
Percona Operator for

PostgreSQL

documentation

2.4.0 (June 28, 2024)

Percona Technical Documentation Team

Percona LLC and/or its affiliates, © 2009 - 2024

Table of contents

41. About

41.1 Percona Operator for PostgreSQL documentation

61.2 Compare various solutions to deploy PostgreSQL in Kubernetes

91.3 Design overview

122. Quickstart guide

122.1 Overview

132.2 1 Quick install

202.3 2 Connect to the PostgreSQL cluster

222.4 3 Insert sample data

242.5 4 Make a backup

272.6 5 Monitor the database

322.7 What’s next?

333. Installation

333.1 System requirements

343.2 Install Percona Distribution for PostgreSQL on Minikube

383.3 Install Percona Distribution for PostgreSQL cluster using Everest

393.4 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)

443.5 Install Percona Distribution for PostgreSQL on Amazon Elastic Kubernetes Service (EKS)

503.6 Install Percona Distribution for PostgreSQL on OpenShift

533.7 Install Percona Distribution for PostgreSQL on Kubernetes

574. Configuration

574.1 Users

614.2 Exposing cluster

644.3 Changing PostgreSQL options

664.4 Binding Percona Distribution for PostgreSQL components to specific Kubernetes/OpenShift Nodes

684.5 Labels and annotations

704.6 Transport layer security (TLS)

764.7 Telemetry

775. Management

775.1 Upgrade Database and Operator

815.2 Upgrade from version 1 to version 2

895.3 Back up and restore

1145.4 High availability and scaling

1175.5 Using sidecar containers

1195.6 Pause/resume PostgreSQL cluster

Table of contents

2 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

1205.7 Monitor with Percona Monitoring and Management (PMM)

1246. How-to

1246.1 Install Percona Distribution for PostgreSQL with customized parameters

1256.2 Deploy a standby cluster for Disaster Recovery

1336.3 Change the PostgreSQL primary instance

1376.4 Use Docker images from a private registry

1396.5 Add custom PostgreSQL extensions

1446.6 Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

1496.7 Using PostgreSQL tablespaces with Percona Operator for PostgreSQL

1536.8 Delete Percona Operator for PostgreSQL

1576.9 Monitor Kubernetes

1646.10 Use PostGIS extension with Percona Distribution for PostgreSQL

1687. Troubleshooting

1687.1 Initial troubleshooting

1717.2 Exec into the containers

1727.3 Check the logs

1748. Reference

1748.1 Custom Resource options

1808.2 exposeReplicas.annotations`

1998.3 Percona certified images

2028.4 Versions compatibility

2048.5 Copyright and licensing information

2058.6 Trademark policy

2079. Release Notes

2079.1 Percona Operator for PostgreSQL Release Notes

2089.2 Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

2119.3 Percona Operator for PostgreSQL 2.3.1

2139.4 Percona Operator for PostgreSQL 2.3.0

2169.5 Percona Operator for PostgreSQL 2.2.0

2189.6 Percona Operator for PostgreSQL 2.1.0 (Tech preview)

2209.7 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

Table of contents

3 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

1. About

1.1 Percona Operator for PostgreSQL documentation

The Percona Operator for PostgreSQL automates the creation, modification, or deletion of items in your Percona

Distribution for PostgreSQL environment. The Operator contains the necessary Kubernetes settings to maintain a
consistent PostgreSQL cluster.

Percona Kubernetes Operator is based on best practices for configuration and setup of a Percona Distribution for
PostgreSQL cluster. The benefits of the Operator are many, but saving time and delivering a consistent and vetted
environment is key.

This is the documentation for the latest release, 2.4.0 (Release Notes).

Starting with Percona Kubernetes Operator is easy. Follow our documentation guides, and you’ll be set up in a minute.

1.1.1 Installation guides

Want to see it for yourself? Get started quickly with our step-by-step installation instructions.

Quickstart guides

1.1.2 Security and encryption

Rest assured! Learn more about our security features designed to protect your valuable data.

Security measures

 Backup management

Learn what you can do to maintain regular backups of your PostgrgeSQL cluster.

Backup management

 Troubleshooting

Our comprehensive resources will help you overcome challenges, from everyday issues to specific doubts.

Diagnostics

1.1.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1. About

4 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

Last update: 2024-03-19

1.1.3 Get expert help

5 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

1.2 Compare various solutions to deploy PostgreSQL in Kubernetes

There are multiple ways to deploy and manage PostgreSQL in Kubernetes. Here we will focus on comparing the
following open source solutions:

Crunchy Data PostgreSQL Operator (PGO)

CloudNative PG from Enterprise DB

Stackgres from OnGres

Zalando Postgres Operator

Percona Operator for PostgreSQL

1.2.1 Generic

1.2.2 Maintenance

•

•

•

•

•

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Open-source
license

Apache 2.0 AGPL 3 Apache 2.0, but
images are

under
Developer
Program

Apache 2.0 MIT

PostgreSQL
versions

12 - 16 14 - 16 13 - 16 12 - 16 11 - 15

Kubernetes
conformance

Various versions
are tested

Various versions
are tested

Various versions
are tested

Various versions
are tested

AWS EKS

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Operator
upgrade

Database
upgrade

Automated and
safe

Automated and
safe

Manual Manual Manual

Compute
scaling

Horizontal and
vertical

Horizontal and
vertical

Horizontal and
vertical

Horizontal and
vertical

Horizontal and
vertical

Storage scaling Manual Manual Manual Manual Manual,
automated for

AWS EBS

1.2 Compare various solutions to deploy PostgreSQL in Kubernetes

6 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/ongres/stackgres
https://github.com/ongres/stackgres
https://github.com/ongres/stackgres
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/percona/percona-postgresql-operator/
https://github.com/percona/percona-postgresql-operator/
https://github.com/percona/percona-postgresql-operator/

1.2.3 PostgreSQL topologies

1.2.4 Backups

1.2.5 Monitoring

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Warm standby

Hot standby

Connection
pooling

Delayed replica

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Scheduled
backups

WAL archiving

PITR

GCS

S3

Azure

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Solution Percona
Monitoring and
Management
and sidecars

Exposing
metrics in

Prometheus
format

Prometheus
stack and

pgMonitor

Exposing
metrics in

Prometheus
format

Sidecars

1.2.3 PostgreSQL topologies

7 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

1.2.6 Miscellaneous

1.2.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Customize
PostgreSQL
configuration

Sidecar
containers for
customization

Helm

Transport
encryption

Data-at-rest
encryption

Through
storage class

Through
storage class

Through
storage class

Through
storage class

Through
storage class

Create users/
roles

limited

Last update: 2024-04-17

1.2.6 Miscellaneous

8 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

1.3 Design overview

The Percona Operator for PostgreSQL automates and simplifies deploying and managing open source PostgreSQL
clusters on Kubernetes. The Operator is based on CrunchyData’s PostgreSQL Operator .

PostgreSQL containers deployed with the Operator include the following components:

The PostgreSQL database management system, including:

PostgreSQL Additional Supplied Modules ,

pgAudit PostgreSQL auditing extension,

PostgreSQL set_user Extension Module ,

wal2json output plugin ,

The pgBackRest Backup & Restore utility,

The pgBouncer connection pooler for PostgreSQL,

The PostgreSQL high-availability implementation based on the Patroni template ,

the pg_stat_monitor PostgreSQL Query Performance Monitoring utility,

LLVM (for JIT compilation).

DB Pod N

Kubernetes API Operator

CSI

Storage
Area

Network

Container Suite
Custom Resource

Definitions

clusters
(perconapgcluster)

backup, restore
(perconapgbackups,
perconapgrestores)

pgbouncerprimary
PostgreSQL

replica
PostgreSQL

pgbackrest

•

•

•

•

•

•

•

•

•

•

1.3 Design overview

9 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://access.crunchydata.com/documentation/postgres-operator/v5/
https://access.crunchydata.com/documentation/postgres-operator/v5/
https://access.crunchydata.com/documentation/postgres-operator/v5/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://github.com/percona/pg_stat_monitor/
https://github.com/percona/pg_stat_monitor/

Each PostgreSQL cluster includes one member availiable for read/write transactions (PostgreSQL primary instance, or
leader in terms of Patroni) and a number of replicas which can serve read requests only (standby members of the
cluster).

To provide high availability from the Kubernetes side the Operator involves node affinity to run PostgreSQL Cluster

instances on separate worker nodes if possible. If some node fails, the Pod with it is automatically re-created on
another node.

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC) is
used to implement the automatic storage provisioning to pods. If a failure occurs, the Container Storage Interface
(CSI) should be able to re-mount storage on a different node.

The Operator functionality extends the Kubernetes API with Custom Resources Definitions . These CRDs provide

extensions to the Kubernetes API, and, in the case of the Operator, allow you to perform actions such as creating a
PostgreSQL Cluster, updating PostgreSQL Cluster resource allocations, adding additional utilities to a PostgreSQL
cluster, e.g. pgBouncer for connection pooling and more.

When a new Custom Resource is created or an existing one undergoes some changes or deletion, the Operator
automatically creates/changes/deletes all needed Kubernetes objects with the appropriate settings to provide a
proper Percona PostgreSQL Cluster operation.

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

CSI

Percona Distribution for PostgreSQL
Namespace

1.3 Design overview

10 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://www.pgbouncer.org/

Following CRDs are created while the Operator installation:

perconapgclusters stores information required to manage a PostgreSQL cluster. This includes things like the cluster
name, what storage and resource classes to use, which version of PostgreSQL to run, information about how to
maintain a high-availability cluster, etc.

perconapgbackups and perconapgrestores are in charge for making backups and restore them.

1.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

Last update: 2024-06-11

1.3.1 Get expert help

11 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2. Quickstart guide

2.1 Overview

Ready to get started with the Percona Operator for PostgreSQL? In this section, you will learn some basic operations,
such as:

Install and deploy an Operator

Connect to PostgreSQL

Insert sample data to the database

Set up and make a manual backup

Monitor the database health with PMM

2.1.1 Next steps

Install the Operator

2.1.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

•

Last update: 2023-09-14

2. Quickstart guide

12 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.2 1 Quick install

2.2.1 Install Percona Distribution for PostgreSQL using kubectl

A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The Operator
extends the Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for configuration and setup of a Percona Distribution
for PostgreSQL cluster in a Kubernetes-based environment on-premises or in the cloud.

We recommend installing the Operator with the kubectl command line utility. It is the universal way to interact

with Kubernetes. Alternatively, you can install it using the Helm package manager.

 Install with kubectl Install with Helm

Prerequisites

To install Percona Distribution for PostgreSQL, you need the following:

The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes distributions. Install
not already installed, follow its official installation instructions .

A Kubernetes environment. You can deploy it on Minikube for testing purposes or using any cloud provider of your

choice. Check the list of our officially supported platforms.

Set up Minikube

Create and configure the GKE cluster

Set up Amazon Elastic Kubernetes Service

1.

2.

See also

•

•

•

2.2 1 Quick install

13 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://github.com/helm/helm
https://github.com/helm/helm
https://github.com/helm/helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Procedure

Here’s a sequence of steps to follow:

2.2.1 Install Percona Distribution for PostgreSQL using kubectl

14 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in Kubernetes by installing
the Operator in a custom namespace. For example, let’s name it postgres-operator :

We will use this namespace further on in this document. If you used another name, make sure to replace it in the
following commands.

Deploy the Operator using the following command:

At this point, the Operator Pod is up and running.

Deploy Percona Distribution for PostgreSQL cluster:

Check the Operator and replica set Pods status.

The creation process may take some time. When the process is over your cluster obtains the ready status.

1.

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

2.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/
bundle.yaml -n postgres-operator

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

3.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml -n
postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

4.

$ kubectl get pg -n postgres-operator

2.2.1 Install Percona Distribution for PostgreSQL using kubectl

15 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

You have successfully installed and deployed the Operator with default parameters. You can check them in the Custom
Resource options reference.

Next steps

 Connect to PostgreSQL

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3 143m

Last update: 2024-06-13

2.2.1 Install Percona Distribution for PostgreSQL using kubectl

16 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.2.2 Install Percona Distribution for PostgreSQL using Helm

Helm is the package manager for Kubernetes. A Helm chart is a package that contains all the necessary

resources to deploy an application to a Kubernetes cluster.

You can find Percona Helm charts in percona/percona-helm-charts repository in Github.

Prerequisites

To install and deploy the Operator, you need the following:

Helm v3 .

kubectl command line utility.

A Kubernetes environment. You can deploy it locally on Minikube for testing purposes or using any cloud provider of

your choice. Check the list of our officially supported platforms.

Set up Minikube

Create and configure the GKE cluster

Set up Amazon Elastic Kubernetes Service

1.

2.

3.

See also

•

•

•

2.2.2 Install Percona Distribution for PostgreSQL using Helm

17 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/helm/helm
https://github.com/helm/helm
https://github.com/helm/helm
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Installation

Here’s a sequence of steps to follow:

Add the Percona’s Helm charts repository and make your Helm client up to date with it:

It is a good practice to isolate workloads in Kubernetes via namespaces. Create a namespace:

Install the Percona Operator for PostgreSQL:

The my-namespace is the name of your namespace. The my-operator parameter is the name of a new release object

which is created for the Operator when you install its Helm chart (use any name you like).

Install Percona Distribution for PostgreSQL:

The cluster1 parameter is the name of a new release object which is created for the Percona Distribution for

PostgreSQL when you install its Helm chart (use any name you like).

Check the Operator and replica set Pods status.

The creation process is over when both the Operator and replica set Pods report the ready status:

You have successfully installed and deployed the Operator with default parameters. You can check them in the Custom
Resource options reference.

Next steps

Connect to PostgreSQL

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

$ helm repo add percona https://percona.github.io/percona-helm-charts/
$ helm repo update

2.

$ kubectl create namespace <my-namespace>

3.

$ helm install my-operator percona/pg-operator --namespace <my-namespace>

4.

$ helm install cluster1 percona/pg-db -n <my-namespace>

5.

$ kubectl get pg -n <my-namespace>

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3 143m

2.2.2 Install Percona Distribution for PostgreSQL using Helm

18 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

Last update: 2024-03-19

2.2.2 Install Percona Distribution for PostgreSQL using Helm

19 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

2.3 2 Connect to the PostgreSQL cluster

When the installation is done, we can connect to the cluster.

The pgBouncer component of Percona Distribution for PostgreSQL provides the point of entry to the PostgreSQL

cluster. We will use the pgBouncer URI to connect.

The pgBouncer URI is stored in the Secret object, which the Operator generates during the installation.

To connect to PostgreSQL, do the following:

List the Secrets objects

The Secrets object we target is named as <cluster_name>-pguser-<cluster_name> . The <cluster_name> value is the name of
your Percona Distribution for PostgreSQL Cluster. The default variant is:

Retrieve the pgBouncer URI from your secret, decode and pass it as the PGBOUNCER_URI environment variable. Replace
the <secret> , <namespace> placeholders with your Secret object and namespace accordingly:

The following example shows how to pass the pgBouncer URI from the default Secret object cluster1-pguser-cluster1 :

Create a Pod where you start a container with Percona Distribution for PostgreSQL and connect to the database. The
following command does it, naming the Pod pg-client and connects you to the cluster1 database:

It may take some time to create the Pod and connect to the database. As the result, you should see the following sample
output:

1.

$ kubectl get secrets -n <namespace>

 via kubectl

cluster1-pguser-cluster1

 via Helm

cluster1-pg-db-pguser-cluster1-pg-db

2.

$ PGBOUNCER_URI=$(kubectl get secret <secret> --namespace <namespace> -o jsonpath='{.data.pgbouncer-uri}' | base64 --
decode)

$ PGBOUNCER_URI=$(kubectl get secret cluster1-pguser-cluster1 --namespace <namespace> -o
jsonpath='{.data.pgbouncer-uri}' | base64 --decode)

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- psql
$PGBOUNCER_URI

Expected output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
cluster1=>

2.3 2 Connect to the PostgreSQL cluster

20 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Congratulations! You have connected to your PostgreSQL cluster.

2.3.1 Next steps

 Insert testing data

2.3.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-03-19

2.3.1 Next steps

21 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.4 3 Insert sample data

The next step after connecting to the cluster is to insert some sample data to PostgreSQL.

2.4.1 Create a schema

Every database in PostgreSQL has a default schema called public . A schema stores database objects like tables, views,
indexes and allows organizing them into logical groups.

When you create a table, it ends up in the public schema by default. In recent PostgreSQL versions (starting from
PostgreSQL 15), non-database owners cannot access the public schema. Therefore, you need to create a new schema
to insert the data.

Use the following statement to create a schema

2.4.2 Create a table

After you created a schema, all tables you create end up in this schema if not specified otherwise.

At this step, we will create a sample table Library as follows:

If the schema has not been automatically set to the one you created, set it manually using the following SQL statement:

Replace the demo schema name with your value if you used another name.

2.4.3 Insert the data

PostgreSQL does not have the built-in support to generate random data. However, it provides the random() function
which generates random numbers and generate_series() function which generates the series of rows and populates
them with the numbers incremented by 1 (by default).

Combine these functions with a couple of others to populate the table with the data:

CREATE SCHEMA demo;

CREATE TABLE LIBRARY(
ID INTEGER NOT NULL,
NAME TEXT,
SHORT_DESCRIPTION TEXT,
AUTHOR TEXT,
DESCRIPTION TEXT,
CONTENT TEXT,
LAST_UPDATED DATE,
CREATED DATE

);

Tip

SET schema 'demo';

INSERT INTO LIBRARY(id, name, short_description, author,
description,content, last_updated, created)

SELECT id, 'name', md5(random()::text), 'name2'

2.4 3 Insert sample data

22 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

This command does the following:

Fills in the columns id , name , author with the values id , name and name2 respectively;

generates the random md5 hash sum as the values for the columns short_description , description and content ;

generates the random number of dates from the current date and time within the last 100 days, and

inserts 100 rows of this data

Now your cluster has some data in it.

2.4.4 Next steps

 Make a backup

2.4.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

,md5(random()::text),md5(random()::text)
,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100)
,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100 + 100)

FROM generate_series(1,100) id;

•

•

•

•

Last update: 2024-02-07

2.4.4 Next steps

23 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.5 4 Make a backup

Now your database contains some data, so it’s a good time to learn how to manually make a full backup of your data
with the Operator.

If you are interested to learn more about backups, their types and retention policy, see the Backups section.

2.5.1 Considerations and prerequisites

In this tutorial we use the AWS S3 as the backup storage. You need the following S3-related information:

The name of S3 bucket;

The endpoint - the URL to access the bucket

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage.

If you don’t have access to AWS, you can use any S3-compatible storage like MinIO . Check the list of supported

storages. Find the storage configuration instructions for each

The Operator uses the pgBackRest tool to make backups. pgBackRest stores the backups and archives WAL

segments in repositories. The Operator has up to four pgBackRest repositories named repo1 , repo2 , repo3 and
repo4 . In this tutorial we use repo2 for backups.

Also, we will use some files from the Operator repository for setting up backups. So, clone the percona-postgresql-
operator repository:

It is important to specify the right branch with -b option while cloning the code on this step. Please be careful.

Note

•

•

•

•

•

•

•

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

Note

2.5 4 Make a backup

24 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://min.io/docs/minio/linux/index.html
https://min.io/docs/minio/linux/index.html
https://min.io/docs/minio/linux/index.html
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/

2.5.2 Configure backup storage

Encode the S3 credentials and the pgBackRest repository name (repo2 in our setup).

Create the Secret configuration file and specify the base64-encoded string from the previous step. The following is the
example of the cluster1-pgbackrest-secrets.yaml Secret file:

Create the Secrets object from this yaml file. Specify your namespace instead of the <namespace> placeholder:

Update your deploy/cr.yaml configuration. Specify the Secret file you created in the backups.pgbackrest.configuration

subsection, and put all other S3 related information in the backups.pgbackrest.repos subsection under the repository name
that you intend to use for backups. This name must match the name you used when you encoded S3 credentials on step
1.

For example, the S3 storage for the repo2 repository looks as follows:

1.

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

$ cat <<EOF | base64
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets

type: Opaque
data:
s3.conf: <base64-encoded-configuration-contents>

3.

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

4.

...
backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets
...
repos:
- name: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

2.5.2 Configure backup storage

25 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Create or update the cluster. Specify your namespace instead of the <namespace> placeholder:

2.5.3 Make a backup

For manual backups, you need a backup configuration file.

Edit the example backup configuration file deploy/backup.yaml . Specify your cluster name and the repo name.

Apply the configuration. This instructs the Operator to start a backup.

List the backup

Congratulations! You have made the first backup manually. Want to learn more about backups? See the Backup and
restore section for details like types, retention and how to automatically make backups according to the schedule.

2.5.4 Next steps

 Monitor the database

2.5.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

5.

$ kubectl apply -f deploy/cr.yaml

1.

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backup1

spec:
pgCluster: cluster2
repoName: repo1

options:
- --type=full

2.

$ kubectl apply -f deploy/backup.yaml -n <namespace>

3.

$ kubectl get pg-backup -n <namespace>

Last update: 2024-04-16

2.5.3 Make a backup

26 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.6 5 Monitor the database

Finally, when we are done with backup, it’s time for one more step. In this section you will learn how to monitor the
health of Percona Distribution for PostgreSQL with Percona Monitoring and Management (PMM) .

Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. It includes the PMM Server and the number of PMM Clients running on

each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect to the PMM
Server to see database metrics on a number of dashboards .

PMM Server and PMM Client are installed separately.

2.6.1 Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an
AWS instance. Please refer to the official PMM documentation for the installation instructions.

Note

2.6 5 Monitor the database

27 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html

2.6.2 Install PMM Client

To install PMM Client as a side-car container in your Kubernetes-based environment, do the following:

2.6.2 Install PMM Client

28 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Get the PMM API key from PMM Server . The API key must have the role “Admin”. You need this key to authorize PMM

Client within PMM Server.

The API key is not rotated.

Specify the API key as the PMM_SERVER_KEY value in the deploy/secrets.yaml secrets file.

Create the Secrets object using the deploy/secrets.yaml file.

Update the pmm section in the deploy/cr.yaml file.

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM Server IP address should be
resolvable and reachable from within your cluster.

Update the cluster

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on the
previous steps:

1.

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and hostname in the following
command:

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d '{"name":"operator", "role": "Admin"}' "https://
<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pmm-secret

type: Opaque
stringData:
PMM_SERVER_KEY: ""

3.

$ kubectl apply -f deploy/secrets.yaml -n postgres-operator

4.

•

•

pmm:
enabled: true
image: percona/pmm-client:2.42.0

imagePullPolicy: IfNotPresent
secret: cluster1-pmm-secret
serverHost: monitoring-service

5.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

6.

2.6.2 Install PMM Client

29 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

2.6.3 Update the secrets file

The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text format. But the
resulting Secrets Objects contains passwords stored as base64-encoded strings. If you want to update the password
field, you need to encode the new password into the base64 format and pass it to the Secrets Object.

To encode a password or any other parameter, run the following command:

For example, to set the new PMM API key in the my-cluster-name-secrets object, do the following:

2.6.4 Check the metrics

Let’s see how the collected data is visualized in PMM.

Log in to PMM server.

Click PostgreSQL from the left-hand navigation menu. You land on the Instances Overview page.

Click PostgreSQL → Other dashboards to see the list of available dashboards that allow you to drill down to the

metrics you are interested in.

2.6.5 Next steps

What’s next

2.6.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

$ kubectl get pods -n postgres-operator
$ kubectl logs <pod_name> -c pmm-client

 Linux

 macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

 Linux

 macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo -n new_key | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo -n new_key | base64)'}}'

1.

2.

3.

2.6.3 Update the secrets file

30 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-12-08

2.6.6 Get expert help

31 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.7 What’s next?

Congratulations! You have completed all the steps in the Get started guide.

You have the following options to move forward with the Operator:

Deepen your monitoring insights by setting up Kubernetes monitoring with PMM

Control Pods assignment on specific Kubernetes Nodes by setting up affinity / anti-affinity

Ready to adopt the Operator for production use and need to delete the testing deployment? Use this guide to do it

You can also try operating the Operator and database clusters via the web interface with Percona Everest - an open-
source web-based database provisioning tool based on Percona Operators. See Get started with Percona Everest on
how to start using it

2.7.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

Last update: 2024-03-28

2.7 What’s next?

32 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3. Installation

3.1 System requirements

The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is cloud native and
storage agnostic, working with a wide variety of storage classes, hostPath, and NFS.

3.1.1 Supported versions

The Operator 2.4.0 is developed, tested and based on:

PostgreSQL 12.19, 13.15, 14.12, 15.7, and 16.3 as the database. Other versions may also work but have not been
tested.

pgBouncer 1.22.1 for connection pooling

Patroni 3.3.0 for high-availability.

3.1.2 Supported platforms

The following platforms were tested and are officially supported by the Operator 2.4.0:

Google Kubernetes Engine (GKE) 1.27 - 1.29

Amazon Elastic Container Service for Kubernetes (EKS) 1.27 - 1.30

OpenShift 4.12.59 - 4.15.18

Minikube 1.33.1

Other Kubernetes platforms may also work but have not been tested.

3.1.3 Installation guidelines

Choose how you wish to install Percona Operator for PostgreSQL:

with Helm

with kubectl

on Minikube

on Google Kubernetes Engine (GKE)

on Amazon Elastic Kubernetes Service (AWS EKS)

in a Kubernetes-based environment

3.1.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: 2024-06-28

3. Installation

33 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.2 Install Percona Distribution for PostgreSQL on Minikube

Installing the Percona Operator for PostgreSQL on Minikube is the easiest way to try it locally without a cloud

provider.

Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervisor, such as
VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test Kubernetes application locally
prior to deploying it on a cloud.

This document describes how to deploy the Operator and Percona Distribution for PostgreSQL on Minikube.

3.2.1 Set up Minikube

Install Minikube , using a way recommended for your system. This includes the installation of the following three

components:

kubectl tool,

a hypervisor, if it is not already installed,

actual minikube package

After the installation, initialize and start the Kubernetes cluster. The parameters we pass for the following command
increase the virtual machine limits for the CPU cores, memory, and disk, to ensure stable work of the Operator:

This command downloads needed virtualized images, then initializes and runs the cluster.

After Minikube is successfully started, you can optionally run the Kubernetes dashboard, which visually represents the
state of your cluster. Executing minikube dashboard starts the dashboard and opens it in your default web browser.

3.2.2 Deploy the Percona Operator for PostgreSQL

Deploy the Operator using the following command:

As the result you have the Operator Pod up and running.

Deploy Percona Distribution for PostgreSQL:

1.

a.

b.

c.

2.

$ minikube start --memory=5120 --cpus=4 --disk-size=30g

3.

1.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/
bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

2.

3.2 Install Percona Distribution for PostgreSQL on Minikube

34 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

This deploys the default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml and Custom

Resource Options for the configuration options. You can clone the repository with all manifests and source code by
executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

3.2.3 Verify the Percona Distribution for PostgreSQL cluster operation

When creation process is over, the output of the kubectl get pg command shows the cluster status as ready . You can try
to connect to the cluster.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Note

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml

3.

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

3.2.3 Verify the Percona Distribution for PostgreSQL cluster operation

35 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml

During the installation, the Operator has generated several secrets , including the one with password for default

PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user. Replace the <cluster_name> and <namespace> placeholders
with your values:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the new
Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. The following command will connect you
as a cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.2.4 Delete the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing deployment before
adopting it for production use), check this HowTo.

If you no longer need the Kubernetes cluster in Minikube, the following are the steps to remove it.

Stop the Minikube cluster:

Delete the cluster

This command deletes the virtual machines, and removes all associated files.

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

1.

$ minikube stop

2.

$ minikube delete

3.2.4 Delete the cluster

36 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

3.2.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-03-19

3.2.5 Get expert help

37 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.3 Install Percona Distribution for PostgreSQL cluster using Everest

Percona Everest is an open source cloud-native database platform that helps developers deploy code faster, scale

deployments rapidly, and reduce database administration overhead while regaining control over their data, database
configuration, and DBaaS costs.

It automates day-one and day-two database operations for open source databases on Kubernetes clusters. Percona
Everest provides API and Web GUI to launch databases with just a few clicks and scale them, do routine maintenance
tasks, such as software updates, patch management, backups, and monitoring.

You can try it in action by Installing Percona Everest and managing your first cluster .

3.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-03-28

3.3 Install Percona Distribution for PostgreSQL cluster using Everest

38 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.4 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine

(GKE)

Following steps help you install the Operator and use it to manage Percona Distribution for PostgreSQL with the
Google Kubernetes Engine. The document assumes some experience with Google Kubernetes Engine (GKE). For more
information on GKE, see the Kubernetes Engine Quickstart .

3.4.1 Prerequisites

All commands from this installation guide can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

gcloud . This tool is part of the Google Cloud SDK. To install it, select your operating system on the official Google

Cloud SDK documentation page and then follow the instructions.

kubectl . This is the Kubernetes command-line tool you will use to manage and deploy applications. To install the tool,

run the following command:

3.4.2 Create and configure the GKE cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local shell (if

you have installed Google Cloud SDK locally on the previous step). The following command creates a cluster named
cluster-1 :

You must edit the above command and other command-line statements to replace the <project name> placeholder with
your project name. You may also be required to edit the zone location, which is set to us-central1 in the above example.
Other parameters specify that we are creating a cluster with 3 nodes and with machine type of 4 vCPUs and 45 GB
memory.

You may wait a few minutes for the cluster to be generated.

Select Kubernetes Engine → Clusters in the left menu panel:

1.

2.

$ gcloud auth login
$ gcloud components install kubectl

$ gcloud container clusters create cluster-1 --project <project name> --zone us-central1-a --cluster-version 1.29 --machine-
type n1-standard-4 --num-nodes=3

Note

When the process is over, you can see it listed in the Google Cloud console

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

3.4 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)

39 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart
https://cloud.google.com/shell/docs/quickstart
https://cloud.google.com/shell/docs/quickstart

Now you should configure the command-line access to your newly created cluster to make kubectl be able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You will see the
connect statement which configures the command-line access. After you have edited the statement, you may run the
command in your local shell:

Finally, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster. The following

command will give you the ability to create Roles and RoleBindings:

3.4.3 Install the Operator and deploy your PostgreSQL cluster

First of all, use the following git clone command to download the correct branch of the percona-postgresql-operator
repository:

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and modify the -n

postgres-operator parameter with it in the following steps. You can also omit this parameter completely to deploy everything
in the default namespace.

Deploy the Operator using the following command:

$ gcloud container clusters get-credentials cluster-1 --zone us-central1-a --project <project name>

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user $(gcloud config get-value
core/account)

Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

1.

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

2.

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Note

3.

$ kubectl apply --server-side -f deploy/bundle.yaml -n postgres-operator

3.4.3 Install the Operator and deploy your PostgreSQL cluster

40 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/iam
https://cloud.google.com/iam
https://cloud.google.com/iam
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

As the result you will have the Operator Pod up and running.

Deploy Percona Distribution for PostgreSQL:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

When the creation process is finished, it will look as follows:

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

4.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

You can also track the creation process in Google Cloud console via the Object Browser

Name Status Type Namespace ClusterPods

cluster1-backup-7hsq OK Job pg-opertor cluster10/1

cluster1-instance1-mntz OK Stateful Set pg-opertor cluster11/1

cluster1-pgbouncer OK Deployment pg-opertor cluster11/1

cluster1-repo-host OK Stateful Set pg-opertor cluster11/1

cluster1-repo1-full OK Cron Job pg-opertor cluster10/0

percona-postgresql-operator OK Deployment pg-opertor cluster11/1

3.4.3 Install the Operator and deploy your PostgreSQL cluster

41 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

3.4.4 Verifying the cluster operation

When creation process is over, kubectl get pg -n <namespace> command will show you the cluster status as ready , and
you can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with password for default

PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user. Replace the <cluster_name> and <namespace> placeholders
with your values:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the new
Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. The following command will connect you
as a cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.4.5 Removing the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing deployment before
adopting it for production use), check this HowTo.

Also, there are several ways that you can delete your Kubernetes cluster in GKE.

You can clean up the cluster with the gcloud command as follows:

The return statement requests your confirmation of the deletion. Type y to confirm.

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

$ gcloud container clusters delete <cluster name>

3.4.4 Verifying the cluster operation

42 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Just click the Delete popup menu item in the clusters list:

The cluster deletion may take time.

After deleting the cluster, all data stored in it will be lost!

3.4.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Also, you can delete your cluster via the Google Cloud console

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

Warning

Last update: 2024-03-19

3.4.6 Get expert help

43 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.5 Install Percona Distribution for PostgreSQL on Amazon Elastic Kubernetes

Service (EKS)

This guide shows you how to deploy Percona Operator for PostgreSQL on Amazon Elastic Kubernetes Service (EKS).
The document assumes some experience with the platform. For more information on the EKS, see the Amazon EKS
official documentation .

3.5.1 Prerequisites

Software installation

The following tools are used in this guide and therefore should be preinstalled:

AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can install it following the
official installation instructions for your system .

eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on GitHub .

kubectl to manage and deploy applications on Kubernetes. Install it following the official installation instructions .

Also, you need to configure AWS CLI with your credentials according to the official guide .

Creating the EKS cluster

To create your cluster, you will need the following data:

name of your EKS cluster,

AWS region in which you wish to deploy your cluster,

the amount of nodes you would like tho have,

the desired ratio between on-demand and spot instances in the total number of nodes.

spot instances are not recommended for production environment, but may be useful e.g. for testing purposes.

After you have settled all the needed details, create your EKS cluster following the official cluster creation instructions
.

After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver on your cluster. See the

official documentation on adding it as an Amazon EKS add-on.

CSI driver is needed for the Operator to work propely, and is not included by default starting from the Amazon EKS version
1.22. Therefore servers with existing EKS cluster based on the version 1.22 or earlier need to install CSI driver before
updating the EKS cluster to 1.23 or above.

1.

2.

3.

1.

•

•

•

•

Note

2.

Note

3.5 Install Percona Distribution for PostgreSQL on Amazon Elastic Kubernetes Service (EKS)

44 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/weaveworks/eksctl#installation
https://github.com/weaveworks/eksctl#installation
https://github.com/weaveworks/eksctl#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html

3.5.2 Install the Operator and Percona Distribution for PostgreSQL

The following steps are needed to deploy the Operator and Percona Distribution for PostgreSQL in your Kubernetes
environment:

3.5.2 Install the Operator and Percona Distribution for PostgreSQL

45 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and modify the -n

postgres-operator parameter with it in the following two steps. You can also omit this parameter completely to deploy
everything in the default namespace.

Deploy the Operator using the following command:

As the result you will have the Operator Pod up and running.

The operator has been started, and you can deploy your Percona Distribution for PostgreSQL cluster:

1.

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Note

2.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/
bundle.yaml -n postgres-operator

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

3.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml -n
postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

3.5.2 Install the Operator and Percona Distribution for PostgreSQL

46 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml and Custom

Resource Options for the configuration options. You can clone the repository with all manifests and source code by
executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

3.5.3 Verifying the cluster operation

When creation process is over, kubectl get pg command will show you the cluster status as ready , and you can try to
connect to the cluster.

Note

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

3.5.3 Verifying the cluster operation

47 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml

During the installation, the Operator has generated several secrets , including the one with password for default

PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user. Replace the <cluster_name> and <namespace> placeholders
with your values:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the new
Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. The following command will connect you
as a cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.5.4 Removing the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing deployment before
adopting it for production use), check this HowTo.

To delete your Kubernetes cluster in EKS, you will need the following data:

name of your EKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the eksctl command as follows (with real names instead of <region> and <cluster

name> placeholders):

The cluster deletion may take time.

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

•

•

$ eksctl delete cluster --region=<region> --name="<cluster name>"

3.5.4 Removing the cluster

48 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

After deleting the cluster, all data stored in it will be lost!

3.5.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Warning

Last update: 2024-06-04

3.5.5 Get expert help

49 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.6 Install Percona Distribution for PostgreSQL on OpenShift

Percona Operator for PostgreSQL is a Red Hat Certified Operator . This means that Percona Operator is portable

across hybrid clouds and fully supports the Red Hat OpenShift lifecycle.

Installing Percona Distribution for PostgreSQL on OpenShift includes two steps:

Installing the Percona Operator for PostgreSQL,

Install Percona Distribution for PostgreSQL using the Operator.

3.6.1 Install the Operator

You can install Percona Operator for PostgreSQL on OpenShift using the Red Hat Marketplace web interface or

using the command line interface.

Install the Operator via the command-line interface

First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the deploy/crd.yaml file.
Custom Resource Definition extends the standard set of resources which OpenShift “knows” about with the new items (in
our case ones which are the core of the Operator). Apply it as follows:

This step should be done only once; it does not need to be repeated with any other Operator deployments.

Create the OpenShift namespace for your cluster if needed (for example, let’s name it postgres-operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and modify the -n

postgres-operator parameter with it in the following two steps. You can also omit this parameter completely to deploy
everything in the default namespace.

The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the deploy/rbac.yaml file.
Role-based access is based on defined roles and the available actions which correspond to each role. The role and
actions are defined for Kubernetes resources in the yaml file. Further details about users and roles can be found in
specific OpenShift documentation)

•

•

1.

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

Note

2.

$ oc apply --server-side -f deploy/crd.yaml

3.

$ oc create namespace postgres-operator

Note

4.

$ oc apply -f deploy/rbac.yaml -n postgres-operator

3.6 Install Percona Distribution for PostgreSQL on OpenShift

50 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://marketplace.redhat.com
https://marketplace.redhat.com
https://marketplace.redhat.com
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google OpenShift Engine
can grant user needed privileges with the following command:

If you are going to use the operator with anyuid security context constraint please execute the following command:

Start the Operator within OpenShift:

Optionally, you can add PostgreSQL Users secrets and TLS certificates to OpenShift. If you don’t, the Operator will create
the needed users and certificates automatically, when you create the database cluster. You can see documentation on
Users and TLS certificates if still want to create them yourself.

You can simplify the Operator installation by applying a single deploy/bundle.yaml file instead of running commands from the
steps 2 and 4:

This will automatically create Custom Resource Definition, set up role-based access control and install the Operator as one
single action.

After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any time with the following
command:

Creation process will take some time. The process is over when both Operator and replica set Pods have reached their
Running status:

3.6.2 Verifying the cluster operation

When creation process is over, oc get pg command will show you the cluster status as ready , and you can try to
connect to the cluster.

Note

$ oc create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value core/account)

5.

$ sed -i '/disable_auto_failover: "false"/a \ \ \ \ disable_fsgroup: "false"' deploy/operator.yaml

6.

$ oc apply -f deploy/operator.yaml -n postgres-operator

Note

$ oc apply -f deploy/bundle.yaml

7.

$ oc apply -f deploy/cr.yaml -n postgres-operator

$ oc get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3 143m

3.6.2 Verifying the cluster operation

51 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html

During the installation, the Operator has generated several secrets , including the one with password for default

PostgreSQL user. This default user has the same login name as the cluster name.

Use oc get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user. Replace the <cluster_name> and <namespace> placeholders
with your values:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the new
Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. The following command will connect you
as a cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.6.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

$ oc get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ oc run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

Last update: 2024-03-19

3.6.3 Get expert help

52 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.7 Install Percona Distribution for PostgreSQL on Kubernetes

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL in a
Kubernetes-based environment.

3.7 Install Percona Distribution for PostgreSQL on Kubernetes

53 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the deploy/crd.yaml file.
Custom Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new items
(in our case ones which are the core of the Operator). Apply it as follows:

This step should be done only once; it does not need to be repeated with any other Operator deployments.

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-operator):

To use a different namespace, specify another name instead of postgres-operator in the above command, and modify the -n

postgres-operator parameter with it in the following two steps. You can also omit this parameter completely to deploy
everything in the default namespace.

The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the deploy/rbac.yaml file.
Role-based access is based on defined roles and the available actions which correspond to each role. The role and
actions are defined for Kubernetes resources in the yaml file. Further details about users and roles can be found in
Kubernetes documentation .

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google Kubernetes Engine
can grant user needed privileges with the following command:

Start the Operator within Kubernetes:

Optionally, you can add PostgreSQL Users secrets and TLS certificates to Kubernetes. If you don’t, the Operator will
create the needed users and certificates automatically, when you create the database cluster. You can see
documentation on Users and TLS certificates if still want to create them yourself.

1.

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

Note

2.

$ kubectl apply --server-side -f deploy/crd.yaml

3.

$ kubectl create namespace postgres-operator

Note

4.

$ kubectl apply -f deploy/rbac.yaml -n postgres-operator

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value core/
account)

5.

$ kubectl apply -f deploy/operator.yaml -n postgres-operator

3.7 Install Percona Distribution for PostgreSQL on Kubernetes

54 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any time with the following
command:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

3.7.1 Verifying the cluster operation

When creation process is over, the output of the kubectl get pg command shows the cluster status as ready . You can
now try to connect to the cluster.

6.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

3.7.1 Verifying the cluster operation

55 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

During the installation, the Operator has generated several secrets , including the one with password for default

PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user. Replace the <cluster_name> and <namespace> placeholders
with your values:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the new
Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. The following command will connect you
as a cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.7.2 Deleting the cluster

If you need to delete the cluster (for example, to clean up the testing deployment before adopting it for production
use), check this HowTo.

3.7.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

Last update: 2024-03-19

3.7.2 Deleting the cluster

56 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4. Configuration

4.1 Users

Operator provides a feature to manage users and databases in your PostgreSQL cluster. This document describes this
feature, defaults and ways to fine tune your users.

4.1.1 Defaults

When you create a PostgreSQL cluster with the Operator and do not specify any additional users or databases, the
Operator will do the following:

Create a database that matches the name of your PostgreSQL cluster.

Create an unprivileged PostgreSQL user with the name of the cluster. This user has access to the database created
in the previous step.

Create a Secret with the login credentials and connection details for the PostgreSQL user which is in relation to the
database. This is stored in a Secret named <clusterName>-pguser-<clusterName> . These credentials include:

user : The name of the user account.

password : The password for the user account.

dbname : The name of the database that the user has access to by default.

host : The name of the host of the database. This references the Service of the primary PostgreSQL instance.

port : The port that the database is listening on.

uri : A PostgreSQL connection URI that provides all the information for logging into the PostgreSQL database via
pgBouncer

jdbc-uri : A PostgreSQL JDBC connection URI that provides all the information for logging into the PostgreSQL
database via the JDBC driver.

As an example, using our cluster1 PostgreSQL cluster, we would see the following created:

A database named cluster1 .

A PostgreSQL user named cluster1 .

A Secret named cluster1-pguser-cluster1 that contains the user credentials and connection information.

•

•

•

•

•

•

•

•

•

•

•

•

•

4. Configuration

57 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

4.1.2 Custom Users and Databases

Users and databases can be customized in spec.users section in the Custom Resource. Section can be changed at the
cluster creation time and adjusted over time. Note the following:

If spec.users is set during the cluster creation, the Operator will not create any default users or databases except for
PostgreSQL. If you want additional databases, you will need to specify them.

For each user added in spec.users , the Operator will create a Secret of the <clusterName>-pguser-<userName> format
(such default Secret naming can be altered for the user with the spec.users.secretName option). This Secret will
contain the user credentials.

If no databases are specified, dbname and uri will not be present in the Secret.

If at least one option under the spec.users.databases is specified, the first database in the list will be populated into
the connection credentials.

The Operator does not automatically drop users in case of removed Custom Resource options to prevent accidental
data loss.

Similarly, to prevent accidental data loss Operator does not automatically drop databases (see how to actually drop
a database here).

Role attributes are not automatically dropped if you remove them. You need to set the inverse attribute to actually
drop them (e.g. NOSUPERUSER).

The special postgres user can be added as one of the custom users; however, the privileges of this user cannot be
adjusted.

Creating a New User

Change PerconaPGCluster Custom Resource (e.g. by editing your YAML manifest in the deploy/cr.yaml configuration file):

Apply the changes (e.g. with the usual `kubctl apply -f deploy/cr.yaml’ command) will create the new user:

The user will only be able to connect to the default postgres database.

The credentials of this user are populated in the <clusterName>-pguser-perconapg secret. There are no connection
credentials.

The user is unprivileged.

The following example shows how to create a new pgtest database and let perconapg user access it. The appropriate
Custom Resource fragment will look as follows:

If you inspect the <clusterName>-pguser-perconapg Secret after applying the changes, you will see dbname and uri

options populated there, and the database is created as well.

•

•

•

•

•

•

•

•

...
spec:
users:
- name: perconapg

•

•

•

...
spec:
users:
- name: perconapg
databases:
- pgtest

4.1.2 Custom Users and Databases

58 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Adjusting privileges

You can set role privileges by using the standard role attributes that PostgreSQL provides and adding them to the

spec.users.options subsection in the Custom Resource. The following example will make the perconapg a superuser. You
can add the following to the spec in your deploy/cr.yaml :

Apply changes with the usual `kubctl apply -f deploy/cr.yaml’ command.

To actually revoke the superuser privilege afterwards, you will need to do and apply the following change:

If you want to add multiple privileges, you can use a space-separated list as follows:

postgres User

By default, the Operator does not create the postgres user. You can create it by applying the following change to your
Custom Resource:

This will create a Secret named <clusterName>-pguser-postgres that contains the credentials of the postgres account.

Deleting users and databases

The Operator does not delete users and databases automatically. After you remove the user from the Custom
Resource, it will continue to exist in your cluster. To remove a user and all of its objects, as a superuser you will need to
run DROP OWNED in each database the user has objects in, and DROP ROLE in your PostgreSQL cluster.

...
spec:
users:
- name: perconapg
databases:
- pgtest

options: "SUPERUSER"

...
spec:
users:
- name: perconapg
databases:
- pgtest

options: "NOSUPERUSER"

...
spec:
users:
- name: perconapg
databases:
- pgtest

options: "CREATEDB CREATEROLE"

...
spec:
users:
- name: postgres

DROP OWNED BY perconapg;
DROP ROLE perconapg;

4.1.2 Custom Users and Databases

59 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/docs/current/role-attributes.html
https://www.postgresql.org/docs/current/role-attributes.html
https://www.postgresql.org/docs/current/role-attributes.html

For databases, you should run the DROP DATABASE command as a superuser:

Managing user passwords

If you want to rotate user’s password, just remove the old password in the correspondent Secret: the Operator will
immediately generate a new password and save it to the appropriate Secret. You can remove the old password with
the kubectl patch secret command:

Also, you can set a custom password for the user. Do it as follows:

Superuser and pgBouncer

For security reasons we do not allow superusers to connect to cluster through pgBouncer by default. You can connect
through primary service (read more in exposure documentation).

Otherwise you can use the proxy.pgBouncer.exposeSuperusers Custom Resource option to enable superusers
connection via pgBouncer.

4.1.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

DROP DATABASE pgtest;

$ kubectl patch secret <clusterName>-pguser-<userName> -p '{"data":{"password":""}}'

$ kubectl patch secret <clusterName>-pguser-<userName> -p '{"stringData":{"password":"<custom_password>",
"verifier":""}}'

Last update: 2024-03-19

4.1.3 Get expert help

60 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.2 Exposing cluster

The Operator provides entry points for accessing the database by client applications. The database cluster is exposed
with regular Kubernetes Service objects configured by the Operator.

This document describes the usage of Custom Resource manifest options to expose the clusters deployed with the
Operator.

4.2.1 PgBouncer

We recommend exposing the cluster through PgBouncer, which is enabled by default.

You can disable pgBouncer by setting proxy.pgBouncer.replicas to 0.

The following example deploys two pgBouncer nodes exposed through a LoadBalancer Service object:

The Service will be called <clusterName>-pgbouncer :

DB Pod 1 DB Pod 3DB Pod 2

R
ea
d

R
ea
d

R
ea
d Write

Write Write

W
rit
e

Client Application

pgBouncer (DB proxy)

proxy:
pgBouncer:
replicas: 2
image: percona/percona-postgresql-operator:2.4.0-ppg14-pgbouncer
expose:
type: LoadBalancer

$ kubectl get service

4.2 Exposing cluster

61 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

You can connect to the database using the External IP of the load balancer and port 5432 .

If your application runs inside the Kubernetes cluster as well, you might want to use the Cluster IP Service type in
proxy.pgBouncer.expose.type , which is the default. In this case to connect to the database use the internal domain name -
cluster1-pgbouncer.<namespace>.svc.cluster.local .

4.2.2 Exposing the cluster without PgBouncer

You can connect to the cluster without a proxy.

For that use <clusterName>-ha Service object:

The cluster1-ha service points to the active primary. In case of failover to the replica node, will change the endpoint
automatically. Also, you can use cluster1-replicas service to make read requests to PostgreSQL replica instances.

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
...
cluster1-pgbouncer LoadBalancer 10.88.8.48 34.133.38.186 5432:30601/TCP 20m
...

DB Pod 1 DB Pod NDB Pod 2

Client Application

R
ea
d Write

PrimaryReplica Replica

Write Write

R
ea
d

R
ea
d

$ kubectl get service

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
...
cluster1-ha ClusterIP 10.88.8.121 <none> 5432/TCP 115s
...
cluster1-replicas ClusterIP 10.88.8.115 <none> 5432/TCP 2m16s

4.2.2 Exposing the cluster without PgBouncer

62 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

To change the Service type, use expose.type in the Custom Resource manifest. For example, the following manifest will
expose this service through a load balancer:

4.2.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

spec:
...
expose:
type: LoadBalancer

Last update: 2024-06-11

4.2.3 Get expert help

63 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.3 Changing PostgreSQL options

Despite the Operator’s ability to configure PostgreSQL and the large number of Custom Resource options, there may
be situations where you need to pass specific options directly to your cluster’s PostgreSQL instances. For this purpose,
you can use the PostgreSQL dynamic configuration method provided by Patroni. You can pass PostgreSQL options

to Patroni through the Operator Custom Resource, updating it with deploy/cr.yaml configuration file).

Custom PostgreSQL configuration options should be included into the patroni.dynamicConfiguration.postgresql.parameters

subsection as follows:

Please note that configuration changes will be automatically applied to the running instances as soon as you apply
Custom Resource changes in a usual way, running the kubectl apply -f deploy/cr.yaml command.

You can apply custom configuration in this way for both new and existing clusters.

Normally, options should be applied to PostgreSQL instances dynamically without restart, except the options with the
postmaster context . Changing options which have context=postmaster will cause Patroni to initiate restart of all

PostgreSQL instances, one by one. You can check the context of a specific option using the SELECT name, context FROM

pg_settings; query to to see if the change should cause a restart or not.

The Operator passes options to Patroni without validation, so there is a theoretical possibility of the cluster malfunction
caused by wrongly configured PostgreSQL instances. Also, this configuration method is used for PostgreSQL options only
and cannot be applied to change other Patroni dynamic configuration options . It means that options in the

parameters subsection under patroni.dynamicConfiguration.postgresql will be applied, and everything else in
patroni.dynamicConfiguration.postgresql will be ignored.

4.3.1 Using host-based authentication (pg_hba)

PostgreSQL Host-Based Authentication (pg_hba) allows controlling access to the PostgreSQL database based on the IP
address or the host name of the connecting host. You can configure pg_hba through the Custom Resource
patroni.dynamicConfiguration.postgresql.pg_hba subsection as follows:

As you may guess, this example allows all hosts to connect to any database with MD5 password-based authentication.

...
patroni:
dynamicConfiguration:
postgresql:
parameters:
max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

Note

...
patroni:
dynamicConfiguration:
postgresql:
pg_hba:
- host all all 0.0.0.0/0 md5

4.3 Changing PostgreSQL options

64 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html

Obviously, you can connect both dynamicConfiguration.postgresql.parameters and dynamicConfiguration.postgresql.pg_hba

subsections:

The changes will be applied after you update Custom Resource in a usual way:

4.3.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

...
patroni:
dynamicConfiguration:
postgresql:
parameters:
max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

pg_hba:
- local all all trust
- host all all 0.0.0.0/0 md5
- host all all ::1/128 md5
- host all mytest 123.123.123.123/32 reject

$ kubectl apply -f deploy/cr.yaml

Last update: 2024-03-19

4.3.2 Get expert help

65 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.4 Binding Percona Distribution for PostgreSQL components to specific

Kubernetes/OpenShift Nodes

The operator does good job automatically assigning new Pods to nodes with sufficient resources to achieve balanced
distribution across the cluster. Still there are situations when it is worth to ensure that pods will land on specific nodes:
for example, to get speed advantages of the SSD equipped machine, or to reduce network costs choosing nodes in a
same availability zone.

Appropriate sections of the deploy/cr.yaml file (such as proxy.pgBouncer) contain keys which can be used to do this,

depending on what is the best for a particular situation.

4.4.1 Affinity and anti-affinity

Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which already has
Pods with specific labels, or has specific labels itself (so called “Node affinity”). Particularly, Pod anti-affinity is good to
reduce costs making sure several Pods with intensive data exchange will occupy the same availability zone or even the
same node - or, on the contrary, to make them land on different nodes or even different availability zones for the high
availability and balancing purposes. Node affinity is useful to assign PostgreSQL instances to specific Kubernetes
Nodes (ones with specific hardware, zone, etc.).

Pod anti-affinity is controlled by the affinity.podAntiAffinity subsection, which can be put into proxy.pgBouncer and
backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration file.

podAntiAffinity allows you to use standard Kubernetes affinity constraints of any complexity:

You can see the explanation of these affinity options in Kubernetes documentation .

4.4.2 Topology Spread Constraints

Topology Spread Constraints allow you to control how Pods are distributed across the cluster based on regions, zones,
nodes, and other topology specifics. This can be useful for both high availability and resource efficiency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection, which can be put into
proxy.pgBouncer and backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration file as follows:

You can see the explanation of these affinity options in Kubernetes documentation .

affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
podAffinityTerm:
labelSelector:
matchLabels:
postgres-operator.crunchydata.com/cluster: keycloakdb
postgres-operator.crunchydata.com/role: pgbouncer

topologyKey: kubernetes.io/hostname

topologySpreadConstraints:
- maxSkew: 1
topologyKey: my-node-label
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchLabels:
postgres-operator.crunchydata.com/instance-set: instance1

4.4 Binding Percona Distribution for PostgreSQL components to specific Kubernetes/OpenShift Nodes

66 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

4.4.3 Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is expressed as a key

with and operator , which is either exists or equal (the latter variant also requires a value the key is equal to). Moreover,
toleration should have a specified effect , which may be a self-explanatory NoSchedule , less strict PreferNoSchedule , or
NoExecute . The last variant means that if a taint with NoExecute is assigned to node, then any Pod not tolerating this
taint will be removed from the node, immediately or after the tolerationSeconds interval, like in the following example.

You can use instances.tolerations and backups.pgbackrest.jobs.tolerations subsections in the deploy/cr.yaml configuration file
as follows:

The Kubernetes Taints and Toleratins contains more examples on this topic.

4.4.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

tolerations:
- effect: NoSchedule
key: role
operator: Equal
value: connection-poolers

Last update: 2024-03-19

4.4.3 Tolerations

67 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.5 Labels and annotations

Labels and annotations are used to attach additional metadata information to Kubernetes resources.

Labels and annotations are rather similar. The difference between them is that labels are used by Kubernetes to
identify and select objects, while annotations are assigning additional non-identifying information to resources.
Therefore, typical role of Annotations is facilitating integration with some external tools.

4.5.1 Setting labels and annotations in the Custom Resource

You can set labels and/or annotations as key/value string pairs in the Custom Resource metadata section of the
deploy/cr.yaml . For PostgreSQL, pgBouncer and pgBackRest Pods, use instances.metadata.annotations /
instances.metadata.labels , proxy.pgbouncer.metadata.annotations / proxy.pgbouncer.metadata.labels , or
backups.pgbackrest.metadata.annotations / backups.pgbackrest.metadata.labels keys as follows:

For PostgreSQL and pgBouncer Services, use expose.annotations / expose.labels or proxy.pgbouncer.expose.annotations /
proxy.pgbouncer.expose.labels keys as follows:

The easiest way to check which labels are attached to a specific object with is using the additional --show-labels option
of the kubectl get command. Checking the annotations is not much more difficult: it can be done as in the following
example:

4.5.2 Settings labels and annotations to the Operator Pod

You can assign labels and/or annotations to the Pod of the Operator itself by editing the deploy/operator.yaml
configuration file before applying it during the installation.

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
...
spec:
...
instances:
- name: instance1
replicas: 3
metadata:
annotations:
my-annotation: value1

labels:
my-label: value2

...

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
...
spec:
...
expose:
annotations:
my-annotation: value1

labels:
my-label: value2

...

$ kubectl get service cluster1-pgbouncer -o jsonpath='{.metadata.annotations}'

4.5 Labels and annotations

68 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml

4.5.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

apiVersion: apps/v1
kind: Deployment
...
spec:
...
template:
metadata:
labels:
app.kubernetes.io/component: operator
app.kubernetes.io/instance: percona-postgresql-operator
app.kubernetes.io/name: percona-postgresql-operator
app.kubernetes.io/part-of: percona-postgresql-operator
pgv2.percona.com/control-plane: postgres-operator
...

Last update: 2024-03-19

4.5.3 Get expert help

69 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.6 Transport layer security (TLS)

The Percona Operator for PostgreSQL uses Transport Layer Security (TLS) cryptographic protocol for the following
types of communication:

Internal - communication between PostgreSQL instances in the cluster

External - communication between the client application and the cluster

The internal certificate is also used as an authorization method for PostgreSQL Replica instances.

TLS security can be configured in following ways:

the Operator can generate long-term certificates automatically at cluster creation time,

you can generate certificates manually.

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to
temporarily disable it if needed.

4.6.1 Allow the Operator to generate certificates automatically

The Operator is able to generate long-term certificates automatically and turn on encryption at cluster creation time, if
there are no certificate secrets available. Just deploy your cluster as usual, with the kubectl apply -f deploy/cr.yaml

command, and certificates will be generated.

4.6.2 Check connectivity to the cluster

You can check TLS communication with use of the psql , the standard interactive terminal-based frontend to
PostgreSQL. The following command will spawn a new pg-client container, which includes needed command and can
be used for the check (use your real cluster name instead of the <cluster-name> placeholder):

•

•

•

•

$ cat <<EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
 name: pg-client
spec:
 replicas: 1
 selector:
 matchLabels:
 name: pg-client
 template:
 metadata:
 labels:
 name: pg-client
 spec:
 containers:
 - name: pg-client
 image: perconalab/percona-distribution-postgresql:16
 imagePullPolicy: Always
 command:
 - sleep
 args:
 - "100500"
 volumeMounts:
 - name: ca
 mountPath: "/tmp/tls"
 volumes:
 - name: ca

4.6 Transport layer security (TLS)

70 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal to check
connectivity over the encrypted channel (please use real cluster-name, PostgreSQL user login and password):

Now you should see the prompt of PostgreSQL interactive terminal:

4.6.3 Generate certificates manually

Provide pre-existing certificates to the Operator

To allow the Operator to use custom certificates, simply create the appropriate Secrets in your cluster namespace
before deploying the cluster with the kubectl apply -f deploy/cr.yaml command. The Secret should contain the TLS key
(tls.key), TLS certificate (tls.crt) and the CA certificate (ca.crt) to use:

For example, if you have files named ca.crt , my_tls.key , and my_tls.crt stored on your local machine, you could run the
following command to create a Secret named cluster1.tls in the postgres-operator namespace:

You should use two sets of certificates: one set is for external communications, and another set is for internal ones. A
secret created for the external use must be added to the secrets.customTLSSecret.name field of your Custom Resource. A
certificate generated for internal communications must be added to the secrets.customReplicationTLSSecret.name field in
your Custom Resource. You can do it in the deplou/cr.yaml configuration file as follows:

 secret:
 secretName: <cluster_name>-ssl-ca
 items:
 - key: ca.crt
 path: ca.crt
 mode: 0777
EOF

$ kubectl exec -it deployment/pg-client -- bash -il
[postgres@pg-client /]$ PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt psql postgres://<postgresql-
user>:<postgresql-password>@<cluster-name>-pgbouncer.<namespace>.svc.cluster.local

$ psql (16)
Type "help" for help.
pgdb=>

apiVersion: v1
kind: Secret
metadata:
name: cluster1-cert

type: Opaque
data:
ca.crt: <value>
tls.crt: <value>
tls.key: <value>

$ kubectl create secret generic -n postgres-operator cluster1.tls \
--from-file=ca.crt=ca.crt \
--from-file=tls.key=my_tls.key \
--from-file=tls.crt=my_tls.crt

spec:
...
secrets:

customTLSSecret:
name: cluster1-cert

customReplicationTLSSecret:

4.6.3 Generate certificates manually

71 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Don’t forget to apply changes as usual:

Generate custom certificates for the Operator yourself

The good option to find out the certificates specifics needed for the Operator would be to look at certificates,
generated by the Operator automatically. Supposing that your cluster name is cluster1 , you can examine the auto-
generated CA certificate (ca.crt) after deploying the cluster as follows:

You can check the auto-generated TLS certificate (tls.crt) in a similar way:

name: replication1-cert
...

$ kubectl apply -f deploy/cr.yaml

$ kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.ca\.crt}' | base64 --decode | openssl x509 -text -noout

Expected output

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 ec:f3:d6:f5:35:5c:97:0c:66:cc:90:ed:e6:4b:0a:07
 Signature Algorithm: ecdsa-with-SHA384
 Issuer: CN = postgres-operator-ca
 Validity
 Not Before: Dec 24 13:58:21 2023 GMT
 Not After : Dec 21 14:58:21 2033 GMT
 Subject: CN = postgres-operator-ca
 Subject Public Key Info:
 ...
 ...

$ kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.tls\.crt}' | base64 --decode | openssl x509 -text -noout

4.6.3 Generate certificates manually

72 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

While sharing the same ca.crt , certificates for external communications (referenced in the secrets.customTLSSecret.name

Custom Resource option) and certificates for internal ones (referenced in the secrets.customReplicationTLSSecret.name

Custom Resource option) can’t share the same tls.crt . The tls.crt for external communications should have a Common
Name (CN) setting that matches the primary Service name (CN = cluster1-primary.default.svc.cluster.local. in the above
example). Similarly, the tls.crt for internal communications should have a Common Name (CN) setting that matches
the preset replication user: CN=_crunchyrepl .

One of the options to create certificates yourself is to use CloudFlare PKI and TLS toolkit . Supposing that your

cluster name is cluster1 and the desired namespace is postgres-operator , certificates generation may look as follows:

Expected output

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 59:f3:44:09:f1:73:b3:8e:ba:d4:a0:52:cc:fb:9c:1f
 Signature Algorithm: ecdsa-with-SHA384
 Issuer: CN = postgres-operator-ca
 Validity
 Not Before: Dec 24 13:58:21 2023 GMT
 Not After : Dec 23 14:58:21 2024 GMT
 Subject: CN = cluster1-primary.default.svc.cluster.local.
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:b1:2f:37:1b:ca:ab:5f:19:38:24:69:11:54:82:
 10:49:fd:00:3c:26:ef:83:32:82:b1:73:96:e8:9d:
 eb:2f:60:89:ea:3a:cb:95:a7:0a:2e:46:63:ce:29:
 87:17:1a:d4:3e:c5:5a:90:8c:71:3b:23:75:21:42:
 09:60:81:da:c1
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 Authority Key Identifier:
 3C:25:65:88:F2:CD:29:37:05:06:7C:E8:F3:C4:2B:CD:9B:DC:5E:74
 X509v3 Subject Alternative Name:
 DNS:cluster1-primary.default.svc.cluster.local., DNS:cluster1-primary.default.svc, DNS:cluster1-primary.default,
DNS:cluster1-primary, DNS:cluster1-replicas.default.svc.cluster.local., DNS:cluster1-replicas.default.svc, DNS:cluster1-
replicas.default, DNS:cluster1-replicas
 Signature Algorithm: ecdsa-with-SHA384
 ...

``` {.bash data-prompt="$" }
$ export CLUSTER_NAME=cluster1
$ export NAMESPACE=postgres-operator
$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
{
  "CN": "*",
  "key": {
    "algo": "ecdsa",
    "size": 384
  }
}
EOF

$ cat <<EOF > ca-config.json

4.6.3 Generate certificates manually

73 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://cfssl.org/
https://cfssl.org/
https://cfssl.org/


You can find more on genrating certificates this way in official Kubernetes documentation .

Don’t forget that you should generate certificates twice: one set is for external communications, and another set is for
internal ones!

4.6.4 Check your certificates for expiration

{
   "signing": {
     "default": {
        "expiry": "87600h",
        "usages": ["digital signature", "key encipherment", "content commitment"]
      }
   }
}
EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem  -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare server
{
   "hosts": [
     "localhost",
     "${CLUSTER_NAME}-primary",
     "${CLUSTER_NAME}-primary.${NAMESPACE}",
     "${CLUSTER_NAME}-primary.${NAMESPACE}.svc.cluster.local",
     "${CLUSTER_NAME}-primary.${NAMESPACE}.svc"
   ],
   "CN": "${CLUSTER_NAME}-primary.${NAMESPACE}.svc.cluster.local", 
   "key": {
     "algo": "ecdsa",
     "size": 384
   }
}
EOF
```

4.6.4 Check your certificates for expiration

74 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/

First, check the necessary secrets names (cluster1-cluster-cert and cluster1-replication-cert by default):

You will have the following response:

Now use the following command to find out the certificates validity dates, substituting Secrets names if necessary:

The resulting output will be self-explanatory:

4.6.5 Keep certificates after deleting the cluster

In case of cluster deletion, objects, created for SSL (Secret, certificate, and issuer) are not deleted by default.

If the user wants the cleanup of objects created for SSL, there is a finalizers.percona.com/delete-ssl Custom Resource
option, which can be set in deploy/cr.yaml : if this finalizer is set, the Operator will delete Secret, certificate and issuer
after the cluster deletion event.

4.6.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

$ kubectl get secrets

1.

NAME TYPE DATA AGE
cluster1-cluster-cert Opaque 3 11m
...
cluster1-replication-cert Opaque 3 11m
...

2.

$ {
kubectl get secret/cluster1-replication-cert -o jsonpath='{.data.tls\.crt}' | base64 --decode | openssl x509 -noout -dates
kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.ca\.crt}' | base64 --decode | openssl x509 -noout -dates
}

notBefore=Jun 28 10:20:19 2023 GMT
notAfter=Jun 27 11:20:19 2024 GMT
notBefore=Jun 28 10:20:18 2023 GMT
notAfter=Jun 25 11:20:18 2033 GMT

Last update: 2024-03-29

4.6.5 Keep certificates after deleting the cluster

75 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.7 Telemetry

The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona, which helps us
to determine where to focus the development and what is the uptake for each release of Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid field)

Kubernetes version

Platform (is it Kubernetes or Openshift)

Is PMM enabled, and the PMM Version

Operator version

PostgreSQL version

PgBackRest version

Was the Operator deployed with Helm

Are sidecar containers used

Are backups used

We do not gather anything that identify a system, but the following thing should be mentioned: Custom Resource ID is
a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it at scheduled
times to obtain fresh information about version numbers and valid image paths needed for the upgrade.

The landing page for this service, check.percona.com , explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

if you don’t use helm for installation, you have to edit the operator.yaml before applying it with the kubectl apply -f

deploy/operator.yaml command. Open the operator.yaml file with your text editor, find the DISABLE_TELEMETRY

environment variable and set it to "true"

4.7.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

•

•

•

•

•

•

•

$ helm install my-db percona/pg-db --version 2.4.0 --namespace my-namespace --set disable_telemetry="true"

•

...
- name: DISABLE_TELEMETRY
value: "true"

...

Last update: 2024-03-19

4.7 Telemetry

76 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://check.percona.com/
https://check.percona.com/
https://check.percona.com/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5. Management

5.1 Upgrade Database and Operator

5.1.1 Upgrade from the Operator version 1.x to version 2.x

The Operator version 2.x has a lot of differences compared to the version 1.x. This makes upgrading from version 1.x
to version 2.x quite different from a normal upgrade. In fact, you have to migrate the cluster from version 1.x to
version 2.x.

There are several ways to do such version 1.x to version 2.x upgrade. Choose the method based on your downtime
preference and roll back strategy:

5.1.2 Update Database and Operator version 2.x

Starting from the version 2.2.0 Percona Operator for PostgreSQL allows upgrades to newer 2.x versions. The
upgradable components of the cluster are the following ones:

the Operator;

Custom Resource Definition (CRD),

Database Management System (Percona Distribution for PostgreSQL).

The list of recommended upgrade scenarios includes two variants:

Upgrade to the new versions of the Operator and Percona Distribution for PostgreSQL,

Minor Percona Distribution for PostgreSQL version upgrade without the Operator upgrade.

Upgrading the Operator and CRD

The Operator supports last 3 versions of the CRD, so it is technically possible to skip upgrading the CRD and just
upgrade the Operator. If the CRD is older than the new Operator version by no more than three releases, you will be able to
continue using the old CRD and even carry on Percona Distribution for PostgreSQL minor version upgrades with it. But
the recommended way is to update the Operator and CRD.

Pros Cons

Data Volumes migration - re-use the volumes
that were created by the Operator version 1.x

The simplest method - Requires downtime
- Impossible to roll back

Backup and restore - take the backup with the
Operator version 1.x and restore it to the
cluster deployed by the Operator version 2.x

Allows you to quickly
test version 2.x

Provides significant downtime
in case of migration

Replication - replicate the data from the
Operator version 1.x cluster to the standby
cluster deployed by the Operator version 2.x

- Quick test of v2
cluster
- Minimal downtime
during upgrade

Requires significant computing
resources to run two clusters
in parallel

•

•

•

•

•

Note

5. Management

77 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Only the incremental update to a nearest version of the Operator is supported (for example, update from 2.2.0 to
2.3.0). To update to a newer version, which differs from the current version by more than one, make several
incremental updates sequentially.

Considering the Operator uses postgres-operator namespace, upgrade to the version 2.4.0 includes the following steps.

Update the Custom Resource Definition for the Operator, taking it from the official repository on Github, and do the

same for the Role-based access control:

In case of cluster-wide installation, use deploy/cw-rbac.yaml instead of deploy/rbac.yaml .

Now you should apply a patch to your deployment, supplying necessary image name with a newer version tag. You

can find the proper image name for the current Operator release in the list of certified images. updating to the 2.4.0

version should look as follows:

The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process in real time
with the kubectl rollout status command with the name of your cluster:

5.1.3 Upgrading Percona Distribution for PostgreSQL

Starting from the Operator version 2.4, Percona Distribution for PostgreSQL can be automatically upgrade from one
PostgreSQL major version to another (for example, upgrade from PostgreSQL 15 to PostgreSQL 16). Versions earlier
than 2.4 support only minor versions upgrade.

Major version upgrade

Major version upgrades feature is currently a tech preview, and it is not recommended for production environments.

Upgrade is triggered by applying the YAML file with the information about the existing and desired major versions,
with an example present in deploy/upgrade.yaml :

1.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/
crd.yaml
$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/rbac.yaml -n
postgres-operator

Note

2.

$ kubectl -n postgres-operator patch deployment percona-postgresql-operator \
-p'{"spec":{"template":{"spec":{"containers":[{"name":"operator","image":"percona/percona-postgresql-operator:

2.4.0"}]}}}}'

3.

$ kubectl rollout status deployments percona-postgresql-operator

Note

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
name: cluster1-15-to-16

spec:
postgresClusterName: cluster1

5.1.3 Upgrading Percona Distribution for PostgreSQL

78 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

After applying it as usual, by running kubectl apply -f deploy/upgrade.yaml command, the actual upgrade takes place as
follows:

The cluster is paused for a while,

The cluster is specially annotated with pgv2.percona.com/allow-upgrade : <PerconaPGUpgrade.Name> annotation,

Jobs are created to migrate the data,

The cluster starts up after the upgrade finishes.

During the upgrade data are duplicated in the same PVC for each major upgrade, and old version data are not deleted
automatically. Make sure your PVC has enough free space to store data.

If the upgrade process meets problems and cannot proceed, the cluster will remain paused. In this case you should
delete PerconaPGUpgrade object with kubectl delete command and resume the cluster manually to check what went wrong
with upgrade.

If there are custom PostgreSQL extensions installed in the cluster, they need to be taken into account: you need to
build and package each custom extension for the new PostgreSQL major version. During the upgrade the Operator
will install extensions into the upgrade container.

image: perconalab/percona-postgresql-operator:main-upgrade
fromPostgresVersion: 15
toPostgresVersion: 16

1.

2.

3.

4.

Note

5.1.3 Upgrading Percona Distribution for PostgreSQL

79 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Minor version upgrade

Upgrading Percona Distribution for PostgreSQL minor version can be done as follows:

Apply a patch to your Custom Resource, setting necessary Custom Resource version and image names with a newer

version tag.

Check the version of the Operator you have in your Kubernetes environment. Please refer to the Operator upgrade guide to
upgrade the Operator and CRD, if needed.

Patching Custom Resource is done with the kubectl patch pg command. Actual image names can be found in the list of
certified images. For example, updating cluster1 cluster to the 2.4.0 version should look as follows:

The above command upgrades various components of the cluster including PMM Client. It is highly recommended to

upgrade PMM Server before upgrading PMM Client. If it wasn’t done and you would like to avoid PMM Client upgrade,
remove it from the list of images, reducing the last of two patch commands as follows:

The deployment rollout will be automatically triggered by the applied patch. The update process is successfully
finished when all Pods have been restarted.

5.1.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

Note

$ kubectl -n postgres-operator patch pg cluster1 --type=merge --patch '{
 "spec": {
 "crVersion":"2.4.0",
 "image": "percona/percona-postgresql-operator:2.4.0-ppg15-postgres",
 "proxy": { "pgBouncer": { "image": "percona/percona-postgresql-operator:2.4.0-ppg15-pgbouncer" } },
 "backups": { "pgbackrest": { "image": "percona/percona-postgresql-operator:2.4.0-ppg15-pgbackrest" } },
 "pmm": { "image": "percona/pmm-client:2.42.0" }
 }}'

Warning

$ kubectl -n postgres-operator patch pg cluster1 --type=merge --patch '{
 "spec": {
 "crVersion":"2.4.0",
 "image": "percona/percona-postgresql-operator:2.4.0-ppg15-postgres",
 "proxy": { "pgBouncer": { "image": "percona/percona-postgresql-operator:2.4.0-ppg15-pgbouncer" } },
 "backups": { "pgbackrest": { "image": "percona/percona-postgresql-operator:2.4.0-ppg15-pgbackrest" } }
 }}'

Last update: 2024-06-28

5.1.4 Get expert help

80 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.2 Upgrade from version 1 to version 2

5.2.1 Upgrade using data volumes

Prerequisites:

The following conditions should be met for the Volumes-based migration:

You have a version 1.x cluster with spec.keepData: true in the Custom Resource

You have both Operators deployed and allow them to control resources in the same namespace

Old and new clusters must be of the same PostgreSQL major version

This migration method has two limitations. First of all, this migration method introduces a downtime. Also, you can
only reverse such migration by restoring the old cluster from the backup. See other migration methods if you need
lower downtime and a roll back plan.

Prepare version 1.x cluster for the migration

Remove all Replicas from the cluster, keeping only primary running. It is required to assure that Volume of the primary
PVC does not change. The deploy/cr.yaml configuration file should have it as follows:

Apply the Custom Resource in a usual way:

When all Replicas are gone, proceed with removing the cluster. Double check that spec.keepData is in place, otherwise the
Operator will delete the volumes!

Find PVC for the Primary and pgBackRest :

A third PVC used to store write-ahead logs (WAL) may also be present if external WAL volumes were enabled for the
cluster.

•

•

•

1.

...
pgReplicas:

hotStandby:
size: 0

2.

$ kubectl apply -f deploy/cr.yaml

3.

$ kubectl delete perconapgcluster cluster1

4.

$ kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

Expected output

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
cluster1 Bound pvc-940cdc23-cd4c-4f62-ac3a-dc69850042b0 1Gi RWO standard-rwo 57m
cluster1-pgbr-repo Bound pvc-afb00490-5a45-45cb-a1cb-10af8e48bb13 1Gi RWO standard-rwo 57m

5.2 Upgrade from version 1 to version 2

81 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Permissions for pgBackRest repo folders are managed differently in version 1 and version 2. We need to change the
ownership of the backrest folder on the Persistent Volume to avoid errors during migration. Running a chown command
within a container fixes this problem. You can use the following manifest to execute it:

Apply it as follows:

5.

chown-pod.yaml

apiVersion: v1
kind: Pod
metadata:
name: chown-pod

spec:
volumes:
- name: backrestrepo
persistentVolumeClaim:
claimName: cluster1-pgbr-repo

containers:
- name: task-pv-container
image: ubuntu
command:
- chown
- -R
- 26:26
- /backrestrepo/cluster1-backrest-shared-repo
volumeMounts:
- mountPath: "/backrestrepo"
name: backrestrepo

$ kubectl apply -f chown-pod.yaml -n pgo

5.2.1 Upgrade using data volumes

82 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Execute the migration to version 2.x

The old cluster is shut down, and Volumes are ready to be used to provision the new cluster managed by the Operator
version 2.x.

Install the Operator version 2 (if not done yet). Pick your favorite method from our documentaion.

Run the following command to show the names of PVC belonging to the old cluster:

Now edit the Custom Resource manifest (deploy/cr.yaml configuration file) of the version 2.x cluster: add fields to the
dataSource.volumes subsection, pointing to the PVCs of the version 1.x cluster:

Do not forget to set the proper PostgreSQL major version. It must be the same version that was used in version 1 cluster.
You can set the version in the corresponding image sections and postgresVersion . The following example sets version 14:

Apply the manifest:

The new cluster will be provisioned shortly using the volume of the version 1.x cluster. You should remove the
spec.datasource.volumes section from your manifest.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

1.

2.

$ kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

Expected output

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
cluster1 Bound pvc-db9bf618-04d5-4807-948d-e32e81098575 1Gi RWO standard-rwo 87m
cluster1-pgbr-repo Bound pvc-37d93aa9-bf02-4295-bbbc-c1f834ed6045 1Gi RWO standard-rwo 87m

3.

...
dataSource:
volumes:

pgDataVolume:
pvcName: cluster1
directory: cluster1

pgBackRestVolume:
pvcName: cluster1-pgbr-repo
directory: cluster1-backrest-shared-repo

4.

spec:
image: percona/percona-postgresql-operator:2.4.0-ppg14-postgres
postgresVersion: 14
proxy:
pgBouncer:
image: percona/percona-postgresql-operator:2.4.0-ppg14-pgbouncer

backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.4.0-ppg14-pgbackrest

5.

$ kubectl apply -f deploy/cr.yaml

5.2.1 Upgrade using data volumes

83 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-03-19

5.2.1 Upgrade using data volumes

84 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.2.2 Upgrade using backup and restore

This method allows you to migrate from the version 1.x to version 2.x cluster by restoring (actually creating) a new
version 2.x PostgreSQL cluster using a backup from the version 1.x cluster.

To make sure that all transactions are captured in the backup, you need to stop the old cluster. This brings downtime to
the application.

Prepare the backup

Create the backup on the version 1.x cluster, following the official guide for manual (on-demand) backups. This involves
preparing the manifest in YAML and applying it in the ususal way:

Pause or delete the version 1.x cluster to ensure that you have the latest data.

Before deleting the cluster, make sure that the spec.keepBackups Custom Resource option is set to true . When it’s set, local
backups will be kept after the cluster deletion, so you can proceed with deleting your cluster as follows:

Note

1.

$ kubectl apply -f deploy/backup/backup.yaml

2.

Warning

$ kubectl delete perconapgcluster cluster1

5.2.2 Upgrade using backup and restore

85 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-operator-for-postgresql/1.0/backups.html#making-on-demand-backup
https://docs.percona.com/percona-operator-for-postgresql/1.0/pause.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/operator.html#spec-keepbackups

Restore the backup as a version 2.x cluster

Restore from S3 / Google Cloud Storage for backups repository

To restore from the S3 or Google Cloud Storage for backups (GCS) repository, you should first configure the
spec.backups.pgbackrest.repos subsection in your version 2.x cluster Custom Resource to point to the backup storage
system. Just follow the repository documentation instruction for S3 or GCS. For example, for GCS you can define the
repository similar to the following:

Create and configure any required Secrets or desired custom pgBackrest configuration as described in the backup
documentation for te Operator version 2.x.

Set the repository path in the backups.pgbackrest.global subsection. By default it is /backrestrepo/<clusterName>-backrest-

shared-repo :

Set the spec.dataSource option to create the version 2.x cluster from the specific repository:

You can also provide other pgBackRest restore options, e.g. if you wish to restore to a specific point-in-time (PITR).

Create the version 2.x cluster:

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

spec:
backups:
pgbackrest:
repos:
- name: repo1
gcs:
bucket: MY-BUCKET
region: us-central1

2.

3.

spec:
backups:
pgbackrest:
global:
repo1: /backrestrepo/cluster1-backrest-shared-repo

4.

spec:
dataSource:
postgresCluster:
repoName: repo1

5.

$ kubectl apply -f cr.yaml

Last update: 2023-12-08

5.2.2 Upgrade using backup and restore

86 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.2.3 Migrate using Standby

This method allows you to migrate from version 1.x to version 2.x by creating a new version 2.x PostgreSQL cluster in a
“standby” mode, mirroring the version 1.x cluster to it continuously. This method can provide minimal downtime, but
requires additional computing resources to run two clusters in parallel.

This method only works if the version 1.x cluster uses Amazon S3 or S3-compatible storage , or Google Cloud

storage (GCS) for backups. For more information on standby clusters, please refer to this article .

Migrate to version 2

There is no need to perform any additional configuration on version 1.x cluster, you will only need to configure the
version 2.x one.

Configure spec.backups.pgbackrest.repos Custom Resource option to point to the backup storage system. For example, for
GCS, the repository would be defined similar to the following:

Create and configure any required secrets or desired custom pgBackrest configuration as described in the backup
documentation for the version 2.x.

Set the repository path in backups.pgbackrest.global section of the Custom Resource configuration file. By default it will be
/backrestrepo/<clusterName>-backrest-shared-repo :

Enable the standby mode in spec.standby and point to the repository:

Create the version 2.x cluster:

1.

spec:
backups:
pgbackrest:
repos:
- name: repo1
gcs:
bucket: MY-BUCKET
region: us-central1

2.

3.

spec:
backups:
pgbackrest:
global:
repo1: /backrestrepo/cluster1-backrest-shared-repo

4.

spec:
standby:
enabled: true
repoName: repo1

5.

$ kubectl apply -f deploy/cr.yaml

5.2.3 Migrate using Standby

87 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/storage
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html

Promote version 2.x cluster

Once the standby cluster is up and running, you can promote it.

Delete version 1.x cluster, but ensure that spec.keepBackups is set to true .

Promote version 2.x cluster by disabling the standby mode:

You can use version 2.x cluster now. Also the 2.x version is now managing the object storage with backups, so you
should not start your old cluster.

Create the replication user

Right after disabling standby, run the following SQL commands as a PostgreSQL superuser. For example, you can login
as the postgres user, or exec into the Pod and use psql :

add the managed replication user

allow for the replication user to execute the functions required as part of “rewinding”

The above step will be automated in upcoming releases.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

$ kubectl delete perconapgcluster cluster1

2.

spec:
standby:
enabled: false

•

CREATE ROLE _crunchyrepl WITH LOGIN REPLICATION;

•

GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint, boolean) TO _crunchyrepl;

Last update: 2024-03-19

5.2.3 Migrate using Standby

88 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3 Back up and restore

5.3.1 About backups

In this section you will learn how to set up and manage backups of your data using the Operator.

You can make backups in two ways:

On-demand. You can do them manually at any moment.

Schedule backups. Configure backups and their schedule in the deploy/cr.yaml file. The Operator makes them

automatically according to the schedule.

What you need to know

BACKUP REPOSITORIES

To make backups, the Operator uses the open source pgBackRest backup and restore utility.

When the Operator creates a new PostgreSQL cluster, it also creates a special pgBackRest repository to facilitate the
usage of the pgBackRest features. You can notice an additional repo-host Pod after the cluster creation.

A pgBackRest repository consists of the following Kubernetes objects:

A Deployment,

A Secret that contains information specific to the PostgreSQL cluster (e.g. SSH keys, AWS S3 keys, etc.),

A Pod with a number of supporting scripts,

A Service.

In the /deploy/cr.yml file, pgBackRest repositories are listed in the backups.pgbackrest.repos subsection. You can have up
to 4 repositories as repo1 , repo2 , repo3 , and repo4 .

BACKUP TYPES

You can make the following types of backups:

full : A full backup of all the contents of the PostgreSQL cluster,

differential : A backup of only the files that have changed since the last full backup,

incremental : Default. A backup of only the files that have changed since the last full or differential backup.

BACKUP STORAGE

You have the following options to store PostgreSQL backups:

Cloud storage:

Amazon S3, or any S3-compatible storage,

Google Cloud Storage,

Azure Blob Storage

A Persistent Volume attached to the pgBackRest Pod.

Next steps

Ready to move forward? Configure backup storage

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3 Back up and restore

89 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-04-16

5.3.1 About backups

90 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.2 Configure backup storage

Configure backup storage for your backup repositories in the backups.pgbackrest.repos section of the deploy/cr.yaml

configuration file.

Follow the instructions relevant to the cloud storage or Persistent Volume you are using for backups.

S3-compatible backup storage

To use Amazon S3 or any S3-compatible storage for backups, you need to have the following S3-related

information:

The name of S3 bucket;

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage. These are stored in an encoded form in Kubernetes
Secrets along with other sensitive information.

For S3-compatible storage other than native Amazon S3, you will also need to specify the endpoint - the actual URI
to access the bucket - and the URI style (see below).

The pgBackRest tool does backups based on write-ahead logs (WAL) archiving. If you are using an S3 storage in a region
located far away from the region of your PostgreSQL cluster deployment, it could lead to the delay and impossibility to
create a new replica/join delayed replica if the primary restarts. A new WAL file is archived in 60 seconds at the backup
start by default , causing both full and incremental backups fail in case of long delay.

To prevent issues with PostgreSQL archiving and have faster restores, it’s recommended to use the same S3 region for
both the Operator and backup options. Additionally, you can replicate the S3 bucket to another region with tools like
Amazon S3 Cross Region Replication .

•

•

•

•

Note

5.3.2 Configure backup storage

91 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html

Configuration steps

5.3.2 Configure backup storage

92 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Encode the S3 credentials and the pgBackRest repository name that you will use for backups. In this example, we use
AWS S3 key and S3 key secret and repo2 .

Create the Secret configuration file and specify the base64-encoded string from the previous step. The following is the
example of the cluster1-pgbackrest-secrets.yaml Secret file:

This Secret can store credentials for several repositories presented as separate data keys.

Create the Secrets object from this YAML file. Replace the <namespace> placeholder with your value:

Update your deploy/cr.yaml configuration. Specify the Secret file you created in the backups.pgbackrest.configuration

subsection, and put all other S3 related information in the backups.pgbackrest.repos subsection under the repository name
that you intend to use for backups. This name must match the name you used when you encoded S3 credentials on step
1. Also, if your S3-compatible storage requires additional repository options for the pgBackRest tool, you can specify

these parameters in the backups.pgbackrest.global subsection (use standard pgBackRest option names prefixed with
the repository name).

For Amazon S3 storage:

For example, the S3 storage for the repo2 repository looks as follows:

1.

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

$ cat <<EOF | base64
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets

type: Opaque
data:
s3.conf: <base64-encoded-configuration-contents>

Note

3.

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

4.

...
backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets

5.3.2 Configure backup storage

93 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://pgbackrest.org/configuration.html#section-repository
https://pgbackrest.org/configuration.html#section-repository
https://pgbackrest.org/configuration.html#section-repository
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global

To use this feature, add annotation to the spec part of the Custom Resource and also add pgBackRest custom configuration
option to the backups subsection as follows:

For S3-compatible storage:

For example, the S3-compatible storage for the repo2 repository looks as follows:

The repo2-storage-verify-tls option in the above example enables TLS verification for pgBackRest (when set to y or simply
omitted) or disables it, when set to n .

The repo2-s3-uri-style option should be set to path if you use S3-compatible storage (otherwise you might see “host

not found error” in your backup job logs), and is not needed for Amazon S3.

Create or update the cluster. Replace the <namespace> placeholder with your value:

...
repos:
- name: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
region: "<YOUR_AWS_S3_REGION>"

Using AWS EC2 instances for backups makes it possible to automate access to AWS S3 buckets based on IAM
roles for Service Accounts with no need to specify the S3 credentials explicitly.

spec:
crVersion: 2.4.0
metadata:
annotations:
eks.amazonaws.com/role-arn: arn:aws:iam::1191:role/role-pgbackrest-access-s3-bucket

...
backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.4.0-ppg16-pgbackrest
global:
repo2-s3-key-type: web-id

...
backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets
...
global:
repo2-storage-verify-tls=y
repo2-s3-uri-style: path

...
repos:
- name: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

5.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

5.3.2 Configure backup storage

94 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style

Google Cloud Storage

To use Google Cloud Storage (GCS) as an object store for backups, you need the following information:

a proper GCS bucket name. Pass the bucket name to pgBackRest via the gcs.bucket key in the backups.pgbackrest.repos

subsection of deploy/cr.yaml .

your service account key for the Operator to access the storage.

•

•

5.3.2 Configure backup storage

95 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/storage

Configuration steps

5.3.2 Configure backup storage

96 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Create your service account key following the official Google Cloud instructions .

Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin → Service Accounts in the left menu panel, then
click your account and open the KEYS tab):

Click the ADD KEY button, choose Create new key and choose JSON as a key type. These actions will result in downloading a
file in JSON format with your new private key and related information (for example, gcs-key.json).

Create the Kubernetes Secret . The Secret consists of base64-encoded versions of two files: the gcs-key.json file with

the Google service account key you have just downloaded, and the special gcs.conf configuration file.

Create the gcs.conf configuration file. The file contents depends on the repository name for backups in the deploy/cr.yaml

file. In case of the repo3 repository, it looks as follows:

Encode both gcs-key.json and gcs.conf files.

Create the Kubernetes Secret configuration file and specify your cluster name and the base64-encoded contents of the
files from previous steps. The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

 Info This Secret can store credentials for several repositories presented as separate data keys.

Create the Secrets object from the Secret configuration file. Replace the <namespace> placeholder with your value:

1.

2.

my-service-account

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.
Learn more about setting organization policies for service accounts

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the

Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

ADDKEY

DETAILS PERMISSIONS KEYS METRICS LOGS

3.

•

[global]
repo3-gcs-key=/etc/pgbackrest/conf.d/gcs-key.json

•

 Linux

 MacOS

base64 --wrap=0 <filename>

base64 -i <filename>

•

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets

type: Opaque
data:
gcs-key.json: <base64-encoded-json-file-contents>
gcs.conf: <base64-encoded-conf-file-contents>

4.

5.3.2 Configure backup storage

97 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Update your deploy/cr.yaml configuration. Specify your GCS credentials Secret in the backups.pgbackrest.configuration

subsection, and put GCS bucket name into the bucket option in the backups.pgbackrest.repos subsection. The repository
name must be the same as the name you specified when you created the gcs.conf file. For example, GCS storage
configuration for the repo3 repository would look as follows:

Create or update the cluster. Replace the <namespace> placeholder with your value:

Azure Blob Storage (tech preview)

To use Microsoft Azure Blob Storage for storing backups, you need the following:

a proper Azure container name.

Azure Storage credentials. These are stored in an encoded form in the Kubernetes Secret .

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

5.

...
backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets
...
repos:
- name: repo3
gcs:
bucket: "<YOUR_GCS_BUCKET_NAME>"

6.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

•

•

5.3.2 Configure backup storage

98 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Configuration steps

5.3.2 Configure backup storage

99 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Encode the Azure Storage credentials and the pgBackRest repo name that you will use for backups with base64. In this
example, we are using repo4 .

Create the Secret configuration file and specify the base64-encoded string from the previous step. The following is the
example of the cluster1-pgbackrest-secrets.yaml Secret file:

This Secret can store credentials for several repositories presented as separate data keys.

Create the Secrets object from this yaml file. Replace the <namespace> placeholder with your value:

Update your deploy/cr.yaml configuration. Specify the Secret file you have created in the previous step in the
backups.pgbackrest.configuration subsection. Put Azure container name in the backups.pgbackrest.repos subsection under the
repository name that you intend to use for backups. This name must match the name you used when you encoded S3
credentials on step 1.

For example, the Azure storage for the repo1 repository looks as follows.

1.

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>
repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>
EOF

$ cat <<EOF | base64
[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>
repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>
EOF

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets

type: Opaque
data:
azure.conf: <base64-encoded-configuration-contents>

Note

3.

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

4.

...
backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets
...
repos:
- name: repo4

5.3.2 Configure backup storage

100 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Create or update the cluster. Replace the <namespace> placeholder with your value:

Persistent Volume

Percona Operator for PostgreSQL uses Kubernetes Persistent Volumes to store Postgres data. You can also use them
to store backups. A Persistent volume is created at the same time when the Operator creates PostgreSQL cluster for
you. You can find the Persistent Volume configuration in the backups.pgbackrest.repos section of the cr.yaml file under
the repo1 name:

This configuration is sufficient to make a backup.

Next steps

Make an on-demand backup

Make a scheduled backup

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

azure:
container: "<YOUR_AZURE_CONTAINER>"

5.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

- name: repo1
volume:
volumeClaimSpec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi

•

•

Last update: 2024-06-28

5.3.2 Configure backup storage

101 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.3 Make scheduled backups

Backups schedule is defined on the per-repository basis in the backups.pgbackrest.repos subsection of the deploy/cr.yaml

file.

You can supply each repository with a schedules.<backup type> key equal to an actual schedule that you specify in
crontab format.

Before you start, make sure you have configured a backup storage.

Configure backup schedule in the deploy/cr.yaml file. The schedule is specified in crontab format as explained in Custom
Resource options. The repository name must be the same as the one you defined in the backup storage configuration.
The following example shows the schedule for repo1 repository:

Update the cluster:

Next steps

Restore from a backup

Useful links

Backup retention

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

...
backups:
pgbackrest:
...

repos:
- name: repo1
schedules:
full: "0 0 * * 6"
differential: "0 1 * * 1-6"

...

1.

$ kubectl apply -f deploy/cr.yaml

Last update: 2023-12-08

5.3.3 Make scheduled backups

102 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.4 Making on-demand backups

To make an on-demand backup manually, you need a backup configuration file. You can use the example of the
backup configuration file deploy/backup.yaml :

Here’s a sequence of steps to follow:

Before you start, make sure you have configured a backup storage.

In the deploy/backup.yaml configuration file, specify the cluster name and the repository name to be used for backups.
The repository name must be the same as the one you defined in the backup storage configuration. It must also match
the repository name specified in the backups.pgbackrest.manual subsection of the deploy/cr.yaml file.

If needed, you can add any pgBackRest command line options .

Make a backup with the following command:

To list the backup, run:

Next steps

Restore from a backup

Useful links

Backup retention

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backup1

spec:
pgCluster: cluster1
repoName: repo1

options:
- --type=full

1.

2.

3.

4.

$ kubectl apply -f deploy/backup.yaml

Tip

$ kubectl get pg-backup

Last update: 2024-03-19

5.3.4 Making on-demand backups

103 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.5 Restore the cluster from a previously saved backup

The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery.
There are two ways to restore a cluster:

restore to a new cluster using the dataSource.postgresCluster subsection,

restore in-place to an existing cluster (note that this is destructive).

Restore to a new PostgreSQL cluster

Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL cluster that can run
alongside an existing one. There are several scenarios where using this technique is helpful:

Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is creating
a clone.

Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To create a new PostgreSQL cluster from either the active one, or a former cluster whose pgBackRest repository still
exists, use the dataSource.postgresCluster subsection options. The content of this subsection should copy the backups

keys of the original cluster - ones needed to carry on the restore:

dataSource.postgresCluster.clusterName should contain the new cluster name,

dataSource.postgresCluster.options allow you to set the needed pgBackRest command line options,

dataSource.postgresCluster.repoName should contain the name of the pgBackRest repository, while the actual storage
configuration keys for this repository should be placed into dataSource.pgbackrest.repo subsection,

dataSource.pgbackrest.configuration.secret.name should contain the name of a Kubernetes Secret with credentials
needed to access cloud storage, if any.

Restore to an existing PostgreSQL cluster

To restore the previously saved backup, use a backup restore configuration file. The example of the backup
configuration file is deploy/restore.yaml :

The following keys are the most important ones:

pgCluster specifies the name of your cluster,

repoName specifies the name of one of the 4 pgBackRest repositories, already configured in the
backups.pgbackrest.repos subsection,

options passes through any pgBackRest command line options .

To start the restoration process, run the following command:

•

•

•

•

•

•

•

•

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restore1

spec:
pgCluster: cluster1
repoName: repo1
options:
- --type=time
- --target="2022-11-30 15:12:11+03"

•

•

•

5.3.5 Restore the cluster from a previously saved backup

104 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

SPECIFYING WHICH BACKUP TO RESTORE

When there are multiple backups, the Operator will restore the latest full backup by default.

if you want to restore to some previous backup, not the last one, follow these steps:

Find the label of the backup you want to restore. For this, you can list available backups with kubectl get pg-backup

command, and then get detailed information about the backup of your interest with kubectl describe pg-backup <BACKUP

NAME> . The output should look as follows:

The “Backup Name” status field will contain needed backup label.

Now use a backup restore configuration file with additional --set=<backup_label> pgBackRest option. For example, the
following yaml file will result in restoring to a backup labeled 20240628-074416F :

Start the restoration process, as usual:

Restore the cluster with point-in-time recovery

Point-in-time recovery functionality allows users to revert the database back to a state before an unwanted change
had occurred.

$ kubectl apply -f deploy/restore.yaml

1.

Name: cluster1-backup-c55w-f858g
Namespace: default
Labels: <none>
Annotations: pgv2.percona.com/pgbackrest-backup-job-name: cluster1-backup-c55w
 pgv2.percona.com/pgbackrest-backup-job-type: replica-create
API Version: pgv2.percona.com/v2
Kind: PerconaPGBackup
Metadata:
 Creation Timestamp: 2024-06-28T07:44:08Z
 Generate Name: cluster1-backup-c55w-
 Generation: 1
 Resource Version: 1199
 UID: 92a8193c-6cbd-4cdf-82e5-a4623bf7f2d9
Spec:
 Pg Cluster: cluster1
 Repo Name: repo1
Status:
 Backup Name: 20240628-074416F
 Backup Type: full
...

2.

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restore1

spec:
pgCluster: cluster1
repoName: repo1
options:
- --type=immediate
- --set=20240628-074416F

3.

$ kubectl apply -f deploy/restore.yaml

5.3.5 Restore the cluster from a previously saved backup

105 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

For this feature to work, the Operator initiates a full backup immediately after the cluster creation, to use it as a basis for
point-in-time recovery when needed (this backup is not listed in the output of the kubectl get pg-backup command).

Note

5.3.5 Restore the cluster from a previously saved backup

106 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

You can set up a point-in-time recovery using the normal restore command of pgBackRest with few additional
spec.options fields in deploy/restore.yaml :

set --type option to time ,

set --target to a specific time you would like to restore to. You can use the typical string formatted as <YYYY-MM-DD

HH:MM:DD> , optionally followed by a timezone offset: "2021-04-16 15:13:32+00" (+00 in the above example means
UTC),

optional --set argument followed with a pgBackRest backup ID allows you to choose the backup which will be the
starting point for point-in-time recovery. This option must be specified if the target is one or more backups away
from the current moment. You can look through the available backups with the pgBackRest info command to

find out the proper backup ID.

After obtaining the Pod name with kubectl get pods command, you can run pgbackrest --stanza=db info command on the
appropriate Pod as follows:

Then find ID of the needed backup in the output:

Now you can put this backup ID to the backup restore configuration file as follows:

The example may look as follows:

•

•

•

pgBackRest backup ID example

$ kubectl -n pgo exec -it cluster1-instance1-hcgr-0 -c database -- pgbackrest --stanza=db info

stanza: db
 status: ok
 cipher: none

 db (prior)
 wal archive min/max (16): 0000000F000000000000001C/0000002000000036000000C5

 full backup: 20240401-173403F
 timestamp start/stop: 2024-04-01 17:34:03+00 / 2024-04-01 17:36:57+00
 wal start/stop: 000000120000000000000022 / 000000120000000000000024
 database size: 31MB, database backup size: 31MB
 repo1: backup set size: 4.1MB, backup size: 4.1MB

 incr backup: 20240401-173403F_20240415-201250I
 timestamp start/stop: 2024-04-15 20:12:50+00 / 2024-04-15 20:14:19+00
 wal start/stop: 00000019000000000000005C / 00000019000000000000005D
 database size: 46.0MB, database backup size: 25.7MB
 repo1: backup set size: 6.1MB, backup size: 3.8MB
 backup reference list: 20240401-173403F

 incr backup: 20240401-173403F_20240415-201430I
...

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restore1

spec:
pgCluster: cluster1
repoName: repo1
options:
- --set="20240401-173403F"

5.3.5 Restore the cluster from a previously saved backup

107 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://pgbackrest.org/command.html#command-info
https://pgbackrest.org/command.html#command-info
https://pgbackrest.org/command.html#command-info

After setting these options in the backup restore configuration file, start the restoration process:

Make sure you have a backup that is older than your desired point in time. You obviously can’t restore from a time where
you do not have a backup. All relevant write-ahead log files must be successfully pushed before you make the restore.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restore1

spec:
pgCluster: cluster1
repoName: repo1
options:
- --type=time
- --target="2022-11-30 15:12:11+03"

!!! note

 Latest succeeded backup available with the `kubectl get pg-backup`
command has a "Latest restorable time" information field handy when selecting a backup to restore. You can easily query
the backup for this information as follows:

    ``` {.bash data-prompt="$" }
    $ kubectl get pg-backup <backup_name> -o jsonpath='{.status.latestRestorableTime}'
    ```

$ kubectl apply -f deploy/restore.yaml

Note

Last update: 2024-06-28

5.3.5 Restore the cluster from a previously saved backup

108 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.6 Configure backup encryption

Backup encryption is a security best practice that helps protect your organization’s confidential information and
prevents unauthorized access.

The pgBackRest tool used by the Operator allows encrypting backups using AES-256 encryption. The approach is
repository-based: pgBackRest encrypts the whole repository where it stores backups. Encryption is enabled if a user-
supplied encryption key was passed to pgBackRest with the -repo-cypher-pass option when configuring the backup
storage.

 Limitation: You cannot change encryption settings after the backups are established. You must create a new

repository to enable encryption or change the encryption key.

This document describes how to configure backup encryption.

Generate the encryption key

You should use a long, random encryption key. You can generate it using OpenSSL as follows:

Configure backup storage

Follow the general backup storage configuration instruction relevant to the backup storage you are using. The only
difference is in encoding your cloud credentials and the pgBackRest repository name to be used for backups: you also
add the encryption key to the configuration file as the repo-cipher-pass option. The repo name within the option must
match the pgBackRest repo name.

$ openssl rand -base64 48

5.3.6 Configure backup encryption

109 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

The following example shows the configuration for S3-compatible storage and the pgBackRest repo name repo2

(other cloud storages are configured similarly).

Encode the storage configuration file.

Create the Secrets configuration file and the Secrets object as described in steps 2-3 of the S3-compatible backup
storage configuration. Follow the instructions relevant to the backup storage you are using.

Update the deploy/cr.yaml configuration. Specify the following information:

The Secret name you created in the backups.pgbackrest.configuration subsection

All storage-related information in the backups.pgbackrest.repos subsection under the repository name that you intend to
use for backups. This name must match the name you used when you encoded S3 credentials on step 1.

The cipher type in the pgbackrest.global subsection

The following example shows the configuration for the S3-compatible storage and the pgBackRest repo name repo2 :

Apply the changes. Replace the <namespace> placeholder with your value.

1.

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>
EOF

$ cat <<EOF | base64
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>
EOF

2.

3.

•

•

•

backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets
...
repos:
- name: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

global:
cipher-type: aes-256-cbc

4.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

5.3.6 Configure backup encryption

110 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Make a backup

Make an on-demand backup Make a scheduled backup

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-05-09

5.3.6 Configure backup encryption

111 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.7 Speed-up backups with pgBackRest asynchronous archiving

Backing up a database with high write-ahead logs (WAL) generation can be rather slow, because PostgreSQL archiving
process is sequential, without any parallelism or batching. In extreme cases backup can be even considered
unsuccessful by the Operator because of the timeout.

The pgBackRest tool used by the Operator can, if necessary, solve this problem by using the WAL asynchronous
archiving feature.

You can set up asynchronous archiving in your storage configuration file for pgBackRest. Turn on the additional
archive-async flag, and set the process-max value for archive-push and archive-get commands. Your storage
configuration file may look as follows:

No modifications are needed aside of setting these additional parameters. You can find more information about WAL
asynchronous archiving in gpBackRest official documentation and in this blog post .

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

s3.conf

[global]
repo2-s3-key=REPLACE-WITH-AWS-ACCESS-KEY
repo2-s3-key-secret=REPLACE-WITH-AWS-SECRET-KEY
repo2-storage-verify-tls=n
repo2-s3-uri-style=path
archive-async=y
spool-path=/pgdata

[global:archive-get]
process-max=2

[global:archive-push]
process-max=4

Last update: 2024-04-16

5.3.7 Speed-up backups with pgBackRest asynchronous archiving

112 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.8 Backup retention

The Operator supports setting pgBackRest retention policies for full and differential backups. When a full backup
expires according to the retention policy, pgBackRest cleans up all the files related to this backup and to the write-
ahead log. Thus, the expiration of a full backup with some incremental backups based on it results in expiring of all
these incremental backups.

You can control backup retention by the following pgBackRest options:

--<repo name>-retention-full how much full backups to retain,

--<repo name>-retention-diff how much differential backups to retain.

Backup retention type can be either count (the number of backups to keep) or time (the number of days to keep a
backup for).

You can set both backup type and retention policy for each of 4 repositories as follows.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

backups:
pgbackrest:

...
global:
repo1-retention-full: "14"
repo1-retention-full-type: time
...

Last update: 2023-09-14

5.3.8 Backup retention

113 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.4 High availability and scaling

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an application scaling.
Scaling an application results in adding resources or Pods and scheduling them to available Kubernetes nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to PostgreSQL nodes;
horizontal scaling is about adding more nodes to the cluster. High availability looks technically similar, because it also
involves additional nodes, but the reason is maintaining liveness of the system in case of server or network failures.

5.4.1 Vertical scaling

There are multiple components that Operator deploys and manages: PostgreSQL instances, pgBouncer connection
pooler, etc. To add or reduce CPU or Memory you need to edit corresponding sections in the Custom Resource. We
follow the structure for requests and limits that Kubernetes provides .

To add more resources to your PostgreSQL instances edit the following section in the Custom Resource:

Use our reference documentation for the Custom Resource options for more details about other components.

5.4.2 High availability

Percona Operator allows you to deploy highly-available PostgreSQL clusters. There are two ways how to control
replicas in your HA cluster:

Through changing spec.instances.replicas value

By adding new entry into spec.instances

5.4.3 Using spec.instances.replicas

For example, you have the following Custom Resource manifest:

This will provision a cluster with two nodes - one Primary and one Replica. Add the node by changing the manifest…

spec:
...
instances:
- name: instance1
replicas: 3
resources:
limits:
cpu: 2.0
memory: 4Gi

1.

2.

spec:
...
instances:
- name: instance1
replicas: 2

spec:
...
instances:
- name: instance1
replicas: 3

5.4 High availability and scaling

114 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

…and applying the Custom Resource:

The Operator will provision a new replica node. It will be ready and available once data is synchronized from Primary.

5.4.4 Using spec.instances

Each instance’s entry has its own set of parameters, like resources, storage configuration, sidecars, etc. When you add
a new entry into instances, this creates replica PostgreSQL nodes, but with a new set of parameters. This can be useful
in various cases:

Test or migrate to new hardware

Blue-green deployment of a new configuration

Try out new versions of your sidecar containers

For example, you have the following Custom Resource manifest:

Now you have a goal to migrate to new disks, which are coming with the new-ssd storage class. You can create a new
instance entry. This will instruct the Operator to create additional nodes with the new configuration keeping your
existing nodes intact.

$ kubectl apply -f deploy/cr.yaml

•

•

•

spec:
...
instances:
- name: instance1
replicas: 2
dataVolumeClaimSpec:
storageClassName: old-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi

spec:
...
instances:
- name: instance1
replicas: 2
dataVolumeClaimSpec:
storageClassName: old-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi

- name: instance2
replicas: 2
dataVolumeClaimSpec:
storageClassName: new-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi

5.4.4 Using spec.instances

115 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

5.4.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-03-19

5.4.5 Get expert help

116 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.5 Using sidecar containers

The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this feature to run
debugging tools, some specific monitoring solutions, etc.

Custom sidecar containers can easily access other components of your cluster .

Therefore they should be used carefully and by experienced users only.

5.5.1 Adding a sidecar container

You can add sidecar containers to PostgreSQL instance and pgBouncer Pods. Just use sidecars subsection in the
instances or proxy.pgBouncer Custom Resource section in the deploy/cr.yaml configuration file. In this subsection, you
should specify at least the name and image of your container, and possibly a command to run:

Apply your modifications as usual:

Obviously, you cannot name your sidecar container by duplicating an already existing container name in the Pod. Use
kubectl describe pod command to check which names are already in use. For example, PostgreSQL instance Pods cannot
have custom sidecar containers named as database , pgbackrest , pgbackrest-config , and replication-cert-copy .

More options suitable for the sidecars subsection can be found in the Custom Resource options reference.

Running kubectl describe command for the appropriate Pod can bring you the information about the newly created
container:

Note

spec:
instances:
....
sidecars:
- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: my-sidecar-1

....

$ kubectl apply -f deploy/cr.yaml

Note

$ kubectl describe pod cluster1-instance1

5.5 Using sidecar containers

117 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

5.5.2 Getting shell access to a sidecar container

You can login to your sidecar container as follows:

5.5.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Expected output

Name: cluster1-instance1-n8v4-0
....
Containers:
....
my-sidecar-1:
 Container ID: docker://f0c3437295d0ec819753c581aae174a0b8d062337f80897144eb8148249ba742
 Image: busybox
 Image ID: docker-pullable://
busybox@sha256:139abcf41943b8bcd4bc5c42ee71ddc9402c7ad69ad9e177b0a9bc4541f14924
 Port: <none>
 Host Port: <none>
 Command:
 /bin/sh
 Args:
 -c
 while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done
 State: Running
 Started: Thu, 11 Nov 2021 10:38:15 +0300
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fbrbn (ro)
....

$ kubectl exec -it cluster1-instance1n8v4-0 -c my-sidecar-1 -- sh
/ #

Last update: 2024-06-28

5.5.2 Getting shell access to a sidecar container

118 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.6 Pause/resume PostgreSQL cluster

There may be external situations when it is needed to pause your Cluster for a while and then start it back up (some
works related to the maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully stops the cluster:

To start the cluster after it was paused just revert the spec.pause key to false .

There is an option also to put the cluster into a standby (read-only) mode instead of completely shutting it down. This

is done by a special spec.standby key, which should be set to true for read-only state or should be set to false for normal
cluster operation:

5.6.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

spec:
.......
pause: true

Note

spec:
.......
standby: false

Last update: 2024-03-19

5.6 Pause/resume PostgreSQL cluster

119 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/docs/12/warm-standby.html
https://www.postgresql.org/docs/12/warm-standby.html
https://www.postgresql.org/docs/12/warm-standby.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.7 Monitor with Percona Monitoring and Management (PMM)

In this section you will learn how to monitor the health of Percona Distribution for PostgreSQL with Percona
Monitoring and Management (PMM) .

Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. It includes the PMM Server and the number of PMM Clients running on

each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect to the PMM
Server to see database metrics on a number of dashboards .

PMM Server and PMM Client are installed separately.

5.7.1 Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an
AWS instance. Please refer to the official PMM documentation for the installation instructions.

Note

5.7 Monitor with Percona Monitoring and Management (PMM)

120 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html

5.7.2 Install PMM Client

To install PMM Client as a side-car container in your Kubernetes-based environment, do the following:

5.7.2 Install PMM Client

121 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Get the PMM API key from PMM Server . The API key must have the role “Admin”. You need this key to authorize PMM

Client within PMM Server.

The API key is not rotated.

Specify the API key as the PMM_SERVER_KEY value in the deploy/secrets.yaml secrets file.

Create the Secrets object using the deploy/secrets.yaml file.

Update the pmm section in the deploy/cr.yaml file.

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM Server IP address should be
resolvable and reachable from within your cluster.

Update the cluster

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on the
previous steps:

1.

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and hostname in the following
command:

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d '{"name":"operator", "role": "Admin"}' "https://
<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pmm-secret

type: Opaque
stringData:
PMM_SERVER_KEY: ""

3.

$ kubectl apply -f deploy/secrets.yaml -n postgres-operator

4.

•

•

pmm:
enabled: true
image: percona/pmm-client:2.42.0

imagePullPolicy: IfNotPresent
secret: cluster1-pmm-secret
serverHost: monitoring-service

5.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

6.

5.7.2 Install PMM Client

122 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

5.7.3 Update the secrets file

The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text format. But the
resulting Secrets Objects contains passwords stored as base64-encoded strings. If you want to update the password
field, you need to encode the new password into the base64 format and pass it to the Secrets Object.

To encode a password or any other parameter, run the following command:

For example, to set the new PMM API key in the my-cluster-name-secrets object, do the following:

5.7.4 Check the metrics

Let’s see how the collected data is visualized in PMM.

Log in to PMM server.

Click PostgreSQL from the left-hand navigation menu. You land on the Instances Overview page.

Click PostgreSQL → Other dashboards to see the list of available dashboards that allow you to drill down to the

metrics you are interested in.

5.7.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

$ kubectl get pods -n postgres-operator
$ kubectl logs <pod_name> -c pmm-client

 Linux

 macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

 Linux

 macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo -n new_key | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo -n new_key | base64)'}}'

1.

2.

3.

Last update: 2023-12-08

5.7.3 Update the secrets file

123 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6. How-to

6.1 Install Percona Distribution for PostgreSQL with customized parameters

You can customize the configuration of Percona Distribution for PostgreSQL and install it with customized parameters.

To check available configuration options, see deploy/cr.yaml and Custom Resource Options.

6.1.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

 kubectl

To customize the configuration when installing with kubectl , do the following:

Clone the repository with all manifests and source code by executing the following command:

Edit the required options and apply your modified deploy/cr.yaml file as follows:

 Helm

To install Percona Distribution for PostgreSQL with custom parameters using Helm, use the following command:

You can pass any of the Operator’s Custom Resource options as a --set key=value[,key=value] argument.

The following example deploys a PostgreSQL 16 based cluster in the my-namespace namespace, with enabled Percona
Monitoring and Management (PMM) :

1.

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator

2.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ helm install --set key=value

$ helm install my-db percona/pg-db --version 2.4.0 --namespace my-namespace \
--set postgresVersion=16 \
--set pmm.enabled=true

Last update: 2024-03-19

6. How-to

124 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.4.0/deploy/cr.yaml
https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.2 Deploy a standby cluster for Disaster Recovery

6.2.1 Standby cluster deployment based on pgBackRest

The pgBackRest repo-based standby is the simplest one. The following is the architecture diagram:

pgBackrest repo based standby

This solution describes two Kubernetes clusters in different regions, clouds or running in hybrid mode (on-premises and
cloud). One cluster is Main and the other is Disaster Recovery (DR)

Each cluster includes the following components:

Percona Operator

PostgreSQL cluster

pgBackrest

pgBouncer

pgBackrest on the Main site streams backups and Write Ahead Logs (WALs) to the object storage

pgBackrest on the DR site takes these backups and streams them to the standby cluster

Deploy disaster recovery for PostgreSQL on Kubernetes

CONFIGURE MAIN SITE

Deploy the Operator using your favorite method. Once installed, configure the Custom Resource manifest, so that
pgBackrest starts using the Object Storage of your choice. Skip this step if you already have it configured.

Configure the backups.pgbackrest.repos section by adding the necessary configuration. The below example is for Google
Cloud Storage (GCS):

DB Pod N

pgBackRest

Operator

cluster1

Backup storage
DB Pods

pgBackRest

Operator

cluster2 (standby)

DB Pods

1.

2.

a.

b.

c.

d.

3.

4.

1.

2.

spec:
backups:
configuration:

6.2 Deploy a standby cluster for Disaster Recovery

125 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

The main-pgbackrest-secrets value contains the keys for GCS. Read more about the configuration in the backup and restore
tutorial.

Once configured, apply the custom resource:

The backups should appear in the object storage. By default pgBackrest puts them into the pgbackrest folder.

CONFIGURE DR SITE

The configuration of the disaster recovery site is similar to that of the Main site, with the only difference in standby
settings.

The following manifest has standby.enabled set to true and points to the repoName where backups are (GCS in our
case):

Deploy the standby cluster by applying the manifest:

- secret:
name: main-pgbackrest-secrets

pgbackrest:
repos:
- name: repo1
gcs:
bucket: MY-BUCKET

3.

$ kubectl apply -f deploy/cr.yaml

Expected output

perconapgcluster.pg.percona.com/standby created

metadata:
name: standby

spec:
...
backups:
configuration:
- secret:

name: standby-pgbackrest-secrets
pgbackrest:
repos:
- name: repo1
gcs:
bucket: MY-BUCKET

standby:
enabled: true
repoName: repo1

$ kubectl apply -f deploy/cr.yaml

Expected output

perconapgcluster.pg.percona.com/standby created

6.2.1 Standby cluster deployment based on pgBackRest

126 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-06-28

6.2.1 Standby cluster deployment based on pgBackRest

127 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.2.2 Standby cluster deployment based on streaming replication

The following diagram explains how the standby based on streaming replication works:

This solution describes two Kubernetes clusters in different regions, clouds, data centers or even two namespaces, or
running in hybrid mode (on-premises and cloud). One cluster is Main site, and the other is Disaster Recovery site (DR)

Each site supposedly includes Percona Operator and for sure includes PostgreSQL cluster.

In the DR site the cluster is in Standby mode

We set up streaming replication between these two clusters

Deploy disaster recovery for PostgreSQL on Kubernetes

CONFIGURE MAIN SITE

Deploy the Operator using your favorite method.

The Main cluster needs to expose it, so that standby can connect to the primary PostgreSQL instance. To expose the
primary PostgreSQL instance, use the spec.expose section:

Primary
DB Pod

Operator

Cluster 1 (Main)

Replica
DB Pods

Primary
DB Pod

Operator

Cluster 2 (DR)

Replica
DB Pods

1.

2.

3.

4.

1.

2.

spec:
...
expose:
type: ClusterIP

6.2.2 Standby cluster deployment based on streaming replication

128 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Use here a Service type of your choice. For example, ClusterIP is sufficient for two clusters in different Kubernetes
namespaces.

Once configured, apply the custom resource:

The service that you should use for connecting to standby is called -ha (main-ha in my case):

CONFIGURE DR SITE

To get the replication working, the Standby cluster would need to authenticate with the Main one. To get there, both
clusters must have certificates signed by the same certificate authority (CA). Default replication user _crunchyrepl will
be used.

In the simplest case you can copy the certificates from the Main cluster. You need to look out for two files:

main-cluster-cert

main-replication-cert

Copy them to the namespace where DR cluster is going to be running and reference under spec.secrets (in the
following example they were renamed, replacing “main” with “dr”):

If you are generating your own certificates, just remember the following rules:

Certificates for both Main and Standby clusters must be signed by the same CA

customReplicationTLSSecret must have a Common Name (CN) setting that matches _crunchyrepl , which is a default
replication user.

You can find more about certificates in the TLS doc.

Apart from setting certificates correctly, you should also set standby configuration.

standby.enabled controls if it is a standby cluster or not

standby.host must point to the primary node of a Main cluster. In this example it is a main-ha Service in another
namespace.

3.

$ kubectl apply -f deploy/cr.yaml -n main-pg

Expected output

perconapgcluster.pg.percona.com/standby created

main-ha ClusterIP 10.118.227.214 <none> 5432/TCP 163m

•

•

spec:
secrets:
customTLSSecret:
name: dr-cluster-cert

customReplicationTLSSecret:
name: dr-replication-cert

1.

2.

standby:
enabled: true
host: main-ha.main-pg.svc

•

•

6.2.2 Standby cluster deployment based on streaming replication

129 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Deploy the standby cluster by applying the manifest:

Once both clusters are up, you can verify that replication is working.

Insert some data into Main cluster

Connect to the DR cluster

To connect to the DR cluster, use the credentials that you used to connect to Main. This also verifies that the
connection is working. You should see whatever data you have in the Main cluster in the Disaster Recovery.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

$ kubectl apply -f dr-cr.yaml -n dr-pg

Expected output

perconapgcluster.pg.percona.com/standby created

1.

2.

Last update: 2024-06-28

6.2.2 Standby cluster deployment based on streaming replication

130 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.2.3 Failover

In case of the Main site failure or in other cases, you can promote the standby cluster. The promotion effectively allows
writing to the cluster. This creates a net effect of pushing Write Ahead Logs (WALs) to the pgBackrest repository. It
might create a split-brain situation where two primary instances attempt to write to the same repository. To avoid this,
make sure the primary cluster is either deleted or shut down before trying to promote the standby cluster.

Once the primary is down or inactive, promote the standby through changing the corresponding section:

Now you can start writing to the cluster.

Split brain

There might be a case, where your old primary comes up and starts writing to the repository. To recover from this
situation, do the following:

Keep only one primary with the latest data running

Stop the writes on the other one

Take the new full backup from the primary and upload it to the repo

Automate the failover

Automated failover consists of multiple steps and is outside of the Operator’s scope. There are a few steps that you
can take to reduce the Recovery Time Objective (RTO). To detect the failover we recommend having the 3rd site to
monitor both DR and Main sites. In this case you can be sure that Main really failed and it is not a network split
situation.

Another aspect of automation is to switch the traffic for the application from Main to Standby after promotion. It can
be done through various Kubernetes configurations and heavily depends on how your networking and application are
designed. The following options are quite common:

Global Load Balancer - various clouds and vendors provide their solutions

Multi Cluster Services or MCS - available on most of the public clouds

Federation or other multi-cluster solutions

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

spec:
standby:
enabled: false

1.

2.

3.

1.

2.

3.

Last update: 2024-06-28

6.2.3 Failover

131 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.2.4 How to deploy a standby cluster for Disaster Recovery

Disaster recovery is not optional for businesses operating in the digital age. With the ever-increasing reliance on data,
system outages or data loss can be catastrophic, causing significant business disruptions and financial losses.

With multi-cloud or multi-regional PostgreSQL deployments, the complexity of managing disaster recovery only
increases. This is where the Percona Operators come in, providing a solution to streamline disaster recovery for
PostgreSQL clusters running on Kubernetes. With the Percona Operators, businesses can manage multi-cloud or
hybrid-cloud PostgreSQL deployments with ease, ensuring that critical data is always available and secure, no matter
what happens.

Operators automate routine tasks and remove toil. For standby, the Percona Operator for PostgreSQL version 2
provides the following options:

pgBackrest repo based standby

Streaming replication

Combination of (1) and (2)

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

3.

Last update: 2024-06-28

6.2.4 How to deploy a standby cluster for Disaster Recovery

132 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.3 Change the PostgreSQL primary instance

The Operator uses PostgreSQL high-availability implementation based on the Patroni template . This means that

each PostgreSQL cluster includes one member availiable for read/write transactions (PostgreSQL primary instance, or
leader in terms of Patroni) and a number of replicas which can serve read requests only (standby members of the
cluster).

You may wish to manually change the primary instance in your PostgreSQL cluster to achieve more control and meet
specific requirements in various scenarios like planned maintenance, testing failover procedures, load balancing and
performance optimization activities. Primary instance is re-elected during the automatic failover (Patroni’s “leader
race” mechanism), but still there are use cases to controll this process manually.

In Percona Operator, the primary instance election can be controlled by the patroni.switchover section of the Custom
Resource manifest. It allows you to enable switchover targeting a specific PostgreSQL instance as the new primary, or
just running a failover if PostgreSQL cluster has entered a bad state.

This document provides instructions how to change the primary instance manually.

6.3 Change the PostgreSQL primary instance

133 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements
https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements
https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements

For the following steps, we assume that you have the PostgreSQL cluster up and running. The cluster name is cluster1 .

6.3 Change the PostgreSQL primary instance

134 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Check the information about the cluster instances. Cluster instances are defined in the spec.instances Custom Resource
section. By default you have one cluster instance named instance1 with 3 PostgreSQL instances in it. You can check which
cluster instances you have. Do this using Kubernetes Labels as follows (replace the <namespace> placeholder with your
value):

PostgreSQL primary is labeled as master , while other PostgreSQL instances are labeled as replica .

Now update the following options in the partoni.switchover subsection of the Custom Resource:

You can do it with kubectl patch command, specifying the name of the instance that you want to be the new primary. For
example, let’s set the cluster1-instance1-bmdp as a new PostgreSQL primary:

Trigger the switchover by adding the annotation to your Custom Resource. The recommended way is to set the
annotation with the timestamp, so you know when switchover took place. Replace the <namespace> placeholder with
your value:

Verify that the cluster was annotated (replace the <namespace> placeholder with your value, as usual):

1.

$ kubectl get pods -n <namespace> -l postgres-operator.crunchydata.com/cluster=cluster1 \
-L postgres-operator.crunchydata.com/instance \
-L postgres-operator.crunchydata.com/role | grep instance1

Sample output

cluster1-instance1-bmdp-0 4/4 Running 0 2m23s cluster1-instance1-bmdp replica
cluster1-instance1-fm7w-0 4/4 Running 0 2m22s cluster1-instance1-fm7w replica
cluster1-instance1-ttm9-0 4/4 Running 0 2m22s cluster1-instance1-ttm9 master

2.

patroni:
switchover:
enabled: true
targetInstance: <instance-name>

$ kubectl -n <namespace> patch pg cluster1 --type=merge --patch '{
"spec": {
 "patroni": { "switchover": { "enabled": "true" } },
 "patroni": { "switchover": { "targetInstance": "cluster1-instance1-bmdp" } }
}}'

3.

$ kubectl annotate -n <namespace> pg cluster1 postgres-operator.crunchydata.com/trigger-switchover="$(date)"

4.

$ kubectl get pg cluster1 -o yaml -n <namespace>

Sample output

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |
 {....
 "patroni":{"switchover":{"enabled":true,"targetInstance":"cluster1-instance1-bmdp"}},}

6.3 Change the PostgreSQL primary instance

135 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Now, check instances of your cluster once again to make sure the switchover took place:

The primary now should be changed to cluster1-instance1-bmdp .

6.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

5.

$ kubectl get pods -n <namespace> -l postgres-operator.crunchydata.com/cluster=cluster1 \
-L postgres-operator.crunchydata.com/instance \
-L postgres-operator.crunchydata.com/role | grep instance1

Sample output

cluster1-instance1-bmdp-0 4/4 Running 0 24m cluster1-instance1-bmdp master
cluster1-instance1-fm7w-0 4/4 Running 0 24m cluster1-instance1-fm7w replica
cluster1-instance1-ttm9-0 4/4 Running 0 23m cluster1-instance1-ttm9 replica

Last update: 2024-06-11

6.3.1 Get expert help

136 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.4 Use Docker images from a private registry

Using images from a private Docker registry may be required for privacy, security or other reasons. In these cases,
Percona Operator for PostgreSQL allows the use of a custom registry. The following example illustrates how this can
be done by the example of the Operator deployed in the OpenShift environment.

6.4.1 Prerequisites

First of all login to the OpenShift and create project.

There are two things you will need to configure your custom registry access:

the token for your user,

your registry IP address.

The token can be found with the following command:

And the following one tells you the registry IP address:

Use the user token and the registry IP address to login to the registry:

Use the Docker commands to pull the needed image by its SHA digest:

1.

$ oc login
Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin
Password:
Login successful.
$ oc new-project pg
Now using project "pg" on server "https://192.168.1.100:8443".

2.

•

•

$ oc whoami -t
ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

$ kubectl get services/docker-registry -n default
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

3.

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s 172.30.162.173:5000

Expected output

Login Succeeded

4.

$ docker pull docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

6.4 Use Docker images from a private registry

137 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

You can find correct names and SHA digests in the current list of the Operator-related images officially certified by
Percona.

The following method can push an image to the custom registry for the example OpenShift pg project:

Verify the image is available in the OpenShift registry with the following command:

When the custom registry image is available, edit the the image: option in deploy/operator.yaml configuration file with a
Docker Repo + Tag string (it should look like docker-registry.default.svc:5000/pg/percona-postgresql-operator:16)

If the registry requires authentication, you can specify the imagePullSecrets option for all images.

Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml file.

Now follow the standard Percona Operator for PostgreSQL installation instruction.

6.4.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Expected output

Trying to pull repository docker.io/perconalab/percona-postgresql-operator ...
sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0: Pulling from docker.io/perconalab/
percona-server-mongodb
Digest: sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0
Status: Image is up to date for docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

5.

$ docker tag \
docker.io/perconalab/percona-postgresql-

operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0 \
172.30.162.173:5000/psmdb/percona-postgresql-operator:16

$ docker push 172.30.162.173:5000/pg/percona-postgresql-operator:16

6.

$ oc get is

Expected output

NAME DOCKER REPO TAGS UPDATED
percona-postgresql-operator docker-registry.default.svc:5000/pg/percona-postgresql-operator 16 2 hours ago

7.

Note

8.

9.

Last update: 2024-02-07

6.4.2 Get expert help

138 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.5 Add custom PostgreSQL extensions

One of the specific PostgreSQL features is the ability to provide it with additional functionality via Extensions .

Percona Distribution for PostgreSQL supports a number of extensions , making this list available for the database

cluster managed by the Operator as well.

Still there are cases when the needed extension is not in this list, or when it’s a custom extension developed by the
end-user. Adding more extensions is not an easy task in case of a containerized database in Kubernetes-based
environment, as normally it would make the user to build a custom PostgreSQL image.

Still, starting from the Operator version 2.3 there is an alternative way to extend Percona Distribution for PostgreSQL
by downloading prepackaged extensions from an external storage on the fly, as defined in the extensions section of
the Operator Custom Resource.

6.5.1 Enabling or disabling built-in extensions

Built-in extensions can be easily enabled or disabled in the extensions.builtin subsection of the deploy/cr.yaml

configuration file as follows:

Apply changes after editing with kubectl apply -f deploy/cr.yaml command.

Editing this section and applying it is causing Pods restart.

6.5.2 Adding custom extensions

Custom extensions are downloaded by the Operator from the cloud storage. User is in charge for properly packaging
extension and uploading it to the storage.

Packaging custom extensions

Custom extension needs specific packaging to make the Operator able using it. The package must be a .tar.gz archive
with all required files in a the correct directory structure.

Control file must be in SHAREDIR/extension directory

All required SQL script files must be in SHAREDIR/extension directory (there must be at least one SQL script)

Any shared library must be in LIBDIR

In case of Percona Distribution for PostgreSQL images, SHAREDIR corresponds to /usr/pgsql-${PG_MAJOR}/share and LIBDIR

to /usr/pgsql-${PG_MAJOR}/lib .

extensions:
...
builtin:
pg_stat_monitor: true
pg_audit: true

Note

1.

2.

3.

Note

6.5 Add custom PostgreSQL extensions

139 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://docs.percona.com/postgresql/16/
https://docs.percona.com/postgresql/16/
https://docs.percona.com/postgresql/16/

For example, the directory for pg_cron extension should look as follows:

The archive must be created with usr at the root and the name must conform ${EXTENSION}-pg${PG_MAJOR}-$

{EXTENSION_VERSION} :

To understand which files are required for given extension could be not an easy task. One of the option to figure this out
would be building and installing the extension from source on a virtual machine with Percona Distribution for PostgreSQL
and copy all the installed files to the archive.

$ tree ~/pg_cron-1.6.1/
/home/user/pg_cron-1.6.1/
└── usr
└── pgsql-15
├── lib
│ └── pg_cron.so
└── share
└── extension
├── pg_cron--1.0--1.1.sql
├── pg_cron--1.0.sql
├── pg_cron--1.1--1.2.sql
├── pg_cron--1.2--1.3.sql
├── pg_cron--1.3--1.4.sql
├── pg_cron--1.4--1.4-1.sql
├── pg_cron--1.4-1--1.5.sql
├── pg_cron--1.5--1.6.sql
└── pg_cron.control

$ cd pg_cron-1.6.1/
$ tar -czf pg_cron-pg15-1.6.1.tar.gz usr/

Note

6.5.2 Adding custom extensions

140 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

6.5.3 Configuring custom extension loading

When the extension is packaged, it should be uploaded to the cloud storage (for now, Amazon S3 is the only
supported storage type). When the upload is done, the storage and extension details should be specified in the
Custom Resource to make the Operator download and install it.

6.5.3 Configuring custom extension loading

141 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

The Operator will need the following data to access extensions stored on the Amazon S3:

the metadata.name key is the name which you wll further use to refer your Kubernetes Secret,

the data.AWS_ACCESS_KEY_ID and data.AWS_SECRET_ACCESS_KEY keys are base64-encoded credentials used to access the
storage (obviously these keys should contain proper values to make the access possible).

Create the Secrets file with these base64-encoded keys as follows:

You can use the following command to get a base64-encoded string from a plain text one:

Once the editing is over, create the Kubernetes Secret object as follows:

Storage credentials are specified in the Custom Resource extensions.storage subsection. The appropriate fragment of the
deploy/cr.yaml configuration file should look as follows:

When the storage is configured, and the archive with the extension is already present in the appropriate bucket, the
extension itself can be specified to the Operator in the Custom Resource via the deploy/cr.yaml configuration file as in the
following example:

1.

•

•

extensions-secret.yaml

apiVersion: v1
kind: Secret
metadata:
name: cluster1-extensions-secret

type: Opaque
data:
AWS_ACCESS_KEY_ID: <base64 encoded secret>
AWS_SECRET_ACCESS_KEY: <base64 encoded secret>

Note

in Linux

For GNU/Linux:

in macOS

For Apple macOS:

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f extensions-secret.yaml

2.

extensions:
...
storage:
type: s3
bucket: pg-extensions
region: eu-central-1
endpoint: s3.eu-central-1.amazonaws.com
secret:
name: cluster1-extensions-secret

3.

6.5.3 Configuring custom extension loading

142 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

The installed extension will not be enabled by default. Enabling it in can be done for desired databases using the
CREATE EXTENSION statement:

Also, some extensions (such as pg_cron) can be used only if added to shared_preload_libraries . Users can do it via the
deploy/cr.yaml configuration file as follows:

yaml

...

patroni:

 dynamicConfiguration:

 postgresql:

 parameters:

 shared_preload_libraries: pg_cron

 ...

6.5.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

extensions:
...
custom:
- name: pg_cron
version: 1.6.1

CREATE EXTENSION pg_cron;

Last update: 2024-06-28

6.5.4 Get expert help

143 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.6 Percona Operator for PostgreSQL single-namespace and multi-namespace

deployment

There are two design patterns that you can choose from when deploying Percona Operator for PostgreSQL and
PostgreSQL clusters in Kubernetes:

Namespace-scope - one Operator per Kubernetes namespace,

Cluster-wide - one Operator can manage clusters in multiple namespaces.

This how-to explains how to configure Percona Operator for PostgreSQL for each scenario.

6.6.1 Namespace-scope

By default, Percona Operator for PostgreSQL functions in a specific Kubernetes namespace. You can create one during
the installation (like it is shown in the installation instructions) or just use the default namespace. This approach allows
several Operators to co-exist in one Kubernetes-based environment, being separated in different namespaces:

Normally this is a recommended approach, as isolation minimizes impact in case of various failure scenarios. This is
the default configuration of our Operator.

•

•

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Kubernetes API

OperatorOperator

DB Pod 1 DB Pod N

CSI

Storage
Area

Network

percona-db-2 Namespacepercona-db-1 Namespace

6.6 Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

144 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Let’s say you will use a Kubernetes Namespace called percona-db-1 .

Clone percona-postgresql-operator repository:

Create your percona-db-1 Namespace (if it doesn’t yet exist) as follows:

Deploy the Operator using the following command:

Once Operator is up and running, deploy the database cluster itself:

You can deploy multiple clusters in this namespace.

Add more namespaces

What if there is a need to deploy clusters in another namespace? The solution for namespace-scope deployment is to
have more than one Operator. We will use the percona-db-2 namespace as an example.

Create your percona-db-2 namespace (if it doesn’t yet exist) as follows:

Deploy the Operator:

Once Operator is up and running deploy the database cluster itself:

Cluster names may be the same in different namespaces.

6.6.2 Install the Operator cluster-wide

Sometimes it is more convenient to have one Operator watching for Percona Distribution for PostgreSQL custom
resources in several namespaces.

We recommend running Percona Operator for PostgreSQL in a traditional way, limited to a specific namespace, to limit
the blast radius. But it is possible to run it in so-called cluster-wide mode, one Operator watching several namespaces,
if needed:

1.

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

2.

$ kubectl create namespace percona-db-1

3.

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-1

4.

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

1.

$ kubectl create namespace percona-db-2

2.

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-2

3.

$ kubectl apply -f deploy/cr.yaml -n percona-db-2

Note

6.6.2 Install the Operator cluster-wide

145 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

To use the Operator in such cluster-wide mode, you should install it with a different set of configuration YAML files,
which are available in the deploy folder and have filenames with a special cw- prefix: e.g. deploy/cw-bundle.yaml .

While using this cluster-wide versions of configuration files, you should set the following information there:

subjects.namespace option should contain the namespace which will host the Operator,

WATCH_NAMESPACE key-value pair in the env section should have value equal to a comma-separated list of the
namespaces to be watched by the Operator, and the namespace in which the Operator resides. If this key is set to a
blank string, the Operator will watch only the namespace it runs in, which would be the same as single-
namespace deployment.

Kubernetes API

Percona Operator for PostgreSQL

DB Pod 1 DB Pod 2

CSI

Storage
Area

Network

api

DB Pod DB Pod

Operator Namespace (pg-operator)

Percona-db-1
Namespace

Percona-db-2
Namespace

percona-db-3
Namespace

•

•

6.6.2 Install the Operator cluster-wide

146 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

The following simple example shows how to install Operator cluster-wide on Kubernetes.

Clone percona-postgresql-operator repository:

Let’s say you will use pg-operator namespace for the Operator, and percona-db-1 namespace for the cluster. Create these
namespaces, if needed:

Edit the deploy/cw-bundle.yaml configuration file to make sure it contains proper namespace name for the Operator:

Apply the deploy/cw-bundle.yaml file with the following command:

Right now the operator deployed in cluster-wide mode will monitor all namespaces in the cluster, either already existing
or newly created ones.

Deploy the cluster in the namespace of your choice:

6.6.3 Verifying the cluster operation

When creation process is over, you can try to connect to the cluster.

1.

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

2.

$ kubectl create namespace pg-operator
$ kubectl create namespace percona-db-1

3.

...
subjects:
- kind: ServiceAccount
name: percona-postgresql-operator
namespace: pg-operator

...
spec:
containers:
- env:
- name: WATCH_NAMESPACE
value: "pg-operator,percona-db-1"

...

4.

$ kubectl apply --server-side -f deploy/cw-bundle.yaml -n pg-operator

5.

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

6.6.3 Verifying the cluster operation

147 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

During the installation, the Operator has generated several secrets , including the one with password for default

PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user. Replace the <cluster_name> and <namespace> placeholders
with your values:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the new
Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. The following command will connect you
as a cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

6.6.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

Last update: 2024-06-12

6.6.4 Get expert help

148 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.7 Using PostgreSQL tablespaces with Percona Operator for PostgreSQL

Tablespaces allow DBAs to store a database on multiple file systems within the same server and to control where (on
which file systems) specific parts of the database are stored. You can think about it as if you were giving names to your
disk mounts and then using those names as additional parameters when creating database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory, and Percona Operator
for PostgreSQL is a good option to bring this to your Kubernetes environment when needed.

6.7.1 Possible use cases

The most obvious use case for tablespaces is performance optimization. You place appropriate parts of the database
on fast but expensive storage and engage slower but cheaper storage for lesser-used database objects. The classic
example would be using an SSD for heavily-used indexes and using a large slow HDD for archive data.

Of course, the Operator already provides you with traditional Kubernetes approaches to achieve this on a per-Pod
basis (Tolerations, etc.). But if you would like to go deeper and make such differentiation at the level of your database
objects (tables and indexes), tablespaces are exactly what you would need for that.

Another well-known use case for tablespaces is quickly adding a new partition to the database cluster when you run
out of space on the initially used one and cannot extend it (which may look less typical for cloud storage). Finally, you
may need tablespaces when migrating your existing architecture to the cloud.

Each tablespace created by Percona Operator for PostgreSQL corresponds to a separate Persistent Volume, mounted
in a container to the /tablespaces directory.

6.7 Using PostgreSQL tablespaces with Percona Operator for PostgreSQL

149 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

6.7.2 Creating a new tablespace

Providing a new tablespace for your database in Kubernetes involves two parts:

Configure the new tablespace storage with the Operator,

Create database objects in this tablespace with PostgreSQL.

The first part is done in the traditional way of Percona Operators, by modifying Custom Resource via the deploy/cr.yaml

configuration file. It has a special spec.tablespaceStorages section for tablespaces.

The example already present in deploy/cr.yaml shows how to create tablespace storage 1Gb in size (you can see official
Kubernetes documentation on Persistent Volumes for details):

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

Percona Operator for PostgreSQL
Namespace

CSI

Tablespace Storages
for DB Pod N

1.

2.

spec:
instances:
...
tablespaceVolumes:

6.7.2 Creating a new tablespace

150 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

After you apply this by running the kubectl apply -f deploy/cr.yaml command, the new /tablespaces/user/ mountpoint will
appear for your database. Please take into account that if you add your new tablespace to the already existing
PostgreSQL cluster, it may take time for the Operator to create Persistent Volume Claims and get Persistent Volumes
actually mounted.

Now you should actually create your tablespace on this volume with the CREATE TABLESPACE <tablespace name> LOCATION

<mount point> command, and then create objects in it (of course, your user should have appropriate CREATE privileges
to make it possible):

Now when the tablespace is created you can append TABLESPACE <tablespace_name> to your CREATE SQL statements to
implicitly create tables, indexes, or even entire databases in specific tablespace.

Let’s create an example table in the already mentioned user121 tablespace:

It is also possible to set a default tablespace with the SET default_tablespace = <tablespace_name>; statement. It will affect
all further CREATE TABLE and CREATE INDEX commands without an explicit tablespace specifier, until you unset it with an
empty string.

As you can see, Percona Operator for PostgreSQL simplifies tablespace creation by carrying on all necessary
modifications with Persistent Volumes and Pods. The same would not be true for the deletion of an already existing
tablespace, which is not automated, neither by the Operator nor by PostgreSQL.

6.7.3 Deleting an existing tablespace

Deleting an existing tablespace from your database in Kubernetes also involves two parts:

Delete related database objects and tablespace with PostgreSQL,

Delete tablespace storage in Kubernetes.

To make tablespace deletion with PostgreSQL possible, you should make this tablespace empty (it is impossible to
drop a tablespace until all objects in all databases using this tablespace have been removed). Tablespaces are listed in
the pg_tablespace table, and you can use it to find out which objects are stored in a specific tablespace. The example
command for the lake tablespace will look as follows:

When your tablespace is empty, you can log in to the PostgreSQL Primary instance as a superuser, and then execute the
DROP TABLESPACE <tablespace_name>; command.

- name: user
dataVolumeClaimSpec:
accessModes:
- 'ReadWriteOnce'

resources:
requests:
storage: 1Gi

CREATE TABLESPACE user121
LOCATION '/tablespaces/user/data';

CREATE TABLE products (
product_sku character(10),
quantity int,
manufactured_date timestamptz)

TABLESPACE user121;

•

•

SELECT relname FROM pg_class WHERE reltablespace=(SELECT oid FROM pg_tablespace WHERE spcname='user121');

6.7.3 Deleting an existing tablespace

151 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

Now, when the PostgreSQL part is finished, you can remove the tablespace entry from the tablespaceStorages section
(don’t forget to run the kubectl apply -f deploy/cr.yaml command to apply changes).

6.7.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-06-28

6.7.4 Get expert help

152 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.8 Delete Percona Operator for PostgreSQL

When cleaning up your Kubernetes environment (e.g., moving from a trial deployment to a production one, or testing
experimental configurations), you may need to remove some (or all) of the following objects:

Percona Distribution for PosgreSQL cluster managed by the Operator

Percona Operator for PostgreSQL itself

Custom Resource Definition deployed with the Operator

6.8.1 Delete a database cluster

You can delete the Percona Distribution for PosgreSQL cluster managed by the Operator by deleting the appropriate
Custom Resource.

There are two finalizers defined in the Custom Resource, which define whether TLS-related objects and data volumes

should be deleted or preserved when the cluster is deleted.

finalizers.percona.com/delete-ssl : if present, objects, created for SSL (Secret, certificate, and issuer) are deleted when the
cluster deletion occurs.

finalizers.percona.com/delete-pvc : if present, Persistent Volume Claims for the database cluster Pods are deleted when

the cluster deletion occurs.

Both finalizers are off by default in the deploy/cr.yaml configuration file, and this allows you to recreate the cluster without
losing data, credentials for the system users, etc.

•

•

•

Note

•

•

6.8 Delete Percona Operator for PostgreSQL

153 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Here’s a sequence of steps to follow:

List Custom Resources, replacing the <namespace> placeholder with your namespace.

Delete the Custom Resource with the name of your cluster (for example, let’s use the default cluster1 name).

Check that the cluster is deleted by listing the available Custom Resources once again.

1.

$ kubectl get pg -n <namespace>

Sample output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

2.

$ kubectl delete pg cluster1 -n <namespace>

Sample output

perconapgcluster.pgv2.percona.com "cluster1" deleted

3.

$ kubectl get pg -n <namespace>

Sample output

No resources found in <namespace> namespace.

6.8.1 Delete a database cluster

154 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

6.8.2 Delete the Operator

You can uninstall the Operator by deleting the Deployments related to it.

List the deployments. Replace the <namespace> placeholder with your namespace.

Delete the percona-* deployment

Check that the Operator is deleted by listing the Pods. As a result you should have no Pods related to it.

6.8.3 Delete Custom Resource Definition

If you are not just deleting the Operator and PostgreSQL cluster from a specific namespace, but want to clean up your
entire Kubernetes environment, you can also delete the CustomRecourceDefinitions (CRDs) .

CRDs in Kubernetes are non-namespaced but are available to the whole environment. This means that you shouldn’t
delete CRD if you still have the Operator and database cluster in some namespace.

1.

$ kubectl get deploy -n <namespace>

Sample output

NAME READY UP-TO-DATE AVAILABLE AGE
percona-postgresql-operator 1/1 1 1 13m

2.

$ kubectl delete deploy percona-postgresql-operator -n <namespace>

3.

$ kubectl get pods -n <namespace>

Sample output

No resources found in <namespace> namespace.

Warning

6.8.2 Delete the Operator

155 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

You can delete CRD as follows:

List the CRDs:

Now delete the percona*.pgv2.percona.com CRDs:

6.8.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

$ kubectl get crd

Sample output

allowlistedv2workloads.auto.gke.io 2023-09-07T14:15:30Z
allowlistedworkloads.auto.gke.io 2023-09-07T14:15:29Z
audits.warden.gke.io 2023-09-07T14:15:32Z
backendconfigs.cloud.google.com 2023-09-07T14:15:41Z
capacityrequests.internal.autoscaling.gke.io 2023-09-07T14:15:25Z
frontendconfigs.networking.gke.io 2023-09-07T14:15:41Z
managedcertificates.networking.gke.io 2023-09-07T14:15:41Z
memberships.hub.gke.io 2023-09-07T14:15:30Z
perconapgbackups.pgv2.percona.com 2023-09-07T14:28:59Z
perconapgclusters.pgv2.percona.com 2023-09-07T14:29:02Z
perconapgrestores.pgv2.percona.com 2023-09-07T14:29:03Z
postgresclusters.postgres-operator.crunchydata.com 2023-09-07T14:29:06Z
serviceattachments.networking.gke.io 2023-09-07T14:15:44Z
servicenetworkendpointgroups.networking.gke.io 2023-09-07T14:15:43Z
storagestates.migration.k8s.io 2023-09-07T14:15:53Z
storageversionmigrations.migration.k8s.io 2023-09-07T14:15:53Z
updateinfos.nodemanagement.gke.io 2023-09-07T14:15:55Z
volumesnapshotclasses.snapshot.storage.k8s.io 2023-09-07T14:15:52Z
volumesnapshotcontents.snapshot.storage.k8s.io 2023-09-07T14:15:52Z
volumesnapshots.snapshot.storage.k8s.io 2023-09-07T14:15:52Z

2.

$ kubectl delete crd perconapgbackups.pgv2.percona.com perconapgclusters.pgv2.percona.com
perconapgrestores.pgv2.percona.com

Sample output

customresourcedefinition.apiextensions.k8s.io "perconapgbackups.pgv2.percona.com" deleted
customresourcedefinition.apiextensions.k8s.io "perconapgclusters.pgv2.percona.com" deleted
customresourcedefinition.apiextensions.k8s.io "perconapgrestores.pgv2.percona.com" deleted

Last update: 2024-03-19

6.8.4 Get expert help

156 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.9 Monitor Kubernetes

Monitoring the state of the database is crucial to timely identify and react to performance issues. Percona Monitoring
and Management (PMM) solution enables you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it’s important to have
metrics that can depict the state of the Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has been tested with
the PMM Server as the centralized data storage and the Victoria Metrics Kubernetes monitoring stack as the

metrics collector. These steps may also apply if you use another Prometheus-compatible storage.

6.9.1 Pre-requisites

To set up monitoring of Kubernetes, you need the following:

PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an AWS instance.
Please refer to the official PMM documentation for the installation instructions.

Helm v3 .

kubectl .

The PMM Server API key. The key must have the role “Admin”.

Get the PMM API key:

1.

2.

3.

4.

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and hostname in the following
command:

The API key is not rotated.

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d {"name":"operator", "role": "Admin"}' "https://
<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

6.9 Monitor Kubernetes

157 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-monitoring-and-management/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/setting-up/server/index.html
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication

6.9.2 Install the Victoria Metrics Kubernetes monitoring stack

Quick install

To install the Victoria Metrics Kubernetes monitoring stack with the default parameters, use the quick install command.
Replace the following placeholders with your values:

API-KEY - The API key of your PMM Server

PMM-SERVER-URL - The URL to access the PMM Server

UNIQUE-K8s-CLUSTER-IDENTIFIER - Identifier for the Kubernetes cluster. It can be the name you defined during the cluster
creation.

You should use a unique identifier for each Kubernetes cluster. The use of the same identifer for more than one
Kubernetes cluster will result in the conflicts during the metrics collection.

NAMESPACE - The namespace where the Victoria metrics Kubernetes stack will be installed. If you haven’t created the
namespace before, it will be created during the command execution.

We recommend to use a separate namespace like monitoring-system .

The Prometheus node exporter is not installed by default since it requires privileged containers with the access to the host
file system. If you need the metrics for Nodes, add the --node-exporter-enabled flag as follows:

Install manually

You may need to customize the default parameters of the Victoria metrics Kubernetes stack.

Since we use the PMM Server for monitoring, there is no need to store the data in Victoria Metrics Operator.
Therefore, the Victoria Metrics Helm chart is installed with the vmsingle.enabled and vmcluster.enabled parameters set
to false in this setup.

Check all the role-based access control (RBAC) rules of the victoria-metrics-k8s-stack chart and the dependencies

chart, and modify them based on your requirements.

1.

•

•

•

•

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/quick-install.sh |
bash -s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-IDENTIFIER> --
namespace <NAMESPACE>

Note

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/quick-install.sh |
bash -s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-IDENTIFIER> --
namespace <NAMESPACE> --node-exporter-enabled

•

•

6.9.2 Install the Victoria Metrics Kubernetes monitoring stack

158 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://helm.sh/docs/topics/rbac/
https://helm.sh/docs/topics/rbac/
https://helm.sh/docs/topics/rbac/

CONFIGURE AUTHENTICATION IN PMM

To access the PMM Server resources and perform actions on the server, configure authentication.

Encode the PMM Server API key with base64.

Create the Namespace where you want to set up monitoring. The following command creates the Namespace
monitoring-system . You can specify a different name. In the latter steps, specify your namespace instead of the
<namespace> placeholder.

Create the YAML file for the Kubernetes Secrets and specify the base64-encoded API key value within. Let’s name this

file pmm-api-vmoperator.yaml .

Create the Secrets object using the YAML file you created previously. Replace the <filename> placeholder with your value.

Check that the secret is created. The following command checks the secret for the resource named pmm-token-vmoperator

(as defined in the metadata.name option in the secrets file). If you defined another resource name, specify your value.

CREATE A CONFIGMAP TO MOUNT FOR KUBE-STATE-METRICS

The kube-state-metrics (KSM) is a simple service that listens to the Kubernetes API server and generates metrics

about the state of various objects - Pods, Deployments, Services and Custom Resources.

To define what metrics the kube-state-metrics should capture, create the ConfigMap and mount it to a container.

Use the example configmap.yaml configuration file to create the ConfigMap.

1.

 Linux

 macOS

$ echo -n <API-key> | base64 --wrap=0

$ echo -n <API-key> | base64

2.

$ kubectl create namespace monitoring-system

3.

pmm-api-vmoperator.yaml

apiVersion: v1
data:
api_key: <base-64-encoded-API-key>

kind: Secret
metadata:
name: pmm-token-vmoperator
#namespace: default

type: Opaque

4.

$ kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>

5.

$ kubectl get secret pmm-token-vmoperator -n <namespace>

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/ksm-
configmap.yaml -n <namespace>

6.9.2 Install the Victoria Metrics Kubernetes monitoring stack

159 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/Percona-Lab/k8s-monitoring/blob/main/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/main/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/main/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/main/vm-operator-k8s-stack/ksm-configmap.yaml

As a result, you have the customresource-config-ksm ConfigMap created.

INSTALL THE VICTORIA METRICS KUBERNETES MONITORING STACK

Add the dependency repositories of victoria-metrics-k8s-stack chart.

Add the Victoria Metrics Kubernetes monitoring stack repository.

Update the repositories.

Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the following configuration:

the URL to access the PMM server in the externalVM.write.url option in the format <PMM-SERVER-URL>/victoriametrics/api/v1/

write . The URL can contain either the IP address or the hostname of the PMM server.

the unique name or an ID of the Kubernetes cluster in the vmagent.spec.externalLabels.k8s_cluster_id option. Ensure to set
different values if you are sending metrics from multiple Kubernetes clusters to the same PMM Server.

the <namespace> placeholder with your value. The Namespace must be the same as the Namespace for the Secret and
ConfigMap

{.bash data-prompt="$" }

 $ helm install vm-k8s vm/victoria-metrics-k8s-stack \

 -f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/values.yaml \

 --set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1/write \

 --set vmagent.spec.externalLabels.k8s_cluster_id=<UNIQUE-CLUSTER-IDENTIFER/NAME> \

 -n <namespace>

To illustrate, say your PMM Server URL is https://pmm-example.com , the cluster ID is test-cluster and the Namespace is
monitoring-system . Then the command would look like this:

```{.bash .no-copy } $ helm install vm-k8s vm/victoria-metrics-k8s-stack \ -f https://raw.githubusercontent.com/Percona-
Lab/k8s-monitoring/main/vm-operator-k8s-stack/values.yaml  \  –set  externalVM.write.url=https://pmm-example.com/
victoriametrics/api/v1/write \ –set vmagent.spec.externalLabels.k8s_cluster_id=test-cluster \ -n monitoring-system

6.9.3 Validate the successful installation

What Pods are running depends on the configuration chosen in values used while installing  victoria-metrics-k8s-stack

chart.

1. 

$ helm repo add grafana https://grafana.github.io/helm-charts
$ helm repo add prometheus-community https://prometheus-community.github.io/helm-charts

2. 

$ helm repo add vm https://victoriametrics.github.io/helm-charts/

3. 

$ helm repo update

4. 

• 

• 

• 

$ kubectl get pods -n <namespace>

Sample output

vm-k8s-stack-kube-state-metrics-d9d85978d-9pzbs                   1/1     Running   0          28m
vm-k8s-stack-victoria-metrics-operator-844d558455-gvg4n           1/1     Running   0          28m
vmagent-vm-k8s-stack-victoria-metrics-k8s-stack-55fd8fc4fbcxwhx   2/2     Running   0          28m

6.9.3 Validate the successful installation

160 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack


6.9.4 Verify metrics capture

Connect to the PMM server.

Click Explore and switch to the Code mode.

Check that the required metrics are captured, type the following in the Metrics browser dropdown:

cadvisor :

kubelet:

1. 

2. 

3. 

• 

• 

6.9.4 Verify metrics capture

161 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md


kube-state-metrics   metrics that also include Custom resource metrics for the Operator and database deployed in

your Kubernetes cluster:

• 

6.9.4 Verify metrics capture

162 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/kubernetes/kube-state-metrics/tree/main/docs
https://github.com/kubernetes/kube-state-metrics/tree/main/docs
https://github.com/kubernetes/kube-state-metrics/tree/main/docs


6.9.5 Uninstall Victoria metrics Kubernetes stack

To remove Victoria  metrics  Kubernetes  stack  used for  Kubernetes  cluster  monitoring,  use  the  cleanup script.  By
default,  the script removes all  the  Custom Resource Definitions(CRD)   and Secrets associated with the Victoria

metrics Kubernetes stack. To keep the CRDs, run the script with the --keep-crd  flag.

Check that the Victoria metrics Kubernetes stack is deleted:

The output should provide the empty list.

If you face any issues with the removal, uninstall the stack manually:

6.9.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

 Remove CRDs

Replace the <NAMESPACE>  placeholder with the namespace you specified during the Victoria metrics Kubernetes stack
installation: 

 Keep CRDs

Replace the <NAMESPACE>  placeholder with the namespace you specified during the Victoria metrics Kubernetes stack
installation: 

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/
cleanup.sh) --namespace <NAMESPACE>

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/
cleanup.sh) --namespace <NAMESPACE> --keep-crd

$ helm list -n <namespace>

$ helm uninstall vm-k8s-stack -n < namespace>

Last update: 2024-03-19 

6.9.5 Uninstall Victoria metrics Kubernetes stack

163 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


6.10 Use PostGIS extension with Percona Distribution for PostgreSQL

PostGIS  is a PostgreSQL extension that adds GIS capabilities to this database.

Starting from the Operator version 2.3.0 it became possible to deploy and manage PostGIS-enabled PostgreSQL. 

Due to  the large size  and domain specifics  of  this  extension,  Percona provides separate PostgreSQL Distribution
images with it.

6.10 Use PostGIS extension with Percona Distribution for PostgreSQL

164 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://postgis.net/
https://postgis.net/
https://postgis.net/


6.10.1 Deploy the Operator with PostGIS-enabled database cluster

Following steps will allow you to deploy PostgreSQL cluster with these images.

6.10.1 Deploy the Operator with PostGIS-enabled database cluster

165 of 221 Percona LLC and/or its affiliates, © 2009 - 2024



Clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b  option while cloning the code on this step. Please be careful.

The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the deploy/crd.yaml  file.
Custom Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new items
(in our case ones which are the core of the Operator). Apply it  as follows:

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-operator ):

The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the deploy/rbac.yaml  file.
Role-based access is  based on defined roles and the available actions which correspond to each role.  The role and
actions are defined for Kubernetes resources in the yaml file. Further details about users and roles can be found in
Kubernetes documentation .

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google Kubernetes Engine
can grant user needed privileges with the following command:

Start the Operator within Kubernetes:

After the Operator is started, modify the  deploy/cr.yaml  configuration file with PostGIS-enabled image - use  percona/

percona-postgresql-operator:2.4.0-ppg16-postgres-gis  instead of percona/percona-postgresql-operator:2.4.0-ppg16-postgres

When done, Percona Distribution for PostgreSQL cluster can be created at any time with the following command:

1. 

$ git clone -b v2.4.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

Note

2. 

$ kubectl apply --server-side -f deploy/crd.yaml

3. 

$ kubectl create namespace postgres-operator

4. 

$ kubectl apply -f deploy/rbac.yaml -n postgres-operator

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value core/
account)

5. 

$ kubectl apply -f deploy/operator.yaml -n postgres-operator

6. 

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
name: cluster1

spec:
...
image: percona/percona-postgresql-operator:2.4.0-ppg16-postgres-gis
...

6.10.1 Deploy the Operator with PostGIS-enabled database cluster

166 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings


The creation process may take some time. When the process is over your cluster will obtain the ready  status. You can
check it with the following command:

6.10.2 Check PostGIS extension

To use PostGIS extension you should enable it for a specific database. 

For example, you can create the new database named mygisdata  with the psql  tool as follows:

Next, enable the  postgis  extension. Make sure you are connected to the database you created earlier and run the
following command:

Finally, check that the extension is enabled:

The output should resemble the following:

You can find more about using PostGIS in the official Percona Distribution for PostgreSQL documentation , as well

as in this blogpost .

6.10.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg -n postgres-operator

Expected output

NAME       ENDPOINT                         STATUS   POSTGRES   PGBOUNCER   AGE
cluster1   cluster1-pgbouncer.default.svc   ready    3          3           30m

CREATE database mygisdata;
\c mygisdata;
CREATE SCHEMA gis;

CREATE EXTENSION postgis;

SELECT postgis_full_version();

postgis_full_version
-----------------------------------------------------------------------------------------------------------------------------------------------------------------

POSTGIS="3.3.3" [EXTENSION] PGSQL="140" GEOS="3.10.2-CAPI-1.16.0" PROJ="8.2.1" LIBXML="2.9.13" LIBJSON="0.15"
LIBPROTOBUF="1.3.3" WAGYU="0.5.0 (Internal)"

Last update: 2024-03-19 

6.10.2 Check PostGIS extension

167 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


7. Troubleshooting

7.1 Initial troubleshooting

Percona Operator for PostgreSQL uses Custom Resources  to manage options for the various components of the

cluster.

PerconaPGCluster  Custom Resource with Percona PostgreSQL Cluster options (it has handy pg  shortname also),

PerconaPGBackup  and PerconaPGRestore  Custom Resources contain options for Percona XtraBackup used to backup
Percona XtraDB Cluster and to restore it  from backups ( pg-backup  and  pg-restore  shortnames are available for
them).

The first thing you can check for the Custom Resource is to query it with kubectl get  command:

The Custom Resource should have Ready  status.

You can check which Percona’s Custom Resources are present and get some information about them as follows:

7.1.1 Check the Pods

If Custom Resource is not getting Ready  status, it makes sense to check individual Pods. You can do it as follows:

• 

• 

$ kubectl get pg

Expected output

NAME       ENDPOINT                         STATUS   POSTGRES   PGBOUNCER   AGE
cluster1   cluster1-pgbouncer.default.svc   ready    3          3           30m

Note

$ kubectl api-resources | grep -i percona

Expected output

perconapgbackups          pg-backup    pgv2.percona.com/v2            true         PerconaPGBackup
perconapgclusters         pg           pgv2.percona.com/v2            true         PerconaPGCluster
perconapgrestores         pg-restore   pgv2.percona.com/v2            true         PerconaPGRestore

$ kubectl get pods

7. Troubleshooting

168 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/


The above command provides the following insights:

READY  indicates how many containers in the Pod are ready to serve the traffic. In the above example, cluster1-repo-

host-0  container has all two containers ready (2/2). For an application to work properly, all containers of the Pod
should be ready.

STATUS  indicates the current status of the Pod. The Pod should be in a Running  state to confirm that the application
is working as expected. You can find out other possible states in the official Kubernetes documentation .

RESTARTS  indicates how many times containers of Pod were restarted. This is impacted by the  Container Restart
Policy . In an ideal world, the restart count would be zero, meaning no issues from the beginning. If the restart

count exceeds zero, it may be reasonable to check why it happens.

AGE : Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

You can find more details about a specific Pod using the kubectl describe pods <pod-name>  command.

Expected output

NAME                                           READY   STATUS      RESTARTS   AGE
cluster1-backup-4vwt-p5d9j                     0/1     Completed   0          97m
cluster1-instance1-b5mr-0                      4/4     Running     0          99m
cluster1-instance1-b8p7-0                      4/4     Running     0          99m
cluster1-instance1-w7q2-0                      4/4     Running     0          99m
cluster1-pgbouncer-79bbf55c45-62xlk            2/2     Running     0          99m
cluster1-pgbouncer-79bbf55c45-9g4cb            2/2     Running     0          99m
cluster1-pgbouncer-79bbf55c45-9nrmd            2/2     Running     0          99m
cluster1-repo-host-0                           2/2     Running     0          99m
percona-postgresql-operator-79cd8586f5-2qzcs   1/1     Running     0          120m

• 

• 

• 

• 

$ $ kubectl describe pods cluster1-instance1-b5mr-0

Expected output

...
Name:         cluster1-instance1-b5mr-0
Namespace:    default
...
Controlled By:  StatefulSet/cluster1-instance1-b5mr
Init Containers:
 postgres-startup:
...
Containers:
 database:
...
 pgbackrest:
...
   Restart Count:  0
   Liveness:   http-get https://:8008/liveness delay=3s timeout=5s period=10s #success=1 #failure=3
   Readiness:  http-get https://:8008/readiness delay=3s timeout=5s period=10s #success=1 #failure=3
   Environment:
...
   Mounts:
...
Volumes:
...
Events:
...

7.1.1 Check the Pods

169 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy


This gives a lot of information about containers,  resources,  container status and also events.  So,  describe output
should be checked to see any abnormalities.

7.1.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-03-19 

7.1.2 Get expert help

170 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


7.2 Exec into the containers

If you want to examine the contents of a container “in place” using remote access to it, you can use the kubectl exec

command. It allows you to run any command or just open an interactive shell session in the container. Of course, you
can have shell access to the container only if container supports it and has a “Running” state.

In the following examples we will access the container database  of the cluster1-instance1-b5mr-0  Pod.

Run date  command:

You will see an error if the command is not present in a container. For example, trying to run the time  command,
which is not present in the container, by executing kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- time  would show
the following result:

Print log files to a terminal:

Similarly, opening an Interactive terminal, executing a pair of commands in the container, and exiting it may look as
follows:

7.2.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- date

Expected output

Wed Jun 14 11:18:47 UTC 2023

OCI runtime exec failed: exec failed: unable to start container process: exec: "time": executable file not found in $PATH: 
unknown command terminated with exit code 126

• 

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- cat /pgdata/pg16/log/postgresql-*.log

• 

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- bash
bash-4.4$ hostname
cluster1-pxc-0
bash-4.4$ ls /pgdata/pg16/log/
postgresql-Wed.log
bash-4.4$ exit
exit
$

Last update: 2023-12-21 

7.2 Exec into the containers

171 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


7.3 Check the logs

Logs provide valuable information. It makes sense to check the logs of the database Pods and the Operator Pod.
Following flags are helpful for checking the logs with the kubectl logs  command:

In the following examples we will access containers of the cluster1-instance1-b5mr-0  Pod.

Check logs of the database  container:

Check logs of the pgbackrest  container:

Filter logs of the database  container which are not older than 600 seconds:

Check logs of a previous instantiation of the database  container, if any:

7.3.1 Increase pgBackRest log verbosity

The pgBackRest tool used for backups  supports different log verbosity levels  . By default, it logs warnings and

errors, but sometimes fixing backup/restore issues can be simpler when you get more debugging information from it.

Log verbosity is controlled by pgBackRest –log-level-stderr  option.

You can add it to the deploy/backup.yaml  file to use it with on-demand backups as follows:

Flag Description

-c , --

container=<container-

name>

Print log of a specific container in case of multiple containers in a Pod

-f , --follow Follows the logs for a live output

--since=<time> Print logs newer than the specified time, for example: --since="10s"

--timestamps Print timestamp in the logs (timezone is taken from the container)

-p , --previous Print previous instantiation of a container. This is extremely useful in case of container
restart, where there is a need to check the logs on why the container restarted. Logs
of previous instantiation might not be available in all the cases.

• 

$ kubectl logs cluster1-instance1-b5mr-0 --container database

• 

$ kubectl logs cluster1-instance1-b5mr-0 --container pgbackrest

• 

$ kubectl logs cluster1-instance1-b5mr-0 --container database --since=600s

• 

$ kubectl logs cluster1-instance1-b5mr-0 --container database --previous

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backup1

spec:
pgCluster: cluster1

7.3 Check the logs

172 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr


7.3.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

repoName: repo1
options:
- --log-level-stderr=debug

Last update: 2024-06-28 

7.3.2 Get expert help

173 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


8. Reference

8.1 Custom Resource options

The Cluster is configured via the deploy/cr.yaml  file.

8.1.1 metadata

The metadata part of this file contains the following keys:

name  ( cluster1  by default) sets the name of your Percona Distribution for PostgreSQL Cluster; it should include only
URL-compatible  characters  ,  not  exceed 22  characters,  start  with  an alphabetic  character,  and end with  an

alphanumeric character;

finalizers.percona.com/delete-ssl  if present, activates the  Finalizer   which deletes  objects, created for SSL (Secret,

certificate, and issuer) after the cluster deletion event (off by default).

finalizers.percona.com/delete-pvc  if present, activates the Finalizer  which deletes Persistent Volume Claims  for

the database cluster Pods after the deletion event (off by default).

8.1.2 Toplevel spec  elements

The spec part of the deploy/cr.yaml  file contains the following:

crVersion

Version of the Operator the Custom Resource belongs to.

standby.enabled

Enables or disables running the cluster in a standby mode (read-only copy of an existing cluster, useful for disaster
recovery, etc).

standby.host

Host address of the primary cluster this standby cluster connects to.

• 

• 

• 

Value type Example

 string 2.4.0

Value type Example

 boolean false

Value type Example

 string "<primary-ip>"

8. Reference

174 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


standby.port

Port number used by a standby copy to connect to the primary cluster.

openshift

Set to true  if the cluster is being deployed on OpenShift, set to false  otherwise, or unset it for autodetection.

standby.repoName

Name of the pgBackRest repository in the primary cluster this standby cluster connects to.

secrets.customTLSSecret.name

A secret with TLS certificate generated for external communications, see Transport Layer Security (TLS) for details.

secrets.customReplicationTLSSecret.name

A secret with TLS certificate generated for internal communications, see Transport Layer Security (TLS) for details.

users.name

The name of the PostgreSQL user.

users.databases

Databases accessible by a specific PostgreSQL user with rights to create objects in them (the option is ignored for
postgres  user; also, modifying it can’t be used to revoke the already given access).

Value type Example

 string "<primary-port>"

Value type Example

 boolean true

Value type Example

 string repo1

Value type Example

 string cluster1-cert

Value type Example

 string replication1-cert

Value type Example

 string rhino

Value type Example

 string zoo

8.1.2 Toplevel spec elements

175 of 221 Percona LLC and/or its affiliates, © 2009 - 2024



users.password.type

The set of characters used for password generation: can be either ASCII  (default) or AlphaNumeric .

users.options

The ALTER ROLE  options other than password (the option is ignored for postgres  user).

users.secretName

The custom name of the user’s Secret; if not specified, the default <clusterName>-pguser-<userName>  variant will be used.

databaseInitSQL.key

Data key for the Custom configuration options ConfigMap  with the init SQL file, which will be executed at cluster

creation time.

databaseInitSQL.name

Name of the ConfigMap  with the init SQL file, which will be executed at cluster creation time.

pause

Setting it to true  gracefully stops the cluster, scaling workloads to zero and suspending CronJobs; setting it to false

after shut down starts the cluster back.

Value type Example

 string ASCII

Value type Example

 string "SUPERUSER"

Value type Example

 string "rhino-credentials"

Value type Example

 string init.sql

Value type Example

 string cluster1-init-sql

Value type Example

 string false

8.1.2 Toplevel spec elements

176 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/


unmanaged

Setting it to true  stops the Operator’s activity including the rollout and reconciliation of changes made in the Custom
Resource; setting it to false  starts the Operator’s activity back.

dataSource.postgresCluster.clusterName

Name of an existing cluster to use as the data source when restoring backup to a new cluster.

dataSource.postgresCluster.repoName

Name of the pgBackRest repository in the source cluster that contains the backup to be restored to a new cluster.

dataSource.postgresCluster.options

The pgBackRest command-line options for the pgBackRest restore command.

dataSource.postgresCluster.tolerations.effect

The Kubernetes Pod tolerations  effect for data migration jobs.

dataSource.postgresCluster.tolerations.key

The Kubernetes Pod tolerations  key for data migration jobs.

dataSource.postgresCluster.tolerations.operator

The Kubernetes Pod tolerations  operator for data migration jobs.

Value type Example

 string false

Value type Example

 string cluster1

Value type Example

 string repo1

Value type Example

 string

Value type Example

 string NoSchedule

Value type Example

 string role

Value type Example

 string Equal

8.1.2 Toplevel spec elements

177 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


dataSource.postgresCluster.tolerations.value

The Kubernetes Pod tolerations  value for data migration jobs.

dataSource.pgbackrest.stanza

Name of the pgBackRest stanza  to use as the data source when restoring backup to a new cluster.

dataSource.pgbackrest.configuration.secret.name

Name  of  the  Kubernetes  Secret  object   with  custom  pgBackRest  configuration,  which  will  be  added  to  the

pgBackRest configuration generated by the Operator.

dataSource.pgbackrest.global

Settings, which are to be included in the global  section of the pgBackRest configuration generated by the Operator.

dataSource.pgbackrest.repo.name

Name of the pgBackRest repository.

dataSource.pgbackrest.repo.s3.bucket

The Amazon S3 bucket  or Google Cloud Storage bucket  name used for backups.

dataSource.pgbackrest.repo.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original Amazon S3 cloud).

Value type Example

 string connection-poolers

Value type Example

 string db

Value type Example

 string pgo-s3-creds

Value type Example

 subdoc /pgbackrest/postgres-operator/hippo/repo1

Value type Example

 string repo1

Value type Example

 string "my-bucket"

Value type Example

 string "s3.ca-central-1.amazonaws.com"

8.1.2 Toplevel spec elements

178 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://pgbackrest.org/command.html
https://pgbackrest.org/command.html
https://pgbackrest.org/command.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets


dataSource.pgbackrest.repo.s3.region

The AWS region  to use for Amazon and all S3-compatible storages.

image

The PostgreSQL Docker image to use.

imagePullPolicy

This option is used to set the policy  for updating PostgreSQL images.

postgresVersion

The major version of PostgreSQL to use.

port

The port number for PostgreSQL.

expose.annotations

The Kubernetes annotations  metadata for PostgreSQL primary.

expose.labels

Set labels  for the PostgreSQL primary.

Value type Example

 boolean "ca-central-1"

Value type Example

 string perconalab/percona-postgresql-operator:2.4.0-ppg16-postgres

Value type Example

 string Always

Value type Example

 int 14

Value type Example

 int 5432

Value type Example

 label my-annotation: value1

Value type Example

 label my-label: value2

8.1.2 Toplevel spec elements

179 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


expose.type

Specifies the type of Kubernetes Service  for PostgreSQL primary.

expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

8.2 exposeReplicas.annotations`

The Kubernetes annotations  metadata for PostgreSQL replicas.

exposeReplicas.labels

Set labels  for the PostgreSQL replicas.

exposeReplicas.type

Specifies the type of Kubernetes Service  for PostgreSQL replicas.

exposeReplicas.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

8.2.1 Instances section

The  instances  section in  the  deploy/cr.yaml   file  contains  configuration options for  PostgreSQL instances.  This

section contains at least one cluster instance with a number of PostgreSQL instances in it (cluster instances are groups of
PostgreSQL instances used for fine-grained resources assignment).

Value type Example

 string LoadBalancer

Value type Example

 string "10.0.0.0/8"

Value type Example

 label my-annotation: value1

Value type Example

 label my-label: value2

Value type Example

 string LoadBalancer

Value type Example

 string "10.0.0.0/8"

8.2 exposeReplicas.annotations`

180 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


instances.metadata.labels

Set labels  for PostgreSQL Pods.

instances.name

The name of the PostgreSQL instance.

instances.replicas

The number of Replicas to create for the PostgreSQL instance.

instances.resources.limits.cpu

Kubernetes CPU limits  for a PostgreSQL instance.

instances.resources.limits.memory

The Kubernetes memory limits  for a PostgreSQL instance.

instances.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

instances.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label pg-cluster-label: cluster1

Value type Example

 string rs 0

Value type Example

 int 3

Value type Example

 string 2.0

Value type Example

 string 4Gi

Value type Example

 int 1

Value type Example

 string my-node-label

8.2.1 Instances section

181 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/


instances.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

instances.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

instances.tolerations.effect

The Kubernetes Pod tolerations  effect for the PostgreSQL instance.

instances.tolerations.key

The Kubernetes Pod tolerations  key for the PostgreSQL instance.

instances.tolerations.operator

The Kubernetes Pod tolerations  operator for the PostgreSQL instance.

instances.tolerations.value

The Kubernetes Pod tolerations  value for the PostgreSQL instance.

instances.priorityClassName

The Kuberentes Pod priority class  for PostgreSQL instance Pods.

Value type Example

 string DoNotSchedule

Value type Example

 label postgres-operator.crunchydata.com/instance-set: instance1

Value type Example

 string NoSchedule

Value type Example

 string role

Value type Example

 string Equal

Value type Example

 string connection-poolers

Value type Example

 string high-priority

8.2.1 Instances section

182 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass


‘instances.securityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

instances.walVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the PostgreSQL Write-ahead Log storage.

instances.walVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests  for the storage the PostgreSQL instance will use.

instances.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the PostgreSQL storage.

instances.dataVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests  for the storage the PostgreSQL instance will use.

Value type Example

 subdoc fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
  type: spc_t
  level: s0:c123,c456
seccompProfile:
  type: Localhost
  localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
  value: “600”
- name: net.ipv4.tcp_keepalive_intvl
  value: “60”

Value type Example

 string ReadWriteOnce

Value type Example

 string 1Gi

Value type Example

 string ReadWriteOnce

Value type Example

 string 1Gi

8.2.1 Instances section

183 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


instances.tablespaceVolumes.name

Name for the custom tablespace volume.

instances.tablespaceVolumes.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the tablespace volume.

instances.tablespaceVolumes.dataVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests  for the tablespace volume.

8.2.2 instances.sidecars subsection

The  instances.sidecars  subsection  in  the  deploy/cr.yaml   file  contains  configuration  options  for  custom  sidecar

containers which can be added to PostgreSQL Pods.

instances.sidecars.image

Image for the custom sidecar container for PostgreSQL Pods.

instances.sidecars.name

Name of the custom sidecar container for PostgreSQL Pods.

instances.sidecars.imagePullPolicy

This option is used to set the policy  for the PostgreSQL Pod sidecar container.

Value type Example

 string user

Value type Example

 string ReadWriteOnce

Value type Example

 string 1Gi

Value type Example

 string mycontainer1:latest

Value type Example

 string testcontainer

Value type Example

 string Always

8.2.2 instances.sidecars subsection

184 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images


instances.sidecars.env

The environment variables set as key-value pairs  for the custom sidecar container for PostgreSQL Pods.

instances.sidecars.envFrom

The environment variables set as key-value pairs in ConfigMaps  for the custom sidecar container for PostgreSQL

Pods.

instances.sidecars.command

Command for the custom sidecar container for PostgreSQL Pods.

instances.sidecars.args

Command arguments for the custom sidecar container for PostgreSQL Pods.

8.2.3 Backup section

The backup  section in the deploy/cr.yaml  file contains the following configuration options for the regular Percona

Distribution for PostgreSQL backups.

backups.pgbackrest.metadata.labels

Set labels  for pgBackRest Pods.

backups.pgbackrest.image

The Docker image for pgBackRest.

Value type Example

 subdoc

Value type Example

 subdoc

Value type Example

 array ["/bin/sh"]

Value type Example

 array ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Value type Example

 label pg-cluster-label: cluster1

Value type Example

 string perconalab/percona-postgresql-operator:2.4.0-ppg16-pgbackrest

8.2.3 Backup section

185 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


backups.pgbackrest.configuration.secret.name

Name  of  the  Kubernetes  Secret  object   with  custom  pgBackRest  configuration,  which  will  be  added  to  the

pgBackRest configuration generated by the Operator.

backups.pgbackrest.jobs.priorityClassName

The Kuberentes Pod priority class  for pgBackRest jobs.

backups.pgbackrest.jobs.resources.limits.cpu

Kubernetes CPU limits  for a pgBackRest job.

backups.pgbackrest.jobs.resources.limits.memory

The Kubernetes memory limits  for a pgBackRest job.

backups.pgbackrest.jobs.tolerations.effect

The Kubernetes Pod tolerations  effect for a backup job.

backups.pgbackrest.jobs.tolerations.key

The Kubernetes Pod tolerations  key for a backup job.

backups.pgbackrest.jobs.tolerations.operator

The Kubernetes Pod tolerations  operator for a backup job.

Value type Example

 string cluster1-pgbackrest-secrets

Value type Example

 string high-priority

Value type Example

 int 200

Value type Example

 string 128Mi

Value type Example

 string NoSchedule

Value type Example

 string role

Value type Example

 string Equal

8.2.3 Backup section

186 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


backups.pgbackrest.jobs.tolerations.value

The Kubernetes Pod tolerations  value for a backup job.

‘backups.pgbackrest.jobs.securityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

backups.pgbackrest.global

Settings, which are to be included in the global  section of the pgBackRest configuration generated by the Operator.

backups.pgbackrest.repoHost.priorityClassName

The Kuberentes Pod priority class  for pgBackRest repo.

backups.pgbackrest.repoHost.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string connection-poolers

Value type Example

 subdoc fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
  type: spc_t
  level: s0:c123,c456
seccompProfile:
  type: Localhost
  localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
  value: “600”
- name: net.ipv4.tcp_keepalive_intvl
  value: “60”

Value type Example

 subdoc /pgbackrest/postgres-operator/hippo/repo1

Value type Example

 string high-priority

Value type Example

 int 1

8.2.3 Backup section

187 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/


backups.pgbackrest.repoHost.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

backups.pgbackrest.repoHost.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

backups.pgbackrest.repoHost.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

backups.pgbackrest.repoHost.affinity.podAntiAffinity

Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity.

backups.pgbackrest.repoHost.tolerations.effect

The Kubernetes Pod tolerations  effect for pgBackRest repo.

backups.pgbackrest.repoHost.tolerations.key

The Kubernetes Pod tolerations  key for pgBackRest repo.

backups.pgbackrest.repoHost.tolerations.operator

The Kubernetes Pod tolerations  operator for pgBackRest repo.

Value type Example

 string my-node-label

Value type Example

 string ScheduleAnyway

Value type Example

 label postgres-operator.crunchydata.com/pgbackrest: ""

Value type Example

 subdoc

Value type Example

 string NoSchedule

Value type Example

 string role

Value type Example

 string Equal

8.2.3 Backup section

188 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


backups.pgbackrest.repoHost.tolerations.value

The Kubernetes Pod tolerations  value for pgBackRest repo.

‘backups.pgbackrest.repoHost.securityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

backups.pgbackrest.manual.repoName

Name of the pgBackRest repository for on-demand backups.

backups.pgbackrest.manual.options

The on-demand backup command-line options which will be passed to pgBackRest for on-demand backups.

backups.pgbackrest.repos.name

Name of the pgBackRest repository for backups.

Value type Example

 string connection-poolers

Value type Example

 subdoc fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
  type: spc_t
  level: s0:c123,c456
seccompProfile:
  type: Localhost
  localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
  value: “600”
- name: net.ipv4.tcp_keepalive_intvl
  value: “60”

Value type Example

 string repo1

Value type Example

 string --type=full

Value type Example

 string repo1

8.2.3 Backup section

189 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


backups.pgbackrest.repos.schedules.full

Scheduled time to make a full backup specified in the crontab format .

backups.pgbackrest.repos.schedules.differential

Scheduled time to make a differential backup specified in the crontab format .

backups.pgbackrest.repos.volume.volumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the pgBackRest Storage.

backups.pgbackrest.repos.volume.volumeClaimSpec.resources.requests.storage

The Kubernetes storage requests  for the pgBackRest storage.

backups.pgbackrest.repos.s3.bucket

The Amazon S3 bucket  name used for backups

backups.pgbackrest.repos.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original Amazon S3 cloud).

backups.pgbackrest.repos.s3.region

The AWS region  to use for Amazon and all S3-compatible storages.

Value type Example

 string 0 0 \* \* 6

Value type Example

 string 0 0 \* \* 6

Value type Example

 string ReadWriteOnce

Value type Example

 string 1Gi

Value type Example

 string "my-bucket"

.

Value type Example

 string "s3.ca-central-1.amazonaws.com"

Value type Example

 boolean "ca-central-1"

8.2.3 Backup section

190 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


backups.pgbackrest.repos.gcs.bucket

The Google Cloud Storage bucket  name used for backups.

backups.pgbackrest.repos.azure.container

Name of the Azure Blob Storage container  for backups.

backups.restore.tolerations.effect

The Kubernetes Pod tolerations  effect for the backup restore job.

backups.restore.tolerations.key

The Kubernetes Pod tolerations  key for the backup restore job.

backups.restore.tolerations.operator

The Kubernetes Pod tolerations  operator for the backup restore job.

backups.restore.tolerations.value

The Kubernetes Pod tolerations  value for the backup restore job.

8.2.4 PMM section

The  pmm  section  in  the  deploy/cr.yaml   file  contains  configuration  options  for  Percona  Monitoring  and

Management.

Value type Example

 string "my-bucket"

Value type Example

 string my-container

Value type Example

 string NoSchedule

Value type Example

 string role

Value type Example

 string Equal

Value type Example

 string connection-poolers

8.2.4 PMM section

191 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


pmm.enabled

Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM .

pmm.image

Percona Monitoring and Management (PMM) Client  Docker image.

pmm.imagePullPolicy

This option is used to set the policy  for updating PMM Client images.

pmm.pmmSecret

Name of the Kubernetes Secret object  for the PMM Server password.

pmm.serverHost

Address of the PMM Server to collect data from the cluster.

8.2.5 Proxy section

The  proxy  section in the  deploy/cr.yaml   file contains configuration options for the  pgBouncer   connection

pooler for PostgreSQL.

proxy.pgBouncer.metadata.labels

Set labels  for pgBouncer Pods.

Value type Example

 boolean false

Value type Example

 string percona/pmm-client:2.42.0

Value type Example

 string IfNotPresent

Value type Example

 string cluster1-pmm-secret

Value type Example

 string monitoring-service

Value type Example

 label pg-cluster-label: cluster1

8.2.5 Proxy section

192 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


proxy.pgBouncer.replicas

The number of the pgBouncer Pods to provide connection pooling.

proxy.pgBouncer.image

Docker image for the pgBouncer  connection pooler.

proxy.pgBouncer.exposeSuperusers

Enables or disables exposing superuser user through pgBouncer.

proxy.pgBouncer.resources.limits.cpu

Kubernetes CPU limits  for a pgBouncer container.

proxy.pgBouncer.resources.limits.memory

The Kubernetes memory limits  for a pgBouncer container.

proxy.pgBouncer.expose.type

Specifies the type of Kubernetes Service  for pgBouncer.

proxy.pgBouncer.expose.annotations

The Kubernetes annotations  metadata for pgBouncer.

Value type Example

 int 3

Value type Example

 string perconalab/percona-postgresql-operator:2.4.0-ppg16-pgbouncer

Value type Example

 boolean false

Value type Example

 string 200m

Value type Example

 string 128Mi

Value type Example

 string ClusterIP

Value type Example

 label pg-cluster-annot: cluster1

8.2.5 Proxy section

193 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/


proxy.pgBouncer.expose.labels

Set labels  for the pgBouncer Service.

proxy.pgBouncer.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

proxy.pgBouncer.affinity.podAntiAffinity

Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity.

‘proxy.pgBouncer.securityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

proxy.pgBouncer.config

Custom configuration options for pgBouncer. Please note that configuration changes are automatically applied to the
running instances without validation, so having an invalid config can make the cluster unavailable.

Value type Example

 label pg-cluster-label: cluster1

Value type Example

 string "10.0.0.0/8"

Value type Example

 subdoc

Value type Example

 subdoc fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
  type: spc_t
  level: s0:c123,c456
seccompProfile:
  type: Localhost
  localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
  value: “600”
- name: net.ipv4.tcp_keepalive_intvl
  value: “60”

Value type Example

 subdoc global:
pool_mode: transaction

8.2.5 Proxy section

194 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


8.2.6 proxy.pgBouncer.sidecars subsection

The proxy.pgBouncer.sidecars  subsection in the deploy/cr.yaml  file contains configuration options for custom sidecar

containers which can be added to pgBouncer Pods.

proxy.pgBouncer.sidecars.image

Image for the custom sidecar container for pgBouncer Pods.

proxy.pgBouncer.sidecars.name

Name of the custom sidecar container for pgBouncer Pods.

proxy.pgBouncer.sidecars.imagePullPolicy

This option is used to set the policy  for the pgBouncer Pod sidecar container.

proxy.pgBouncer.sidecars.env

The environment variables set as key-value pairs  for the custom sidecar container for pgBouncer Pods.

proxy.pgBouncer.sidecars.envFrom

The environment variables set as key-value pairs in ConfigMaps  for the custom sidecar container for pgBouncer

Pods.

proxy.pgBouncer.sidecars.command

Command for the custom sidecar container for pgBouncer Pods.

Value type Example

 string mycontainer1:latest

Value type Example

 string testcontainer

Value type Example

 string Always

Value type Example

 subdoc

Value type Example

 subdoc

Value type Example

 array ["/bin/sh"]

8.2.6 proxy.pgBouncer.sidecars subsection

195 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


proxy.pgBouncer.sidecars.args

Command arguments for the custom sidecar container for pgBouncer Pods.

8.2.7 Patroni Section

The  patroni  section in the  deploy/cr.yaml   file contains configuration options to customize the PostgreSQL high-

availability implementation based on Patroni .

patroni.syncPeriodSeconds

How often to perform liveness/readiness probes  for the patroni container (in seconds).

patroni.leaderLeaseDurationSeconds

Initial delay for liveness/readiness probes  for the patroni container (in seconds).

patroni.dynamicConfiguration

Custom PostgreSQL configuration options. Please note that configuration changes are automatically applied to the
running instances without validation, so having an invalid config can make the cluster unavailable.

patroni.switchover.enabled

Enables or disables manual change of the cluster primary instance.

Value type Example

 array ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Value type Example

 int 3

Value type Example

 int 3

Value type Example

 subdoc postgresql:
  parameters:
    max_parallel_workers: 2
    max_worker_processes: 2
    shared_buffers: 1GB
    work_mem: 2MB

Value type Example

 string true

8.2.7 Patroni Section

196 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes


patroni.switchover.targetInstance

The name of the Pod that should be  set as the new primary. When not specified, the new primary will be selected
randomly.

8.2.8 Custom extensions Section

The extensions  section in the deploy/cr.yaml  file contains configuration options to manage PostgreSQL extensions.

extensions.image

Image for the custom PostgreSQL extension loader sidecar container.

extensions.imagePullPolicy

Policy  for the custom extension sidecar container.

extensions.storage.type

The cloud storage type used for backups. Only s3  type is currently supported.

extensions.storage.bucket

The Amazon S3 bucket  name for prepackaged PostgreSQL custom extensions.

extensions.storage.region

The AWS region  to use.

Value type Example

 string

Value type Example

 string percona/percona-postgresql-operator:2.4.0

Value type Example

 string Always

Value type Example

 string s3

Value type Example

 string pg-extensions

Value type Example

 string eu-central-1

8.2.8 Custom extensions Section

197 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


extensions.storage.endpoint

The S3 endpoint  to use.

extensions.storage.secret.name

The  Kubernetes  secret   for  the  custom  extensions  storage.  It  should  contain  AWS_ACCESS_KEY_ID  and

AWS_SECRET_ACCESS_KEY  keys.

extensions.builtin

The key-value pairs which enable or disable Percona Distribution for PostgreSQL builtin extensions .

extensions.custom.name

Name of the PostgreSQL custom extension.

extensions.custom.version

Version of the PostgreSQL custom extension.

8.2.9 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Value type Example

 string s3.eu-central-1.amazonaws.com

Value type Example

 string cluster1-extensions-secret

Value type Example

 label pg_stat_monitor: true

Value type Example

 string pg_cron

Value type Example

 string 1.6.1

Last update: 2024-06-28 

8.2.9 Get expert help

198 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/general/latest/gr/s3.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.percona.com/postgresql/16/
https://docs.percona.com/postgresql/16/
https://docs.percona.com/postgresql/16/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


8.3 Percona certified images

Following table presents Percona’s certified docker images to be used with the Percona Operator for PostgreSQL:

8.3 Percona certified images

199 of 221 Percona LLC and/or its affiliates, © 2009 - 2024



Image Digest

percona/percona-postgresql-
operator:2.4.0

3012437bcfe793eaf34258aa44bb3bc404e7702711aefe4183324ee2d6928240

percona/percona-postgresql-
operator:2.4.0-ppg12.19-
postgres

170f11a418e5fa2962ab94570d5d132d40184101c844f82e5e4aa9d4fd8e7a69

percona/percona-postgresql-
operator:2.4.0-ppg13.15-
postgres

8b805570442447394be88edefdefbbc4edfc9d10f094840708756e3dc4a2f518

percona/percona-postgresql-
operator:2.4.0-ppg14.12-
postgres

121f25cc4477014708f72e642a3866ceea3dbefc950b3a3c08e1b665cce6e9f6

percona/percona-postgresql-
operator:2.4.0-ppg15.7-
postgres

8d58c8e9d7c54849854027c36905c149fa1db5ea4e8d13b3e6cb69d6e8128c7f

percona/percona-postgresql-
operator:2.4.0-ppg16.3-
postgres

8248b290a88b881f1871fbca0de7da1acace31f94f795d1990e3ca3ca5dd3636

percona/percona-postgresql-
operator:2.4.0-ppg12.19-
postgres-gis3.3.6

cc908441eb50e7bf9e9237b82be8877be391195643be83bcda818db16e626448

percona/percona-postgresql-
operator:2.4.0-ppg13.15-
postgres-gis3.3.6

d02d03a344947c1fead11cea06898a569c774a9c6393df88c4245f26882b3552

percona/percona-postgresql-
operator:2.4.0-ppg14.12-
postgres-gis3.3.6

7ca244090edfa24bc33fa81ac1e315669771639a1fc0a5e4525f5b5df8a22400

percona/percona-postgresql-
operator:2.4.0-ppg15.7-
postgres-gis3.3.6

cbb2b249aee4fb1281f81947fdc191b0d2e737345d1d35dee7d1a98a9118de40

percona/percona-postgresql-
operator:2.4.0-ppg16.3-
postgres-gis3.3.6

7ca3172329ade3be97b9bd837a3315fcb87179357e420f76662a9d0e9a4a74d3

percona/percona-postgresql-
operator:2.4.0-ppg12.19-
pgbouncer1.22.1

cd3bcc3a1575c320177ab56b5f861f418b222e6de438240d54f016343ca2d716

percona/percona-postgresql-
operator:2.4.0-ppg13.15-
pgbouncer1.22.1

a6dc61d46304c859791759b06b3d46bb991943efb6362693a954d6bb1d287db1

percona/percona-postgresql-
operator:2.4.0-ppg14.12-
pgbouncer1.22.1

b2ad8723fbd6a9d59ef57812fc1a31ac7971ef17acba7334ad35647069f0531f

percona/percona-postgresql-
operator:2.4.0-ppg15.7-
pgbouncer1.22.1

5b17a53c505010b83b477086f3491e444df8fddae6946e42e3a22679aaf8c35e

8.3 Percona certified images

200 of 221 Percona LLC and/or its affiliates, © 2009 - 2024



8.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Image Digest

percona/percona-postgresql-
operator:2.4.0-ppg16.3-
pgbouncer1.22.1

37f466cea2330939f16c890a327b1d88b16cd85063ce45aff8255b8108accb08

percona/percona-postgresql-
operator:2.4.0-ppg12.19-
pgbackrest2.51-1

93ec75d2158f5df7d69ee88578fde31fb8aab660ce6f3d5b19a83efe0c5fae33

percona/percona-postgresql-
operator:2.4.0-ppg13.15-
pgbackrest2.51-1

420d1cadee0ef7ff8a6e1044b46a0258a78ce0f53c196ff79eb17938f882c912

percona/percona-postgresql-
operator:2.4.0-ppg14.12-
pgbackrest2.51-1

77159b971e7b1473d3d0fbe173ba73fce5b8b853538d4d238a0eab9d96ccea87

percona/percona-postgresql-
operator:2.4.0-ppg15.7-
pgbackrest2.51-1

2949859f8095ddcb246c5754973bd93d9bd4dafd7b649b94a9859ffa585cfc78

percona/percona-postgresql-
operator:2.4.0-ppg16.3-
pgbackrest2.51-1

3e59b19b619e5580292c4fa8f9efedea3e9d05b79af8e186643490b13a6f83a5

percona/pmm-client:2.42.0 14cb96de47e3bc239bf285f22ec6f170b4a1181301b19100f5b7dc22c210bf8c

Last update: 2024-06-28 

8.3.1 Get expert help

201 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


8.4 Versions compatibility

Versions of the cluster components and platforms tested with different Operator releases are shown below. Other
version combinations may also work but have not been tested.

Cluster components:

Operator PostgreSQL pgBackRest pgBouncer 

2.4.0 12 - 16 2.51 1.22.1

2.3.1 12 - 16 2.48 1.18.0

2.3.0 12 - 16 2.48 1.18.0

2.2.0 12 - 15 2.43 1.18.0

2.1.0 12 - 15 2.43 1.18.0

2.0.0 12 - 14 2.41 1.17.0

1.6.0 12 - 14 2.50 1.22.0

1.5.1 12 - 14 2.47 1.20.0

1.5.0 12 - 14 2.47 1.20.0

1.4.0 12 - 14 2.43 1.18.0

1.3.0 12 - 14 2.38 1.17.0

1.2.0 12 - 14 2.37 1.16.1

1.1.0 12 - 14 2.34 1.16.0 for PostgreSQL 12, 
1.16.1 for other versions

1.0.0 12 - 13 2.33 1.13.0

8.4 Versions compatibility

202 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html


Platforms:

8.4.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Operator GKE EKS Openshift Minikube 

2.4.0 1.27 - 1.29 1.27 - 1.30 4.12.59 - 4.15.18 1.33.1

2.3.1 1.24 - 1.28 1.24 - 1.28 4.11.55 - 4.14.6 1.32

2.3.0 1.24 - 1.28 1.24 - 1.28 4.11.55 - 4.14.6 1.32

2.2.0 1.23 - 1.26 1.23 - 1.27 - 1.30.1

2.1.0 1.23 - 1.25 1.23 - 1.25 - -

2.0.0 1.22 - 1.25 - - -

1.6.0 1.26 - 1.29 1.26 - 1.29 4.12.57 - 4.15.13 1.33

1.5.1 1.24 - 1.28 1.24 - 1.28 4.11 - 4.14 1.32

1.5.0 1.24 - 1.28 1.24 - 1.28 4.11 - 4.14 1.32

1.4.0 1.22 - 1.25 1.22 - 1.25 4.10 - 4.12 1.28

1.3.0 1.21 - 1.24 1.20 - 1.22 4.7 - 4.10 -

1.2.0 1.19 - 1.22 1.19 - 1.21 4.7 - 4.10 -

1.1.0 1.19 - 1.22 1.18 - 1.21 4.7 - 4.9 -

1.0.0 1.17 - 1.21 1.21 4.6 - 4.8 -

Last update: 2024-06-28 

8.4.1 Get expert help

203 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


8.5 Copyright and licensing information

8.5.1 Documentation licensing

Percona Operator for PostgreSQL documentation is (C)2009-2023 Percona LLC and/or its affiliates and is distributed
under the Creative Commons Attribution 4.0 International License .

8.5.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-03-19 

8.5 Copyright and licensing information

204 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


8.6 Trademark policy

This Trademark Policy  is to ensure that users of Percona-branded products or services know that what they receive

has really been developed, approved, tested and maintained by Percona. Trademarks help to prevent confusion in the
marketplace, by distinguishing one company’s or person’s products and services from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB, XtraBackup, Percona
XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons and logos associated with these marks.
Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service, website, or
other use is not permitted without Percona’s written permission with the following three limited exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona fide Percona
product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”), you may use
the appropriate Percona mark when distributing a verbatim copy of that product in accordance with the terms and
conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona software that has
been modified with minor changes for the sole purpose of allowing the software to operate on an operating system or
hardware platform for which Percona has not yet released the software, provided that those third party changes do
not affect the behavior, functionality, features, design or performance of the software. Users who acquire this Percona-
branded software receive substantially exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example,  if  Percona
believes that your modification is beyond the scope of the limited license granted in this Policy or that your use of the
Percona  mark  is  detrimental  to  Percona,  Percona  will  revoke  this  authorization.  Upon  revocation,  you  must
immediately cease using the applicable Percona mark. If you do not immediately cease using the Percona mark upon
revocation, Percona may take action to protect its rights and interests in the Percona mark. Percona does not grant
any license to use any Percona mark for any other modified versions of Percona software; such use will require our
prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate, modify or
otherwise use any Percona mark as part of your own brand. For example, if XYZ creates a modified version of the
Percona Server, XYZ may not brand that modification as “XYZ Percona Server” or “Percona XYZ Server”, even if that
modification otherwise complies with the third exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as amended from
time to time. For instance, any mention of Percona trademarks should include the full trademarked name, with proper
spelling and capitalization, along with attribution of ownership to Percona Inc. For example, the full proper name for
XtraBackup is Percona XtraBackup. However, it is acceptable to omit the word “Percona” for brevity on the second and
subsequent uses, where such omission does not cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy,  please contact
trademarks@percona.com for assistance and we will do our very best to be helpful.

8.6.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

8.6 Trademark policy

205 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/trademark-policy
https://www.percona.com/trademark-policy
https://www.percona.com/trademark-policy
mailto:trademarks@percona.com
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


Last update: 2024-03-19 

8.6.1 Get expert help

206 of 221 Percona LLC and/or its affiliates, © 2009 - 2024



9. Release Notes

9.1 Percona Operator for PostgreSQL Release Notes

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)

Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

9.1.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

Last update: 2024-06-28 

9. Release Notes

207 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


9.2 Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Date

June 26, 2024

Installation

Installing Percona Operator for PostgreSQL

9.2.1 Release Highlights

9.2.2 Major versions upgrade (tech preview)

Starting from this release Operator users can automatically upgrade from one PostgreSQL major version to another.
Upgrade is triggered by applying the yaml file with the information about the existing and desired major versions, with
an example present in deploy/upgrade.yaml :

After applying it as usual, by running kubectl apply -f deploy/upgrade.yaml  command, the actual upgrade takes place as
follows:

The cluster is paused for a while,

The cluster is specially annotated with pgv2.percona.com/allow-upgrade : <PerconaPGUpgrade.Name>  annotation,

Jobs are created to migrate the data,

The cluster starts up after the upgrade finishes.

Check official documentation for more details, including ones about tracking the upgrade process and side effects for
users with custom extensions.

9.2.3 Supporting PostgreSQL tablespaces

Tablespaces allow DBAs to store a database on multiple file systems within the same server and to control where (on
which file systems) specific parts of the database are stored. You can think about it as if you were giving names to your
disk mounts and then using those names as additional parameters when creating database objects.

PostgreSQL supports  this  feature,  allowing  you  to  store  data  outside  of  the  primary  data  directory.  Tablespaces
support was present in Percona Operator for PostgreSQL 1.x, and starting from this version, Percona Operator for
PostgreSQL 2.x can also bring this feature to your Kubernetes environment, when needed.

9.2.4 Using cloud roles to authenticate on the object storage for backups

Percona Operator for PostgreSQL has introduced a new feature that allows users to authenticate to AWS S3 buckets
via IAM roles . Now Operator This enhancement significantly improves security by eliminating the need to manage

S3 access keys directly, while also streamlining the configuration process for easier backup and restore operations.

• 

• 

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
name: cluster1-15-to-16

spec:
postgresClusterName: cluster1
image: perconalab/percona-postgresql-operator:main-upgrade
fromPostgresVersion: 15
toPostgresVersion: 16

1. 

2. 

3. 

4. 

9.2 Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

208 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html


To use  this  feature,  add annotation to  the  spec  part  of  the  Custom Resource  and also  add pgBackRest  custom
configuration option to the backups  subsection:

9.2.5 New features

K8SPG-138: Users are now able to use AWS IAM role  to provide access to the S3 bucket used for backups

K8SPG-254: Now the Operator automates upgrading PostgreSQL major versions

K8SPG-459: PostgreSQL tablespaces are now supported by the Operator

K8SPG-479 and K8SPG-492: It is now possible to specify tolerations for the  backup restore jobs as well as for the
data move jobs created when the Operator 1.x is upgraded to 2.x; this is useful in environments with dedicated
Kubernetes worker nodes protected by taints

K8SPG-503 and K8SPG-513: It is now possible to specify resources for the sidecar containers of database instance
Pods

9.2.6 Improvements

K8SPG-259: Users can now change the default level for log messages for pgBackRest to simplify fixing backup and
restore issues

K8SPG-542: Documentation now includes HowTo on creating a disaster recovery cluster using streaming replication

K8SPG-506:  The  pg-backup  objects  now have a  new  backupName  status  field,  which allows users  to  obtain  the
backup name for restore simpler

K8SPG-514:  The  new  securityContext  Custom  Resource  subsections  allow  to  configure  securityContext  for
PostgreSQL instances, pgBouncer, and pgBackRest Pods

K8SPG-518: The  kubectl get pg-backup  command now shows the latest restorable time to make it easier to pick a
point-in-time recovery target

K8SPG-519:  The  new  extensions.storage.endpoint  Custom  Resource  option  allows  specifying  a  custom  S3  object
storage endpoint for installing custom extensions

K8SPG-549: It is now possible to expose replica nodes through a separate Service, useful if you want to balance the
load and separate reads and writes traffic

K8SPG-550: The default size for /tmp  mount point in PMM container was increased from 1.5G to 2G

K8SPG-585: The namespace field was added to the Operator and database Helm chart templates

9.2.7 Bugs Fixed

K8SPG-462: Fixed a bug where backups could not start if a previous backup had the same name

K8SPG-470: Liveness and Readiness probes timeouts are now configurable through Custom Resource

K8SPG-559: Fix a bug where the first full backup was incorrectly marked as incremental in the status field

spec:
crVersion: 2.4.0
metadata:
annotations:
eks.amazonaws.com/role-arn: arn:aws:iam::1191:role/role-pgbackrest-access-s3-bucket

...
backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.4.0-ppg16-pgbackrest
global:
repo1-s3-key-type: web-id
...

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.2.5 New features

209 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-138
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://jira.percona.com/browse/K8SPG-254
https://jira.percona.com/browse/K8SPG-459
https://jira.percona.com/browse/K8SPG-479
https://jira.percona.com/browse/K8SPG-492
https://jira.percona.com/browse/K8SPG-503
https://jira.percona.com/browse/K8SPG-513
https://jira.percona.com/browse/K8SPG-259
https://jira.percona.com/browse/K8SPG-542
https://jira.percona.com/browse/K8SPG-506
https://jira.percona.com/browse/K8SPG-514
https://jira.percona.com/browse/K8SPG-518
https://jira.percona.com/browse/K8SPG-519
https://jira.percona.com/browse/K8SPG-549
https://jira.percona.com/browse/K8SPG-550
https://jira.percona.com/browse/K8SPG-585
https://jira.percona.com/browse/K8SPG-462
https://jira.percona.com/browse/K8SPG-470
https://jira.percona.com/browse/K8SPG-559


K8SPG-490: Fixed broken replication that occurred after the network loss of the primary Pod with PostgreSQL 14
and older versions

K8SPG-502: Fix a bug where backup jobs were not cleaned up after completion

K8SPG-510: Fix a bug where pausing the cluster immediately set its state to “paused” instead of “stopping” while
Pods were still running

K8SPG-531: Fix a bug where scheduled backups did not work for a second database with the same name in cluster-
wide mode

K8SPG-535: Fix a bug where the Operator crashed when attempting to run a backup with a non-existent repository

K8SPG-540: Fix a bug in the pg-db Helm chart readme where the key to set the backup secret was incorrectly
specified (Thanks to Abhay Tiwari for contribution)

K8SPG-543: Fix a bug where applying a cr.yaml file with an empty spec.proxy  field caused the Operator to crash

K8SPG-547:  Fix  dependency  issue  that  made  pgbackrest-repo  container  incompatible  with  pgBackRest  2.50,
resulting in the older 2.48 version being used instead

9.2.8 Deprecation and removal

The  plpythonu  extension was removed from the list of built-in PostgreSQL extensions; users who still need it can
enable it for their databases via custom extensions functionality

9.2.9 Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.19, 13.15, 14.12, 15.7, and 16.3. Other options
may also work but have not been tested. The Operator 2.4.0 provides connection pooling based on pgBouncer 1.22.1
and high-availability implementation based on Patroni 3.3.0.

The following platforms were tested and are officially supported by the Operator 2.4.0:

Google Kubernetes Engine (GKE)  1.27 - 1.29

Amazon Elastic Container Service for Kubernetes (EKS)  1.27 - 1.30

OpenShift  4.12.59 - 4.15.18

Minikube  1.33.1

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

9.2.10 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2024-06-28 

9.2.8 Deprecation and removal

210 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-490
https://jira.percona.com/browse/K8SPG-502
https://jira.percona.com/browse/K8SPG-510
https://jira.percona.com/browse/K8SPG-531
https://jira.percona.com/browse/K8SPG-535
https://jira.percona.com/browse/K8SPG-540
https://jira.percona.com/browse/K8SPG-543
https://jira.percona.com/browse/K8SPG-547
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


9.3 Percona Operator for PostgreSQL 2.3.1

Date

January 23, 2024

Installation

Installing Percona Operator for PostgreSQL

9.3.1 Release Highlights

This  release  provides  a  number  of  bug  fixes,  including  fixes  for  the  following  vulnerabilities  in  PostgreSQL,
pgBackRest, and pgBouncer images used by the Operator:

OpenSSH  could  cause  remote  code  execution  by  ssh-agent  if  a  user  establishes  an  SSH  connection  to  a
compromised or malicious SSH server and has agent forwarding enabled (CVE-2023-38408 ). This vulnerability

affects pgBackRest and PostgreSQL images.

The c-ares library could cause a Denial of Service with 0-byte UDP payload (CVE-2023-32067 ). This vulnerability

affects pgBouncer image.

Both Operator  1.x  (including version 1.5.0)  and Operator  2.x  (including version 2.3.0)  are  affected.  The 2.x
versions upgrade to 2.3.1 is recommended to resolve these issues.

9.3.2 Bugs Fixed

K8SPG-493: Fix a regression due to which the Operator could run scheduled backup only one time

K8SPG-494: Fix vulnerabilities in PostgreSQL, pgBackRest, and pgBouncer images

K8SPG-496: Fix the bug where setting the  pause  Custom Resource option to  true  for the cluster with a backup
running would not take effect even after the backup completed

9.3.3 Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.17, 13.13, 14.10, 15.5, and 16.1. Other options
may also work but have not been tested. The Operator 2.3.1 provides connection pooling based on pgBouncer 1.21.0
and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.1:

Google Kubernetes Engine (GKE)  1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS)  1.24 - 1.28

OpenShift  4.11.55 - 4.14.6

Minikube  1.32

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

9.3.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.3 Percona Operator for PostgreSQL 2.3.1

211 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://jira.percona.com/browse/K8SPG-493
https://jira.percona.com/browse/K8SPG-494
https://jira.percona.com/browse/K8SPG-496
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-03-19 

9.3.4 Get expert help

212 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


9.4 Percona Operator for PostgreSQL 2.3.0

Date

December 21, 2023

Installation

Installing Percona Operator for PostgreSQL

9.4.1 Release Highlights

PostGIS support

Modern businesses heavily  rely  on location-based data to gain valuable insights and make data-driven decisions.
However,  integrating geospatial  functionality  into  the existing database systems has  often posed a  challenge for
enterprises. PostGIS, an open-source software extension for PostgreSQL, addresses this difficulty by equipping users
with  extensive  geospatial  operations  for  handling  geographic  data  efficiently.  Percona  Operator  now  supports
PostGIS, available through a separate container image. You can read more about PostGIS and how to use it with the
Operator in our documentation.

9.4.2 OpenShift and PostgreSQL 16 support

The Operator  is now compatible with the OpenShift platform empowering enterprise customers with seamless on-
premise  or  cloud deployments  on  the  platform of  their  choice.  Also,  PostgreSQL 16  was  added to  the  range of
supported database versions and is used by default starting with this release.

Experimental support for custom PostgreSQL extensions

One of  great  features  of  PostgreSQL is  support  for  Extensions  ,  which allow adding new functionality  to  the

database on a plugin basis.  Starting from this release, users can add custom PostgreSQL extensions dynamically,
without the need to rebuild the container image (see this HowTo on how to create and connect yours). 

9.4.3 New features

K8SPG-311 and K8SPG-389: A new loadBalancerSourceRanges  Custom Resource option allows to customize the range
of IP addresses from which the load balancer should be reachable

K8SPG-375: Experimental support for custom PostgreSQL extensions was added to the Operator

K8SPG-391: The Operator is now compatible with the OpenShift platform

K8SPG-434:  The Operator  now supports  Percona Distribution for  PostgreSQL version 16 and uses it  as  default
database version

9.4.4 Improvements

K8SPG-413: The Operator documentation now includes a comptibility matrix for each Operator version, specifying
exact versions of all core components as well as supported versions of the database and platforms

K8SPG-332:  Creating  backups  and  pausing  the  cluster do  not  interfere  with  each  other:  the  Operator  either
postpones the pausing until the active backup ends, or postpones the scheduled backup on the paused cluster

K8SPG-370: Logging management is now aligned with other Percona Operators, allowing to use structured logging
and to control log level

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.4 Percona Operator for PostgreSQL 2.3.0

213 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://jira.percona.com/browse/K8SPG-311
https://jira.percona.com/browse/K8SPG-389
https://jira.percona.com/browse/K8SPG-375
https://jira.percona.com/browse/K8SPG-391
https://jira.percona.com/browse/K8SPG-434
https://jira.percona.com/browse/K8SPG-413
https://jira.percona.com/browse/K8SPG-332
https://jira.percona.com/browse/K8SPG-370


K8SPG-372:  The  multi-namespace  (cluster-wide)  mode  of  the  Operator  was  improved,  making  it  possible  to
customize the list of Kubernetes namespaces under the Operator’s control

K8SPG-400:  The  documentation  now explains  how to  allow application  users  to  connect  to  a  database  cluster
without TLS (for example, for testing or demonstration purposes)

K8SPG-410: Scheduled backups now create pg-backup  object to simplify backup management and tracking

K8SPG-416: PostgreSQL custom configuration is now supported in the Helm chart

K8SPG-422 and K8SPG-447: The user can now see backup type and status in the output of kubectl get pg-backup  and
kubectl get pg-restore  commands

K8SPG-458: Affinity configuration examples were added to the default/cr.yaml  configuration file

9.4.5 Bugs Fixed

K8SPG-435: Fix a bug with insufficient size of /tmp filesystem which caused PostgreSQL Pods to be recreated every
few days due to running out of free space on it

K8SPG-453: Bug in pg_stat_monitor  PostgreSQL extensions could hang PostgreSQL

K8SPG-279:  Fix  regression  which  made  the  Operator  to  crash  after  creating  a  backup  if  there  was  no
backups.pgbackrest.manual section in the Custom Resource

K8SPG-310: Documentation didn’t explain how to apply pgBackRest verifyTLS  option which can be used to explicitly
enable or disable TLS verification for it

K8SPG-432: Fix a bug due to which backup jobs and Pods were not deleted on deleting the backup object

K8SPG-442: The Operator didn’t allow to append custom items to the PostgreSQL shared_preload_libraries  option

K8SPG-443:  Fix  a  bug  due  to  which  only  English  locale  was  installed  in  the  PostgreSQL  image,  missing  other
languages support

K8SPG-450: Fix a bug which prevented PostgreSQL to initialize the database on Kubernetes working nodes with
enabled huge memory pages if Pod resource limits didn’t allow using them

K8SPG-401:  Fix  a  bug  which  caused  Operator  crash  if  deployed  with  no  pmm  section  in  the  deploy/cr.yaml

configuration file

9.4.6 Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.17, 13.13, 14.10, 15.5, and 16.1. Other options
may also work but have not been tested. The Operator 2.3.0 provides connection pooling based on pgBouncer 1.21.0
and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.0:

Google Kubernetes Engine (GKE)  1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS)  1.24 - 1.28

OpenShift  4.11.55 - 4.14.6

Minikube  1.32

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

9.4.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.4.5 Bugs Fixed

214 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-372
https://jira.percona.com/browse/K8SPG-400
https://jira.percona.com/browse/K8SPG-410
https://jira.percona.com/browse/K8SPG-416
https://jira.percona.com/browse/K8SPG-422
https://jira.percona.com/browse/K8SPG-447
https://jira.percona.com/browse/K8SPG-458
https://jira.percona.com/browse/K8SPG-435
https://jira.percona.com/browse/K8SPG-453
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-310
https://jira.percona.com/browse/K8SPG-432
https://jira.percona.com/browse/K8SPG-442
https://jira.percona.com/browse/K8SPG-443
https://jira.percona.com/browse/K8SPG-450
https://jira.percona.com/browse/K8SPG-401
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube


 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-03-19 

9.4.7 Get expert help

215 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


9.5 Percona Operator for PostgreSQL 2.2.0

Date

June 30, 2023

Installation

Installing Percona Operator for PostgreSQL

Percona announces the general availability of Percona Operator for PostgreSQL 2.2.0.

Starting with this release, Percona Operator for PostgreSQL version 2 is out of technical preview and can be used in
production with all  the improvements it  brings over the version 1 in  terms of  architecture,  backup and recovery
features, and overall flexibility.

We prepared a detailed migration guide which allows existing Operator 1.x users to move their PostgreSQL clusters to
the Operator 2.x. Also, see this blog post  to find out more about the Operator 2.x features and benefits.

9.5.1 Improvements

K8SPG-378: A new crVersion  Custom Resource option was added to indicate the API version this Custom Resource
corresponds to

K8SPG-359: The new  users.secretName  option allows to define a custom Secret name for the users defined in the
Custom Resource (thanks to Vishal Anarase for contributing)

K8SPG-301: Amazon Elastic Container Service for Kubernetes (EKS)  was added to the list of officially supported

platforms

K8SPG-302: Minikube  is now officially supported by the Operator to enable ease of testing and developing

K8SPG-326: Both the Operator and database can be now installed with the Helm package manager

K8SPG-342: There is now no need in manual restart of PostgreSQL Pods after the monitor user password changed in
Secrets 

K8SPG-345: The new proxy.pgBouncer.exposeSuperusers  Custom Resource option makes it possible for administrative
users to connect to PostgreSQL through PgBouncer

K8SPG-355:  The  Operator  can  now  be  deployed in  multi-namespace  (“cluster-wide”)  mode  to  track  Custom
Resources and manage database clusters in several namespaces

9.5.2 Bugs Fixed

K8SPG-373: Fix the bug due to which the Operator did not not create Secrets for the  pguser  user if  PMM was
enabled in the Custom Resource

K8SPG-362:  It  was  impossible  to  install  Custom  Resource  Definitions  for  both  1.x  and  2.x  Operators  in  one
environment, preventing the migration of a cluster to the newer Operator version

K8SPG-360: Fix a bug due to which manual password changing or resetting via Secret didn’t work

Known limitations

Query analytics (QAN) will not be available in Percona Monitoring and Management (PMM) due to bugs PMM-12024 
 and PMM-11938 . The fixes are included in the upcoming PMM 2.38, so QAN can be used as soon as it is

released and both PMM Client and PMM Server are upgraded.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.5 Percona Operator for PostgreSQL 2.2.0

216 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://jira.percona.com/browse/K8SPG-378
https://jira.percona.com/browse/K8SPG-359
https://jira.percona.com/browse/K8SPG-301
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://jira.percona.com/browse/K8SPG-302
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://jira.percona.com/browse/K8SPG-326
https://jira.percona.com/browse/K8SPG-342
https://jira.percona.com/browse/K8SPG-345
https://jira.percona.com/browse/K8SPG-355
https://jira.percona.com/browse/K8SPG-373
https://jira.percona.com/browse/K8SPG-362
https://jira.percona.com/browse/K8SPG-360
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-11938
https://jira.percona.com/browse/PMM-11938
https://jira.percona.com/browse/PMM-11938


9.5.3 Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.14, 13.10, 14.7, and 15.2. Other options may also
work but have not been tested. The Operator 2.2.0 provides connection pooling based on pgBouncer 1.18.0 and high-
availability implementation based on Patroni 3.0.1.

The following platforms were tested and are officially supported by the Operator 2.2.0:

Google Kubernetes Engine (GKE)  1.23 - 1.26

Amazon Elastic Container Service for Kubernetes (EKS)  1.23 - 1.27

Minikube  1.30.1 (based on Kubernetes 1.27)

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

9.5.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

Last update: 2024-03-19 

9.5.3 Supported platforms

217 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


9.6 Percona Operator for PostgreSQL 2.1.0 (Tech preview)

Date

May 4, 2023

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator built with best practices of configuration and setup of Percona Distribution for PostgreSQL on
Kubernetes .

Percona Operator for PostgreSQL helps create and manage highly available, enterprise-ready PostgreSQL clusters on
Kubernetes. It is 100% open source, free from vendor lock-in, usage restrictions and expensive contracts, and includes
enterprise-ready features: backup/restore, high availability, replication, logging, and more.

The benefits of using Percona Operator for PostgreSQL include saving time on database operations via automation of
Day-1 and Day-2 operations and deployment of consistent and vetted environment on Kubernetes.

Version  2.1.0  of  the  Percona  Operator  for  PostgreSQL  is  a  tech  preview release and  it  is  not  recommended for
production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-
ready  and  contains  everything  you  need  to  quickly  and  consistently  deploy  and  scale  PostgreSQL  clusters  in  a
Kubernetes-based environment, on-premises or in the cloud.

9.6.1 Release Highlights

PostgreSQL 15 is now officially supported by the Operator with the new exciting features  it brings to developers

UX improvements related to Custom Resource have been added in this release, including the handy pg , pg-backup ,
and pg-restore  short names useful to quickly query the cluster state with the kubectl get  command and additional
information in the status fields, which now show name , endpoint , status , and age

9.6.2 New Features

K8SPG-328: The new delete-pvc  finalizer allows to either delete or preserve Persistent Volumes at Custom Resource
deletion

K8SPG-330: The new  delete-ssl  finalizer can now be used to automatically delete objects created for SSL (Secret,
certificate, and issuer) in case of cluster deletion

K8SPG-331: Starting from now, the Operator adds short names to its Custom Resources:  pg ,  pg-backup , and pg-

restore

K8SPG-282: PostgreSQL 15 is now officially supported by the Operator

9.6.3 Improvements

K8SPG-262: The Operator now does not attempt to start Percona Monitoring and Management (PMM) client if the
corresponding secret does not contain the pmmserver  or pmmserverkey  key

K8SPG-285: To improve the Operator we capture anonymous telemetry and usage data. In this release we add more
data points to it

• 

• 

Note

• 

• 

• 

• 

• 

• 

• 

• 

9.6 Percona Operator for PostgreSQL 2.1.0 (Tech preview)

218 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/
https://jira.percona.com/browse/K8SPG-328
https://jira.percona.com/browse/K8SPG-330
https://jira.percona.com/browse/K8SPG-331
https://jira.percona.com/browse/K8SPG-282
https://jira.percona.com/browse/K8SPG-262
https://jira.percona.com/browse/K8SPG-285


K8SPG-295: Additional information was added to the status of the Operator Custom Resource, which now shows
name , endpoint , status , and age  fields

K8SPG-304: The Operator stops using trust authentication method in pg_hba.conf  for better security

K8SPG-325: Custom Resource options previously named  paused  and  shutdown  were renamed to  unmanaged  and
pause  for better alignment with other Percona Operators

9.6.4 Bugs Fixed

K8SPG-272: Fix a bug due to which PMM agent related to the Pod wasn’t deleted from the PMM Server inventory on
Pod termination

K8SPG-279:  Fix  a  bug  which  made  the  Operator  to  crash  after  creating  a  backup  if  there  was  no
backups.pgbackrest.manual  section in the Custom Resource

K8SPG-298: Fix a bug due to which the shutdown  Custom Resource option didn’t work making it impossible to pause
the cluster

K8SPG-334:  Fix  a  bug  which  made  it  possible  for  the  monitoring  user  to  have  special  characters  in  the
autogenerated password, making it incompatible with the PMM Client

9.6.5 Supported platforms

The following platforms were tested and are officially supported by the Operator 2.1.0:

Google Kubernetes Engine (GKE)  1.23 - 1.25

Amazon Elastic Container Service for Kubernetes (EKS)  1.23 - 1.25

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

9.6.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2024-03-19 

9.6.4 Bugs Fixed

219 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-295
https://jira.percona.com/browse/K8SPG-304
https://jira.percona.com/browse/K8SPG-325
https://jira.percona.com/browse/K8SPG-272
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-298
https://jira.percona.com/browse/K8SPG-334
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


9.7 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

Date

December 30, 2022

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator is based on best practices for configuration and setup of a Percona Distribution for PostgreSQL
on Kubernetes  . The benefits of the Operator are many, but saving time and delivering a consistent and vetted

environment is key.

Version  2.0.0  of  the  Percona  Operator  for  PostgreSQL  is  a  tech  preview release and  it  is  not  recommended for
production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-
ready  and  contains  everything  you  need  to  quickly  and  consistently  deploy  and  scale  PostgreSQL  clusters  in  a
Kubernetes-based environment, on-premises or in the cloud.

The  Percona Operator for PostgreSQL 2.x is based on the 5.x branch of the  Postgres Operator developed by Crunchy
Data . Please see the main changes in this version below.

9.7.1 Architecture

Operator SDK   is now used to build and package the Operator. It simplifies the development and brings more

contribution friendliness to the code, resulting in better potential for growing the community. Users now have full
control over Custom Resource Definitions that Operator relies on, which simplifies the deployment and management
of the operator.

In version 1.x we relied on Deployment resources to run PostgreSQL clusters, whereas in 2.0 Statefulsets are used,
which are the de-facto standard for running stateful workloads in Kubernetes. This change improves stability of the
clusters and removes a lot of complexity from the Operator.

9.7.2 Backups

One of the biggest challenges in version 1.x is backups and restores. There are two main problems that our user faced:

Not possible to change backup configuration for the existing cluster

Restoration from backup to the newly deployed cluster required workarounds

In this version both these issues are fixed. In addition to that:

Run up to 4 pgBackrest repositories

Bootstrap the cluster from the existing backup through Custom Resource

Azure Blob Storage support

9.7.3 Operations

Deploying complex topologies in Kubernetes is not possible without affinity and anti-affinity rules. In version 1.x there
were various limitations and issues, whereas this version comes with substantial improvements that enables users to
craft the topology of their choice. 

• 

• 

Note

• 

• 

• 

• 

• 

9.7 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

220 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://sdk.operatorframework.io/
https://sdk.operatorframework.io/
https://sdk.operatorframework.io/


Within the same cluster users can deploy multiple instances. These instances are going to have the same data, but can
have different configuration and resources. This can be useful if you plan to migrate to new hardware or need to test
the new topology.

Each postgreSQL node can have sidecar containers now to provide integration with your existing tools or expand the
capabilities of the cluster.

9.7.4 Try it out now

Excited with what you read above?

We encourage you to install the Operator following our documentation.

Feel free to share feedback with us on the forum  or raise a bug or feature request in JIRA .

See the source code in our Github repository .

9.7.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

Last update: 2024-03-19 

9.7.4 Try it out now

221 of 221 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG/issues
https://jira.percona.com/projects/K8SPG/issues
https://jira.percona.com/projects/K8SPG/issues
https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

	Percona Operator for PostgreSQL documentation
	1. About
	1.1 Percona Operator for PostgreSQL documentation
	1.1.1  Installation guides
	1.1.2  Security and encryption
	Backup management
	Troubleshooting

	1.1.3 Get expert help

	1.2 Compare various solutions to deploy PostgreSQL in Kubernetes
	1.2.1 Generic
	1.2.2 Maintenance
	1.2.3 PostgreSQL topologies
	1.2.4 Backups
	1.2.5 Monitoring
	1.2.6 Miscellaneous
	1.2.7 Get expert help

	1.3 Design overview
	1.3.1 Get expert help


	2. Quickstart guide
	2.1 Overview
	2.1.1 Next steps
	2.1.2 Get expert help

	2.2 1 Quick install
	2.2.1 Install Percona Distribution for PostgreSQL using kubectl
	Prerequisites
	Procedure
	Next steps
	Get expert help

	2.2.2 Install Percona Distribution for PostgreSQL using Helm
	Prerequisites
	Installation
	Next steps
	Get expert help


	2.3 2 Connect to the PostgreSQL cluster
	2.3.1 Next steps
	2.3.2 Get expert help

	2.4 3 Insert sample data
	2.4.1 Create a schema
	2.4.2 Create a table
	2.4.3 Insert the data
	2.4.4 Next steps
	2.4.5 Get expert help

	2.5 4 Make a backup
	2.5.1 Considerations and prerequisites
	2.5.2 Configure backup storage
	2.5.3 Make a backup
	2.5.4 Next steps
	2.5.5 Get expert help

	2.6 5 Monitor the database
	2.6.1 Install PMM Server
	2.6.2 Install PMM Client
	2.6.3 Update the secrets file
	2.6.4 Check the metrics
	2.6.5 Next steps
	2.6.6 Get expert help

	2.7 What’s next?
	2.7.1 Get expert help


	3. Installation
	3.1 System requirements
	3.1.1 Supported versions
	3.1.2 Supported platforms
	3.1.3 Installation guidelines
	3.1.4 Get expert help

	3.2 Install Percona Distribution for PostgreSQL on Minikube
	3.2.1 Set up Minikube
	3.2.2 Deploy the Percona Operator for PostgreSQL
	3.2.3 Verify the Percona Distribution for PostgreSQL cluster operation
	3.2.4 Delete the cluster
	3.2.5 Get expert help

	3.3 Install Percona Distribution for PostgreSQL cluster using Everest
	3.3.1 Get expert help

	3.4 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)
	3.4.1 Prerequisites
	3.4.2 Create and configure the GKE cluster
	3.4.3 Install the Operator and deploy your PostgreSQL cluster
	3.4.4 Verifying the cluster operation
	3.4.5 Removing the cluster
	3.4.6 Get expert help

	3.5 Install Percona Distribution for PostgreSQL on Amazon Elastic Kubernetes Service (EKS)
	3.5.1 Prerequisites
	Software installation
	Creating the EKS cluster

	3.5.2 Install the Operator and Percona Distribution for PostgreSQL
	3.5.3 Verifying the cluster operation
	3.5.4 Removing the cluster
	3.5.5 Get expert help

	3.6 Install Percona Distribution for PostgreSQL on OpenShift
	3.6.1 Install the Operator
	Install the Operator via the command-line interface

	3.6.2 Verifying the cluster operation
	3.6.3 Get expert help

	3.7 Install Percona Distribution for PostgreSQL on Kubernetes
	3.7.1 Verifying the cluster operation
	3.7.2 Deleting the cluster
	3.7.3 Get expert help


	4. Configuration
	4.1 Users
	4.1.1 Defaults
	4.1.2 Custom Users and Databases
	Creating a New User
	Adjusting privileges
	postgres User
	Deleting users and databases
	Managing user passwords
	Superuser and pgBouncer

	4.1.3 Get expert help

	4.2 Exposing cluster
	4.2.1 PgBouncer
	4.2.2 Exposing the cluster without PgBouncer
	4.2.3 Get expert help

	4.3 Changing PostgreSQL options
	4.3.1 Using host-based authentication (pg_hba)
	4.3.2 Get expert help

	4.4 Binding Percona Distribution for PostgreSQL components to specific Kubernetes/OpenShift Nodes
	4.4.1 Affinity and anti-affinity
	4.4.2 Topology Spread Constraints
	4.4.3 Tolerations
	4.4.4 Get expert help

	4.5 Labels and annotations
	4.5.1 Setting labels and annotations in the Custom Resource
	4.5.2 Settings labels and annotations to the Operator Pod
	4.5.3 Get expert help

	4.6 Transport layer security (TLS)
	4.6.1 Allow the Operator to generate certificates automatically
	4.6.2 Check connectivity to the cluster
	4.6.3 Generate certificates manually
	Provide pre-existing certificates to the Operator
	Generate custom certificates for the Operator yourself

	4.6.4 Check your certificates for expiration
	4.6.5 Keep certificates after deleting the cluster
	4.6.6 Get expert help

	4.7 Telemetry
	4.7.1 Get expert help


	5. Management
	5.1 Upgrade Database and Operator
	5.1.1 Upgrade from the Operator version 1.x to version 2.x
	5.1.2 Update Database and Operator version 2.x
	Upgrading the Operator and CRD

	5.1.3 Upgrading Percona Distribution for PostgreSQL
	Major version upgrade
	Minor version upgrade

	5.1.4 Get expert help

	5.2 Upgrade from version 1 to version 2
	5.2.1 Upgrade using data volumes
	Prerequisites:
	Prepare version 1.x cluster for the migration
	Execute the migration to version 2.x
	Get expert help

	5.2.2 Upgrade using backup and restore
	Prepare the backup
	Restore the backup as a version 2.x cluster
	Get expert help

	5.2.3 Migrate using Standby
	Migrate to version 2
	Promote version 2.x cluster
	Create the replication user
	Get expert help


	5.3 Back up and restore
	5.3.1 About backups
	What you need to know
	Backup repositories
	Backup types
	Backup storage

	Next steps
	Get expert help

	5.3.2 Configure backup storage
	S3-compatible backup storage
	Google Cloud Storage
	Azure Blob Storage (tech preview)
	Persistent Volume
	Next steps
	Get expert help

	5.3.3 Make scheduled backups
	Next steps
	Useful links
	Get expert help

	5.3.4 Making on-demand backups
	Next steps
	Useful links
	Get expert help

	5.3.5 Restore the cluster from a previously saved backup
	Restore to a new PostgreSQL cluster
	Restore to an existing PostgreSQL cluster
	Specifying which backup to restore

	Restore the cluster with point-in-time recovery
	Get expert help

	5.3.6 Configure backup encryption
	Generate the encryption key
	Configure backup storage
	Make a backup
	Get expert help

	5.3.7 Speed-up backups with pgBackRest asynchronous archiving
	Get expert help

	5.3.8 Backup retention
	Get expert help


	5.4 High availability and scaling
	5.4.1 Vertical scaling
	5.4.2 High availability
	5.4.3 Using spec.instances.replicas
	5.4.4 Using spec.instances
	5.4.5 Get expert help

	5.5 Using sidecar containers
	5.5.1 Adding a sidecar container
	5.5.2 Getting shell access to a sidecar container
	5.5.3 Get expert help

	5.6 Pause/resume PostgreSQL cluster
	5.6.1 Get expert help

	5.7 Monitor with Percona Monitoring and Management (PMM)
	5.7.1 Install PMM Server
	5.7.2 Install PMM Client
	5.7.3 Update the secrets file
	5.7.4 Check the metrics
	5.7.5 Get expert help


	6. How-to
	6.1 Install Percona Distribution for PostgreSQL with customized parameters
	6.1.1 Get expert help

	6.2 Deploy a standby cluster for Disaster Recovery
	6.2.1 Standby cluster deployment based on pgBackRest
	pgBackrest repo based standby
	Deploy disaster recovery for PostgreSQL on Kubernetes
	Configure Main site
	Configure DR site

	Get expert help

	6.2.2 Standby cluster deployment based on streaming replication
	Deploy disaster recovery for PostgreSQL on Kubernetes
	Configure Main site
	Configure DR site

	Get expert help

	6.2.3 Failover
	Split brain
	Automate the failover
	Get expert help

	6.2.4 How to deploy a standby cluster for Disaster Recovery
	Get expert help


	6.3 Change the PostgreSQL primary instance
	6.3.1 Get expert help

	6.4 Use Docker images from a private registry
	6.4.1 Prerequisites
	6.4.2 Get expert help

	6.5 Add custom PostgreSQL extensions
	6.5.1 Enabling or disabling built-in extensions
	6.5.2 Adding custom extensions
	Packaging custom extensions

	6.5.3 Configuring custom extension loading
	6.5.4 Get expert help

	6.6 Percona Operator for PostgreSQL single-namespace and multi-namespace deployment
	6.6.1 Namespace-scope
	Add more namespaces

	6.6.2 Install the Operator cluster-wide
	6.6.3 Verifying the cluster operation
	6.6.4 Get expert help

	6.7 Using PostgreSQL tablespaces with Percona Operator for PostgreSQL
	6.7.1 Possible use cases
	6.7.2 Creating a new tablespace
	6.7.3 Deleting an existing tablespace
	6.7.4 Get expert help

	6.8 Delete Percona Operator for PostgreSQL
	6.8.1 Delete a database cluster
	6.8.2 Delete the Operator
	6.8.3 Delete Custom Resource Definition
	6.8.4 Get expert help

	6.9 Monitor Kubernetes
	6.9.1 Pre-requisites
	6.9.2 Install the Victoria Metrics Kubernetes monitoring stack
	Quick install
	Install manually
	Configure authentication in PMM
	Create a ConfigMap to mount for KUBE-STATE-METRICS
	Install the Victoria Metrics Kubernetes monitoring stack


	6.9.3 Validate the successful installation
	6.9.4 Verify metrics capture
	6.9.5 Uninstall Victoria metrics Kubernetes stack
	6.9.6 Get expert help

	6.10 Use PostGIS extension with Percona Distribution for PostgreSQL
	6.10.1 Deploy the Operator with PostGIS-enabled database cluster
	6.10.2 Check PostGIS extension
	6.10.3 Get expert help


	7. Troubleshooting
	7.1 Initial troubleshooting
	7.1.1 Check the Pods
	7.1.2 Get expert help

	7.2 Exec into the containers
	7.2.1 Get expert help

	7.3 Check the logs
	7.3.1 Increase pgBackRest log verbosity
	7.3.2 Get expert help


	8. Reference
	8.1 Custom Resource options
	8.1.1 metadata
	8.1.2 Toplevel spec elements
	crVersion
	standby.enabled
	standby.host
	standby.port
	openshift
	standby.repoName
	secrets.customTLSSecret.name
	secrets.customReplicationTLSSecret.name
	users.name
	users.databases
	users.password.type
	users.options
	users.secretName
	databaseInitSQL.key
	databaseInitSQL.name
	pause
	unmanaged
	dataSource.postgresCluster.clusterName
	dataSource.postgresCluster.repoName
	dataSource.postgresCluster.options
	dataSource.postgresCluster.tolerations.effect
	dataSource.postgresCluster.tolerations.key
	dataSource.postgresCluster.tolerations.operator
	dataSource.postgresCluster.tolerations.value
	dataSource.pgbackrest.stanza
	dataSource.pgbackrest.configuration.secret.name
	dataSource.pgbackrest.global
	dataSource.pgbackrest.repo.name
	dataSource.pgbackrest.repo.s3.bucket
	dataSource.pgbackrest.repo.s3.endpoint
	dataSource.pgbackrest.repo.s3.region
	image
	imagePullPolicy
	postgresVersion
	port
	expose.annotations
	expose.labels
	expose.type
	expose.loadBalancerSourceRanges


	8.2 exposeReplicas.annotations`
	exposeReplicas.labels
	exposeReplicas.type
	exposeReplicas.loadBalancerSourceRanges
	8.2.1 Instances section
	instances.metadata.labels
	instances.name
	instances.replicas
	instances.resources.limits.cpu
	instances.resources.limits.memory
	instances.topologySpreadConstraints.maxSkew
	instances.topologySpreadConstraints.topologyKey
	instances.topologySpreadConstraints.whenUnsatisfiable
	instances.topologySpreadConstraints.labelSelector.matchLabels
	instances.tolerations.effect
	instances.tolerations.key
	instances.tolerations.operator
	instances.tolerations.value
	instances.priorityClassName
	‘instances.securityContext’
	instances.walVolumeClaimSpec.accessModes
	instances.walVolumeClaimSpec.resources.requests.storage
	instances.dataVolumeClaimSpec.accessModes
	instances.dataVolumeClaimSpec.resources.requests.storage
	instances.tablespaceVolumes.name
	instances.tablespaceVolumes.dataVolumeClaimSpec.accessModes
	instances.tablespaceVolumes.dataVolumeClaimSpec.resources.requests.storage

	8.2.2 instances.sidecars subsection
	instances.sidecars.image
	instances.sidecars.name
	instances.sidecars.imagePullPolicy
	instances.sidecars.env
	instances.sidecars.envFrom
	instances.sidecars.command
	instances.sidecars.args

	8.2.3 Backup section
	backups.pgbackrest.metadata.labels
	backups.pgbackrest.image
	backups.pgbackrest.configuration.secret.name
	backups.pgbackrest.jobs.priorityClassName
	backups.pgbackrest.jobs.resources.limits.cpu
	backups.pgbackrest.jobs.resources.limits.memory
	backups.pgbackrest.jobs.tolerations.effect
	backups.pgbackrest.jobs.tolerations.key
	backups.pgbackrest.jobs.tolerations.operator
	backups.pgbackrest.jobs.tolerations.value
	‘backups.pgbackrest.jobs.securityContext’
	backups.pgbackrest.global
	backups.pgbackrest.repoHost.priorityClassName
	backups.pgbackrest.repoHost.topologySpreadConstraints.maxSkew
	backups.pgbackrest.repoHost.topologySpreadConstraints.topologyKey
	backups.pgbackrest.repoHost.topologySpreadConstraints.whenUnsatisfiable
	backups.pgbackrest.repoHost.topologySpreadConstraints.labelSelector.matchLabels
	backups.pgbackrest.repoHost.affinity.podAntiAffinity
	backups.pgbackrest.repoHost.tolerations.effect
	backups.pgbackrest.repoHost.tolerations.key
	backups.pgbackrest.repoHost.tolerations.operator
	backups.pgbackrest.repoHost.tolerations.value
	‘backups.pgbackrest.repoHost.securityContext’
	backups.pgbackrest.manual.repoName
	backups.pgbackrest.manual.options
	backups.pgbackrest.repos.name
	backups.pgbackrest.repos.schedules.full
	backups.pgbackrest.repos.schedules.differential
	backups.pgbackrest.repos.volume.volumeClaimSpec.accessModes
	backups.pgbackrest.repos.volume.volumeClaimSpec.resources.requests.storage
	backups.pgbackrest.repos.s3.bucket
	backups.pgbackrest.repos.s3.endpoint
	backups.pgbackrest.repos.s3.region
	backups.pgbackrest.repos.gcs.bucket
	backups.pgbackrest.repos.azure.container
	backups.restore.tolerations.effect
	backups.restore.tolerations.key
	backups.restore.tolerations.operator
	backups.restore.tolerations.value

	8.2.4 PMM section
	pmm.enabled
	pmm.image
	pmm.imagePullPolicy
	pmm.pmmSecret
	pmm.serverHost

	8.2.5 Proxy section
	proxy.pgBouncer.metadata.labels
	proxy.pgBouncer.replicas
	proxy.pgBouncer.image
	proxy.pgBouncer.exposeSuperusers
	proxy.pgBouncer.resources.limits.cpu
	proxy.pgBouncer.resources.limits.memory
	proxy.pgBouncer.expose.type
	proxy.pgBouncer.expose.annotations
	proxy.pgBouncer.expose.labels
	proxy.pgBouncer.expose.loadBalancerSourceRanges
	proxy.pgBouncer.affinity.podAntiAffinity
	‘proxy.pgBouncer.securityContext’
	proxy.pgBouncer.config

	8.2.6 proxy.pgBouncer.sidecars subsection
	proxy.pgBouncer.sidecars.image
	proxy.pgBouncer.sidecars.name
	proxy.pgBouncer.sidecars.imagePullPolicy
	proxy.pgBouncer.sidecars.env
	proxy.pgBouncer.sidecars.envFrom
	proxy.pgBouncer.sidecars.command
	proxy.pgBouncer.sidecars.args

	8.2.7 Patroni Section
	patroni.syncPeriodSeconds
	patroni.leaderLeaseDurationSeconds
	patroni.dynamicConfiguration
	patroni.switchover.enabled
	patroni.switchover.targetInstance

	8.2.8 Custom extensions Section
	extensions.image
	extensions.imagePullPolicy
	extensions.storage.type
	extensions.storage.bucket
	extensions.storage.region
	extensions.storage.endpoint
	extensions.storage.secret.name
	extensions.builtin
	extensions.custom.name
	extensions.custom.version

	8.2.9 Get expert help

	8.3 Percona certified images
	8.3.1 Get expert help

	8.4 Versions compatibility
	8.4.1 Get expert help

	8.5 Copyright and licensing information
	8.5.1 Documentation licensing
	8.5.2 Get expert help

	8.6 Trademark policy
	8.6.1 Get expert help


	9. Release Notes
	9.1 Percona Operator for PostgreSQL Release Notes
	9.1.1 Get expert help

	9.2 Percona Operator for PostgreSQL 2.4.0 (2024-06-24)
	9.2.1 Release Highlights
	9.2.2 Major versions upgrade (tech preview)
	9.2.3 Supporting PostgreSQL tablespaces
	9.2.4 Using cloud roles to authenticate on the object storage for backups
	9.2.5 New features
	9.2.6 Improvements
	9.2.7 Bugs Fixed
	9.2.8 Deprecation and removal
	9.2.9 Supported platforms
	9.2.10 Get expert help

	9.3 Percona Operator for PostgreSQL 2.3.1
	9.3.1 Release Highlights
	9.3.2 Bugs Fixed
	9.3.3 Supported platforms
	9.3.4 Get expert help

	9.4 Percona Operator for PostgreSQL 2.3.0
	9.4.1 Release Highlights
	PostGIS support

	9.4.2 OpenShift and PostgreSQL 16 support
	Experimental support for custom PostgreSQL extensions

	9.4.3 New features
	9.4.4 Improvements
	9.4.5 Bugs Fixed
	9.4.6 Supported platforms
	9.4.7 Get expert help

	9.5 Percona Operator for PostgreSQL 2.2.0
	9.5.1 Improvements
	9.5.2 Bugs Fixed
	9.5.3 Supported platforms
	9.5.4 Get expert help

	9.6 Percona Operator for PostgreSQL 2.1.0 (Tech preview)
	9.6.1 Release Highlights
	9.6.2 New Features
	9.6.3 Improvements
	9.6.4 Bugs Fixed
	9.6.5 Supported platforms
	9.6.6 Get expert help

	9.7 Percona Operator for PostgreSQL 2.0.0 (Tech preview)
	9.7.1 Architecture
	9.7.2 Backups
	9.7.3 Operations
	9.7.4 Try it out now
	9.7.5 Get expert help



