.percona.com/v2

kind: PerconaPGCluster

metadata:

annotations:

kubectl.kubernetes.io/last-applied-configuration: |

{....

"patroni":{"switchover":{"enabled":true,"targetInstance":"cluster1-instance1-

bmdp"}},}

$ kubectl get pods -n <namespace> -l postgres-

operator.crunchydata.com/cluster=cluster1 \

-L postgres-operator.crunchydata.com/instance \

-L postgres-operator.crunchydata.com/role | grep instance1

Sample output

cluster1-instance1-bmdp-0 4/4 Running 0 24m cluster1-

instance1-bmdp master

cluster1-instance1-fm7w-0 4/4 Running 0 24m cluster1-

instance1-fm7w replica

cluster1-instance1-ttm9-0 4/4 Running 0 23m cluster1-

instance1-ttm9 replica

$ kubectl -n <namespace> patch pg cluster1 --type=merge --patch '{

"spec": {

"patroni": {

"switchover": {

"enabled": false

}

}

}

}'

Page 187

Use Docker images from a private registry
Using images from a private Docker registry may be required for privacy, security or other reasons. In

these cases, Percona Operator for PostgreSQL allows the use of a custom registry. The following example

illustrates how this can be done by the example of the Operator deployed in the OpenShift environment.

Prerequisites

1. First of all login to the OpenShift and create project.

2. There are two things you will need to configure your custom registry access:

the token for your user,

your registry IP address.

The token can be found with the following command:

And the following one tells you the registry IP address:

3. Use the user token and the registry IP address to login to the registry:

$ oc login

Authentication required for https://192.168.1.100:8443 (openshift)

Username: admin

Password:

Login successful.

$ oc new-project pg

Now using project "pg" on server "https://192.168.1.100:8443".

$ oc whoami -t

ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

$ kubectl get services/docker-registry -n default

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

172.30.162.173:5000

Page 188

4. Use the Docker commands to pull the needed image by its SHA digest:

You can find correct names and SHA digests in the current list of the Operator-related images officially

certified by Percona.

5. The following method can push an image to the custom registry for the example OpenShift pg

project:

6. Verify the image is available in the OpenShift registry with the following command:

Expected output

Login Succeeded

$ docker pull docker.io/perconalab/percona-postgresql-

operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26b

f0

Expected output

Trying to pull repository docker.io/perconalab/percona-postgresql-operator ...

sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0: Pulling from

docker.io/perconalab/percona-server-mongodb

Digest: sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

Status: Image is up to date for docker.io/perconalab/percona-postgresql-

operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

$ docker tag \

docker.io/perconalab/percona-postgresql-

operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26b

f0 \

172.30.162.173:5000/psmdb/percona-postgresql-operator:17.4

$ docker push 172.30.162.173:5000/pg/percona-postgresql-operator:17.4

$ oc get is

Expected output

NAME DOCKER REPO

TAGS UPDATED

percona-postgresql-operator docker-registry.default.svc:5000/pg/percona-postgresql-

operator 17.4 2 hours ago

Page 189

7. When the custom registry image is available, edit the the image: option in deploy/operator.yaml

configuration file with a Docker Repo + Tag string (it should look like docker-

registry.default.svc:5000/pg/percona-postgresql-operator:17.4)

If the registry requires authentication, you can specify the imagePullSecrets option for all images.

8. Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml file.

9. Now follow the standard Percona Operator for PostgreSQL installation instruction.

Note

Page 190

Add custom PostgreSQL extensions
One of the specific PostgreSQL features is the ability to provide it with additional functionality via

Extensions . Percona Distribution for PostgreSQL supports a number of extensions , making this list

available for the database cluster managed by the Operator as well.

Still there are cases when the needed extension is not in this list, or when it’s a custom extension

developed by the end-user. Adding more extensions is not an easy task in case of a containerized

database in Kubernetes-based environment, as normally it would make the user build a custom

PostgreSQL image.

Still, starting from the Operator version 2.3 there is an alternative way to extend Percona Distribution for

PostgreSQL by downloading prepackaged extensions from an external storage on the fly, as defined in the

extensions section of the Operator Custom Resource.

Enabling or disabling built-in extensions
Built-in extensions can be easily enabled or disabled in the extensions.builtin subsection of the

deploy/cr.yaml configuration file. To disable a built-in extension, you need to explicitly set the

appropriate option to false . Enabling means setting the option to true . Check the deploy/cr.yaml

manifest to find out which built-in extensions are enabled by default.

Apply changes after editing with kubectl apply -f deploy/cr.yaml command.

Editing this section and applying it will cause the Pods to restart.

Adding custom extensions
Custom extensions are downloaded by the Operator from the cloud storage. User is in charge for properly

packaging extension and uploading it to the storage.

extensions:

...

builtin:

pg_stat_monitor: true

pg_audit: true

pgvector: false

Note

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://docs.percona.com/postgresql/16/
https://docs.percona.com/postgresql/16/
https://docs.percona.com/postgresql/16/
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.6.0/deploy/cr.yaml

Page 191

Packaging custom extensions

Custom extension needs specific packaging to make the Operator able using it. The package must be a

.tar.gz archive with all required files in a the correct directory structure.

1. Control file must be in SHAREDIR/extension directory

2. All required SQL script files must be in SHAREDIR/extension directory (there must be at least one

SQL script)

3. Any shared library must be in LIBDIR

In case of Percona Distribution for PostgreSQL images, SHAREDIR corresponds to /usr/pgsql-${PG_MAJOR}/share

and LIBDIR to /usr/pgsql-${PG_MAJOR}/lib .

For example, the directory for pg_cron extension should look as follows:

The archive must be created with usr at the root and the name must conform ${EXTENSION}-

pg${PG_MAJOR}-${EXTENSION_VERSION} :

Note

$ tree ~/pg_cron-1.6.1/

/home/user/pg_cron-1.6.1/

└── usr

└── pgsql-15

├── lib

│ └── pg_cron.so

└── share

└── extension

├── pg_cron--1.0--1.1.sql

├── pg_cron--1.0.sql

├── pg_cron--1.1--1.2.sql

├── pg_cron--1.2--1.3.sql

├── pg_cron--1.3--1.4.sql

├── pg_cron--1.4--1.4-1.sql

├── pg_cron--1.4-1--1.5.sql

├── pg_cron--1.5--1.6.sql

└── pg_cron.control

$ cd pg_cron-1.6.1/

$ tar -czf pg_cron-pg15-1.6.1.tar.gz usr/

Page 192

To understand which files are required for given extension could be not an easy task. One of the option to figure this out

would be building and installing the extension from source on a virtual machine with Percona Distribution for

PostgreSQL and copy all the installed files to the archive.

Configuring custom extension loading
When the extension is packaged, it should be uploaded to the cloud storage (for now, Amazon S3 is the

only supported storage type). When the upload is done, the needed access credentials for the cloud

storage should be placed in a Secret, and both the storage and extension details should be specified in the

Custom Resource to make the Operator download and install it.

1. Create the Secrets file with the credentials, which the Operator will need to access extensions stored

on the Amazon S3:

the metadata.name key is the name which you will further use to refer your Kubernetes Secret,

the data.AWS_ACCESS_KEY_ID and data.AWS_SECRET_ACCESS_KEY keys are base64-encoded

credentials used to access the storage (obviously these keys should contain proper values to make

the access possible).

Create the Secrets file with these base64-encoded keys as follows:

Note

extensions-secret.yaml

apiVersion: v1

kind: Secret

metadata:

name: cluster1-extensions-secret

type: Opaque

data:

AWS_ACCESS_KEY_ID: <base64 encoded secret>

AWS_SECRET_ACCESS_KEY: <base64 encoded secret>

Page 193

You can use the following command to get a base64-encoded string from a plain text one:

Once the editing is over, create the Kubernetes Secret object as follows:

2. Storage credentials are specified in the Custom Resource extensions.storage subsection. The

appropriate fragment of the deploy/cr.yaml configuration file should look as follows:

3. When the storage is configured, and the archive with the extension is already present in the

appropriate bucket, the extension itself can be specified to the Operator in the Custom Resource via

the deploy/cr.yaml configuration file as in the following example:

Note

in Linux

For GNU/Linux:

in macOS

For Apple macOS:

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f extensions-secret.yaml

extensions:

...

storage:

type: s3

bucket: pg-extensions

region: eu-central-1

endpoint: s3.eu-central-1.amazonaws.com

secret:

name: cluster1-extensions-secret

extensions:

...

custom:

- name: pg_cron

version: 1.6.1

Page 194

The installed extension will not be enabled by default. Enabling it in can be done for desired databases

using the CREATE EXTENSION statement:

Also, some extensions (such as pg_cron) can be used only if added to shared_preload_libraries .

Users can do it via the deploy/cr.yaml configuration file as follows:

CREATE EXTENSION pg_cron;

...

patroni:

dynamicConfiguration:

postgresql:

parameters:

shared_preload_libraries: pg_cron

...

Page 195

Percona Operator for PostgreSQL single-
namespace and multi-namespace
deployment
There are two design patterns that you can choose from when deploying Percona Operator for

PostgreSQL and PostgreSQL clusters in Kubernetes:

Namespace-scope - one Operator per Kubernetes namespace,

Cluster-wide - one Operator can manage clusters in multiple namespaces.

This how-to explains how to configure Percona Operator for PostgreSQL for each scenario.

Namespace-scope
By default, Percona Operator for PostgreSQL functions in a specific Kubernetes namespace. You can

create one during the installation (like it is shown in the installation instructions) or just use the default

namespace. This approach allows several Operators to co-exist in one Kubernetes-based environment,

being separated in different namespaces:

Page 196

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Kubernetes API

OperatorOperator

DB Pod 1 DB Pod N

CSI

Storage
Area

Network

percona-db-2 Namespacepercona-db-1 Namespace

Normally this is a recommended approach, as isolation minimizes impact in case of various failure

scenarios. This is the default configuration of our Operator.

Let’s say you will use a Kubernetes Namespace called percona-db-1 .

1. Clone percona-postgresql-operator repository:

2. Create your percona-db-1 Namespace (if it doesn’t yet exist) as follows:

3. Deploy the Operator using the following command:

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

$ kubectl create namespace percona-db-1

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

Page 197

4. Once Operator is up and running, deploy the database cluster itself:

You can deploy multiple clusters in this namespace.

Add more namespaces

What if there is a need to deploy clusters in another namespace? The solution for namespace-scope

deployment is to have more than one Operator. We will use the percona-db-2 namespace as an

example.

1. Create your percona-db-2 namespace (if it doesn’t yet exist) as follows:

2. Deploy the Operator:

3. Once Operator is up and running deploy the database cluster itself:

Cluster names may be the same in different namespaces.

Install the Operator cluster-wide
Sometimes it is more convenient to have one Operator watching for Percona Distribution for PostgreSQL

custom resources in several namespaces.

We recommend running Percona Operator for PostgreSQL in a traditional way, limited to a specific

namespace, to limit the blast radius. But it is possible to run it in so-called cluster-wide mode, one Operator

watching several namespaces, if needed:

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-1

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

$ kubectl create namespace percona-db-2

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-2

$ kubectl apply -f deploy/cr.yaml -n percona-db-2

Note

Page 198

Kubernetes API

Percona Operator for PostgreSQL

DB Pod 1 DB Pod 2

CSI

Storage
Area

Network

api

DB Pod DB Pod

Operator Namespace (pg-operator)

Percona-db-1
Namespace

Percona-db-2
Namespace

percona-db-3
Namespace

To use the Operator in such cluster-wide mode, you should install it with a different set of configuration

YAML files, which are available in the deploy folder and have filenames with a special cw- prefix: e.g.

deploy/cw-bundle.yaml .

While using this cluster-wide versions of configuration files, you should set the following information

there:

subjects.namespace option should contain the namespace which will host the Operator,

WATCH_NAMESPACE key-value pair in the env section should have value equal to a comma-separated

list of the namespaces to be watched by the Operator, and the namespace in which the Operator

resides. If this key is set to a blank string, the Operator will watch only the namespace it runs in, which

would be the same as single-namespace deployment.

Installing the Operator cluster-wide on OpenShift via the the Operator Lifecycle Manager (OLM) requires making

different selections in the OLM web-based UI instead of patching YAML files.

Note

Page 199

The following simple example shows how to install Operator cluster-wide on Kubernetes.

1. Clone percona-postgresql-operator repository:

2. Let’s say you will use pg-operator namespace for the Operator, and percona-db-1 namespace for

the cluster. Create these namespaces, if needed:

3. Edit the deploy/cw-bundle.yaml configuration file to make sure it contains proper namespace

name for the Operator:

4. Apply the deploy/cw-bundle.yaml file with the following command:

Right now the operator deployed in cluster-wide mode will monitor all namespaces in the cluster,

either already existing or newly created ones.

5. Deploy the cluster in the namespace of your choice:

Verifying the cluster operation

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

$ kubectl create namespace pg-operator

$ kubectl create namespace percona-db-1

...

subjects:

- kind: ServiceAccount

name: percona-postgresql-operator

namespace: pg-operator

...

spec:

containers:

- env:

- name: WATCH_NAMESPACE

value: "pg-operator,percona-db-1"

...

$ kubectl apply --server-side -f deploy/cw-bundle.yaml -n pg-operator

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

Page 200

When creation process is over, you can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with password for

default PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are

interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>

with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and

<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>

--template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do

this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-

postgresql:17.4 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following

command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL

interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-

pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.4)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 201

Using PostgreSQL tablespaces with Percona
Operator for PostgreSQL
Tablespaces allow DBAs to store a database on multiple file systems within the same server and to

control where (on which file systems) specific parts of the database are stored. You can think about it as if

you were giving names to your disk mounts and then using those names as additional parameters when

creating database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory, and

Percona Operator for PostgreSQL is a good option to bring this to your Kubernetes environment when

needed.

Possible use cases
The most obvious use case for tablespaces is performance optimization. You place appropriate parts of

the database on fast but expensive storage and engage slower but cheaper storage for lesser-used

database objects. The classic example would be using an SSD for heavily-used indexes and using a large

slow HDD for archive data.

Of course, the Operator already provides you with traditional Kubernetes approaches to achieve this on a

per-Pod basis (Tolerations, etc.). But if you would like to go deeper and make such differentiation at the

level of your database objects (tables and indexes), tablespaces are exactly what you would need for that.

Another well-known use case for tablespaces is quickly adding a new partition to the database cluster

when you run out of space on the initially used one and cannot extend it (which may look less typical for

cloud storage). Finally, you may need tablespaces when migrating your existing architecture to the cloud.

Each tablespace created by Percona Operator for PostgreSQL corresponds to a separate Persistent

Volume, mounted in a container to the /tablespaces directory.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

Page 202

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

Percona Operator for PostgreSQL
Namespace

CSI

Tablespace Storages
for DB Pod N

Creating a new tablespace
Providing a new tablespace for your database in Kubernetes involves two parts:

1. Configure the new tablespace storage with the Operator,

2. Create database objects in this tablespace with PostgreSQL.

Page 203

The first part is done in the traditional way of Percona Operators, by modifying Custom Resource via the

deploy/cr.yaml configuration file. It has a special spec.tablespaceStorages section for tablespaces.

The example already present in deploy/cr.yaml shows how to create tablespace storage 1Gb in size

(you can see official Kubernetes documentation on Persistent Volumes for details):

After you apply this by running the kubectl apply -f deploy/cr.yaml command, the new

/tablespaces/user/ mountpoint will appear for your database. Please take into account that if you add

your new tablespace to the already existing PostgreSQL cluster, it may take time for the Operator to create

Persistent Volume Claims and get Persistent Volumes actually mounted.

Now you should actually create your tablespace on this volume with the CREATE TABLESPACE

<tablespace name> LOCATION <mount point> command, and then create objects in it (of course, your

user should have appropriate CREATE privileges to make it possible):

Now when the tablespace is created you can append TABLESPACE <tablespace_name> to your CREATE

SQL statements to implicitly create tables, indexes, or even entire databases in specific tablespace.

Let’s create an example table in the already mentioned user121 tablespace:

It is also possible to set a default tablespace with the SET default_tablespace =

<tablespace_name>; statement. It will affect all further CREATE TABLE and CREATE INDEX commands

without an explicit tablespace specifier, until you unset it with an empty string.

spec:

instances:

...

tablespaceVolumes:

- name: user

dataVolumeClaimSpec:

accessModes:

- 'ReadWriteOnce'

resources:

requests:

storage: 1Gi

CREATE TABLESPACE user121

LOCATION '/tablespaces/user/data';

CREATE TABLE products (

product_sku character(10),

quantity int,

manufactured_date timestamptz)

TABLESPACE user121;

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Page 204

As you can see, Percona Operator for PostgreSQL simplifies tablespace creation by carrying on all

necessary modifications with Persistent Volumes and Pods. The same would not be true for the deletion

of an already existing tablespace, which is not automated, neither by the Operator nor by PostgreSQL.

Deleting an existing tablespace
Deleting an existing tablespace from your database in Kubernetes also involves two parts:

Delete related database objects and tablespace with PostgreSQL,

Delete tablespace storage in Kubernetes.

To make tablespace deletion with PostgreSQL possible, you should make this tablespace empty (it is

impossible to drop a tablespace until all objects in all databases using this tablespace have been removed).

Tablespaces are listed in the pg_tablespace table, and you can use it to find out which objects are

stored in a specific tablespace. The example command for the lake tablespace will look as follows:

When your tablespace is empty, you can log in to the PostgreSQL Primary instance as a superuser, and then

execute the DROP TABLESPACE <tablespace_name>; command.

Now, when the PostgreSQL part is finished, you can remove the tablespace entry from the

tablespaceStorages section (don’t forget to run the kubectl apply -f deploy/cr.yaml command

to apply changes).

SELECT relname FROM pg_class WHERE reltablespace=(SELECT oid FROM pg_tablespace

WHERE spcname='user121');

Page 205

Delete Percona Operator for PostgreSQL
When cleaning up your Kubernetes environment (e.g., moving from a trial deployment to a production one,

or testing experimental configurations), you may need to remove some (or all) of the following objects:

Percona Distribution for PosgreSQL cluster managed by the Operator

Percona Operator for PostgreSQL itself

Custom Resource Definition deployed with the Operator

Delete a database cluster
You can delete the Percona Distribution for PosgreSQL cluster managed by the Operator by deleting the

appropriate Custom Resource.

There are two finalizers defined in the Custom Resource, which define whether TLS-related objects and data volumes

should be deleted or preserved when the cluster is deleted.

finalizers.percona.com/delete-ssl : if present, objects, created for SSL (Secret, certificate, and issuer) are

deleted when the cluster deletion occurs.

finalizers.percona.com/delete-pvc : if present, Persistent Volume Claims for the database cluster Pods are

deleted when the cluster deletion occurs.

Both finalizers are off by default in the deploy/cr.yaml configuration file, and this allows you to recreate the cluster

without losing data, credentials for the system users, etc.

Here’s a sequence of steps to follow:

Note

List Custom Resources, replacing the <namespace> placeholder with your namespace.1

$ kubectl get pg -n <namespace>

Sample output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE

cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Page 206

Delete the Operator
You can uninstall the Operator by deleting the Deployments related to it.

Delete the Custom Resource with the name of your cluster (for example, let’s use the default

cluster1 name).

2

$ kubectl delete pg cluster1 -n <namespace>

Sample output

perconapgcluster.pgv2.percona.com "cluster1" deleted

Check that the cluster is deleted by listing the available Custom Resources once again.3

$ kubectl get pg -n <namespace>

Sample output

No resources found in <namespace> namespace.

List the deployments. Replace the <namespace> placeholder with your namespace.1

$ kubectl get deploy -n <namespace>

Sample output

NAME READY UP-TO-DATE AVAILABLE AGE

percona-postgresql-operator 1/1 1 1 13m

Delete the percona-* deployment2

$ kubectl delete deploy percona-postgresql-operator -n <namespace>

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Page 207

Delete Custom Resource Definition
If you are not just deleting the Operator and PostgreSQL cluster from a specific namespace, but want to

clean up your entire Kubernetes environment, you can also delete the CustomRecourceDefinitions (CRDs)

.

CRDs in Kubernetes are non-namespaced but are available to the whole environment. This means that you shouldn’t

delete CRD if you still have the Operator and database cluster in some namespace.

You can delete CRD as follows:

Check that the Operator is deleted by listing the Pods. As a result you should have no Pods related to

it.

3

$ kubectl get pods -n <namespace>

Sample output

No resources found in <namespace> namespace.

Warning

List the CRDs:1

$ kubectl get crd

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

Page 208

Sample output

allowlistedv2workloads.auto.gke.io 2023-09-07T14:15:30Z

allowlistedworkloads.auto.gke.io 2023-09-07T14:15:29Z

audits.warden.gke.io 2023-09-07T14:15:32Z

backendconfigs.cloud.google.com 2023-09-07T14:15:41Z

capacityrequests.internal.autoscaling.gke.io 2023-09-07T14:15:25Z

frontendconfigs.networking.gke.io 2023-09-07T14:15:41Z

managedcertificates.networking.gke.io 2023-09-07T14:15:41Z

memberships.hub.gke.io 2023-09-07T14:15:30Z

perconapgbackups.pgv2.percona.com 2023-09-07T14:28:59Z

perconapgclusters.pgv2.percona.com 2023-09-07T14:29:02Z

perconapgrestores.pgv2.percona.com 2023-09-07T14:29:03Z

postgresclusters.postgres-operator.crunchydata.com 2023-09-07T14:29:06Z

serviceattachments.networking.gke.io 2023-09-07T14:15:44Z

servicenetworkendpointgroups.networking.gke.io 2023-09-07T14:15:43Z

storagestates.migration.k8s.io 2023-09-07T14:15:53Z

storageversionmigrations.migration.k8s.io 2023-09-07T14:15:53Z

updateinfos.nodemanagement.gke.io 2023-09-07T14:15:55Z

volumesnapshotclasses.snapshot.storage.k8s.io 2023-09-07T14:15:52Z

volumesnapshotcontents.snapshot.storage.k8s.io 2023-09-07T14:15:52Z

volumesnapshots.snapshot.storage.k8s.io 2023-09-07T14:15:52Z

Now delete the percona*.pgv2.percona.com CRDs:2

$ kubectl delete crd perconapgbackups.pgv2.percona.com

perconapgclusters.pgv2.percona.com perconapgrestores.pgv2.percona.com

Sample output

customresourcedefinition.apiextensions.k8s.io "perconapgbackups.pgv2.percona.com"

deleted

customresourcedefinition.apiextensions.k8s.io "perconapgclusters.pgv2.percona.com"

deleted

customresourcedefinition.apiextensions.k8s.io "perconapgrestores.pgv2.percona.com"

deleted

Page 209

Monitor Kubernetes
Monitoring the state of the database is crucial to timely identify and react to performance issues. Percona

Monitoring and Management (PMM) solution enables you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it’s

important to have metrics that can depict the state of the Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has been

tested with the PMM Server as the centralized data storage and the Victoria Metrics Kubernetes

monitoring stack as the metrics collector. These steps may also apply if you use another Prometheus-

compatible storage.

Pre-requisites
To set up monitoring of Kubernetes, you need the following:

1. PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an

AWS instance. Please refer to the official PMM documentation for the installation instructions.

2. Helm v3 .

3. kubectl .

4. The PMM Server API key. The key must have the role “Admin”.

Get the PMM API key:

https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/

Page 210

Install the Victoria Metrics Kubernetes monitoring stack

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace

<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and

hostname in the following command:

The API key is not rotated.

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d

{"name":"operator", "role": "Admin"}' "https://<login>:

<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

Page 211

 Quick install

1. To install the Victoria Metrics Kubernetes monitoring stack with the default parameters, use the quick

install command. Replace the following placeholders with your values:

API-KEY - The API key of your PMM Server

PMM-SERVER-URL - The URL to access the PMM Server

UNIQUE-K8s-CLUSTER-IDENTIFIER - Identifier for the Kubernetes cluster. It can be the name you

defined during the cluster creation.

You should use a unique identifier for each Kubernetes cluster. The use of the same identifer for more

than one Kubernetes cluster will result in the conflicts during the metrics collection.

NAMESPACE - The namespace where the Victoria metrics Kubernetes stack will be installed. If you

haven’t created the namespace before, it will be created during the command execution.

We recommend to use a separate namespace like monitoring-system .

The Prometheus node exporter is not installed by default since it requires privileged containers with the access to

the host file system. If you need the metrics for Nodes, add the --node-exporter-enabled flag as follows:

 Install manually

You may need to customize the default parameters of the Victoria metrics Kubernetes stack.

Since we use the PMM Server for monitoring, there is no need to store the data in Victoria Metrics

Operator. Therefore, the Victoria Metrics Helm chart is installed with the vmsingle.enabled and

vmcluster.enabled parameters set to false in this setup.

Check all the role-based access control (RBAC) rules of the victoria-metrics-k8s-stack chart

and the dependencies chart, and modify them based on your requirements.

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-

monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/quick-install.sh | bash -s -

- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id

<UNIQUE-K8s-CLUSTER-IDENTIFIER> --namespace <NAMESPACE>

Note

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-

monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/quick-install.sh | bash -s -- --api-key

<API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-

IDENTIFIER> --namespace <NAMESPACE> --node-exporter-enabled

https://helm.sh/docs/topics/rbac/
https://helm.sh/docs/topics/rbac/
https://helm.sh/docs/topics/rbac/

Page 212

Configure authentication in PMM

To access the PMM Server resources and perform actions on the server, configure authentication.

1. Encode the PMM Server API key with base64.

2. Create the Namespace where you want to set up monitoring. The following command creates the

Namespace monitoring-system . You can specify a different name. In the latter steps, specify your

namespace instead of the <namespace> placeholder.

3. Create the YAML file for the Kubernetes Secrets and specify the base64-encoded API key value

within. Let’s name this file pmm-api-vmoperator.yaml .

4. Create the Secrets object using the YAML file you created previously. Replace the <filename>

placeholder with your value.

5. Check that the secret is created. The following command checks the secret for the resource named

pmm-token-vmoperator (as defined in the metadata.name option in the secrets file). If you defined

another resource name, specify your value.

 Linux

 macOS

$ echo -n <API-key> | base64 --wrap=0

$ echo -n <API-key> | base64

$ kubectl create namespace monitoring-system

pmm-api-vmoperator.yaml

apiVersion: v1

data:

api_key: <base-64-encoded-API-key>

kind: Secret

metadata:

name: pmm-token-vmoperator

#namespace: default

type: Opaque

$ kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 213

Create a ConfigMap to mount for kube-state-metrics

The kube-state-metrics (KSM) is a simple service that listens to the Kubernetes API server and

generates metrics about the state of various objects - Pods, Deployments, Services and Custom

Resources.

To define what metrics the kube-state-metrics should capture, create the ConfigMap and mount it

to a container.

Use the example configmap.yaml configuration file to create the ConfigMap.

As a result, you have the customresource-config-ksm ConfigMap created.

Install the Victoria Metrics Kubernetes monitoring stack

1. Add the dependency repositories of victoria-metrics-k8s-stack chart.

2. Add the Victoria Metrics Kubernetes monitoring stack repository.

3. Update the repositories.

4. Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the following

configuration:

the URL to access the PMM server in the externalVM.write.url option in the format <PMM-

SERVER-URL>/victoriametrics/api/v1/write . The URL can contain either the IP address or

the hostname of the PMM server.

the unique name or an ID of the Kubernetes cluster in the

vmagent.spec.externalLabels.k8s_cluster_id option. Ensure to set different values if you

$ kubectl get secret pmm-token-vmoperator -n <namespace>

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-

monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml -n

<namespace>

$ helm repo add grafana https://grafana.github.io/helm-charts

$ helm repo add prometheus-community https://prometheus-

community.github.io/helm-charts

$ helm repo add vm https://victoriametrics.github.io/helm-charts/

$ helm repo update

https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack

Page 214

Validate the successful installation

What Pods are running depends on the configuration chosen in values used while installing victoria-

metrics-k8s-stack chart.

Verify metrics capture

are sending metrics from multiple Kubernetes clusters to the same PMM Server.

the <namespace> placeholder with your value. The Namespace must be the same as the

Namespace for the Secret and ConfigMap

{.bash data-prompt="$" }

$ helm install vm-k8s vm/victoria-metrics-k8s-stack \

-f https://raw.githubusercontent.com/Percona-Lab/k8s-

monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/values.yaml \

--set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1/write \

--set vmagent.spec.externalLabels.k8s_cluster_id=<UNIQUE-CLUSTER-

IDENTIFER/NAME> \

-n <namespace>

To illustrate, say your PMM Server URL is https://pmm-example.com , the cluster ID is test-

cluster and the Namespace is monitoring-system . Then the command would look like this:

```{.bash .no-copy } $ helm install vm-k8s vm/victoria-metrics-k8s-stack \ -f

https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-

stack/values.yaml \ –set externalVM.write.url=https://pmm-

example.com/victoriametrics/api/v1/write \ –set vmagent.spec.externalLabels.k8s_cluster_id=test-

cluster \ -n monitoring-system

$ kubectl get pods -n <namespace>

Sample output

vm-k8s-stack-kube-state-metrics-d9d85978d-9pzbs                   1/1     Running   0

28m

vm-k8s-stack-victoria-metrics-operator-844d558455-gvg4n           1/1     Running   0

28m

vmagent-vm-k8s-stack-victoria-metrics-k8s-stack-55fd8fc4fbcxwhx   2/2     Running   0

28m



Page 215

1. Connect to the PMM server.

2. Click Explore and switch to the Code mode.

3. Check that the required metrics are captured, type the following in the Metrics browser dropdown:

cadvisor :

kubelet:

https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md


Page 216

kube-state-metrics  metrics that also include Custom resource metrics for the Operator and

database deployed in your Kubernetes cluster:

https://github.com/kubernetes/kube-state-metrics/tree/main/docs
https://github.com/kubernetes/kube-state-metrics/tree/main/docs
https://github.com/kubernetes/kube-state-metrics/tree/main/docs


Page 217

Uninstall Victoria metrics Kubernetes stack
To remove Victoria metrics Kubernetes stack used for Kubernetes cluster monitoring, use the cleanup

script. By default, the script removes all the Custom Resource Definitions(CRD)  and Secrets associated

with the Victoria metrics Kubernetes stack. To keep the CRDs, run the script with the --keep-crd  flag.

Check that the Victoria metrics Kubernetes stack is deleted:

The output should provide the empty list.

If you face any issues with the removal, uninstall the stack manually:

 Remove CRDs

Replace the <NAMESPACE>  placeholder with the namespace you specified during the Victoria metrics

Kubernetes stack installation:

 Keep CRDs

Replace the <NAMESPACE>  placeholder with the namespace you specified during the Victoria metrics

Kubernetes stack installation:

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-

monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/cleanup.sh) --namespace

<NAMESPACE>

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-

monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/cleanup.sh) --namespace

<NAMESPACE> --keep-crd

$ helm list -n <namespace>

$ helm uninstall vm-k8s-stack -n < namespace>

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/


Page 218

Use PostGIS extension with Percona
Distribution for PostgreSQL
PostGIS  is a PostgreSQL extension that adds GIS capabilities to this database.

Starting from the Operator version 2.3.0 it became possible to deploy and manage PostGIS-enabled

PostgreSQL.

Due to the large size and domain specifics of this extension, Percona provides separate PostgreSQL

Distribution images with it.

Deploy the Operator with PostGIS-enabled database cluster
Following steps will allow you to deploy PostgreSQL cluster with these images.

1. Clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b  option while cloning the code on this step. Please be careful.

2. The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the

deploy/crd.yaml  file. Custom Resource Definition extends the standard set of resources which

Kubernetes “knows” about with the new items (in our case ones which are the core of the Operator).

Apply it  as follows:

3. Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-

operator ):

$ git clone -b v2.6.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

Note

$ kubectl apply --server-side -f deploy/crd.yaml

$ kubectl create namespace postgres-operator

https://postgis.net/
https://postgis.net/
https://postgis.net/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/


Page 219

4. The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the

deploy/rbac.yaml  file. Role-based access is based on defined roles and the available actions which

correspond to each role. The role and actions are defined for Kubernetes resources in the yaml file.

Further details about users and roles can be found in Kubernetes documentation .

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google Kubernetes

Engine can grant user needed privileges with the following command:

5. Start the Operator within Kubernetes:

6. After the Operator is started, modify the deploy/cr.yaml  configuration file with PostGIS-enabled

image - use percona/percona-postgresql-operator:2.6.0-ppg17.4-postgres-gis  instead of

percona/percona-postgresql-operator:2.6.0-ppg17.4-postgres

When done, Percona Distribution for PostgreSQL cluster can be created at any time with the following

command:

The creation process may take some time. When the process is over your cluster will obtain the

ready  status. You can check it with the following command:

$ kubectl apply -f deploy/rbac.yaml -n postgres-operator

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --

user=$(gcloud config get-value core/account)

$ kubectl apply -f deploy/operator.yaml -n postgres-operator

apiVersion: pgv2.percona.com/v2

kind: PerconaPGCluster

metadata:

name: cluster1

spec:

...

image: percona/percona-postgresql-operator:2.6.0-ppg17.4-postgres-gis

...

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg -n postgres-operator

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings


Page 220

Check PostGIS extension
To use PostGIS extension you should enable it for a specific database.

For example, you can create the new database named mygisdata  with the psql  tool as follows:

Next, enable the postgis  extension. Make sure you are connected to the database you created earlier

and run the following command:

Finally, check that the extension is enabled:

The output should resemble the following:

You can find more about using PostGIS in the official Percona Distribution for PostgreSQL documentation

, as well as in this blogpost .

Expected output

NAME       ENDPOINT                         STATUS   POSTGRES   PGBOUNCER   AGE

cluster1   cluster1-pgbouncer.default.svc   ready    3          3           30m

CREATE database mygisdata;

\c mygisdata;

CREATE SCHEMA gis;

CREATE EXTENSION postgis;

SELECT postgis_full_version();

postgis_full_version

------------------------------------------------------------------------------

----------------------------------------------------------------------------------

-

POSTGIS="3.3.3" [EXTENSION] PGSQL="140" GEOS="3.10.2-CAPI-1.16.0" PROJ="8.2.1"

LIBXML="2.9.13" LIBJSON="0.15" LIBPROTOBUF="1.3.3" WAGYU="0.5.0 (Internal)"

https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/


Page 221

Troubleshooting



Page 222

Initial troubleshooting
Percona Operator for PostgreSQL uses Custom Resources  to manage options for the various

components of the cluster.

PerconaPGCluster  Custom Resource with Percona PostgreSQL Cluster options (it has handy pg

shortname also),

PerconaPGBackup  and PerconaPGRestore  Custom Resources contain options for pgBackRest used

to backup PostgreSQL Cluster and to restore it from backups ( pg-backup  and pg-restore

shortnames are available for them).

The first thing you can check for the Custom Resource is to query it with kubectl get  command:

The Custom Resource should have Ready  status.

You can check which Percona’s Custom Resources are present and get some information about them as follows:

Check the Pods

$ kubectl get pg

Expected output

NAME       ENDPOINT                         STATUS   POSTGRES   PGBOUNCER   AGE

cluster1   cluster1-pgbouncer.default.svc   ready    3          3           30m

Note

$ kubectl api-resources | grep -i percona

Expected output

perconapgbackups          pg-backup    pgv2.percona.com/v2            true

PerconaPGBackup

perconapgclusters         pg           pgv2.percona.com/v2            true

PerconaPGCluster

perconapgrestores         pg-restore   pgv2.percona.com/v2            true

PerconaPGRestore

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/


Page 223

If Custom Resource is not getting Ready  status, it makes sense to check individual Pods. You can do it as

follows:

The above command provides the following insights:

READY  indicates how many containers in the Pod are ready to serve the traffic. In the above example,

cluster1-repo-host-0  container has all two containers ready (2/2). For an application to work

properly, all containers of the Pod should be ready.

STATUS  indicates the current status of the Pod. The Pod should be in a Running  state to confirm that

the application is working as expected. You can find out other possible states in the official Kubernetes

documentation .

RESTARTS  indicates how many times containers of Pod were restarted. This is impacted by the

Container Restart Policy . In an ideal world, the restart count would be zero, meaning no issues from

the beginning. If the restart count exceeds zero, it may be reasonable to check why it happens.

AGE : Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

You can find more details about a specific Pod using the kubectl describe pods <pod-name>

command.

$ kubectl get pods

Expected output

NAME                                           READY   STATUS      RESTARTS   AGE

cluster1-backup-4vwt-p5d9j                     0/1     Completed   0          97m

cluster1-instance1-b5mr-0                      4/4     Running     0          99m

cluster1-instance1-b8p7-0                      4/4     Running     0          99m

cluster1-instance1-w7q2-0                      4/4     Running     0          99m

cluster1-pgbouncer-79bbf55c45-62xlk            2/2     Running     0          99m

cluster1-pgbouncer-79bbf55c45-9g4cb            2/2     Running     0          99m

cluster1-pgbouncer-79bbf55c45-9nrmd            2/2     Running     0          99m

cluster1-repo-host-0                           2/2     Running     0          99m

percona-postgresql-operator-79cd8586f5-2qzcs   1/1     Running     0          120m

$ $ kubectl describe pods cluster1-instance1-b5mr-0

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy


Page 224

This gives a lot of information about containers, resources, container status and also events. So, describe

output should be checked to see any abnormalities.

Expected output

...

Name:         cluster1-instance1-b5mr-0

Namespace:    default

...

Controlled By:  StatefulSet/cluster1-instance1-b5mr

Init Containers:

postgres-startup:

...

Containers:

database:

...

pgbackrest:

...

Restart Count:  0

Liveness:   http-get https://:8008/liveness delay=3s timeout=5s period=10s #success=1

#failure=3

Readiness:  http-get https://:8008/readiness delay=3s timeout=5s period=10s #success=1

#failure=3

Environment:

...

Mounts:

...

Volumes:

...

Events:

...



Page 225

Check Storage-related objects
Storage-related objects worth to check in case of problems are the following ones:

Persistent Volume Claims (PVC) and Persistent Volumes (PV) , which are playing a key role in

stateful applications.

Storage Class , which automates the creation of Persistent Volumes and the underlying storage.

It is important to remember that PVC is namespace-scoped, but PV and Storage Class are cluster-scoped.

Check the PVC
You can check all the PVC with the following command (use different namespace name instead of

postgres-operator , if needed):

STATUS: shows the state  of the PVC:

For normal working of an application, the status should be Bound .

If the status is not Bound , further investigation is required.

VOLUME: is the name of the Persistent Volume with which PVC is Bound to. Obviously, this field will be

occupied only when a PVC is Bound.

CAPACITY: it is the size of the volume claimed.

STORAGECLASS: it indicates the Kubernetes storage class  used for dynamic provisioning of

Volume.

$ kubectl get pvc -n postgres-operator

Expected output

NAME                             STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

cluster1-instance1-4xkv-pgdata   Bound    pvc-2d20abb7-5350-4810-a098-fbdfbffda041   1Gi

RWO            standard       11h

cluster1-instance1-njt9-pgdata   Bound    pvc-f2e9a722-fd30-435b-ade4-9edf20b2104b   1Gi

RWO            standard       11h

cluster1-instance1-qhh6-pgdata   Bound    pvc-7228300b-81de-4a60-a615-8ca935c95139   1Gi

RWO            standard       11h

cluster1-repo1                   Bound    pvc-b2e0bac3-993d-499e-b311-3aa7b9851bc2   1Gi

RWO            standard       11h

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/


Page 226

ACCESS MODES: Access mode  indicates how Volume is used with the Pods. Access modes should

have write permission if the application needs to write data, which is obviously true in case of

databases.

Now you can check a specific PVC for more details using its name as follows:

You can use a number of Custom Resource options to tweaking PVC for the components of your cluster:

options under instances.walVolumeClaimSpec  allow you to set access modes and requested

storage size for PostgreSQL Write-ahead Log storage,

options under instances.dataVolumeClaimSpec  allow you to set access modes and also requests

and limits for PostgreSQL database storage,

options under instances.tablespaceVolumes.dataVolumeClaimSpec  allow you to set access

modes and requested storage size for PostgreSQL tablespace volumes,

options under backups.pgbackrest.repos.volume.volumeClaimSpec  allow you to set access

modes and requested storage size for the pgBackRest storage.

$ kubectl get pvc cluster1-instance1-4xkv-pgdata -n postgres-operator -oyaml #

output stripped for brevity, name of PVC may vary

Expected output

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

...

name: cluster1-instance1-4xkv-pgdata

namespace: postgres-operator

...

spec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 1G

storageClassName: standard

volumeMode: Filesystem

volumeName: pvc-2d20abb7-5350-4810-a098-fbdfbffda041

status:

accessModes:

- ReadWriteOnce

capacity:

storage: 24Gi

phase: Bound

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes


Page 227

Check the PV
It is important to remember that PV is a cluster-scoped Object. If you see any issues with attaching a

Volume to a Pod, PV and PVC might be looked upon.

Check all the PV present in the Kubernetes cluster as follows:

Now you can check a specific PV for more details using its name as follows:

$ kubectl get pv

Expected output

NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS

CLAIM                                              STORAGECLASS   REASON   AGE

pvc-2d20abb7-5350-4810-a098-fbdfbffda041   1Gi        RWO            Delete           Bound

postgres-operator/cluster1-instance1-4xkv-pgdata   standard                11h

pvc-7228300b-81de-4a60-a615-8ca935c95139   1Gi        RWO            Delete           Bound

postgres-operator/cluster1-instance1-qhh6-pgdata   standard                11h

pvc-b2e0bac3-993d-499e-b311-3aa7b9851bc2   1Gi        RWO            Delete           Bound

postgres-operator/cluster1-repo1                   standard                11h

pvc-f2e9a722-fd30-435b-ade4-9edf20b2104b   1Gi        RWO            Delete           Bound

postgres-operator/cluster1-instance1-njt9-pgdata   standard                11h

$ kubectl get pv pvc-2d20abb7-5350-4810-a098-fbdfbffda041 -oyaml



Page 228

Fields to check if there are any issues in binding with PVC, are the claimRef  and nodeAffinity .

The claimRef  one indicates to which PVC this volume is bound to. This means that if by any chance PVC

is deleted (e.g. by the appropriate finalizer), this section needs to be modified so that it can bind to a new

PVC.

The spec.nodeAffinity  field may influence the PV availability as well: for example, it can make Volume

accessed in one availability zone only.

Check the StorageClass

Expected output

apiVersion: v1

kind: PersistentVolume

metadata:

...

name: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b

...

spec:

accessModes:

- ReadWriteOnce

capacity:

storage: 1Gi

claimRef:

apiVersion: v1

kind: PersistentVolumeClaim

name: cluster1-instance1-4xkv-pgdata

namespace: postgres-operator

resourceVersion: "912868"

uid: f3e7097f-accd-4f5d-9c9d-6f29b54a368b

gcePersistentDisk:

fsType: ext4

pdName: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b

nodeAffinity:

required:

nodeSelectorTerms:

- matchExpressions:

- key: topology.kubernetes.io/zone

operator: In

values:

- us-central1-a

- key: topology.kubernetes.io/region

operator: In

values:

- us-central1

persistentVolumeReclaimPolicy: Delete

storageClassName: standard

volumeMode: Filesystem

status:

phase: Bound



Page 229

StorageClass is also a cluster-scoped object, and it indicates what type of underlying storage is used for

the Volumes.

You can set StorageClass in instances.dataVolumeClaimSpec.storageClassName ,

instances.walVolumeClaimSpec.storageClassName , and

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName  Custom Resource

options.

The following command checks all the storage class present in the Kubernetes cluster, and allows to see

which storage class is the default one:

If some PVC does not refer any storage class explicitly, it means that the default storage class is used.

Ensure there is only one default Storage class.

You can check a specific storage class as follows:

$ kubectl get sc

Expected output

NAME                 PROVISIONER             RECLAIMPOLICY   VOLUMEBINDINGMODE

ALLOWVOLUMEEXPANSION   AGE

premium-rwo          pd.csi.storage.gke.io   Delete          WaitForFirstConsumer   true

44d

standard (default)   kubernetes.io/gce-pd    Delete          Immediate              true

44d

standard-rwo         pd.csi.storage.gke.io   Delete          WaitForFirstConsumer   true

44d

$ kubectl get sc standard -oyaml



Page 230

Important things to observe here are the following ones:

Check if the provisioner and parameters are indicating the type of storage you intend to provision.

Check the volumeBindingMode  especially if the storage cannot be accessed across availability

zones. “WaitForFirstConsumer” volumeBindingMode ensures volume is provisioned only after a Pod

requesting the Volume is created.

If you are going to rely on the Operator storage scaling functionality, ensure the storage class supports

PVC expansion (it should have allowVolumeExpansion: true  in the output of the above command).

You can set PVC storage class with the following Custom Resource options:

instances.walVolumeClaimSpec.storageClassName  allows you to set storage class for

PostgreSQL Write-ahead Log storage,

instances.dataVolumeClaimSpec.storageClassName  allows you to set storage class for

PostgreSQL database storage,

instances.tablespaceVolumes.dataVolumeClaimSpec.storageClassName  allows you to set

storage class for PostgreSQL tablespace volumes,

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName  allows you to set

storage class for the pgBackRest storage.

Expected output

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

annotations:

storageclass.kubernetes.io/is-default-class: "true"

creationTimestamp: "2022-10-09T06:28:03Z"

labels:

addonmanager.kubernetes.io/mode: EnsureExists

name: standard

resourceVersion: "906"

uid: 933d37db-990b-4b2d-bf3a-dd091d0b00ae

parameters:

type: pd-standard

provisioner: kubernetes.io/gce-pd

reclaimPolicy: Delete

volumeBindingMode: Immediate

https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode


Page 231

Exec into the containers
If you want to examine the contents of a container “in place” using remote access to it, you can use the

kubectl exec  command. It allows you to run any command or just open an interactive shell session in

the container. Of course, you can have shell access to the container only if container supports it and has a

“Running” state.

In the following examples we will access the container database  of the cluster1-instance1-b5mr-0

Pod.

Run date  command:

You will see an error if the command is not present in a container. For example, trying to run the time

command, which is not present in the container, by executing kubectl exec -ti cluster1-

instance1-b5mr-0 -c database -- time  would show the following result:

Print log files to a terminal:

Similarly, opening an Interactive terminal, executing a pair of commands in the container, and exiting it

may look as follows:

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- date

Expected output

Wed Jun 14 11:18:47 UTC 2023

OCI runtime exec failed: exec failed: unable to start container process: exec:

"time": executable file not found in $PATH: unknown command terminated with exit

code 126

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- cat

/pgdata/pg16/log/postgresql-*.log



Page 232

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- bash

bash-4.4$ hostname

cluster1-pxc-0

bash-4.4$ ls /pgdata/pg16/log/

postgresql-Wed.log

bash-4.4$ exit

exit

$



Page 233

Check the logs
Logs provide valuable information. It makes sense to check the logs of the database Pods and the

Operator Pod. Following flags are helpful for checking the logs with the kubectl logs  command:

Flag Description

-c , --container=

<container-name>

Print log of a specific container in case of multiple containers in a Pod

-f , --follow Follows the logs for a live output

--since=<time> Print logs newer than the specified time, for example: --since="10s"

--timestamps Print timestamp in the logs (timezone is taken from the container)

-p , --previous Print previous instantiation of a container. This is extremely useful in case of container

restart, where there is a need to check the logs on why the container restarted. Logs of

previous instantiation might not be available in all the cases.

In the following examples we will access containers of the cluster1-instance1-b5mr-0  Pod.

Check logs of the database  container:

Check logs of the pgbackrest  container:

Filter logs of the database  container which are not older than 600 seconds:

Check logs of a previous instantiation of the database  container, if any:

$ kubectl logs cluster1-instance1-b5mr-0 --container database

$ kubectl logs cluster1-instance1-b5mr-0 --container pgbackrest

$ kubectl logs cluster1-instance1-b5mr-0 --container database --since=600s

$ kubectl logs cluster1-instance1-b5mr-0 --container database --previous



Page 234

Increase pgBackRest log verbosity
The pgBackRest tool used for backups supports different log verbosity levels . By default, it logs

warnings and errors, but sometimes fixing backup/restore issues can be simpler when you get more

debugging information from it.

Log verbosity is controlled by pgBackRest –log-level-stderr  option.

You can add it to the deploy/backup.yaml  file to use it with on-demand backups as follows:

apiVersion: pgv2.percona.com/v2

kind: PerconaPGBackup

metadata:

name: backup1

spec:

pgCluster: cluster1

repoName: repo1

options:

- --log-level-stderr=debug

https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr


Page 235

Reference



Page 236

Custom Resource options
The Cluster is configured via the deploy/cr.yaml  file.

metadata

The metadata part of this file contains the following keys:

name  ( cluster1  by default) sets the name of your Percona Distribution for PostgreSQL Cluster; it

should include only URL-compatible characters , not exceed 22 characters, start with an alphabetic

character, and end with an alphanumeric character;

annotations.pgv2.percona.com/custom-patroni-version Kubernetes annotation  which

allows turning off automatic Patroni version detection by the Operator. You can use this annotation to

set the version manually (“3” for Patroni 3.x, “4” for Patroni 4.x).

finalizers.percona.com/delete-ssl  if present, activates the Finalizer  which deletes objects,

created for SSL (Secret, certificate, and issuer) after the cluster deletion event (off by default).

finalizers.percona.com/delete-pvc  if present, activates the Finalizer  which deletes Persistent

Volume Claims  for the database cluster Pods after the deletion event (off by default).

finalizers.percona.com/delete-backups  if present, activates the Finalizer  which deletes all the

backups of the database cluster from all configured repos on cluster deletion event (off by default).

delete-backups  finalizer is in tech preview state, and it is not yet recommended for production

environments.

Toplevel spec  elements
The spec part of the deploy/cr.yaml  file contains the following:

crVersion

Version of the Operator the Custom Resource belongs to.

Value type Example

 string 2.6.0

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Page 237

metadata.annotations

The Kubernetes annotations  metadata to be set at a global level for all resources created by the

Operator.

Value type Example

 label example-annotation: value

metadata.labels

The Kubernetes labels  metadata to be set at a global level for all resources created by the Operator.

Value type Example

 label example-label: value

tlsOnly

Enforce the Operator to use only Transport Layer Security (TLS) for both internal and external

communications.

Value type Example

 boolean false

standby.enabled

Enables or disables running the cluster in a standby mode (read-only copy of an existing cluster, useful for

disaster recovery, etc).

Value type Example

 boolean false

standby.host

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


Page 238

Host address of the primary cluster this standby cluster connects to.

Value type Example

 string "<primary-ip>"

standby.port

Port number used by a standby copy to connect to the primary cluster.

Value type Example

 string "<primary-port>"

openshift

Set to true  if the cluster is being deployed on OpenShift, set to false  otherwise, or unset it for

autodetection.

Value type Example

 boolean true

autoCreateUserSchema

If set to true , the cluster will have automatically created schemas for the custom user defined in the

spec.users  subsection for all of the databases listed for this specific user.

Value type Example

 boolean true

standby.repoName

Name of the pgBackRest repository in the primary cluster this standby cluster connects to.



Page 239

Value type Example

 string repo1

secrets.customRootCATLSSecret.name

Name of the secret with the custom root CA certificate and key for secure connections to the PostgreSQL

server, see Transport Layer Security (TLS) for details.

Value type Example

 string cluster1-ca-cert

secrets.customRootCATLSSecret.items

Key-value pairs of the key  (a key from the secrets.customRootCATLSSecret.name  secret) and the

path  (name on the file system) for the custom root certificate and key. See Transport Layer Security (TLS)

for details.

Value type Example

 subdoc

secrets.customTLSSecret.name

A secret with TLS certificate generated for external communications, see Transport Layer Security (TLS)

for details.

Value type Example

 string cluster1-cert

secrets.customReplicationTLSSecret.name

- key: “tls.crt”

path: “root.crt”

- key: “tls.key”

path: “root.key”



Page 240

A secret with TLS certificate generated for internal communications, see Transport Layer Security (TLS)

for details.

Value type Example

 string replication1-cert

users.name

The name of the PostgreSQL user.

Value type Example

 string rhino

users.databases

Databases accessible by a specific PostgreSQL user with rights to create objects in them (the option is

ignored for postgres  user; also, modifying it can’t be used to revoke the already given access).

Value type Example

 string zoo

users.password.type

The set of characters used for password generation: can be either ASCII  (default) or AlphaNumeric .

Value type Example

 string ASCII

users.options

The ALTER ROLE  options other than password (the option is ignored for postgres  user).



Page 241

Value type Example

 string "SUPERUSER"

users.secretName

The custom name of the user’s Secret; if not specified, the default <clusterName>-pguser-<userName>

variant will be used.

Value type Example

 string "rhino-credentials"

databaseInitSQL.key

Data key for the Custom configuration options ConfigMap  with the init SQL file, which will be executed

at cluster creation time.

Value type Example

 string init.sql

databaseInitSQL.name

Name of the ConfigMap  with the init SQL file, which will be executed at cluster creation time.

Value type Example

 string cluster1-init-sql

pause

Setting it to true  gracefully stops the cluster, scaling workloads to zero and suspending CronJobs;

setting it to false  after shut down starts the cluster back.

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/


Page 242

Value type Example

 string false

unmanaged

Setting it to true  stops the Operator’s activity including the rollout and reconciliation of changes made in

the Custom Resource; setting it to false  starts the Operator’s activity back.

Value type Example

 string false

dataSource.postgresCluster.clusterName

Name of an existing cluster to use as the data source when restoring backup to a new cluster.

Value type Example

 string cluster1

dataSource.postgresCluster.clusterNamespace

Namespace of an existing cluster used as a data source (is needed if the new cluster will be created in a

different namespace; needs the Operator deployed in multi-namespace/cluster-wide mode).

Value type Example

 string cluster1-namespace

dataSource.postgresCluster.repoName

Name of the pgBackRest repository in the source cluster that contains the backup to be restored to a new

cluster.



Page 243

Value type Example

 string repo1

dataSource.postgresCluster.options

The pgBackRest command-line options for the pgBackRest restore command.

Value type Example

 string

dataSource.postgresCluster.tolerations.effect

The Kubernetes Pod tolerations  effect for data migration.

Value type Example

 string NoSchedule

dataSource.postgresCluster.tolerations.key

The Kubernetes Pod tolerations  key for data migration.

Value type Example

 string role

dataSource.postgresCluster.tolerations.operator

The Kubernetes Pod tolerations  operator for data migration.

Value type Example

 string Equal

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Page 244

dataSource.postgresCluster.tolerations.value

The Kubernetes Pod tolerations  value for data migration.

Value type Example

 string connection-poolers

dataSource.pgbackrest.stanza

Name of the pgBackRest stanza  to use as the data source when restoring backup to a new cluster.

Value type Example

 string db

dataSource.pgbackrest.configuration.secret.name

Name of the Kubernetes Secret object  with custom pgBackRest configuration, which will be added to

the pgBackRest configuration generated by the Operator.

Value type Example

 string pgo-s3-creds

dataSource.pgbackrest.global

Settings, which are to be included in the global  section of the pgBackRest configuration generated by

the Operator.

Value type Example

 subdoc /pgbackrest/postgres-operator/hippo/repo1

dataSource.pgbackrest.repo.name

Name of the pgBackRest repository.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://pgbackrest.org/command.html
https://pgbackrest.org/command.html
https://pgbackrest.org/command.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


Page 245

Value type Example

 string repo1

dataSource.pgbackrest.repo.s3.bucket

The Amazon S3 bucket  or Google Cloud Storage bucket  name used for backups. Bucket name

should follow Amazon naming rules or Google naming rules, and additionally, it can’t contain dots.

Value type Example

 string "my-bucket"

dataSource.pgbackrest.repo.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original

Amazon S3 cloud).

Value type Example

 string "s3.ca-central-1.amazonaws.com"

dataSource.pgbackrest.repo.s3.region

The AWS region  to use for Amazon and all S3-compatible storages.

Value type Example

 boolean "ca-central-1"

dataSource.pgbackrest.tolerations.effect

The Kubernetes Pod tolerations  effect for pgBackRest at data migration.

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://cloud.google.com/storage/docs/buckets
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Page 246

Value type Example

 string NoSchedule

dataSource.pgbackrest.tolerations.key

The Kubernetes Pod tolerations  key for pgBackRest at data migration.

Value type Example

 string role

dataSource.pgbackrest.tolerations.operator

The Kubernetes Pod tolerations  operator for pgBackRest at data migration.

Value type Example

 string Equal

dataSource.pgbackrest.tolerations.value

The Kubernetes Pod tolerations  value for pgBackRest at data migration.

Value type Example

 string connection-poolers

dataSource.volumes.pgDataVolume.pvcName

The PostgreSQL data volume name for the Persistent Volume Claim  used for data migration.

Value type Example

 string cluster1

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/


Page 247

dataSource.volumes.pgDataVolume.directory

The mount point for PostgreSQL data volume used for data migration.

Value type Example

 string cluster1

dataSource.volumes.pgDataVolume.tolerations.effect

The Kubernetes Pod tolerations  effect for PostgreSQL data volume used for data migration.

Value type Example

 string NoSchedule

dataSource.volumes.pgDataVolume.tolerations.key

The Kubernetes Pod tolerations  key for PostgreSQL data volume used for data migration.

Value type Example

 string role

dataSource.volumes.pgDataVolume.tolerations.operator

The Kubernetes Pod tolerations  operator for PostgreSQL data volume used for data migration.

Value type Example

 string Equal

dataSource.volumes.pgDataVolume.tolerations.value

The Kubernetes Pod tolerations  value for PostgreSQL data volume used for data migration.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Page 248

Value type Example

 string connection-poolers

dataSource.volumes.pgDataVolume.annotations

The Kubernetes annotations  metadata for PostgreSQL data volume used for data migration.

Value type Example

 label test-annotation: value

dataSource.volumes.pgDataVolume.labels

The Kubernetes labels  for PostgreSQL data volume used for data migration.

Value type Example

 label test-label: value

dataSource.volumes.pgWALVolume.pvcName

The PostgreSQL write-ahead logs volume name for the Persistent Volume Claim  used for data

migration.

Value type Example

 string cluster1

dataSource.volumes.pgWALVolume.directory

The mount point for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

 string cluster1

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/


Page 249

dataSource.volumes.pgWALVolume.tolerations.effect

The Kubernetes Pod tolerations  effect for PostgreSQL write-ahead logs volume used for data

migration.

Value type Example

 string NoSchedule

dataSource.volumes.pgWALVolume.tolerations.key

The Kubernetes Pod tolerations  key for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

 string role

dataSource.volumes.pgWALVolume.tolerations.operator

The Kubernetes Pod tolerations  operator for PostgreSQL write-ahead logs volume used for data

migration.

Value type Example

 string Equal

dataSource.volumes.pgWALVolume.tolerations.value

The Kubernetes Pod tolerations  value for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

 string connection-poolers

dataSource.volumes.pgWALVolume.annotations

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Page 250

The Kubernetes annotations  metadata for PostgreSQL write-ahead logs volume used for data

migration.

Value type Example

 label test-annotation: value

dataSource.volumes.pgWALVolume.labels

The Kubernetes labels  for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

 label test-label: value

dataSource.volumes.pgBackRestVolume.pvcName

The pgBackRest volume name for the Persistent Volume Claim  used for data migration.

Value type Example

 string cluster1

dataSource.volumes.pgBackRestVolume.directory

The mount point for pgBackRest volume used for data migration.

Value type Example

 string cluster1

dataSource.volumes.pgBackRestVolume.tolerations.effect

The Kubernetes Pod tolerations  effect pgBackRest volume used for data migration.

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Page 251

Value type Example

 string NoSchedule

dataSource.volumes.pgBackRestVolume.tolerations.key

The Kubernetes Pod tolerations  key for pgBackRest volume used for data migration.

Value type Example

 string role

dataSource.volumes.pgBackRestVolume.tolerations.operator

The Kubernetes Pod tolerations  operator for pgBackRest volume used for data migration.

Value type Example

 string Equal

dataSource.volumes.pgBackRestVolume.tolerations.value

The Kubernetes Pod tolerations  value for pgBackRest volume used for data migration.

Value type Example

 string connection-poolers

dataSource.volumes.pgBackRestVolume.annotations

The Kubernetes annotations  metadata for pgBackRest volume used for data migration.

Value type Example

 label test-annotation: value

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/


Page 252

dataSource.volumes.pgBackRestVolume.labels

The Kubernetes labels  for pgBackRest volume used for data migration.

Value type Example

 label test-label: value

image

The PostgreSQL Docker image to use.

Value type Example

 string perconalab/percona-postgresql-operator:2.6.0-ppg17.4-postgres

imagePullPolicy

This option is used to set the policy  for updating PostgreSQL images.

Value type Example

 string Always

postgresVersion

The major version of PostgreSQL to use.

Value type Example

 int 16

port

The port number for PostgreSQL.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images


Page 253

Value type Example

 int 5432

expose.annotations

The Kubernetes annotations  metadata for PostgreSQL primary.

Value type Example

 label my-annotation: value1

expose.labels

Set labels  for the PostgreSQL primary.

Value type Example

 label my-label: value2

expose.type

Specifies the type of Kubernetes Service  for PostgreSQL primary.

Value type Example

 string LoadBalancer

expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no

limitations).

Value type Example

 string "10.0.0.0/8"

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types


Page 254

exposeReplicas.annotations

The Kubernetes annotations  metadata for PostgreSQL replicas.

Value type Example

 label my-annotation: value1

exposeReplicas.labels

Set labels  for the PostgreSQL replicas.

Value type Example

 label my-label: value2

exposeReplicas.type

Specifies the type of Kubernetes Service  for PostgreSQL replicas.

Value type Example

 string LoadBalancer

exposeReplicas.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no

limitations).

Value type Example

 string "10.0.0.0/8"

Instances section

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types


Page 255

The instances  section in the deploy/cr.yaml  file contains configuration options for PostgreSQL

instances. This section contains at least one cluster instance with a number of PostgreSQL instances in it

(cluster instances are groups of PostgreSQL instances used for fine-grained resources assignment).

instances.metadata.labels

Set labels  for PostgreSQL Pods.

Value type Example

 label pg-cluster-label: cluster1

instances.name

The name of the PostgreSQL instance.

Value type Example

 string rs 0

instances.replicas

The number of Replicas to create for the PostgreSQL instance.

Value type Example

 int 3

instances.resources.limits.cpu

Kubernetes CPU limits  for a PostgreSQL instance.

Value type Example

 string 2.0

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Page 256

instances.resources.limits.memory

The Kubernetes memory limits  for a PostgreSQL instance.

Value type Example

 string 4Gi

instances.containers.replicaCertCopy.resources.limits.cpu

Kubernetes CPU limits  for replica-cert-copy  sidecar container.

Value type Example

 string 1.0

instances.containers.replicaCertCopy.resources.limits.memory

The Kubernetes memory limits  for replica-cert-copy  sidecar container.

Value type Example

 string 1Gi

instances.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread

Constraints .

Value type Example

 int 1

instances.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/


Page 257

Value type Example

 string my-node-label

instances.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string DoNotSchedule

instances.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label postgres-operator.crunchydata.com/instance-set: instance1

instances.tolerations.effect

The Kubernetes Pod tolerations  effect for the PostgreSQL instance.

Value type Example

 string NoSchedule

instances.tolerations.key

The Kubernetes Pod tolerations  key for the PostgreSQL instance.

Value type Example

 string role

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Page 258

instances.tolerations.operator

The Kubernetes Pod tolerations  operator for the PostgreSQL instance.

Value type Example

 string Equal

instances.tolerations.value

The Kubernetes Pod tolerations  value for the PostgreSQL instance.

Value type Example

 string connection-poolers

instances.priorityClassName

The Kuberentes Pod priority class  for PostgreSQL instance Pods.

Value type Example

 string high-priority

instances.securityContext

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


Page 259

Value type Example

 subdoc

instances.walVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the PostgreSQL Write-ahead Log storage.

Value type Example

 string ReadWriteOnce

instances.walVolumeClaimSpec.storageClassName

Set the Kubernetes storage class  to use with the PostgreSQL Write-ahead Log storage

PersistentVolumeClaim .

Value type Example

 string standard

instances.walVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests  for the storage the PostgreSQL instance will use.

fsGroup: 1001

runAsUser: 1001

runAsNonRoot: true

fsGroupChangePolicy: “OnRootMismatch”

runAsGroup: 1001

seLinuxOptions:

type: spc_t

level: s0:c123,c456

seccompProfile:

type: Localhost

localhostProfile: localhost/profile.json

supplementalGroups:

- 1001

sysctls:

- name: net.ipv4.tcp_keepalive_time

value: “600”

- name: net.ipv4.tcp_keepalive_intvl

value: “60”

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Page 260

Value type Example

 string 1Gi

instances.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the PostgreSQL storage.

Value type Example

 string ReadWriteOnce

instances.dataVolumeClaimSpec.storageClassName

Set the Kubernetes storage class  to use with PosgreSQL Cluster PersistentVolumeClaim  for the

PostgreSQL storage.

Value type Example

 string standard

instances.dataVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests  for the storage the PostgreSQL instance will use.

Value type Example

 string 1Gi

instances.dataVolumeClaimSpec.resources.limits.storage

The Kubernetes storage limits  for the storage the PostgreSQL instance will use.

Value type Example

 string 5Gi

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Page 261

instances.tablespaceVolumes.name

Name for the custom tablespace volume.

Value type Example

 string user

instances.tablespaceVolumes.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the tablespace volume.

Value type Example

 string ReadWriteOnce

instances.tablespaceVolumes.dataVolumeClaimSpec.resources.requests.st

orage

The Kubernetes storage requests  for the tablespace volume.

Value type Example

 string 1Gi

instances.sidecars  subsection
The instances.sidecars  subsection in the deploy/cr.yaml  file contains configuration options for

custom sidecar containers which can be added to PostgreSQL Pods.

instances.sidecars.image

Image for the custom sidecar container for PostgreSQL Pods.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Page 262

Value type Example

 string mycontainer1:latest

instances.sidecars.name

Name of the custom sidecar container for PostgreSQL Pods.

Value type Example

 string testcontainer

instances.sidecars.imagePullPolicy

This option is used to set the policy  for the PostgreSQL Pod sidecar container.

Value type Example

 string Always

instances.sidecars.env

The environment variables set as key-value pairs  for the custom sidecar container for PostgreSQL

Pods.

Value type Example

 subdoc

instances.sidecars.envFrom

The environment variables set as key-value pairs in ConfigMaps  for the custom sidecar container for

PostgreSQL Pods.

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


Page 263

Value type Example

 subdoc

instances.sidecars.command

Command for the custom sidecar container for PostgreSQL Pods.

Value type Example

 array ["/bin/sh"]

instances.sidecars.args

Command arguments for the custom sidecar container for PostgreSQL Pods.

Value type Example

 array ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Backup section
The backup  section in the deploy/cr.yaml  file contains the following configuration options for the

regular Percona Distribution for PostgreSQL backups.

backups.trackLatestRestorableTime

Enables or disables tracking the latest restorable time for latest successful backup (on by default). It can

be turned off to reduced S3 API usage.

Value type Example

 boolean true

backups.pgbackrest.metadata.labels

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Page 264

Set labels  for pgBackRest Pods.

Value type Example

 label pg-cluster-label: cluster1

backups.pgbackrest.image

The Docker image for pgBackRest.

Value type Example

 string perconalab/percona-postgresql-operator:2.6.0-ppg17.4-pgbackrest

backups.pgbackrest.containers.pgbackrest.resources.limits.cpu

Kubernetes CPU limits  for a pgBackRest container.

Value type Example

 string 1.0

backups.pgbackrest.containers.pgbackrest.resources.limits.memory

The Kubernetes memory limits  for a pgBackRest container.

Value type Example

 string 1Gi

backups.pgbackrest.containers.pgbackrestConfig.resources.limits.cpu

Kubernetes CPU limits  for pgbackrest-config  sidecar container.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Page 265

Value type Example

 string 1.0

backups.pgbackrest.containers.pgbackrestConfig.resources.limits.memor

y

The Kubernetes memory limits  for pgbackrest-config  sidecar container.

Value type Example

 string 1Gi

backups.pgbackrest.configuration.secret.name

Name of the Kubernetes Secret object  with custom pgBackRest configuration, which will be added to

the pgBackRest configuration generated by the Operator.

Value type Example

 string cluster1-pgbackrest-secrets

backups.pgbackrest.jobs.priorityClassName

The Kuberentes Pod priority class  for pgBackRest jobs.

Value type Example

 string high-priority

backups.pgbackrest.jobs.resources.limits.cpu

Kubernetes CPU limits  for a pgBackRest job.

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Page 266

Value type Example

 int 200

backups.pgbackrest.jobs.resources.limits.memory

The Kubernetes memory limits  for a pgBackRest job.

Value type Example

 string 128Mi

backups.pgbackrest.jobs.tolerations.effect

The Kubernetes Pod tolerations  effect for a backup job.

Value type Example

 string NoSchedule

backups.pgbackrest.jobs.tolerations.key

The Kubernetes Pod tolerations  key for a backup job.

Value type Example

 string role

backups.pgbackrest.jobs.tolerations.operator

The Kubernetes Pod tolerations  operator for a backup job.

Value type Example

 string Equal

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Page 267

backups.pgbackrest.jobs.tolerations.value

The Kubernetes Pod tolerations  value for a backup job.

Value type Example

 string connection-poolers

backups.pgbackrest.jobs.securityContext

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

Value type Example

 subdoc

backups.pgbackrest.global

Settings, which are to be included in the global  section of the pgBackRest configuration generated by

the Operator.

fsGroup: 1001

runAsUser: 1001

runAsNonRoot: true

fsGroupChangePolicy: “OnRootMismatch”

runAsGroup: 1001

seLinuxOptions:

type: spc_t

level: s0:c123,c456

seccompProfile:

type: Localhost

localhostProfile: localhost/profile.json

supplementalGroups:

- 1001

sysctls:

- name: net.ipv4.tcp_keepalive_time

value: “600”

- name: net.ipv4.tcp_keepalive_intvl

value: “60”

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


Page 268

Value type Example

 subdoc

backups.pgbackrest.repoHost.priorityClassName

The Kuberentes Pod priority class  for pgBackRest repo.

Value type Example

 string high-priority

backups.pgbackrest.repoHost.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread

Constraints .

Value type Example

 int 1

backups.pgbackrest.repoHost.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string my-node-label

backups.pgbackrest.repoHost.topologySpreadConstraints.whenUnsatisfiab

le

repo1-retention-full: “14”

repo1-retention-full-type: time

repo1-path: /pgbackrest/postgres-operator/cluster1/repo1

repo1-cipher-type: aes-256-cbc

repo1-s3-uri-style: path

repo2-path: /pgbackrest/postgres-operator/cluster1-multi-repo/repo2

repo3-path: /pgbackrest/postgres-operator/cluster1-multi-repo/repo3

repo4-path: /pgbackrest/postgres-operator/cluster1-multi-repo/repo4

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/


Page 269

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string ScheduleAnyway

backups.pgbackrest.repoHost.topologySpreadConstraints.labelSelector.m

atchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label postgres-operator.crunchydata.com/pgbackrest: ""

backups.pgbackrest.repoHost.affinity.podAntiAffinity

Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity.

Value type Example

 subdoc

backups.pgbackrest.repoHost.tolerations.effect

The Kubernetes Pod tolerations  effect for pgBackRest repo.

Value type Example

 string NoSchedule

backups.pgbackrest.repoHost.tolerations.key

The Kubernetes Pod tolerations  key for pgBackRest repo.

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Page 270

Value type Example

 string role

backups.pgbackrest.repoHost.tolerations.operator

The Kubernetes Pod tolerations  operator for pgBackRest repo.

Value type Example

 string Equal

backups.pgbackrest.repoHost.tolerations.value

The Kubernetes Pod tolerations  value for pgBackRest repo.

Value type Example

 string connection-poolers

‘backups.pgbackrest.repoHost.securityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


Page 271

Value type Example

 subdoc

backups.pgbackrest.manual.repoName

Name of the pgBackRest repository for on-demand backups.

Value type Example

 string repo1

backups.pgbackrest.manual.options

The on-demand backup command-line options which will be passed to pgBackRest for on-demand

backups.

Value type Example

 string --type=full

backups.pgbackrest.repos.name

Name of the pgBackRest repository for backups.

fsGroup: 1001

runAsUser: 1001

runAsNonRoot: true

fsGroupChangePolicy: “OnRootMismatch”

runAsGroup: 1001

seLinuxOptions:

type: spc_t

level: s0:c123,c456

seccompProfile:

type: Localhost

localhostProfile: localhost/profile.json

supplementalGroups:

- 1001

sysctls:

- name: net.ipv4.tcp_keepalive_time

value: “600”

- name: net.ipv4.tcp_keepalive_intvl

value: “60”



Page 272

Value type Example

 string repo1

backups.pgbackrest.repos.schedules.full

Scheduled time to make a full backup specified in the crontab format .

Value type Example

 string 0 0 \* \* 6

backups.pgbackrest.repos.schedules.differential

Scheduled time to make a differential backup specified in the crontab format .

Value type Example

 string 0 0 \* \* 6

backups.pgbackrest.repos.volume.volumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the pgBackRest Storage.

Value type Example

 string ReadWriteOnce

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName

Set the Kubernetes Storage Class  to use with the Percona Operator for PosgreSQL backups stored on

Persistent Volume.

Value type Example

 string standard

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/


Page 273

backups.pgbackrest.repos.volume.volumeClaimSpec.resources.requests.st

orage

The Kubernetes storage requests  for the pgBackRest storage.

Value type Example

 string 1Gi

backups.pgbackrest.repos.s3.bucket

The Amazon S3 bucket  name used for backups

Value type Example

 string "my-bucket"

.

backups.pgbackrest.repos.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original

Amazon S3 cloud).

Value type Example

 string "s3.ca-central-1.amazonaws.com"

backups.pgbackrest.repos.s3.region

The AWS region  to use for Amazon and all S3-compatible storages.

Value type Example

 string "ca-central-1"

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


Page 274

backups.pgbackrest.repos.gcs.bucket

The Google Cloud Storage bucket  name used for backups.

Value type Example

 string "my-bucket"

backups.pgbackrest.repos.azure.container

Name of the Azure Blob Storage container  for backups.

Value type Example

 string my-container

backups.restore.tolerations.effect

The Kubernetes Pod tolerations  effect for the backup restore job.

Value type Example

 string NoSchedule

backups.restore.tolerations.key

The Kubernetes Pod tolerations  key for the backup restore job.

Value type Example

 string role

backups.restore.tolerations.operator

The Kubernetes Pod tolerations  operator for the backup restore job.

https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Page 275

Value type Example

 string Equal

backups.restore.tolerations.value

The Kubernetes Pod tolerations  value for the backup restore job.

Value type Example

 string connection-poolers

PMM section
The pmm  section in the deploy/cr.yaml  file contains configuration options for Percona Monitoring and

Management.

pmm.enabled

Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM .

Value type Example

 boolean false

pmm.image

Percona Monitoring and Management (PMM) Client  Docker image.

Value type Example

 string percona/pmm-client:2.44.0

pmm.imagePullPolicy

This option is used to set the policy  for updating PMM Client images.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images


Page 276

Value type Example

 string IfNotPresent

pmm.pmmSecret

Name of the Kubernetes Secret object  for the PMM Server password.

Value type Example

 string cluster1-pmm-secret

pmm.serverHost

Address of the PMM Server to collect data from the cluster.

Value type Example

 string monitoring-service

pmm.querySource

Query source to track PostgreSQL statistics. Either pg_stat_monitor ( pgstatmonitor , the default value)

or pg_stat_statements ( pgstatstatements ) can be used.

Value type Example

 string pgstatmonitor

Proxy section
The proxy  section in the deploy/cr.yaml  file contains configuration options for the pgBouncer 

connection pooler for PostgreSQL.

proxy.pgBouncer.metadata.labels

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/


Page 277

Set labels  for pgBouncer Pods.

Value type Example

 label pg-cluster-label: cluster1

proxy.pgBouncer.replicas

The number of the pgBouncer Pods to provide connection pooling.

Value type Example

 int 3

proxy.pgBouncer.image

Docker image for the pgBouncer  connection pooler.

Value type Example

 string perconalab/percona-postgresql-operator:2.6.0-ppg17.4-pgbouncer

proxy.pgBouncer.exposeSuperusers

Enables or disables exposing superuser user through pgBouncer.

Value type Example

 boolean false

proxy.pgBouncer.resources.limits.cpu

Kubernetes CPU limits  for a pgBouncer container.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Page 278

Value type Example

 string 200m

proxy.pgBouncer.resources.limits.memory

The Kubernetes memory limits  for a pgBouncer container.

Value type Example

 string 128Mi

proxy.pgBouncer.containers.pgbouncerConfig.resources.limits.cpu

Kubernetes CPU limits  for pgbouncer-config  sidecar container.

Value type Example

 string 1.0

proxy.pgBouncer.containers.pgbouncerConfig.resources.limits.memory

The Kubernetes memory limits  for pgbouncer-config  sidecar container.

Value type Example

 string 1Gi

proxy.pgBouncer.expose.type

Specifies the type of Kubernetes Service  for pgBouncer.

Value type Example

 string ClusterIP

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types


Page 279

proxy.pgBouncer.expose.annotations

The Kubernetes annotations  metadata for pgBouncer.

Value type Example

 label pg-cluster-annot: cluster1

proxy.pgBouncer.expose.labels

Set labels  for the pgBouncer Service.

Value type Example

 label pg-cluster-label: cluster1

proxy.pgBouncer.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no

limitations).

Value type Example

 string "10.0.0.0/8"

proxy.pgBouncer.affinity.podAntiAffinity

Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity.

Value type Example

 subdoc

‘proxy.pgBouncer.securityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


Page 280

Value type Example

 subdoc

proxy.pgBouncer.config

Custom configuration options for pgBouncer. Please note that configuration changes are automatically

applied to the running instances without validation, so having an invalid config can make the cluster

unavailable.

Value type Example

 subdoc

proxy.pgBouncer.sidecars subsection
The proxy.pgBouncer.sidecars  subsection in the deploy/cr.yaml  file contains configuration options

for custom sidecar containers which can be added to pgBouncer Pods.

proxy.pgBouncer.sidecars.image

Image for the custom sidecar container for pgBouncer Pods.

fsGroup: 1001

runAsUser: 1001

runAsNonRoot: true

fsGroupChangePolicy: “OnRootMismatch”

runAsGroup: 1001

seLinuxOptions:

type: spc_t

level: s0:c123,c456

seccompProfile:

type: Localhost

localhostProfile: localhost/profile.json

supplementalGroups:

- 1001

sysctls:

- name: net.ipv4.tcp_keepalive_time

value: “600”

- name: net.ipv4.tcp_keepalive_intvl

value: “60”

global:

pool_mode: transaction

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Page 281

Value type Example

 string mycontainer1:latest

proxy.pgBouncer.sidecars.name

Name of the custom sidecar container for pgBouncer Pods.

Value type Example

 string testcontainer

proxy.pgBouncer.sidecars.imagePullPolicy

This option is used to set the policy  for the pgBouncer Pod sidecar container.

Value type Example

 string Always

proxy.pgBouncer.sidecars.env

The environment variables set as key-value pairs  for the custom sidecar container for pgBouncer Pods.

Value type Example

 subdoc

proxy.pgBouncer.sidecars.envFrom

The environment variables set as key-value pairs in ConfigMaps  for the custom sidecar container for

pgBouncer Pods.

Value type Example

 subdoc

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


Page 282

proxy.pgBouncer.sidecars.command

Command for the custom sidecar container for pgBouncer Pods.

Value type Example

 array ["/bin/sh"]

proxy.pgBouncer.sidecars.args

Command arguments for the custom sidecar container for pgBouncer Pods.

Value type Example

 array ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Patroni Section
The patroni  section in the deploy/cr.yaml  file contains configuration options to customize the

PostgreSQL high-availability implementation based on Patroni .

Value type Example

 int 3

patroni.syncPeriodSeconds

How often to perform liveness/readiness probes  for the patroni container (in seconds).

Value type Example

 int 3

patroni.leaderLeaseDurationSeconds

Initial delay for liveness/readiness probes  for the patroni container (in seconds).

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes


Page 283

patroni.dynamicConfiguration

Custom PostgreSQL configuration options. Please note that configuration changes are automatically

applied to the running instances without validation, so having an invalid config can make the cluster

unavailable.

Value type Example

 subdoc

patroni.switchover.enabled

Enables or disables manual change of the cluster primary instance.

Value type Example

 string

patroni.switchover.targetInstance

The name of the Pod that should be set as the new primary. When not specified, the new primary will be

selected randomly.

Value type Example

 string

Custom extensions Section
The extensions  section in the deploy/cr.yaml  file contains configuration options to manage

PostgreSQL extensions.

extensions.image

postgresql:

parameters:

max_parallel_workers: 2

max_worker_processes: 2

shared_buffers: 1GB

work_mem: 2MB

true

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Page 284

Image for the custom PostgreSQL extension loader sidecar container.

Value type Example

 string percona/percona-postgresql-operator:2.6.0

extensions.imagePullPolicy

Policy  for the custom extension sidecar container.

Value type Example

 string Always

extensions.storage.type

The cloud storage type used for backups. Only s3  type is currently supported.

Value type Example

 string s3

extensions.storage.bucket

The Amazon S3 bucket  name for prepackaged PostgreSQL custom extensions.

Value type Example

 string pg-extensions

extensions.storage.region

The AWS region  to use.

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


Page 285

Value type Example

 string eu-central-1

extensions.storage.endpoint

The S3 endpoint  to use.

Value type Example

 string s3.eu-central-1.amazonaws.com

extensions.storage.secret.name

The Kubernetes secret  for the custom extensions storage. It should contain AWS_ACCESS_KEY_ID  and

AWS_SECRET_ACCESS_KEY  keys.

Value type Example

 string cluster1-extensions-secret

extensions.builtin.pg_stat_monitor

Enable or disable pg_stat_monitor  PostgreSQL extension.

Value type Example

 boolean true

extensions.builtin.pg_audit

Enable or disable PGAudit  PostgreSQL extension.

Value type Example

 boolean true

https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/general/latest/gr/s3.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.percona.com/pg-stat-monitor/index.html
https://docs.percona.com/pg-stat-monitor/index.html
https://docs.percona.com/pg-stat-monitor/index.html
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/


Page 286

extensions.builtin.pgvector

Enable or disable pgvector  PostgreSQL extension. This extension is not compatible with PostgreSQL

12!

Value type Example

 boolean false

extensions.custom.name

Name of the PostgreSQL custom extension.

Value type Example

 string pg_cron

extensions.custom.version

Version of the PostgreSQL custom extension.

Value type Example

 string 1.6.1

https://github.com/pgvector/pgvector
https://github.com/pgvector/pgvector
https://github.com/pgvector/pgvector


Page 287

Percona certified images
Following table presents Percona’s certified docker images to be used with the Percona Operator for

PostgreSQL version 2.6.0:

Image Digest

percona/percona-postgresql-

operator:2.6.0 (x86_64)

fb1b6b08e986a21b30ce5e538c54e92e5fd978cd62abf17856c74582a237e931

percona/percona-postgresql-

operator:2.6.0 (ARM64)

4e545bebaa66e43c1c0707bb576b4047ca5dd6fc0f4fb326b553cba744b337ae

percona/percona-postgresql-

operator:2.6.0-ppg17.4-postgres

142ea1573c67fdb60a197352c576a1d01da247eee3b3fc0f09e86dd4c916cc82

percona/percona-postgresql-

operator:2.6.0-ppg17.2-postgres

acb876c29ddcb8ca3d157a83e2b0e8410dabbd0c4c35257fa8f66a9f0b981fda

percona/percona-postgresql-

operator:2.6.0-ppg16.8-postgres

7ecc5320ae341778140dd90e1e628ab3552f12cd4fb07e93070b034dc9e6c776

percona/percona-postgresql-

operator:2.6.0-ppg15.12-

postgres

db6d09dcb2e6f4c3a10de521fe0b008df0675741ee062fdbcaabfd4a466200d1

percona/percona-postgresql-

operator:2.6.0-ppg14.17-

postgres

31dd06dd76df480da58638c1ae14cbff762b1057701ccc20af9bc86c264b4962

percona/percona-postgresql-

operator:2.6.0-ppg13.20-

postgres

95f25de125cd43e825dea64be943e097459cfda09550877fbf460626913a2e9d

percona/percona-postgresql-

operator:2.6.0-ppg17.4-

postgres-gis3.3.8

836884826761a858d183616acff5c069fbad3a47e9014146a6acdfe2d40f6962

percona/percona-postgresql-

operator:2.6.0-ppg17.2-

postgres-gis3.3.7

8bd0c645431cfebd1b365c05ba2e5748d81d00dbf5b76cf2f3f3a411ef1cb14e



Page 288

Image Digest

percona/percona-postgresql-

operator:2.6.0-ppg16.8-

postgres-gis3.3.8

4787f0b40b25d14dc4e724dc97f76a3fe13b97a372437fe803cc2208dbcf102c

percona/percona-postgresql-

operator:2.6.0-ppg15.12-

postgres-gis3.3.8

fed24afbf62ee384fe5cfdd1b8646ba7e5579aa500e9fc84be5467d66ca6d46b

percona/percona-postgresql-

operator:2.6.0-ppg14.17-

postgres-gis3.3.8

e243d07702754adaee2cb789d03bc3a2ca142d9c7d93bfe871cb7b47323e8bdf

percona/percona-postgresql-

operator:2.6.0-ppg13.20-

postgres-gis3.3.8

bb1095f5cd462e7d381fefe39ee1e12c9a1d11ba5a249d0aca065b1e5243efb7

percona/percona-postgresql-

operator:2.6.0-ppg17.4-

pgbouncer1.24.0

01199912786772df11994ff7f4231a117bfc856a5c8fc3fb55e6d2f33c6d4230

percona/percona-postgresql-

operator:2.6.0-ppg17.2-

pgbouncer1.23.1

a51586295a2abc228470c0d73087a0de646cd7b58d0c6796c08719ad7635d89f

percona/percona-postgresql-

operator:2.6.0-ppg16.8-

pgbouncer1.24.0

fbf8c89259d821df04b007f3e750d3f3ed902a9dd366bb0efe72ba3683974b99

percona/percona-postgresql-

operator:2.6.0-ppg15.12-

pgbouncer1.24.0

9ef6204ebf626ee85d2a2afd405ee44ebb5e252bb1ac07ebaed44fa658bfb5f0

percona/percona-postgresql-

operator:2.6.0-ppg14.17-

pgbouncer1.24.0

6ffc19f626b738b096635a0b1a2e4fbb28f800723759c58bd8491e9857b2fc19

percona/percona-postgresql-

operator:2.6.0-ppg13.20-

pgbouncer1.24.0

a1c25e9834fbc8ad58477fc47ef868ccf3c696bd488114efc8c7f61c66961356

percona/percona-postgresql-

operator:2.6.0-ppg17.4-

6b4648e00f0cd187ef7d20542d8df93f0a4d2f79df3946343e57bce40ee119aa



Page 289

Image Digest

pgbackrest2.54.2

percona/percona-postgresql-

operator:2.6.0-ppg17.2-

pgbackrest2.54.0

a3641d58a49fe4f771f3638c9fa18c71dd2f9aba1054e5693d3756134676cb3e

percona/percona-postgresql-

operator:2.6.0-ppg16.8-

pgbackrest2.54.2

eca4f0153fd75c87bb35e54e5358da458a502bcc7671a798ddf60f6a87246ba8

percona/percona-postgresql-

operator:2.6.0-ppg15.12-

pgbackrest2.54.2

9d33160904b7862d03c1018e4bf80247ea175918b7b0b4d4907e175045ddf4d1

percona/percona-postgresql-

operator:2.6.0-ppg14.17-

pgbackrest2.54.2

95e904ed80ee3f28519bdb7b0375d4c41421f80fc3631285e3a5cf2ed5a6e67a

percona/percona-postgresql-

operator:2.6.0-ppg13.20-

pgbackrest2.54.2

0d4978fdcd22eeec3e7773b11bd6cb20f6df246c3fb8ad73b85f672940b104bb

percona/pmm-client:2.44.0

(x86_64)

19a07dfa8c12a0554308cd11d7d38494ea02a14cfac6c051ce8ff254b7d0a4a7

percona/pmm-client:2.44.0

(ARM64)

43a542f24bdbd11d0c363c1d5002244b0b4840961a8e219a56df1becad77b068

For older versions, please refer to the old releases documentation archive ).

https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/


Page 290

Versions compatibility
Versions of the cluster components and platforms tested with different Operator releases are shown

below. Other version combinations may also work but have not been tested.

Cluster components:

Operator PostgreSQL pgBackRest pgBouncer 

2.6.0 13 - 17 2.54.2 for PostgreSQL 13-16 and

17.4,

2.54.0 for PostgreSQL 17.2

1.24.0 for PostgreSQL 13-16 and

17.2,

1.23.1 for PostgreSQL 17

2.5.1 12 - 16 2.54.2 1.24.0

2.5.0 12 - 16 2.53-1 1.23.1

2.4.1 12 - 16 2.51 1.22.1

2.4.0 12 - 16 2.51 1.22.1

2.3.1 12 - 16 2.48 1.18.0

2.3.0 12 - 16 2.48 1.18.0

2.2.0 12 - 15 2.43 1.18.0

2.1.0 12 - 15 2.43 1.18.0

2.0.0 12 - 14 2.41 1.17.0

1.6.0 12 - 14 2.50 1.22.0

1.5.1 12 - 14 2.47 1.20.0

1.5.0 12 - 14 2.47 1.20.0

1.4.0 12 - 14 2.43 1.18.0

1.3.0 12 - 14 2.38 1.17.0

https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html


Page 291

Operator PostgreSQL pgBackRest pgBouncer 

1.2.0 12 - 14 2.37 1.16.1

1.1.0 12 - 14 2.34 1.16.0 for PostgreSQL 12,

1.16.1 for other versions

1.0.0 12 - 13 2.33 1.13.0

Platforms:

Operator GKE EKS Openshift Azure Kubernetes Service

(AKS) 

Minikube

2.6.0 1.29 - 1.31 1.29 - 1.32 4.14 - 4.18 1.29 - 1.31 1.35.0

2.5.1 1.28 - 1.30 1.28 - 1.30 4.13.46 -

4.16.7

1.28 - 1.30 1.33.1

2.5.0 1.28 - 1.30 1.28 - 1.30 4.13.46 -

4.16.7

1.28 - 1.30 1.33.1

2.4.1 1.27 - 1.29 1.27 - 1.30 4.12.59 -

4.15.18

- 1.33.1

2.4.0 1.27 - 1.29 1.27 - 1.30 4.12.59 -

4.15.18

- 1.33.1

2.3.1 1.24 - 1.28 1.24 - 1.28 4.11.55 -

4.14.6

- 1.32

2.3.0 1.24 - 1.28 1.24 - 1.28 4.11.55 -

4.14.6

- 1.32

2.2.0 1.23 - 1.26 1.23 - 1.27 - - 1.30.1

2.1.0 1.23 - 1.25 1.23 - 1.25 - - -

2.0.0 1.22 - 1.25 - - - -

https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


Page 292

Operator GKE EKS Openshift Azure Kubernetes Service

(AKS) 

Minikube

1.6.0 1.26 - 1.29 1.26 - 1.29 4.12.57 -

4.15.13

- 1.33

1.5.1 1.24 - 1.28 1.24 - 1.28 4.11 - 4.14 - 1.32

1.5.0 1.24 - 1.28 1.24 - 1.28 4.11 - 4.14 - 1.32

1.4.0 1.22 - 1.25 1.22 - 1.25 4.10 - 4.12 - 1.28

1.3.0 1.21 - 1.24 1.20 - 1.22 4.7 - 4.10 - -

1.2.0 1.19 - 1.22 1.19 - 1.21 4.7 - 4.10 - -

1.1.0 1.19 - 1.22 1.18 - 1.21 4.7 - 4.9 - -

1.0.0 1.17 - 1.21 1.21 4.6 - 4.8 - -

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html


Page 293

Copyright and licensing information

Documentation licensing
Percona Operator for PostgreSQL documentation is (C)2009-2023 Percona LLC and/or its affiliates and is

distributed under the Creative Commons Attribution 4.0 International License .

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Page 294

Trademark policy
This Trademark Policy  is to ensure that users of Percona-branded products or services know that what

they receive has really been developed, approved, tested and maintained by Percona. Trademarks help to

prevent confusion in the marketplace, by distinguishing one company’s or person’s products and services

from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB,

XtraBackup, Percona XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons and

logos associated with these marks. Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service,

website, or other use is not permitted without Percona’s written permission with the following three limited

exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona

fide Percona product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”),

you may use the appropriate Percona mark when distributing a verbatim copy of that product in

accordance with the terms and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona

software that has been modified with minor changes for the sole purpose of allowing the software to

operate on an operating system or hardware platform for which Percona has not yet released the

software, provided that those third party changes do not affect the behavior, functionality, features, design

or performance of the software. Users who acquire this Percona-branded software receive substantially

exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example, if

Percona believes that your modification is beyond the scope of the limited license granted in this Policy or

that your use of the Percona mark is detrimental to Percona, Percona will revoke this authorization. Upon

revocation, you must immediately cease using the applicable Percona mark. If you do not immediately

cease using the Percona mark upon revocation, Percona may take action to protect its rights and interests

in the Percona mark. Percona does not grant any license to use any Percona mark for any other modified

versions of Percona software; such use will require our prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate,

modify or otherwise use any Percona mark as part of your own brand. For example, if XYZ creates a

modified version of the Percona Server, XYZ may not brand that modification as “XYZ Percona Server” or

“Percona XYZ Server”, even if that modification otherwise complies with the third exception noted above.

https://www.percona.com/trademark-policy
https://www.percona.com/trademark-policy
https://www.percona.com/trademark-policy


Page 295

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as

amended from time to time. For instance, any mention of Percona trademarks should include the full

trademarked name, with proper spelling and capitalization, along with attribution of ownership to Percona

Inc. For example, the full proper name for XtraBackup is Percona XtraBackup. However, it is acceptable to

omit the word “Percona” for brevity on the second and subsequent uses, where such omission does not

cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy, please

contact trademarks@percona.com for assistance and we will do our very best to be helpful.

mailto:trademarks@percona.com


Page 296

Release Notes



Page 297

Percona Operator for PostgreSQL Release
Notes

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2024-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)

Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)



Page 298

Percona Operator for PostgreSQL 2.6.0 (2025-
03-17)

Installation

Release Highlights
This release provides the following features and improvements:

Backup improvements

This release implemented several improvements to the backup/restore process:

A new delete-backups finalizer was implemented to automatically remove all backups when deleting

the cluster. This finalizer is off by default. It’s experimental and, therefore, is not recommended for

production environments.

Backup logic was improved and now allows retrying a failed backup in the same backup Pod for a

specified number of times before deleting this Pod and creating a new one. This should be beneficial in

case of short connectivity issues or timeouts. This behavior is controlled by the new

backups.pgbackrest.jobs.backoffLimit and backups.pgbackrest.jobs.restartPolicy Custom Resource

options.

You can now overwrite the default restore command for pgBackRest  via the

patroni.dynamicConfiguration Custom Resource option. Particularly, this allows to control and filter files

restored to pg_wal  directory without editing these files in the backup repository storage.

PostgreSQL 17 support

PostgreSQL 17 is now supported by the Operator in addition to versions 13 - 16. The appropriate images

are now included in the list of Percona-certified images. See these blogposts for details about the latest

PostgreSQL 17 features with the added security and functionality improvements:

Encrypt PostgreSQL Data at Rest on Kubernetes  by Ege Gunes

The Powerful Features Released in PostgreSQL 17 Beta 2  by Shivam Dhapatkar

PostgreSQL 17: Two Small Improvements That Will Have a Major Impact  by David Stokes.

PostgreSQL 17 is currently not recommended for production environments due to the known limitation.

https://www.percona.com/blog/encrypt-postgresql-data-at-rest-on-kubernetes/
https://www.percona.com/blog/encrypt-postgresql-data-at-rest-on-kubernetes/
https://www.percona.com/blog/encrypt-postgresql-data-at-rest-on-kubernetes/
https://www.percona.com/blog/the-powerful-features-released-in-postgresql-17-beta-2/
https://www.percona.com/blog/the-powerful-features-released-in-postgresql-17-beta-2/
https://www.percona.com/blog/the-powerful-features-released-in-postgresql-17-beta-2/
https://www.percona.com/blog/postgresql-17-two-small-improvements-that-will-have-a-major-impact/
https://www.percona.com/blog/postgresql-17-two-small-improvements-that-will-have-a-major-impact/
https://www.percona.com/blog/postgresql-17-two-small-improvements-that-will-have-a-major-impact/


Page 299

Update from April 1, 2025: We have added PostgreSQL 17.4 image and database cluster components

based on this image. It is now production ready and we recommend updating the database cluster from

PostgreSQL 17.2 to 17.4. Check the upgrade instructions for steps

pgvector  is added to the PostgreSQL image

To support you with your AI journey, we’ve added the pgvector  extension to the PostgreSQL images

shipped with our Operator. Now, you can easily use Percona Distribution for PostgreSQL as a vector

database by simply enabling it in your Custom Resource options. No more custom extension installations

 needed.

New features
K8SPG-628: The custom restore_command can be now passed to pgBackRest via the

patroni.dynamicConfiguration Custom Resource option

K8SPG-619: New backups.pgbackrest.jobs.backoffLimit  and

backups.pgbackrest.jobs.restartPolicy  Custom Resource options allow to retry backup in the

backup Pod for a specified number of times before abandoning the Pod and creating the new one

K8SPG-648: PostgreSQL 17 is now supported by the Operator

Improvements
K8SPG-487: New spec.metadata.labels  and spec.metadata.annotations  Custom Resource

options allow setting labels and annotation globally for all Kubernetes objects created by the Operator

K8SPG-554: New tlsOnly  Custom Resource option allows the user to enforce TLS connections for the

database cluster

K8SPG-586: The new experimental finalizers.delete-backups  finalizer (off by default) removes all

backups of the cluster at cluster deletion event

K8SPG-634: The new autoCreateUserSchema  Custom Resource option enhances the declarative user

management by automatically creating per-user schemas

K8SPG-652: Improve security and meet compliance requirements by using PostgreSQL images built

based on Red Hat Universal Base Image (UBI) 9 instead of UBI 8

K8SPG-692: Patroni versions 4.x are now supported by the Operator in addition to versions 3.x

K8SPG-699: The pgvector  extension is now included within the PostgreSQL image used by the

Operator

https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://jira.percona.com/browse/K8SPG-628
https://jira.percona.com/browse/K8SPG-619
https://jira.percona.com/browse/K8SPG-648
https://jira.percona.com/browse/K8SPG-487
https://jira.percona.com/browse/K8SPG-554
https://jira.percona.com/browse/K8SPG-586
https://jira.percona.com/browse/K8SPG-634
https://jira.percona.com/browse/K8SPG-652
https://jira.percona.com/browse/K8SPG-692
https://jira.percona.com/browse/K8SPG-699


Page 300

K8SPG-701: The extensions.image  Custom Resource option is now optional, and can be omitted for

builtin PostgreSQL extensions

K8SPG-702: A retry logic was implemented to fix intermittent Pod exec failures caused by timeouts

(Thanks to dcaputo-harmoni for contribution)

K8SPG-711: The new README.md  explains how to build your own images for the PostgreSQL

cluster components used by the Operator

Bugs Fixed
K8SPG-594: Fix a bug where extension was still appearing in pg_extension table after being removed

from Custom Resource and physically deleted by the Operator

K8SPG-637: Fix a bug where restore was failing with “waiting for another restore to finish” if the pg-

restore object of a previous unfinished restore was manually deleted

K8SPG-638: Fix a bug that caused flooding the logs with no completed backups found error at cluster

initialization.

K8SPG-645: Fix a bug where creating sidecar containers for pgBouncer did not work

K8SPG-681: Fixed a bug where the “Last Recoverable Time” information field was missing from the

output of the kubectl get pg-backup  command due to misdetection cases

K8SPG-713: Fix a bug where The cluster not found errors were appearing in the Operator logs on cluster

deletion

Deprecation, Change, Rename and Removal

The new versions of Percona distribution for PostgreSQL used by the Operator come with Patroni 4.x,

which introduces breaking changes compared to previously used 3.x versions.

To maintain backward compatibility, the Operator detects the Patroni version used in the image. It is

also possible to disable this auto-detection feature by manually setting the Patroni version via the

following annotation set in the metadata part of the Custom Resource:

PostgreSQL 12 is no longer supported by the Operator 2.6.0 and newer versions.

Known limitations

pgv2.percona.com/custom-patroni-version: "4"

https://jira.percona.com/browse/K8SPG-701
https://jira.percona.com/browse/K8SPG-702
https://jira.percona.com/browse/K8SPG-711
https://github.com/percona/percona-docker/blob/main/postgresql-containers/README.md
https://github.com/percona/percona-docker/blob/main/postgresql-containers/README.md
https://github.com/percona/percona-docker/blob/main/postgresql-containers/README.md
https://jira.percona.com/browse/K8SPG-594
https://jira.percona.com/browse/K8SPG-637
https://jira.percona.com/browse/K8SPG-638
https://jira.percona.com/browse/K8SPG-645
https://jira.percona.com/browse/K8SPG-681
https://jira.percona.com/browse/K8SPG-713


Page 301

PostgreSQL 17.2 image and images for other database cluster components based on PostgreSQL 17

contain the known CVE-2025-1094  - a vulnerability in the libpq PostgreSQL client library, which

makes images used by the Operator vulnerable to SQL injection within the PostgreSQL interactive

terminal due to the lack of neutralizing quoting. Images for PostgreSQL 17 will be available soon, while

images for other PosgreSQL versions have already been fixed.

PostgreSQL 17.4 image includes the fix for CVE-2025-1094 , which closed a vulnerability in the

libpq  PostgreSQL client library but introduced a regression related to string handling for non-null

terminated strings. The error would be visible based on how a PostgreSQL client implemented this

behavior.

Supported platforms
The Operator 2.6.0 is developed, tested and based on:

PostgreSQL 13.20, 14.17, 15.12, 16.8, 17.2 and 17.4 as the database. Other versions may also work but

have not been tested.

pgBouncer for connection pooling:

version 1.23.1 - for PostgreSQL 17.2

version 1.24.0 - for PostgreSQL 13.20, 14.17, 15.12, 16.8, 17.4

Patroni for high-availability:

version 4.0.5 - for PostgreSQL 17.4

version 4.0.3 - for PostgreSQL 17.2

version 4.0.4 - for PostgreSQL 13.20, 14.17, 15.12, 16.8

Percona Operators are designed for compatibility with all CNCF-certified  Kubernetes distributions.

Our release process includes targeted testing and validation on major cloud provider platforms and

OpenShift, as detailed below for Operator version 2.6.0:

Google Kubernetes Engine (GKE)  1.29 - 1.31

Amazon Elastic Container Service for Kubernetes (EKS)  1.29 - 1.32

OpenShift  4.14 - 4.18

Azure Kubernetes Service (AKS)  1.29 - 1.31

Minikube  1.35.0 with Kubernetes 1.32.0

https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


Page 302

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.



Page 303

Percona Operator for PostgreSQL 2.5.1

Date

March 03, 2025

Installation

Installing Percona Operator for PostgreSQL

Release highlights
This release fixes the CVE-2025-1094 , vulnerability in the libpq PostgreSQL client library, which made

images used by the Operator vulnerable to SQL injection within the PostgreSQL interactive terminal due to

the lack of neutralizing quoting. For now, the fix includes the image of PostgreSQL 16.8 and other

database cluster images based on PostgreSQL 16.8. Fixed images for other PostgreSQL versions are to

follow in the upcoming days.

Update from March 04, 2025: images of PostgreSQL 15.12 and other database cluster components based

on PostgreSQL 15.12 were added.

Update from March 06, 2025: images of PostgreSQL 14.17 and other database cluster components based

on PostgreSQL 14.17 were added.

Update from March 07, 2025: images of PostgreSQL 13.20 and other database cluster components based

on PostgreSQL 13.20 were added.

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.20, 13.20, 14.17, 15.12, and 16.8.

Other options may also work but have not been tested. The Operator 2.5.1 provides connection pooling

based on pgBouncer 1.24.0 and high-availability implementation based on Patroni 3.3.2.

The following platforms were tested and are officially supported by the Operator 2.5.1:

Google Kubernetes Engine (GKE)  1.28 - 1.30

Amazon Elastic Container Service for Kubernetes (EKS)  1.28 - 1.30

OpenShift  4.13.46 - 4.16.7

Azure Kubernetes Service (AKS)  1.28 - 1.30

Minikube  1.34.0 with Kubernetes 1.31.0

https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


Page 304

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.



Page 305

Percona Operator for PostgreSQL 2.5.0

Date

October 08, 2024

Installation

Installing Percona Operator for PostgreSQL

Release Highlights

Automated storage scaling

Starting from this release, the Operator is able to detect if the storage usage on the PVC reaches a certain

threshold, and trigger the PVC resize. Such autoscaling needs the upstream auto-growable disk  feature

turned on when deploying the Operator. This is done via the PGO_FEATURE_GATES  environment variable

set in the deploy/operator.yaml  manifest (or in the appropriate part of deploy/bundle.yaml ):

When the support for auto-growable disks is turned on, the

spec.instances[].dataVolumeClaimSpec.resources.limits.storage  Custom Resource option sets

the maximum value available for the Operator to scale up.

See official documentation for more details and limitations of the feature.

Major versions upgrade improvements

Major version upgrade, introduced in the Operator version 2.4.0 as a tech preview, had undergone some

improvements. Now it is possible to upgrade from one PostgreSQL major version to another with custom

images for the database cluster components (PostgreSQL, pgBouncer, and pgBackRest). The upgrade is

still triggered by applying the YAML manifest with the information about the existing and desired major

versions, which now includes image names. The resulting manifest may look as follows:

- name: PGO_FEATURE_GATES

value: "AutoGrowVolumes=true"

https://access.crunchydata.com/documentation/postgres-operator/latest/guides/autogrowable-disk
https://access.crunchydata.com/documentation/postgres-operator/latest/guides/autogrowable-disk
https://access.crunchydata.com/documentation/postgres-operator/latest/guides/autogrowable-disk


Page 306

Azure Kubernetes Service and Azure Blob Storage support

Azure Kubernetes Service (AKS) is now officially supported platform, so developers and vendors of the

solutions based on the Azure platform can take advantage of the official support from Percona or just use

officially certified Percona Operator for PostgreSQL images; also, Azure Blob Storage can now be used for

backups.

New features
K8SPG-227 and K8SPG-157: Add support for the Azure Kubernetes Service (AKS) platform and allow

using Azure Blob Storage for backups

K8SPG-244: Automated storage scaling is now supported

Improvements
K8SPG-630: A new backups.trackLatestRestorableTime  Custom Resource option allows to disable

latest restorable time tracking for users who need reducing S3 API calls usage

K8SPG-605 and K8SPG-593: Documentation now includes information about upgrading the Operator

via Helm and using databaseInitSQL commands

K8SPG-598: Database major version upgrade now supports custom images

K8SPG-560: A pg-restore  Custom Resource is now automatically created at bootstrapping a new

cluster from an existing backup

K8SPG-555: The Operator now creates separate Secret with CA certificate for each cluster

K8SPG-553: Users can provide the Operator with their own root CA certificate

apiVersion: pgv2.percona.com/v2

kind: PerconaPGUpgrade

metadata:

name: cluster1-15-to-16

spec:

postgresClusterName: cluster1

image: percona/percona-postgresql-operator:2.4.1-upgrade

fromPostgresVersion: 15

toPostgresVersion: 16

toPostgresImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-postgres

toPgBouncerImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-

pgbouncer1.23.1

toPgBackRestImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-

pgbackrest2.53-1

https://jira.percona.com/browse/K8SPG-227
https://jira.percona.com/browse/K8SPG-157
https://jira.percona.com/browse/K8SPG-244
https://jira.percona.com/browse/K8SPG-630
https://jira.percona.com/browse/K8SPG-605
https://jira.percona.com/browse/K8SPG-593
https://jira.percona.com/browse/K8SPG-598
https://jira.percona.com/browse/K8SPG-560
https://jira.percona.com/browse/K8SPG-555
https://jira.percona.com/browse/K8SPG-553


Page 307

K8SPG-454: Cluster status obtained with kubectl get pg  command is now “ready” not only when all

Pods are ready, but also takes into account if all StatefulSets are up to date

K8SPG-577: A new pmm.querySource  Custom Resource option allows to set PMM query source

Bugs Fixed
K8SPG-629: Fix a bug where the Operator was not deleting backup Pods when cleaning outdated

backups according to the retention policy

K8SPG-499: Fix a bug where cluster was getting stuck in the init state if pgBackRest secret didn’t exist

K8SPG-588: Fix a bug where the Operator didn’t stop WAL watcher if the namespace and/or cluster

were deleted

K8SPG-644: Fix a bug in the pg-db  Helm chart which prevented from setting more than one Toleration

Deprecation, Change, Rename and Removal
With the Operator versions prior to 2.5.0, autogenerated TLS certificates for all database clusters were

based on the same generated root CA. Starting from 2.5.0, the Operator creates root CA on a per-cluster

basis.

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.20, 13.16, 14.13, 15.8, and 16.4.

Other options may also work but have not been tested. The Operator 2.5.0 provides connection pooling

based on pgBouncer 1.23.1 and high-availability implementation based on Patroni 3.3.2.

The following platforms were tested and are officially supported by the Operator 2.5.0:

Google Kubernetes Engine (GKE)  1.28 - 1.30

Amazon Elastic Container Service for Kubernetes (EKS)  1.28 - 1.30

OpenShift  4.13.46 - 4.16.7

Azure Kubernetes Service (AKS)  1.28 - 1.30

Minikube  1.34.0 with Kubernetes 1.31.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.

https://jira.percona.com/browse/K8SPG-454
https://jira.percona.com/browse/K8SPG-577
https://jira.percona.com/browse/K8SPG-629
https://jira.percona.com/browse/K8SPG-499
https://jira.percona.com/browse/K8SPG-588
https://jira.percona.com/browse/K8SPG-644
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


Page 308

Percona Operator for PostgreSQL 2.4.1

Date

August 6, 2024

Installation

Installing Percona Operator for PostgreSQL

Bugs Fixed
K8SPG-616: Fix a bug where it was not possible to create a new cluster after deleting the previous one

with the kubectl delete pg  command

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.19, 13.15, 14.12, 15.7, and 16.3.

Other options may also work but have not been tested. The Operator 2.4.1 provides connection pooling

based on pgBouncer 1.22.1 and high-availability implementation based on Patroni 3.3.0.

The following platforms were tested and are officially supported by the Operator 2.4.1:

Google Kubernetes Engine (GKE)  1.27 - 1.29

Amazon Elastic Container Service for Kubernetes (EKS)  1.27 - 1.30

OpenShift  4.12.59 - 4.15.18

Minikube  1.33.1

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.

https://jira.percona.com/browse/K8SPG-616
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


Page 309

Percona Operator for PostgreSQL 2.4.0

Date

June 26, 2024

Installation

Installing Percona Operator for PostgreSQL

Release Highlights

Major versions upgrade (tech preview)
Starting from this release Operator users can automatically upgrade from one PostgreSQL major version

to another. Upgrade is triggered by applying the yaml file with the information about the existing and

desired major versions, with an example present in deploy/upgrade.yaml :

After applying it as usual, by running kubectl apply -f deploy/upgrade.yaml  command, the actual

upgrade takes place as follows:

1. The cluster is paused for a while,

2. The cluster is specially annotated with pgv2.percona.com/allow-upgrade :

<PerconaPGUpgrade.Name>  annotation,

3. Jobs are created to migrate the data,

4. The cluster starts up after the upgrade finishes.

Check official documentation for more details, including ones about tracking the upgrade process and

side effects for users with custom extensions.

apiVersion: pgv2.percona.com/v2

kind: PerconaPGUpgrade

metadata:

name: cluster1-15-to-16

spec:

postgresClusterName: cluster1

image: perconalab/percona-postgresql-operator:main-upgrade

fromPostgresVersion: 15

toPostgresVersion: 16



Page 310

Supporting PostgreSQL tablespaces
Tablespaces allow DBAs to store a database on multiple file systems within the same server and to

control where (on which file systems) specific parts of the database are stored. You can think about it as if

you were giving names to your disk mounts and then using those names as additional parameters when

creating database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory.

Tablespaces support was present in Percona Operator for PostgreSQL 1.x, and starting from this version,

Percona Operator for PostgreSQL 2.x can also bring this feature to your Kubernetes environment, when

needed.

Using cloud roles to authenticate on the object storage for
backups
Percona Operator for PostgreSQL has introduced a new feature that allows users to authenticate to AWS

S3 buckets via IAM roles . Now Operator This enhancement significantly improves security by

eliminating the need to manage S3 access keys directly, while also streamlining the configuration process

for easier backup and restore operations.

To use this feature, add annotation to the spec  part of the Custom Resource and also add pgBackRest

custom configuration option to the backups  subsection:

New features
K8SPG-138: Users are now able to use AWS IAM role  to provide access to the S3 bucket used for

backups

spec:

crVersion: 2.4.0

metadata:

annotations:

eks.amazonaws.com/role-arn: arn:aws:iam::1191:role/role-pgbackrest-access-

s3-bucket

...

backups:

pgbackrest:

image: percona/percona-postgresql-operator:2.4.0-ppg16-pgbackrest

global:

repo1-s3-key-type: web-id

...

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://jira.percona.com/browse/K8SPG-138
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html


Page 311

K8SPG-254: Now the Operator automates upgrading PostgreSQL major versions

K8SPG-459: PostgreSQL tablespaces are now supported by the Operator

K8SPG-479 and K8SPG-492: It is now possible to specify tolerations for the backup restore jobs as well

as for the data move jobs created when the Operator 1.x is upgraded to 2.x; this is useful in

environments with dedicated Kubernetes worker nodes protected by taints

K8SPG-503 and K8SPG-513: It is now possible to specify resources for the sidecar containers of

database instance Pods

Improvements
K8SPG-259: Users can now change the default level for log messages for pgBackRest to simplify fixing

backup and restore issues

K8SPG-542: Documentation now includes HowTo on creating a disaster recovery cluster using

streaming replication

K8SPG-506: The pg-backup  objects now have a new backupName  status field, which allows users to

obtain the backup name for restore simpler

K8SPG-514: The new securityContext  Custom Resource subsections allow to configure

securityContext for PostgreSQL instances, pgBouncer, and pgBackRest Pods

K8SPG-518: The kubectl get pg-backup  command now shows the latest restorable time to make it

easier to pick a point-in-time recovery target

K8SPG-519: The new extensions.storage.endpoint  Custom Resource option allows specifying a

custom S3 object storage endpoint for installing custom extensions

K8SPG-549: It is now possible to expose replica nodes through a separate Service, useful if you want to

balance the load and separate reads and writes traffic

K8SPG-550: The default size for /tmp  mount point in PMM container was increased from 1.5G to 2G

K8SPG-585: The namespace field was added to the Operator and database Helm chart templates

Bugs Fixed
K8SPG-462: Fixed a bug where backups could not start if a previous backup had the same name

K8SPG-470: Liveness and Readiness probes timeouts are now configurable through Custom Resource

K8SPG-559: Fix a bug where the first full backup was incorrectly marked as incremental in the status

field

https://jira.percona.com/browse/K8SPG-254
https://jira.percona.com/browse/K8SPG-459
https://jira.percona.com/browse/K8SPG-479
https://jira.percona.com/browse/K8SPG-492
https://jira.percona.com/browse/K8SPG-503
https://jira.percona.com/browse/K8SPG-513
https://jira.percona.com/browse/K8SPG-259
https://jira.percona.com/browse/K8SPG-542
https://jira.percona.com/browse/K8SPG-506
https://jira.percona.com/browse/K8SPG-514
https://jira.percona.com/browse/K8SPG-518
https://jira.percona.com/browse/K8SPG-519
https://jira.percona.com/browse/K8SPG-549
https://jira.percona.com/browse/K8SPG-550
https://jira.percona.com/browse/K8SPG-585
https://jira.percona.com/browse/K8SPG-462
https://jira.percona.com/browse/K8SPG-470
https://jira.percona.com/browse/K8SPG-559


Page 312

K8SPG-490: Fixed broken replication that occurred after the network loss of the primary Pod with

PostgreSQL 14 and older versions

K8SPG-502: Fix a bug where backup jobs were not cleaned up after completion

K8SPG-510: Fix a bug where pausing the cluster immediately set its state to “paused” instead of

“stopping” while Pods were still running

K8SPG-531: Fix a bug where scheduled backups did not work for a second database with the same

name in cluster-wide mode

K8SPG-535: Fix a bug where the Operator crashed when attempting to run a backup with a non-existent

repository

K8SPG-540: Fix a bug in the pg-db Helm chart readme where the key to set the backup secret was

incorrectly specified (Thanks to Abhay Tiwari for contribution)

K8SPG-543: Fix a bug where applying a cr.yaml file with an empty spec.proxy  field caused the

Operator to crash

K8SPG-547: Fix dependency issue that made pgbackrest-repo container incompatible with pgBackRest

2.50, resulting in the older 2.48 version being used instead

Deprecation and removal
The plpythonu  extension was removed from the list of built-in PostgreSQL extensions; users who still

need it can enable it for their databases via custom extensions functionality

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.19, 13.15, 14.12, 15.7, and 16.3.

Other options may also work but have not been tested. The Operator 2.4.0 provides connection pooling

based on pgBouncer 1.22.1 and high-availability implementation based on Patroni 3.3.0.

The following platforms were tested and are officially supported by the Operator 2.4.0:

Google Kubernetes Engine (GKE)  1.27 - 1.29

Amazon Elastic Container Service for Kubernetes (EKS)  1.27 - 1.30

OpenShift  4.12.59 - 4.15.18

Minikube  1.33.1

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.

https://jira.percona.com/browse/K8SPG-490
https://jira.percona.com/browse/K8SPG-502
https://jira.percona.com/browse/K8SPG-510
https://jira.percona.com/browse/K8SPG-531
https://jira.percona.com/browse/K8SPG-535
https://jira.percona.com/browse/K8SPG-540
https://jira.percona.com/browse/K8SPG-543
https://jira.percona.com/browse/K8SPG-547
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


Page 313

Percona Operator for PostgreSQL 2.3.1

Date

January 23, 2024

Installation

Installing Percona Operator for PostgreSQL

Release Highlights
This release provides a number of bug fixes, including fixes for the following vulnerabilities in PostgreSQL,

pgBackRest, and pgBouncer images used by the Operator:

OpenSSH could cause remote code execution by ssh-agent if a user establishes an SSH connection to

a compromised or malicious SSH server and has agent forwarding enabled (CVE-2023-38408 ). This

vulnerability affects pgBackRest and PostgreSQL images.

The c-ares library could cause a Denial of Service with 0-byte UDP payload (CVE-2023-32067 ). This

vulnerability affects pgBouncer image.

Both Operator 1.x (including version 1.5.0) and Operator 2.x (including version 2.3.0) are affected. The

2.x versions upgrade to 2.3.1 is recommended to resolve these issues.

Bugs Fixed
K8SPG-493: Fix a regression due to which the Operator could run scheduled backup only one time

K8SPG-494: Fix vulnerabilities in PostgreSQL, pgBackRest, and pgBouncer images

K8SPG-496: Fix the bug where setting the pause  Custom Resource option to true  for the cluster with

a backup running would not take effect even after the backup completed

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.17, 13.13, 14.10, 15.5, and 16.1.

Other options may also work but have not been tested. The Operator 2.3.1 provides connection pooling

based on pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.1:

Google Kubernetes Engine (GKE)  1.24 - 1.28

https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://jira.percona.com/browse/K8SPG-493
https://jira.percona.com/browse/K8SPG-494
https://jira.percona.com/browse/K8SPG-496
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine


Page 314

Amazon Elastic Container Service for Kubernetes (EKS)  1.24 - 1.28

OpenShift  4.11.55 - 4.14.6

Minikube  1.32

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


Page 315

Percona Operator for PostgreSQL 2.3.0

Date

December 21, 2023

Installation

Installing Percona Operator for PostgreSQL

Release Highlights

PostGIS support

Modern businesses heavily rely on location-based data to gain valuable insights and make data-driven

decisions. However, integrating geospatial functionality into the existing database systems has often

posed a challenge for enterprises. PostGIS, an open-source software extension for PostgreSQL, addresses

this difficulty by equipping users with extensive geospatial operations for handling geographic data

efficiently. Percona Operator now supports PostGIS, available through a separate container image. You

can read more about PostGIS and how to use it with the Operator in our documentation.

OpenShift and PostgreSQL 16 support
The Operator is now compatible with the OpenShift platform empowering enterprise customers with

seamless on-premise or cloud deployments on the platform of their choice. Also, PostgreSQL 16 was

added to the range of supported database versions and is used by default starting with this release.

Experimental support for custom PostgreSQL extensions

One of great features of PostgreSQL is support for Extensions , which allow adding new functionality to

the database on a plugin basis. Starting from this release, users can add custom PostgreSQL extensions

dynamically, without the need to rebuild the container image (see this HowTo on how to create and

connect yours).

New features
K8SPG-311 and K8SPG-389: A new loadBalancerSourceRanges  Custom Resource option allows to

customize the range of IP addresses from which the load balancer should be reachable

K8SPG-375: Experimental support for custom PostgreSQL extensions was added to the Operator

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://jira.percona.com/browse/K8SPG-311
https://jira.percona.com/browse/K8SPG-389
https://jira.percona.com/browse/K8SPG-375


Page 316

K8SPG-391: The Operator is now compatible with the OpenShift platform

K8SPG-434: The Operator now supports Percona Distribution for PostgreSQL version 16 and uses it as

default database version

Improvements
K8SPG-413: The Operator documentation now includes a comptibility matrix for each Operator version,

specifying exact versions of all core components as well as supported versions of the database and

platforms

K8SPG-332: Creating backups and pausing the cluster do not interfere with each other: the Operator

either postpones the pausing until the active backup ends, or postpones the scheduled backup on the

paused cluster

K8SPG-370: Logging management is now aligned with other Percona Operators, allowing to use

structured logging and to control log level

K8SPG-372: The multi-namespace (cluster-wide) mode of the Operator was improved, making it

possible to customize the list of Kubernetes namespaces under the Operator’s control

K8SPG-400: The documentation now explains how to allow application users to connect to a database

cluster without TLS (for example, for testing or demonstration purposes)

K8SPG-410: Scheduled backups now create pg-backup  object to simplify backup management and

tracking

K8SPG-416: PostgreSQL custom configuration is now supported in the Helm chart

K8SPG-422 and K8SPG-447: The user can now see backup type and status in the output of kubectl

get pg-backup  and kubectl get pg-restore  commands

K8SPG-458: Affinity configuration examples were added to the default/cr.yaml  configuration file

Bugs Fixed
K8SPG-435: Fix a bug with insufficient size of /tmp filesystem which caused PostgreSQL Pods to be

recreated every few days due to running out of free space on it

K8SPG-453: Bug in pg_stat_monitor  PostgreSQL extensions could hang PostgreSQL

K8SPG-279: Fix regression which made the Operator to crash after creating a backup if there was no

backups.pgbackrest.manual section in the Custom Resource

K8SPG-310: Documentation didn’t explain how to apply pgBackRest verifyTLS  option which can be

used to explicitly enable or disable TLS verification for it

https://jira.percona.com/browse/K8SPG-391
https://jira.percona.com/browse/K8SPG-434
https://jira.percona.com/browse/K8SPG-413
https://jira.percona.com/browse/K8SPG-332
https://jira.percona.com/browse/K8SPG-370
https://jira.percona.com/browse/K8SPG-372
https://jira.percona.com/browse/K8SPG-400
https://jira.percona.com/browse/K8SPG-410
https://jira.percona.com/browse/K8SPG-416
https://jira.percona.com/browse/K8SPG-422
https://jira.percona.com/browse/K8SPG-447
https://jira.percona.com/browse/K8SPG-458
https://jira.percona.com/browse/K8SPG-435
https://jira.percona.com/browse/K8SPG-453
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-310


Page 317

K8SPG-432: Fix a bug due to which backup jobs and Pods were not deleted on deleting the backup

object

K8SPG-442: The Operator didn’t allow to append custom items to the PostgreSQL

shared_preload_libraries  option

K8SPG-443: Fix a bug due to which only English locale was installed in the PostgreSQL image, missing

other languages support

K8SPG-450: Fix a bug which prevented PostgreSQL to initialize the database on Kubernetes working

nodes with enabled huge memory pages if Pod resource limits didn’t allow using them

K8SPG-401: Fix a bug which caused Operator crash if deployed with no pmm  section in the

deploy/cr.yaml  configuration file

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.17, 13.13, 14.10, 15.5, and 16.1.

Other options may also work but have not been tested. The Operator 2.3.0 provides connection pooling

based on pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.0:

Google Kubernetes Engine (GKE)  1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS)  1.24 - 1.28

OpenShift  4.11.55 - 4.14.6

Minikube  1.32

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.

https://jira.percona.com/browse/K8SPG-432
https://jira.percona.com/browse/K8SPG-442
https://jira.percona.com/browse/K8SPG-443
https://jira.percona.com/browse/K8SPG-450
https://jira.percona.com/browse/K8SPG-401
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


Page 318

Percona Operator for PostgreSQL 2.2.0

Date

June 30, 2023

Installation

Installing Percona Operator for PostgreSQL

Percona announces the general availability of Percona Operator for PostgreSQL 2.2.0.

Starting with this release, Percona Operator for PostgreSQL version 2 is out of technical preview and can

be used in production with all the improvements it brings over the version 1 in terms of architecture,

backup and recovery features, and overall flexibility.

We prepared a detailed migration guide which allows existing Operator 1.x users to move their PostgreSQL

clusters to the Operator 2.x. Also, see this blog post  to find out more about the Operator 2.x features

and benefits.

Improvements

K8SPG-378: A new crVersion  Custom Resource option was added to indicate the API version this

Custom Resource corresponds to

K8SPG-359: The new users.secretName  option allows to define a custom Secret name for the users

defined in the Custom Resource (thanks to Vishal Anarase for contributing)

K8SPG-301: Amazon Elastic Container Service for Kubernetes (EKS)  was added to the list of

officially supported platforms

K8SPG-302: Minikube  is now officially supported by the Operator to enable ease of testing and

developing

K8SPG-326: Both the Operator and database can be now installed with the Helm package manager

K8SPG-342: There is now no need in manual restart of PostgreSQL Pods after the monitor user

password changed in Secrets

K8SPG-345: The new proxy.pgBouncer.exposeSuperusers  Custom Resource option makes it

possible for administrative users to connect to PostgreSQL through PgBouncer

K8SPG-355: The Operator can now be deployed in multi-namespace (“cluster-wide”) mode to track

Custom Resources and manage database clusters in several namespaces

https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://jira.percona.com/browse/K8SPG-378
https://jira.percona.com/browse/K8SPG-359
https://jira.percona.com/browse/K8SPG-301
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://jira.percona.com/browse/K8SPG-302
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://jira.percona.com/browse/K8SPG-326
https://jira.percona.com/browse/K8SPG-342
https://jira.percona.com/browse/K8SPG-345
https://jira.percona.com/browse/K8SPG-355


Page 319

Bugs Fixed

K8SPG-373: Fix the bug due to which the Operator did not not create Secrets for the pguser  user if

PMM was enabled in the Custom Resource

K8SPG-362: It was impossible to install Custom Resource Definitions for both 1.x and 2.x Operators in

one environment, preventing the migration of a cluster to the newer Operator version

K8SPG-360: Fix a bug due to which manual password changing or resetting via Secret didn’t work

Known limitations

Query analytics (QAN) will not be available in Percona Monitoring and Management (PMM) due to bugs

PMM-12024  and PMM-11938 . The fixes are included in the upcoming PMM 2.38, so QAN can be

used as soon as it is released and both PMM Client and PMM Server are upgraded.

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.14, 13.10, 14.7, and 15.2. Other

options may also work but have not been tested. The Operator 2.2.0 provides connection pooling based

on pgBouncer 1.18.0 and high-availability implementation based on Patroni 3.0.1.

The following platforms were tested and are officially supported by the Operator 2.2.0:

Google Kubernetes Engine (GKE)  1.23 - 1.26

Amazon Elastic Container Service for Kubernetes (EKS)  1.23 - 1.27

Minikube  1.30.1 (based on Kubernetes 1.27)

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.

https://jira.percona.com/browse/K8SPG-373
https://jira.percona.com/browse/K8SPG-362
https://jira.percona.com/browse/K8SPG-360
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-11938
https://jira.percona.com/browse/PMM-11938
https://jira.percona.com/browse/PMM-11938
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


Page 320

Percona Operator for PostgreSQL 2.1.0 (Tech
preview)

Date

May 4, 2023

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator built with best practices of configuration and setup of Percona Distribution for

PostgreSQL on Kubernetes .

Percona Operator for PostgreSQL helps create and manage highly available, enterprise-ready PostgreSQL

clusters on Kubernetes. It is 100% open source, free from vendor lock-in, usage restrictions and expensive

contracts, and includes enterprise-ready features: backup/restore, high availability, replication, logging,

and more.

The benefits of using Percona Operator for PostgreSQL include saving time on database operations via

automation of Day-1 and Day-2 operations and deployment of consistent and vetted environment on

Kubernetes.

Version 2.1.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for

production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-

ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL clusters in a

Kubernetes-based environment, on-premises or in the cloud.

Release Highlights

PostgreSQL 15 is now officially supported by the Operator with the new exciting features  it brings to

developers

UX improvements related to Custom Resource have been added in this release, including the handy pg ,

pg-backup , and pg-restore  short names useful to quickly query the cluster state with the kubectl

get  command and additional information in the status fields, which now show name , endpoint ,

status , and age

Note

https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/


Page 321

New Features

K8SPG-328: The new delete-pvc  finalizer allows to either delete or preserve Persistent Volumes at

Custom Resource deletion

K8SPG-330: The new delete-ssl  finalizer can now be used to automatically delete objects created for

SSL (Secret, certificate, and issuer) in case of cluster deletion

K8SPG-331: Starting from now, the Operator adds short names to its Custom Resources: pg , pg-

backup , and pg-restore

K8SPG-282: PostgreSQL 15 is now officially supported by the Operator

Improvements

K8SPG-262: The Operator now does not attempt to start Percona Monitoring and Management (PMM)

client if the corresponding secret does not contain the pmmserver  or pmmserverkey  key

K8SPG-285: To improve the Operator we capture anonymous telemetry and usage data. In this release

we add more data points to it

K8SPG-295: Additional information was added to the status of the Operator Custom Resource, which

now shows name , endpoint , status , and age  fields

K8SPG-304: The Operator stops using trust authentication method in pg_hba.conf  for better security

K8SPG-325: Custom Resource options previously named paused  and shutdown  were renamed to

unmanaged  and pause  for better alignment with other Percona Operators

Bugs Fixed

K8SPG-272: Fix a bug due to which PMM agent related to the Pod wasn’t deleted from the PMM Server

inventory on Pod termination

K8SPG-279: Fix a bug which made the Operator to crash after creating a backup if there was no

backups.pgbackrest.manual  section in the Custom Resource

K8SPG-298: Fix a bug due to which the shutdown  Custom Resource option didn’t work making it

impossible to pause the cluster

K8SPG-334: Fix a bug which made it possible for the monitoring user to have special characters in the

autogenerated password, making it incompatible with the PMM Client

https://jira.percona.com/browse/K8SPG-328
https://jira.percona.com/browse/K8SPG-330
https://jira.percona.com/browse/K8SPG-331
https://jira.percona.com/browse/K8SPG-282
https://jira.percona.com/browse/K8SPG-262
https://jira.percona.com/browse/K8SPG-285
https://jira.percona.com/browse/K8SPG-295
https://jira.percona.com/browse/K8SPG-304
https://jira.percona.com/browse/K8SPG-325
https://jira.percona.com/browse/K8SPG-272
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-298
https://jira.percona.com/browse/K8SPG-334


Page 322

Supported platforms
The following platforms were tested and are officially supported by the Operator 2.1.0:

Google Kubernetes Engine (GKE)  1.23 - 1.25

Amazon Elastic Container Service for Kubernetes (EKS)  1.23 - 1.25

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/


Page 323

Percona Operator for PostgreSQL 2.0.0 (Tech
preview)

Date

December 30, 2022

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator is based on best practices for configuration and setup of a Percona Distribution for

PostgreSQL on Kubernetes . The benefits of the Operator are many, but saving time and delivering a

consistent and vetted environment is key.

Version 2.0.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for

production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-

ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL clusters in a

Kubernetes-based environment, on-premises or in the cloud.

The Percona Operator for PostgreSQL 2.x is based on the 5.x branch of the Postgres Operator developed by

Crunchy Data . Please see the main changes in this version below.

Architecture
Operator SDK  is now used to build and package the Operator. It simplifies the development and brings

more contribution friendliness to the code, resulting in better potential for growing the community. Users

now have full control over Custom Resource Definitions that Operator relies on, which simplifies the

deployment and management of the operator.

In version 1.x we relied on Deployment resources to run PostgreSQL clusters, whereas in 2.0 Statefulsets

are used, which are the de-facto standard for running stateful workloads in Kubernetes. This change

improves stability of the clusters and removes a lot of complexity from the Operator.

Backups
One of the biggest challenges in version 1.x is backups and restores. There are two main problems that

our user faced:

Note

https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://sdk.operatorframework.io/
https://sdk.operatorframework.io/
https://sdk.operatorframework.io/


Page 324

Not possible to change backup configuration for the existing cluster

Restoration from backup to the newly deployed cluster required workarounds

In this version both these issues are fixed. In addition to that:

Run up to 4 pgBackrest repositories

Bootstrap the cluster from the existing backup through Custom Resource

Azure Blob Storage support

Operations
Deploying complex topologies in Kubernetes is not possible without affinity and anti-affinity rules. In

version 1.x there were various limitations and issues, whereas this version comes with substantial

improvements that enables users to craft the topology of their choice.

Within the same cluster users can deploy multiple instances. These instances are going to have the same

data, but can have different configuration and resources. This can be useful if you plan to migrate to new

hardware or need to test the new topology.

Each postgreSQL node can have sidecar containers now to provide integration with your existing tools or

expand the capabilities of the cluster.

Try it out now
Excited with what you read above?

We encourage you to install the Operator following our documentation.

Feel free to share feedback with us on the forum  or raise a bug or feature request in JIRA .

See the source code in our Github repository .

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG/issues
https://jira.percona.com/projects/K8SPG/issues
https://jira.percona.com/projects/K8SPG/issues
https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator

