
Percona Operator for

PostgreSQL

documentation

2.3.1 (January 23, 2024)

Percona Technical Documentation Team

Percona LLC and/or its affiliates, © 2009 - 2024

Table of contents

41. About

41.1 Percona Operator for PostgreSQL documentation

61.2 Compare various solutions to deploy PostgreSQL in Kubernetes

91.3 Design overview

122. Quickstart guide

122.1 Overview

132.2 1 Quick install

202.3 2 Connect to the PostgreSQL cluster

222.4 3 Insert sample data

242.5 4 Make a backup

272.6 5 Monitor the database

312.7 What’s next?

323. Installation

323.1 System requirements

333.2 Install Percona Distribution for PostgreSQL on Minikube

373.3 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)

423.4 Install Percona Distribution for PostgreSQL on Amazon Elastic Kubernetes Service (EKS)

483.5 Install Percona Distribution for PostgreSQL on OpenShift

513.6 Install Percona Distribution for PostgreSQL on Kubernetes

554. Configuration

554.1 Users

594.2 Exposing cluster

614.3 Changing PostgreSQL options

634.4 Binding Percona Distribution for PostgreSQL components to specific Kubernetes/OpenShift Nodes

654.5 Labels and annotations

674.6 Transport layer security (TLS)

714.7 Telemetry

735. Management

735.1 Upgrade Database and Operator

765.2 Upgrade from version 1 to version 2

845.3 Back up and restore

955.4 High availability and scaling

985.5 Using sidecar containers

1005.6 Pause/resume PostgreSQL cluster

1015.7 Monitor with Percona Monitoring and Management (PMM)

Table of contents

2 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

1056. HowTo

1056.1 Install Percona Distribution for PostgreSQL with customized parameters

1066.2 How to deploy a standby cluster for Disaster Recovery

1106.3 Use Docker images from a custom registry

1126.4 Add custom PostgreSQL extensions

1176.5 Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

1226.6 Delete Percona Operator for PostgreSQL

1266.7 Monitor Kubernetes

1326.8 Use PostGIS extension with Percona Distribution for PostgreSQL

1377. Troubleshooting

1377.1 Initial troubleshooting

1407.2 Exec into the containers

1417.3 Check the logs

1428. Reference

1428.1 Custom Resource options

1688.2 Percona certified images

1718.3 Versions compatibility

1738.4 Copyright and licensing information

1748.5 Trademark policy

1769. Release Notes

1769.1 Percona Operator for PostgreSQL Release Notes

1779.2 Percona Operator for PostgreSQL 2.3.1

1799.3 Percona Operator for PostgreSQL 2.3.0

1829.4 Percona Operator for PostgreSQL 2.2.0

1849.5 Percona Operator for PostgreSQL 2.1.0 (Tech preview)

1869.6 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

Table of contents

3 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

1. About

1.1 Percona Operator for PostgreSQL documentation

The Percona Operator for PostgreSQL automates the creation, modification, or deletion of items in your Percona
Distribution for PostgreSQL environment. The Operator contains the necessary Kubernetes settings to maintain a
consistent PostgreSQL cluster.

Percona Kubernetes Operator is based on best practices for configuration and setup of a Percona Distribution for
PostgreSQL cluster. The benefits of the Operator are many, but saving time and delivering a consistent and vetted
environment is key.

This is the documentation for the latest release, 2.3.1 (Release Notes).

Starting with Percona Kubernetes Operator is easy. Follow our documentation guides, and you’ll be set up in a
minute.

1.1.1 Installation guides

Want to see it for yourself? Get started quickly with our step-by-step installation instructions.

Quickstart guides

1.1.2 Security and encryption

Rest assured! Learn more about our security features designed to protect your valuable data.

Security measures

 Backup management

Learn what you can do to maintain regular backups of your PostgrgeSQL cluster.

Backup management

 Troubleshooting

Our comprehensive resources will help you overcome challenges, from everyday issues to specific doubts.

Diagnostics

1.1.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1. About

4 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

Last update: 2024-01-16

1.1.3 Get expert help

5 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

1.2 Compare various solutions to deploy PostgreSQL in Kubernetes

There are multiple ways to deploy and manage PostgreSQL in Kubernetes. Here we will focus on comparing the
following open source solutions:

Crunchy Data PostgreSQL Operator (PGO)

CloudNative PG from Enterprise DB

Stackgres from OnGres

Zalando Postgres Operator

Percona Operator for PostgreSQL

1.2.1 Generic

1.2.2 Maintenance

•

•

•

•

•

Feature/
Product

Percona
Operator

for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Open-source
license

Apache 2.0 AGPL 3 Apache 2.0,
but images
are under
Developer
Program

Apache 2.0 MIT

PostgreSQL
versions

12 - 16 12-15 12, 13, 14 11 - 15 11 - 14

Kubernetes
conformance

Various
versions are

tested

Various
versions

are tested

Various
versions are

tested

Various
versions are

tested

AWS
EKS

Feature/
Product

Percona
Operator

for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Operator
upgrade

Database
upgrade

Automated
and safe

Automated
and safe

Manual Manual Manual

Compute
scaling

Horizontal
and vertical

Horizontal
and

vertical

Horizontal
and vertical

Horizontal and
vertical

Horizontal
and vertical

Storage
scaling

Manual Manual Manual Manual Manual,
automated

for AWS
EBS

1.2 Compare various solutions to deploy PostgreSQL in Kubernetes

6 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/CrunchyData/postgres-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/ongres/stackgres
https://github.com/zalando/postgres-operator
https://github.com/percona/percona-postgresql-operator/

1.2.3 PostgreSQL topologies

1.2.4 Backups

1.2.5 Monitoring

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Warm
standby

Hot
standby

Connection
pooling

Delayed
replica

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Scheduled
backups

WAL
archiving

PITR

GCS

S3

Azure

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Solution Percona
Monitoring

and
Management
and sidecars

Exposing
metrics in

Prometheus
format

Prometheus
stack and

pgMonitor

Exposing
metrics in

Prometheus
format

Sidecars

1.2.3 PostgreSQL topologies

7 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

1.2.6 Miscellaneous

1.2.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Feature/
Product

Percona
Operator

for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Customize
PostgreSQL
configuration

Helm

Transport
encryption

Data-at-rest
encryption

Through
storage

class

Through
storage

class

Through
storage class

Through
storage class

Through
storage

class

Create users/
roles

limited

Last update: 2023-12-21

1.2.6 Miscellaneous

8 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

1.3 Design overview

The Percona Operator for PostgreSQL automates and simplifies deploying and managing open source PostgreSQL
clusters on Kubernetes. The Operator is based on CrunchyData’s PostgreSQL Operator.

DB Pod N

Kubernetes API Operator

CSI

Storage
Area

Network

Container Suite
Custom Resource

Definitions

clusters
(perconapgcluster)

backup, restore
(perconapgbackups,
perconapgrestores)

pgbouncerprimary
PostgreSQL

replica
PostgreSQL

pgbackrest

PostgreSQL containers deployed with the Operator include the following components:

The PostgreSQL database management system, including:

PostgreSQL Additional Supplied Modules,

pgAudit PostgreSQL auditing extension,

PostgreSQL set_user Extension Module,

wal2json output plugin,

The pgBackRest Backup & Restore utility,

The pgBouncer connection pooler for PostgreSQL,

The PostgreSQL high-availability implementation based on the Patroni template,

the pg_stat_monitor PostgreSQL Query Performance Monitoring utility,

LLVM (for JIT compilation).

To provide high availability the Operator involves node affinity to run PostgreSQL Cluster instances on separate
worker nodes if possible. If some node fails, the Pod with it is automatically re-created on another node.

•

•

•

•

•

•

•

•

•

•

1.3 Design overview

9 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://access.crunchydata.com/documentation/postgres-operator/v5/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json
https://pgbackrest.org/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

CSI

Percona Distribution for PostgreSQL
Namespace

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim
(PVC) is used to implement the automatic storage provisioning to pods. If a failure occurs, the Container Storage
Interface (CSI) should be able to re-mount storage on a different node.

The Operator functionality extends the Kubernetes API with Custom Resources Definitions. These CRDs provide
extensions to the Kubernetes API, and, in the case of the Operator, allow you to perform actions such as creating a
PostgreSQL Cluster, updating PostgreSQL Cluster resource allocations, adding additional utilities to a PostgreSQL
cluster, e.g. pgBouncer for connection pooling and more.

When a new Custom Resource is created or an existing one undergoes some changes or deletion, the Operator
automatically creates/changes/deletes all needed Kubernetes objects with the appropriate settings to provide a
proper Percona PostgreSQL Cluster operation.

Following CRDs are created while the Operator installation:

perconapgclusters stores information required to manage a PostgreSQL cluster. This includes things like the
cluster name, what storage and resource classes to use, which version of PostgreSQL to run, information about
how to maintain a high-availability cluster, etc.

perconapgbackups and perconapgrestores are in charge for making backups and restore them.

•

•

1.3 Design overview

10 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/

1.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-04-14

1.3.1 Get expert help

11 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2. Quickstart guide

2.1 Overview

Ready to get started with the Percona Operator for PostgreSQL? In this section, you will learn some basic
operations, such as:

Install and deploy an Operator

Connect to PostgreSQL

Insert sample data to the database

Set up and make a manual backup

Monitor the database health with PMM

2.1.1 Next steps

Install the Operator

2.1.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

•

Last update: 2023-09-14

2. Quickstart guide

12 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.2 1 Quick install

2.2.1 Install Percona Distribution for PostgreSQL using kubectl

A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The Operator
extends the Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for configuration and setup of a Percona
Distribution for PostgreSQL cluster in a Kubernetes-based environment on-premises or in the cloud.

We recommend installing the Operator with the kubectl command line utility. It is the universal way to interact with
Kubernetes. Alternatively, you can install it using the Helm package manager.

 Install with kubectl Install with Helm

Prerequisites

To install Percona Distribution for PostgreSQL, you need the following:

The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes distributions.
Install not already installed, follow its official installation instructions.

A Kubernetes environment. You can deploy it on Minikube for testing purposes or using any cloud provider of your
choice. Check the list of our officially supported platforms.

Set up Minikube

Create and configure the GKE cluster

Set up Amazon Elastic Kubernetes Service

1.

2.

See also

•

•

•

2.2 1 Quick install

13 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/tools/
https://github.com/helm/helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/minikube

Procedure

Here’s a sequence of steps to follow:

2.2.1 Install Percona Distribution for PostgreSQL using kubectl

14 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in Kubernetes by
installing the Operator in a custom namespace. For example, let’s name it postgres-operator :

We will use this namespace further on in this document. If you used another name, make sure to replace it in the
following commands.

Deploy the Operator using the following command:

At this point, the Operator Pod is up and running.

Deploy Percona Distribution for PostgreSQL cluster:

Check the Operator and replica set Pods status.

It may take some time to create the Operator. The creation process is over when both the Operator and replica set
Pods report the ready status:

1.

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

2.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/
bundle.yaml -n postgres-operator

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

3.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/cr.yaml -n
postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

4.

$ kubectl get pg -n postgres-operator

2.2.1 Install Percona Distribution for PostgreSQL using kubectl

15 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/

You have successfully installed and deployed the Operator with default parameters. You can check them in the
Custom Resource options reference.

Next steps

 Connect to PostgreSQL

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3 143m

Last update: 2023-12-08

2.2.1 Install Percona Distribution for PostgreSQL using kubectl

16 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.2.2 Install Percona Distribution for PostgreSQL using Helm

Helm is the package manager for Kubernetes. A Helm chart is a package that contains all the necessary resources
to deploy an application to a Kubernetes cluster.

You can find Percona Helm charts in percona/percona-helm-charts repository in Github.

Prerequisites

To install and deploy the Operator, you need the following:

Helm v3.

kubectl command line utility.

A Kubernetes environment. You can deploy it locally on Minikube for testing purposes or using any cloud provider of
your choice. Check the list of our officially supported platforms.

Set up Minikube

Create and configure the GKE cluster

Set up Amazon Elastic Kubernetes Service

1.

2.

3.

See also

•

•

•

2.2.2 Install Percona Distribution for PostgreSQL using Helm

17 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/helm/helm
https://helm.sh/docs/topics/charts/
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://github.com/kubernetes/minikube

Installation

Here’s a sequence of steps to follow:

Add the Percona’s Helm charts repository and make your Helm client up to date with it:

It is a good practice to isolate workloads in Kubernetes via namespaces. Create a namespace:

Install the Percona Operator for PostgreSQL:

The my-namespace is the name of your namespace. The my-operator parameter is the name of a new release object
which is created for the Operator when you install its Helm chart (use any name you like).

Install Percona Distribution for PostgreSQL:

The cluster1 parameter is the name of a new release object which is created for the Percona Distribution for
PostgreSQL when you install its Helm chart (use any name you like).

Check the Operator and replica set Pods status.

The creation process is over when both the Operator and replica set Pods report the ready status:

You have successfully installed and deployed the Operator with default parameters. You can check them in the
Custom Resource options reference.

Next steps

Connect to PostgreSQL

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

$ helm repo add percona https://percona.github.io/percona-helm-charts/
$ helm repo update

2.

$ kubectl create namespace <my-namespace>

3.

$ helm install my-operator percona/pg-operator --namespace <my-namespace>

4.

$ helm install cluster1 percona/pg-db -n <my-namespace>

5.

$ kubectl get pg -n <my-namespace>

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3 143m

2.2.2 Install Percona Distribution for PostgreSQL using Helm

18 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

Last update: 2023-10-04

2.2.2 Install Percona Distribution for PostgreSQL using Helm

19 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

2.3 2 Connect to the PostgreSQL cluster

When the installation is done, we can connect to the cluster.

The pgBouncer component of Percona Distribution for PostgreSQL provides the point of entry to the PostgreSQL
cluster. We will use the pgBouncer URI to connect.

The pgBouncer URI is stored in the Secret object, which the Operator generates during the installation.

To connect to PostgreSQL, do the following:

List the Secrets objects

The Secrets object we target is named as <cluster_name>-pguser-<cluster_name> . The <cluster_name> value is the name of
your Percona Distribution for PostgreSQL Cluster. The default variant is:

Retrieve the pgBouncer URI from your secret, decode and pass it as the PGBOUNCER_URI environment variable.
Replace the <secret> , <namespace> placeholders with your Secret object and namespace accordingly:

The following example shows how to pass the pgBouncer URI from the default Secret object cluster1-pguser-cluster1 :

Create a Pod where you start a container with Percona Distribution for PostgreSQL and connect to the database. The
following command does it, naming the Pod pg-client and connects you to the cluster1 database:

It may take some time to create the Pod and connect to the database. As the result, you should see the following
sample output:

Congratulations! You have connected to your PostgreSQL cluster.

1.

$ kubectl get secrets -n <namespace>

cluster1-pguser-cluster1

cluster1-pg-db-pguser-cluster1-pg-db

 via kubectl via Helm

2.

$ PGBOUNCER_URI=$(kubectl get secret <secret> --namespace <namespace> -o jsonpath='{.data.pgbouncer-uri}' |
base64 --decode)

$ PGBOUNCER_URI=$(kubectl get secret cluster1-pguser-cluster1 --namespace <namespace> -o
jsonpath='{.data.pgbouncer-uri}' | base64 --decode)

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- psql
$PGBOUNCER_URI

Expected output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
cluster1=>

2.3 2 Connect to the PostgreSQL cluster

20 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/secret/

2.3.1 Next steps

 Insert testing data

2.3.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-12-21

2.3.1 Next steps

21 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.4 3 Insert sample data

The next step after connecting to the cluster is to insert some sample data to PostgreSQL.

2.4.1 Create a schema

Every database in PostgreSQL has a default schema called public . A schema stores database objects like tables,
views, indexes and allows organizing them into logical groups.

When you create a table, it ends up in the public schema by default. In recent PostgreSQL versions (starting from
PostgreSQL 15), non-database owners cannot access the public schema. Therefore, you need to create a new
schema to insert the data.

Use the following statement to create a schema

2.4.2 Create a table

After you created a schema, all tables you create end up in this schema if not specified otherwise.

At this step, we will create a sample table Library as follows:

2.4.3 Insert the data

PostgreSQL does not have the built-in support to generate random data. However, it provides the random()

function which generates random numbers and generate_series() function which generates the series of rows and
populates them with the numbers incremented by 1 (by default).

Combine these functions with a couple of others to populate the table with the data:

CREATE SCHEMA demo;

CREATE TABLE LIBRARY(
ID INTEGER NOT NULL,
NAME TEXT,
SHORT_DESCRIPTION TEXT,
AUTHOR TEXT,
DESCRIPTION TEXT,
CONTENT TEXT,
LAST_UPDATED DATE,
CREATED DATE

);

INSERT INTO LIBRARY(id, name, short_description, author,
description,content, last_updated, created)

SELECT id, 'name', md5(random()::text), 'name2'
,md5(random()::text),md5(random()::text)
,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100)
,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100 + 100)

FROM generate_series(1,100) id;

2.4 3 Insert sample data

22 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

This command does the following:

Fills in the columns id , name , author with the values id , name and name2 respectively;

generates the random md5 hash sum as the values for the columns short_description , description and content ;

generates the random number of dates from the current date and time within the last 100 days, and

inserts 100 rows of this data

Now your cluster has some data in it.

2.4.4 Next steps

 Make a backup

2.4.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

Last update: 2023-12-21

2.4.4 Next steps

23 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.5 4 Make a backup

Now your database contains some data, so it’s a good time to learn how to manually make a full backup of your
data with the Operator.

If you are interested to learn more about backups, their types and retention policy, see the Backups section.

2.5.1 Considerations

In this tutorial we use AWS S3 as the backup storage. You need the following S3-related information:

The name of S3 bucket;

The endpoint - the URL to access the bucket

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage.

If you don’t have access to AWS, you can use any S3-compatible storage like MinIO. Also check the list of
supported storages.

The Operator uses the pgBackRest tool to make backups. pgBackRest stores the backups and archives WAL
segments in repositories. The Operator has up to four pgBackRest repositories named repo1 , repo2 , repo3 and
repo4 . In this tutorial we use repo2 for backups.

2.5.2 Configure backup storage

Encode the S3 credentials and the pgBackRest repository name (repo2 in our setup).

Create the Secret configuration file and specify the base64-encoded string from the previous step. The following is
the example of the cluster1-pgbackrest-secrets.yaml Secret file:

Note

•

•

•

•

•

•

1.

 Linux macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

$ cat <<EOF | base64
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets

type: Opaque
data:
s3.conf: <base64-encoded-configuration-contents>

2.5 4 Make a backup

24 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://min.io/docs/minio/linux/index.html
https://pgbackrest.org/
https://pgbackrest.org/

Create the Secrets object from this yaml file. Specify your namespace instead of the <namespace> placeholder:

Update your deploy/cr.yaml configuration. Specify the Secret file you created in the backups.pgbackrest.configuration

subsection, and put all other S3 related information in the backups.pgbackrest.repos subsection under the repository
name that you intend to use for backups. This name must match the name you used when you encoded S3
credentials on step 1.

For example, the S3 storage for the repo2 repository looks as follows:

Create or update the cluster. Specify your namespace instead of the <namespace> placeholder:

2.5.3 Make a backup

For manual backups, you need a backup configuration file.

Edit the example backup configuration file deploy/backup.yaml. Specify your cluster name and the repo name.

Apply the configuration. This instructs the Operator to start a backup.

List the backup

3.

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

4.

...
backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets
...
repos:
- name: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

5.

$ kubectl apply -f deploy/cr.yaml

1.

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backup1

spec:
pgCluster: cluster2
repoName: repo1

options:
- --type=full

2.

$ kubectl apply -f deploy/backup.yaml -n <namespace>

3.

$ kubectl get pg-backup -n <namespace>

2.5.3 Make a backup

25 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml

Congratulations! You have made the first backup manually. Want to learn more about backups? See the Backup
and restore section for details like types, retention and how to automatically make backups according to the
schedule.

2.5.4 Next steps

 Monitor the database

2.5.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-12-08

2.5.4 Next steps

26 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.6 5 Monitor the database

Finally, when we are done with backup, it’s time for one more step. In this section you will learn how to monitor the
health of Percona Distribution for PostgreSQL with Percona Monitoring and Management (PMM).

Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. It includes the PMM Server and the number of PMM Clients running on each
node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect to the
PMM Server to see database metrics on a number of dashboards.

PMM Server and PMM Client are installed separately.

2.6.1 Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on
an AWS instance. Please refer to the official PMM documentation for the installation instructions.

Note

2.6 5 Monitor the database

27 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html

2.6.2 Install PMM Client

To install PMM Client as a side-car container in your Kubernetes-based environment, do the following:

2.6.2 Install PMM Client

28 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Get the PMM API key from PMM Server. The API key must have the role “Admin”. You need this key to authorize PMM
Client within PMM Server.

The API key is not rotated.

Specify the API key as the PMM_SERVER_KEY value in the deploy/secrets.yaml secrets file.

Create the Secrets object using the deploy/secrets.yaml file.

Update the pmm section in the deploy/cr.yaml file.

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM Server IP address should
be resolvable and reachable from within your cluster.

Update the cluster

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on
the previous steps:

1.

Generate the PMM API key

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and hostname in the
following command:

 From PMM UI From command line

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d '{"name":"operator", "role": "Admin"}' "https://
<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pmm-secret

type: Opaque
stringData:
PMM_SERVER_KEY: ""

3.

$ kubectl apply -f deploy/secrets.yaml -n postgres-operator

4.

•

•

pmm:
enabled: true
image: percona/pmm-client:2.41.0

imagePullPolicy: IfNotPresent
secret: cluster1-pmm-secret
serverHost: monitoring-service

5.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

6.

2.6.2 Install PMM Client

29 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

2.6.3 Update the secrets file

The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text format. But the
resulting Secrets Objects contains passwords stored as base64-encoded strings. If you want to update the
password field, you need to encode the new password into the base64 format and pass it to the Secrets Object.

To encode a password or any other parameter, run the following command:

For example, to set the new PMM API key in the my-cluster-name-secrets object, do the following:

2.6.4 Check the metrics

Let’s see how the collected data is visualized in PMM.

Log in to PMM server.

Click PostgreSQL from the left-hand navigation menu. You land on the Instances Overview page.

Click PostgreSQL → Other dashboards to see the list of available dashboards that allow you to drill down to the
metrics you are interested in.

2.6.5 Next steps

What’s next

2.6.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

$ kubectl get pods -n postgres-operator
$ kubectl logs <pod_name> -c pmm-client

 Linux macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

 Linux macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo -n new_key | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo -n new_key | base64)'}}'

1.

2.

3.

Last update: 2023-12-08

2.6.3 Update the secrets file

30 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

2.7 What’s next?

Congratulations! You have completed all the steps in the Get started guide.

You have the following options to move forward with the Operator:

Deepen your monitoring insights by setting up Kubernetes monitoring with PMM

Control Pods assignment on specific Kubernetes Nodes by setting up affinity / anti-affinity

Ready to adopt the Operator for production use and need to delete the testing deployment? Use this guide to do
it.

2.7.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

Last update: 2023-09-14

2.7 What’s next?

31 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3. Installation

3.1 System requirements

The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is cloud native and
storage agnostic, working with a wide variety of storage classes, hostPath, and NFS.

3.1.1 Supported versions

The Operator 2.3.1 is developed, tested and based on:

PostgreSQL 12.17, 13.13, 14.10, 15.5, and 16.1 as the database. Other versions may also work but have not been
tested.

pgBouncer 1.21.0 for connection pooling

Patroni 3.1.0 for high-availability.

3.1.2 Supported platforms

The following platforms were tested and are officially supported by the Operator 2.3.1:

Google Kubernetes Engine (GKE) 1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS) 1.24 - 1.28

OpenShift 4.11.55 - 4.14.6

Minikube 1.32

Other Kubernetes platforms may also work but have not been tested.

3.1.3 Installation guidelines

Choose how you wish to install Percona Operator for PostgreSQL:

with Helm

with kubectl

on Minikube

on Google Kubernetes Engine (GKE)

on Amazon Elastic Kubernetes Service (AWS EKS)

in a Kubernetes-based environment

3.1.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: 2023-12-21

3. Installation

32 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.2 Install Percona Distribution for PostgreSQL on Minikube

Installing the Percona Operator for PostgreSQL on Minikube is the easiest way to try it locally without a cloud
provider.

Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervisor, such as
VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test Kubernetes application locally
prior to deploying it on a cloud.

This document describes how to deploy the Operator and Percona Distribution for PostgreSQL on Minikube.

3.2.1 Set up Minikube

Install Minikube, using a way recommended for your system. This includes the installation of the following three
components:

kubectl tool,

a hypervisor, if it is not already installed,

actual minikube package

After the installation, initialize and start the Kubernetes cluster. The parameters we pass for the following command
increase the virtual machine limits for the CPU cores, memory, and disk, to ensure stable work of the Operator:

This command downloads needed virtualized images, then initializes and runs the cluster.

After Minikube is successfully started, you can optionally run the Kubernetes dashboard, which visually represents
the state of your cluster. Executing minikube dashboard starts the dashboard and opens it in your default web browser.

3.2.2 Deploy the Percona Operator for PostgreSQL

Deploy the Operator using the following command:

As the result you have the Operator Pod up and running.

Deploy Percona Distribution for PostgreSQL:

1.

a.

b.

c.

2.

$ minikube start --memory=5120 --cpus=4 --disk-size=30g

3.

1.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/
bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

2.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/cr.yaml

3.2 Install Percona Distribution for PostgreSQL on Minikube

33 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml and Custom Resource
Options for the configuration options. You can clone the repository with all manifests and source code by executing the
following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

3.2.3 Verify the Percona Distribution for PostgreSQL cluster operation

When creation process is over, you can try to connect to the cluster.

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Note

$ git clone -b v2.3.1 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml

3.

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

3.2.3 Verify the Percona Distribution for PostgreSQL cluster operation

34 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/cr.yaml

During the installation, the Operator has generated several secrets, including the one with password for default
PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the
new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. This command will connect you as a
cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.2.4 Delete the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing deployment before
adopting it for production use), check this HowTo.

If you no longer need the Kubernetes cluster in Minikube, the following are the steps to remove it.

Stop the Minikube cluster:

Delete the cluster

This command deletes the virtual machines, and removes all associated files.

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n postgres-operator --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

1.

$ minikube stop

2.

$ minikube delete

3.2.4 Delete the cluster

35 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/

3.2.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-12-08

3.2.5 Get expert help

36 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.3 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine

(GKE)

Following steps help you install the Operator and use it to manage Percona Distribution for PostgreSQL with the
Google Kubernetes Engine. The document assumes some experience with Google Kubernetes Engine (GKE). For
more information on GKE, see the Kubernetes Engine Quickstart.

3.3.1 Prerequisites

All commands from this installation guide can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

gcloud. This tool is part of the Google Cloud SDK. To install it, select your operating system on the official Google
Cloud SDK documentation page and then follow the instructions.

kubectl. This is the Kubernetes command-line tool you will use to manage and deploy applications. To install the tool,
run the following command:

3.3.2 Create and configure the GKE cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local shell (if
you have installed Google Cloud SDK locally on the previous step). The following command creates a cluster named
cluster-1 :

You must edit the above command and other command-line statements to replace the <project name> placeholder with
your project name. You may also be required to edit the zone location, which is set to us-central1 in the above example.
Other parameters specify that we are creating a cluster with 3 nodes and with machine type of 4 vCPUs and 45 GB
memory.

You may wait a few minutes for the cluster to be generated.

Select Kubernetes Engine → Clusters in the left menu panel:

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

1.

2.

$ gcloud auth login
$ gcloud components install kubectl

$ gcloud container clusters create cluster-1 --project <project name> --zone us-central1-a --cluster-version --machine-
type n1-standard-4 --num-nodes=3

Note

When the process is over, you can see it listed in the Google Cloud console

3.3 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)

37 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart

Now you should configure the command-line access to your newly created cluster to make kubectl be able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You will see
the connect statement which configures the command-line access. After you have edited the statement, you may
run the command in your local shell:

Finally, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster. The following
command will give you the ability to create Roles and RoleBindings:

3.3.3 Install the Operator and deploy your PostgreSQL cluster

First of all, use the following git clone command to download the correct branch of the percona-postgresql-operator
repository:

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and modify the -n

postgres-operator parameter with it in the following steps. You can also omit this parameter completely to deploy everything
in the default namespace.

Deploy the Operator using the following command:

$ gcloud container clusters get-credentials cluster-1 --zone us-central1-a --project <project name>

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user $(gcloud config get-value
core/account)

Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

1.

$ git clone -b v2.3.1 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

2.

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Note

3.

$ kubectl apply --server-side -f deploy/bundle.yaml -n postgres-operator

3.3.3 Install the Operator and deploy your PostgreSQL cluster

38 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/iam
https://kubernetes.io/docs/reference/using-api/server-side-apply/

As the result you will have the Operator Pod up and running.

Deploy Percona Distribution for PostgreSQL:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

When the creation process is finished, it will look as follows:

Name Status Type Namespace ClusterPods

cluster1-backup-7hsq OK Job pg-opertor cluster10/1

cluster1-instance1-mntz OK Stateful Set pg-opertor cluster11/1

cluster1-pgbouncer OK Deployment pg-opertor cluster11/1

cluster1-repo-host OK Stateful Set pg-opertor cluster11/1

cluster1-repo1-full OK Cron Job pg-opertor cluster10/0

percona-postgresql-operator OK Deployment pg-opertor cluster11/1

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

4.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

You can also track the creation process in Google Cloud console via the Object Browser

3.3.3 Install the Operator and deploy your PostgreSQL cluster

39 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

3.3.4 Verifying the cluster operation

When creation process is over, kubectl get pg -n <namespace> command will show you the cluster status as ready , and
you can try to connect to the cluster.

During the installation, the Operator has generated several secrets, including the one with password for default
PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the
new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. This command will connect you as a
cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.3.5 Removing the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing deployment before
adopting it for production use), check this HowTo.

Also, there are several ways that you can delete your Kubernetes cluster in GKE.

You can clean up the cluster with the gcloud command as follows:

The return statement requests your confirmation of the deletion. Type y to confirm.

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n postgres-operator --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

$ gcloud container clusters delete <cluster name>

3.3.4 Verifying the cluster operation

40 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/

Just click the Delete popup menu item in the clusters list:

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

The cluster deletion may take time.

After deleting the cluster, all data stored in it will be lost!

3.3.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Also, you can delete your cluster via the Google Cloud console

Warning

Last update: 2023-12-08

3.3.6 Get expert help

41 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.4 Install Percona Distribution for PostgreSQL on Amazon Elastic Kubernetes

Service (EKS)

This guide shows you how to deploy Percona Operator for PostgreSQL on Amazon Elastic Kubernetes Service (EKS).
The document assumes some experience with the platform. For more information on the EKS, see the Amazon EKS
official documentation.

3.4.1 Prerequisites

Software installation

The following tools are used in this guide and therefore should be preinstalled:

AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can install it following
the official installation instructions for your system.

eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on GitHub.

kubectl to manage and deploy applications on Kubernetes. Install it following the official installation instructions.

Also, you need to configure AWS CLI with your credentials according to the official guide.

Creating the EKS cluster

To create your cluster, you will need the following data:

name of your EKS cluster,

AWS region in which you wish to deploy your cluster,

the amount of nodes you would like tho have,

the desired ratio between on-demand and spot instances in the total number of nodes.

spot instances are not recommended for production environment, but may be useful e.g. for testing purposes.

After you have settled all the needed details, create your EKS cluster following the official cluster creation
instructions.

After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver on your cluster. See the
official documentation on adding it as an Amazon EKS add-on.

CSI driver is needed for the Operator to work propely, and is not included by default starting from the Amazon EKS version
1.22. Therefore sers with existing EKS cluster based on the version 1.22 or earlier need to install CSI driver before updating
the EKS cluster to 1.23 or above.

1.

2.

3.

1.

•

•

•

•

Note

2.

Note

3.4 Install Percona Distribution for PostgreSQL on Amazon Elastic Kubernetes Service (EKS)

42 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/weaveworks/eksctl#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html

3.4.2 Install the Operator and Percona Distribution for PostgreSQL

The following steps are needed to deploy the Operator and Percona Distribution for PostgreSQL in your
Kubernetes environment:

3.4.2 Install the Operator and Percona Distribution for PostgreSQL

43 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and modify the -n

postgres-operator parameter with it in the following two steps. You can also omit this parameter completely to deploy
everything in the default namespace.

Deploy the Operator using the following command:

As the result you will have the Operator Pod up and running.

The operator has been started, and you can deploy your Percona Distribution for PostgreSQL cluster:

1.

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Note

2.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/
bundle.yaml -n postgres-operator

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

3.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/cr.yaml -n
postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

3.4.2 Install the Operator and Percona Distribution for PostgreSQL

44 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml and Custom Resource
Options for the configuration options. You can clone the repository with all manifests and source code by executing the
following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

3.4.3 Verifying the cluster operation

When creation process is over, kubectl get pg command will show you the cluster status as ready , and you can try to
connect to the cluster.

Note

$ git clone -b v2.3.1 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

3.4.3 Verifying the cluster operation

45 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/cr.yaml

During the installation, the Operator has generated several secrets, including the one with password for default
PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the
new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. This command will connect you as a
cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.4.4 Removing the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing deployment before
adopting it for production use), check this HowTo.

To delete your Kubernetes cluster in EKS, you will need the following data:

name of your EKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the eksctl command as follows (with real names instead of <region> and <cluster

name> placeholders):

The cluster deletion may take time.

After deleting the cluster, all data stored in it will be lost!

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n postgres-operator --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

•

•

$ eksctl delete cluster --region=<region> --name="<cluster name>"

Warning

3.4.4 Removing the cluster

46 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/

3.4.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-12-08

3.4.5 Get expert help

47 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.5 Install Percona Distribution for PostgreSQL on OpenShift

Percona Operator for PostgreSQL is a Red Hat Certified Operator. This means that Percona Operator is portable
across hybrid clouds and fully supports the Red Hat OpenShift lifecycle.

Installing Percona Distribution for PostgreSQL on OpenShift includes two steps:

Installing the Percona Operator for PostgreSQL,

Install Percona Distribution for PostgreSQL using the Operator.

3.5.1 Install the Operator

You can install Percona Operator for PostgreSQL on OpenShift using the Red Hat Marketplace web interface or
using the command line interface.

Install the Operator via the command-line interface

First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the deploy/crd.yaml

file. Custom Resource Definition extends the standard set of resources which OpenShift “knows” about with the new
items (in our case ones which are the core of the Operator). Apply it as follows:

This step should be done only once; it does not need to be repeated with any other Operator deployments.

Create the OpenShift namespace for your cluster if needed (for example, let’s name it postgres-operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and modify the -n

postgres-operator parameter with it in the following two steps. You can also omit this parameter completely to deploy
everything in the default namespace.

The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the deploy/rbac.yaml

file. Role-based access is based on defined roles and the available actions which correspond to each role. The role
and actions are defined for Kubernetes resources in the yaml file. Further details about users and roles can be found
in specific OpenShift documentation)

•

•

1.

$ git clone -b v2.3.1 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

Note

2.

$ oc apply --server-side -f deploy/crd.yaml

3.

$ oc create namespace postgres-operator

Note

4.

$ oc apply -f deploy/rbac.yaml -n postgres-operator

3.5 Install Percona Distribution for PostgreSQL on OpenShift

48 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://marketplace.redhat.com
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google OpenShift Engine
can grant user needed privileges with the following command:

If you are going to use the operator with anyuid https://docs.openshift.com/container-platform/4.9/authentication/
managing-security-context-constraints.html security context constraint please execute the following command:

Start the Operator within OpenShift:

Optionally, you can add PostgreSQL Users secrets and TLS certificates to OpenShift. If you don’t, the Operator will
create the needed users and certificates automatically, when you create the database cluster. You can see
documentation on Users and TLS certificates if still want to create them yourself.

You can simplify the Operator installation by applying a single deploy/bundle.yaml file instead of running commands from the
steps 2 and 4:

This will automatically create Custom Resource Definition, set up role-based access control and install the Operator as one
single action.

After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any time with the
following command:

Creation process will take some time. The process is over when both Operator and replica set Pods have reached
their Running status:

3.5.2 Verifying the cluster operation

When creation process is over, oc get pg command will show you the cluster status as ready , and you can try to
connect to the cluster.

Note

$ oc create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value core/account)

5.

$ sed -i '/disable_auto_failover: "false"/a \ \ \ \ disable_fsgroup: "false"' deploy/operator.yaml

6.

$ oc apply -f deploy/operator.yaml -n postgres-operator

Note

$ oc apply -f deploy/bundle.yaml

7.

$ oc apply -f deploy/cr.yaml -n postgres-operator

$ oc get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3 143m

3.5.2 Verifying the cluster operation

49 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html

During the installation, the Operator has generated several secrets, including the one with password for default
PostgreSQL user. This default user has the same login name as the cluster name.

Use oc get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the
new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. This command will connect you as a
cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.5.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

$ oc get secret <cluster_name>-<user_name>-<cluster_name> -n postgres-operator --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ oc run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

Last update: 2023-12-21

3.5.3 Get expert help

50 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

3.6 Install Percona Distribution for PostgreSQL on Kubernetes

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL in a
Kubernetes-based environment.

3.6 Install Percona Distribution for PostgreSQL on Kubernetes

51 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the deploy/crd.yaml

file. Custom Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new
items (in our case ones which are the core of the Operator). Apply it as follows:

This step should be done only once; it does not need to be repeated with any other Operator deployments.

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-operator):

To use different namespace, specify other name instead of postgres-operator in the above command, and modify the -n

postgres-operator parameter with it in the following two steps. You can also omit this parameter completely to deploy
everything in the default namespace.

The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the deploy/rbac.yaml

file. Role-based access is based on defined roles and the available actions which correspond to each role. The role
and actions are defined for Kubernetes resources in the yaml file. Further details about users and roles can be found
in Kubernetes documentation.

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google Kubernetes Engine
can grant user needed privileges with the following command:

Start the Operator within Kubernetes:

Optionally, you can add PostgreSQL Users secrets and TLS certificates to Kubernetes. If you don’t, the Operator will
create the needed users and certificates automatically, when you create the database cluster. You can see
documentation on Users and TLS certificates if still want to create them yourself.

1.

$ git clone -b v2.3.1 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

Note

2.

$ kubectl apply --server-side -f deploy/crd.yaml

3.

$ kubectl create namespace postgres-operator

Note

4.

$ kubectl apply -f deploy/rbac.yaml -n postgres-operator

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value core/
account)

5.

$ kubectl apply -f deploy/operator.yaml -n postgres-operator

3.6 Install Percona Distribution for PostgreSQL on Kubernetes

52 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any time with the
following command:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

3.6.1 Verifying the cluster operation

When creation process is over, kubectl get pg command will show you the cluster status as ready , and you can try to
connect to the cluster.

6.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

3.6.1 Verifying the cluster operation

53 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

During the installation, the Operator has generated several secrets, including the one with password for default
PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the
new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. This command will connect you as a
cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

3.6.2 Deleting the cluster

If you need to delete the cluster (for example, to clean up the testing deployment before adopting it for production
use), check this HowTo.

3.6.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n postgres-operator --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

Last update: 2023-12-13

3.6.2 Deleting the cluster

54 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4. Configuration

4.1 Users

Operator provides a feature to manage users and databases in your PostgreSQL cluster. This document describes
this feature, defaults and ways to fine tune your users.

4.1.1 Defaults

When you create a PostgreSQL cluster with the Operator and do not specify any additional users or databases, the
Operator will do the following:

Create a database that matches the name of your PostgreSQL cluster.

Create an unprivileged PostgreSQL user with the name of the cluster. This user has access to the database
created in the previous step.

Create a Secret with the login credentials and connection details for the PostgreSQL user which is in relation to
the database. This is stored in a Secret named <clusterName>-pguser-<clusterName> . These credentials include:

user : The name of the user account.

password : The password for the user account.

dbname : The name of the database that the user has access to by default.

host : The name of the host of the database. This references the Service of the primary PostgreSQL instance.

port : The port that the database is listening on.

uri : A PostgreSQL connection URI that provides all the information for logging into the PostgreSQL database via
pgBouncer

jdbc-uri : A PostgreSQL JDBC connection URI that provides all the information for logging into the PostgreSQL
database via the JDBC driver.

As an example, using our cluster1 PostgreSQL cluster, we would see the following created:

A database named cluster1 .

A PostgreSQL user named cluster1 .

A Secret named cluster1-pguser-cluster1 that contains the user credentials and connection information.

•

•

•

•

•

•

•

•

•

•

•

•

•

4. Configuration

55 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

4.1.2 Custom Users and Databases

Users and databases can be customized in spec.users section in the Custom Resource. Section can be changed at
the cluster creation time and adjusted over time. Note the following:

If spec.users is set during the cluster creation, the Operator will not create any default users or databases except
for PostgreSQL. If you want additional databases, you will need to specify them.

For each user added in spec.users , the Operator will create a Secret of the <clusterName>-pguser-<userName>

format (such default Secret naming can be altered for the user with the spec.users.secretName option). This Secret
will contain the user credentials.

If no databases are specified, dbname and uri will not be present in the Secret.

If at least one option under the spec.users.databases is specified, the first database in the list will be populated
into the connection credentials.

The Operator does not automatically drop users in case of removed Custom Resource options to prevent
accidental data loss.

Similarly, to prevent accidental data loss Operator does not automatically drop databases (see how to actually
drop a database here).

Role attributes are not automatically dropped if you remove them. You need to set the inverse attribute to
actually drop them (e.g. NOSUPERUSER).

The special postgres user can be added as one of the custom users; however, the privileges of this user cannot
be adjusted.

Creating a New User

Change PerconaPGCluster Custom Resource (e.g. by editing your YAML manifest in the deploy/cr.yaml configuration
file):

Apply the changes (e.g. with the usual `kubctl apply -f deploy/cr.yaml’ command) will create the new user:

The user will only be able to connect to the default postgres database.

The credentials of this user are populated in the <clusterName>-pguser-perconapg secret. There are no connection
credentials.

The user is unprivileged.

The following example shows how to create a new pgtest database and let perconapg user access it. The
appropriate Custom Resource fragment will look as follows:

If you inspect the <clusterName>-pguser-perconapg Secret after applying the changes, you will see dbname and uri

options populated there, and the database is created as well.

•

•

•

•

•

•

•

•

...
spec:
users:
- name: perconapg

•

•

•

...
spec:
users:
- name: perconapg
databases:
- pgtest

4.1.2 Custom Users and Databases

56 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Adjusting privileges

You can set role privileges by using the standard role attributes that PostgreSQL provides and adding them to the
spec.users.options subsection in the Custom Resource. The following example will make the perconapg a superuser.
You can add the following to the spec in your deploy/cr.yaml :

Apply changes with the usual `kubctl apply -f deploy/cr.yaml’ command.

To actually revoke the superuser privilege afterwards, you will need to do and apply the following change:

If you want to add multiple privileges, you can use a space-separated list as follows:

postgres User

By default, the Operator does not create the postgres user. You can create it by applying the following change to
your Custom Resource:

This will create a Secret named <clusterName>-pguser-postgres that contains the credentials of the postgres account.

Deleting users and databases

The Operator does not delete users and databases automatically. After you remove the user from the Custom
Resource, it will continue to exist in your cluster. To remove a user and all of its objects, as a superuser you will
need to run DROP OWNED in each database the user has objects in, and DROP ROLE in your PostgreSQL cluster.

...
spec:
users:
- name: perconapg
databases:
- pgtest

options: "SUPERUSER"

...
spec:
users:
- name: perconapg
databases:
- pgtest

options: "NOSUPERUSER"

...
spec:
users:
- name: perconapg
databases:
- pgtest

options: "CREATEDB CREATEROLE"

...
spec:
users:
- name: postgres

DROP OWNED BY perconapg;
DROP ROLE perconapg;

4.1.2 Custom Users and Databases

57 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/docs/current/role-attributes.html

For databases, you should run the DROP DATABASE command as a superuser:

Managing user passwords

If you want to rotate user’s password, just remove the old password in the correspondent Secret: the Operator will
immediately generate a new password and save it to the appropriate Secret. You can remove the old password with
the kubectl patch secret command:

Also, you can set a custom password for the user. Do it as follows:

Superuser and pgBouncer

For security reasons we do not allow superusers to connect to cluster through pgBouncer by default. You can
connect through primary service (read more in exposure documentation).

Otherwise you can use the proxy.pgBouncer.exposeSuperusers Custom Resource option to enable superusers
connection via pgBouncer.

4.1.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

DROP DATABASE pgtest;

$ kubectl patch secret <clusterName>-pguser-<userName> -p '{"data":{"password":""}}'

$ kubectl patch secret <clusterName>-pguser-<userName> -p '{"stringData":{"password":"<custom_password>",
"verifier":""}}'

Last update: 2023-06-29

4.1.3 Get expert help

58 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.2 Exposing cluster

The Operator provides entry points for accessing the database by client applications. The database cluster is
exposed with regular Kubernetes Service objects configured by the Operator.

This document describes the usage of Custom Resource manifest options to expose the clusters deployed with the
Operator.

4.2.1 PgBouncer

We recommend exposing the cluster through PgBouncer, which is enabled by default. You can disable pgBouncer
by setting proxy.pgBouncer.replicas to 0.

The following example deploys two pgBouncer nodes exposed through a LoadBalancer Service object:

The Service will be called <clusterName>-pgbouncer :

You can connect to the database using the External IP of the load balancer and port 5432 .

If your application runs inside the Kubernetes cluster as well, you might want to use the Cluster IP Service type in
proxy.pgBouncer.expose.type , which is the default. In this case to connect to the database use the internal domain
name - cluster1-pgbouncer.<namespace>.svc.cluster.local .

4.2.2 Exposing the cluster without PgBouncer

You can connect to the cluster without a proxy. For that use <clusterName>-ha Service object:

This service points to the active primary. In case of failover to the replica node, will change the endpoint
automatically.

proxy:
pgBouncer:
replicas: 2
image: percona/percona-postgresql-operator:2.3.1-ppg14-pgbouncer
expose:
type: LoadBalancer

$ kubectl get service

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cluster1-pgbouncer LoadBalancer 10.88.8.48 34.133.38.186 5432:30601/TCP 20m

$ kubectl get service

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cluster1-ha ClusterIP 10.88.8.121 <none> 5432/TCP 115s

4.2 Exposing cluster

59 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/services-networking/service/

To change the Service type, use expose.type in the Custom Resource manifest. For example, the following manifest
will expose this service through a load balancer:

4.2.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

spec:
...
expose:
type: LoadBalancer

Last update: 2023-05-04

4.2.3 Get expert help

60 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.3 Changing PostgreSQL options

Despite the Operator’s ability to configure PostgreSQL and the large number of Custom Resource options, there
may be situations where you need to pass specific options directly to your cluster’s PostgreSQL instances. For this
purpose, you can use the PostgreSQL dynamic configuration method provided by Patroni. You can pass
PostgreSQL options to Patroni through the Operator Custom Resource, updating it with deploy/cr.yaml

configuration file).

Custom PostgreSQL configuration options should be included into the
patroni.dynamicConfiguration.postgresql.parameters subsection as follows:

Please note that configuration changes will be automatically applied to the running instances as soon as you apply
Custom Resource changes in a usual way, running the kubectl apply -f deploy/cr.yaml command.

You can apply custom configuration in this way for both new and existing clusters.

Normally, options should be applied to PostgreSQL instances dynamically without restart, except the options with
the postmaster context. Changing options which have context=postmaster will cause Patroni to initiate restart of all
PostgreSQL instances, one by one. You can check the context of a specific option using the
SELECT name, context FROM pg_settings; query to to see if the change should cause a restart or not.

The Operator passes options to Patroni without validation, so there is a theoretical possibility of the cluster malfunction
caused by wrongly configured PostgreSQL instances. Also, this configuration method is used for PostgreSQL options only
and cannot be applied to change other Patroni dynamic configuration options. It means that options in the parameters

subsection under patroni.dynamicConfiguration.postgresql will be applied, and everything else in
patroni.dynamicConfiguration.postgresql will be ignored.

4.3.1 Using host-based authentication (pg_hba)

PostgreSQL Host-Based Authentication (pg_hba) allows controlling access to the PostgreSQL database based on
the IP address or the host name of the connecting host. You can configure pg_hba through the Custom Resource
patroni.dynamicConfiguration.postgresql.pg_hba subsection as follows:

As you may guess, this example allows all hosts to connect to any database with MD5 password-based
authentication.

...
patroni:
dynamicConfiguration:
postgresql:
parameters:
max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

Note

...
patroni:
dynamicConfiguration:
postgresql:
pg_hba:
- host all all 0.0.0.0/0 md5

4.3 Changing PostgreSQL options

61 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html

Obviously, you can connect both dynamicConfiguration.postgresql.parameters and dynamicConfiguration.postgresql.pg_hba

subsections:

The changes will be applied after you update Custom Resource in a usual way:

4.3.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

...
patroni:
dynamicConfiguration:
postgresql:
parameters:
max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

pg_hba:
- local all all trust
- host all all 0.0.0.0/0 md5
- host all all ::1/128 md5
- host all mytest 123.123.123.123/32 reject

$ kubectl apply -f deploy/cr.yaml

Last update: 2023-12-21

4.3.2 Get expert help

62 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.4 Binding Percona Distribution for PostgreSQL components to specific

Kubernetes/OpenShift Nodes

The operator does good job automatically assigning new Pods to nodes with sufficient resources to achieve
balanced distribution across the cluster. Still there are situations when it is worth to ensure that pods will land on
specific nodes: for example, to get speed advantages of the SSD equipped machine, or to reduce network costs
choosing nodes in a same availability zone.

Appropriate sections of the deploy/cr.yaml file (such as proxy.pgBouncer) contain keys which can be used to do this,
depending on what is the best for a particular situation.

4.4.1 Affinity and anti-affinity

Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which already has
Pods with specific labels, or has specific labels itself (so called “Node affinity”). Particularly, Pod anti-affinity is good
to reduce costs making sure several Pods with intensive data exchange will occupy the same availability zone or
even the same node - or, on the contrary, to make them land on different nodes or even different availability zones
for the high availability and balancing purposes. Node affinity is useful to assign PostgreSQL instances to specific
Kubernetes Nodes (ones with specific hardware, zone, etc.).

Pod anti-affinity is controlled by the affinity.podAntiAffinity subsection, which can be put into proxy.pgBouncer and
backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration file.

podAntiAffinity allows you to use standard Kubernetes affinity constraints of any complexity:

You can see the explanation of these affinity options in Kubernetes documentation.

4.4.2 Topology Spread Constraints

Topology Spread Constraints allow you to control how Pods are distributed across the cluster based on regions,
zones, nodes, and other topology specifics. This can be useful for both high availability and resource efficiency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection, which can be put into
proxy.pgBouncer and backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration file as follows:

You can see the explanation of these affinity options in Kubernetes documentation.

affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
podAffinityTerm:
labelSelector:
matchLabels:
postgres-operator.crunchydata.com/cluster: keycloakdb
postgres-operator.crunchydata.com/role: pgbouncer

topologyKey: kubernetes.io/hostname

topologySpreadConstraints:
- maxSkew: 1
topologyKey: my-node-label
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchLabels:
postgres-operator.crunchydata.com/instance-set: instance1

4.4 Binding Percona Distribution for PostgreSQL components to specific Kubernetes/OpenShift Nodes

63 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

4.4.3 Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is expressed as a
key with and operator , which is either exists or equal (the latter variant also requires a value the key is equal to).
Moreover, toleration should have a specified effect , which may be a self-explanatory NoSchedule , less strict
PreferNoSchedule , or NoExecute . The last variant means that if a taint with NoExecute is assigned to node, then any
Pod not tolerating this taint will be removed from the node, immediately or after the tolerationSeconds interval, like
in the following example.

You can use instances.tolerations and backups.pgbackrest.jobs.tolerations subsections in the deploy/cr.yaml configuration
file as follows:

The Kubernetes Taints and Toleratins contains more examples on this topic.

4.4.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

tolerations:
- effect: NoSchedule
key: role
operator: Equal
value: connection-poolers

Last update: 2023-12-08

4.4.3 Tolerations

64 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.5 Labels and annotations

Labels and annotations are used to attach additional metadata information to Kubernetes resources.

Labels and annotations are rather similar. The difference between them is that labels are used by Kubernetes to
identify and select objects, while annotations are assigning additional non-identifying information to resources.
Therefore, typical role of Annotations is facilitating integration with some external tools.

4.5.1 Setting labels and annotations in the Custom Resource

You can set labels and/or annotations as key/value string pairs in the Custom Resource metadata section of the
deploy/cr.yaml . For PostgreSQL, pgBouncer and pgBackRest Pods, use instances.metadata.annotations /
instances.metadata.labels , proxy.pgbouncer.metadata.annotations / proxy.pgbouncer.metadata.labels , or
backups.pgbackrest.metadata.annotations / backups.pgbackrest.metadata.labels keys as follows:

For PostgreSQL and pgBouncer Services, use expose.annotations / expose.labels or proxy.pgbouncer.expose.annotations /
proxy.pgbouncer.expose.labels keys as follows:

The easiest way to check which labels are attached to a specific object with is using the additional --show-labels

option of the kubectl get command. Checking the annotations is not much more difficult: it can be done as in the
following example:

4.5.2 Settings labels and annotations to the Operator Pod

You can assign labels and/or annotations to the Pod of the Operator itself by editing the and the deploy/
operator.yaml configuration file before applying it during the installation.

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
...
spec:
...
instances:
- name: instance1
replicas: 3
metadata:
annotations:
my-annotation: value1

labels:
my-label: value2

...

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
...
spec:
...
expose:
annotations:
my-annotation: value1

labels:
my-label: value2

...

$ kubectl get service cluster1-pgbouncer -o jsonpath='{.metadata.annotations}'

4.5 Labels and annotations

65 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml

4.5.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

apiVersion: apps/v1
kind: Deployment
...
spec:
...
template:
metadata:
labels:
app.kubernetes.io/component: operator
app.kubernetes.io/instance: percona-postgresql-operator
app.kubernetes.io/name: percona-postgresql-operator
app.kubernetes.io/part-of: percona-postgresql-operator
pgv2.percona.com/control-plane: postgres-operator
...

Last update: 2023-11-30

4.5.3 Get expert help

66 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.6 Transport layer security (TLS)

The Percona Operator for PostgreSQL uses Transport Layer Security (TLS) cryptographic protocol for the following
types of communication:

Internal - communication between PostgreSQL instances in the cluster

External - communication between the client application and the cluster

The internal certificate is also used as an authorization method for PostgreSQL Replica instances.

TLS security can be configured in following ways:

the Operator can generate long-term certificates automatically at cluster creation time,

you can generate certificates manually.

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to
temporarily disable it if needed.

4.6.1 Allow the Operator to generate certificates automatically

The Operator is able to generate long-term certificates automatically and turn on encryption at cluster creation
time, if there are no certificate secrets available. Just deploy your cluster as usual, with the kubectl apply -f deploy/

cr.yaml command, and certificates will be generated.

4.6.2 Check connectivity to the cluster

You can check TLS communication with use of the psql , the standard interactive terminal-based frontend to
PostgreSQL. The following command will spawn a new pg-client container, which includes needed command and
can be used for the check (use your real cluster name instead of the <cluster-name> placeholder):

•

•

•

•

$ cat <<EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
 name: pg-client
spec:
 replicas: 1
 selector:
 matchLabels:
 name: pg-client
 template:
 metadata:
 labels:
 name: pg-client
 spec:
 containers:
 - name: pg-client
 image: perconalab/percona-distribution-postgresql:16
 imagePullPolicy: Always
 command:
 - sleep
 args:
 - "100500"
 volumeMounts:
 - name: ca
 mountPath: "/tmp/tls"
 volumes:
 - name: ca

4.6 Transport layer security (TLS)

67 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal to check
connectivity over the encrypted channel (please use real cluster-name, PostgreSQL user login and password):

Now you should see the prompt of PostgreSQL interactive terminal:

4.6.3 Generate certificates manually

To use custom TLS certificates for a Postgres cluster, you will need to create a Secret in the Namespace of your
cluster that contains the TLS key (tls.key), TLS certificate (tls.crt) and the CA certificate (ca.crt) to use. The Secret
should contain the following values:

You should generate certificates twice: one set is for external communications, and another set is for internal ones.
A secret created for the external use must be added to the secrets.customTLSSecret.name field of your Custom
Resource. A certificate generated for internal communications must be added to the
secrets.customReplicationTLSSecret.name field.

For example, if you have files named ca.crt , hippo.key , and hippo.crt stored on your local machine, you could run
the following command:

Now you can add the custom TLS Secret name to the secrets.customTLSSecret.name field in your Rustom Resource:

Don’t forget to apply changes as usual:

 secret:
 secretName: <cluster_name>-ssl-ca
 items:
 - key: ca.crt
 path: ca.crt
 mode: 0777
EOF

$ kubectl exec -it deployment/pg-client -- bash -il
[postgres@pg-client /]$ PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt psql postgres://<postgresql-
user>:<postgresql-password>@<cluster-name>-pgbouncer.<namespace>.svc.cluster.local

$ psql (16)
Type "help" for help.
pgdb=>

data:
ca.crt: <value>
tls.crt: <value>
tls.key: <value>

$ kubectl create secret generic -n postgres-operator hippo.tls \
--from-file=ca.crt=ca.crt \
--from-file=tls.key=hippo.key \
--from-file=tls.crt=hippo.crt

secrets:
customTLSSecret:
name: hippo.tls

$ kubectl apply -f deploy/cr.yaml

4.6.3 Generate certificates manually

68 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

4.6.4 Check your certificates for expiration

First, check the necessary secrets names (cluster1-cluster-cert and cluster1-replication-cert by default):

You will have the following response:

Now use the following command to find out the certificates validity dates, substituting Secrets names if necessary:

The resulting output will be self-explanatory:

4.6.5 Keep certificates after deleting the cluster

In case of cluster deletion, objects, created for SSL (Secret, certificate, and issuer) are not deleted by default.

If the user wants the cleanup of objects created for SSL, there is a finalizers.percona.com/delete-ssl Custom
Resource option, which can be set in deploy/cr.yaml : if this finalizer is set, the Operator will delete Secret, certificate
and issuer after the cluster deletion event.

4.6.6 Connect to the database cluster without TLS

Omitting TLS is also possible, but we recommend that you connect to your cluster with the TLS protocol enabled.

You can enable connections without TLS (e.g. for demonstration purposes) via the following line to the custom
PostgreSQL configuration. Add the following line to the Operator Custom Resource via the deploy/cr.yaml

configuration file:

See Using host-based authentication for more details.

1.

$ kubectl get secrets

NAME TYPE DATA AGE
cluster1-cluster-cert Opaque 3 11m
...
cluster1-replication-cert Opaque 3 11m
...

2.

$ {
kubectl get secret/cluster1-replication-cert -o jsonpath='{.data.tls\.crt}' | base64 --decode | openssl x509 -noout -dates
kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.ca\.crt}' | base64 --decode | openssl x509 -noout -dates
}

notBefore=Jun 28 10:20:19 2023 GMT
notAfter=Jun 27 11:20:19 2024 GMT
notBefore=Jun 28 10:20:18 2023 GMT
notAfter=Jun 25 11:20:18 2033 GMT

...
patroni:
dynamicConfiguration:
postgresql:
pg_hba:
- host all all 0.0.0.0/0 md5

4.6.4 Check your certificates for expiration

69 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

4.6.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-12-20

4.6.7 Get expert help

70 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

4.7 Telemetry

The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona, which
helps us to determine where to focus the development and what is the uptake for each release of Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid field)

Kubernetes version

Platform (is it Kubernetes or Openshift)

Is PMM enabled, and the PMM Version

Operator version

PostgreSQL version

PgBackRest version

Was the Operator deployed with Helm

Are sidecar containers used

Are backups used

We do not gather anything that identify a system, but the following thing should be mentioned: Custom Resource
ID is a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it at
scheduled times to obtain fresh information about version numbers and valid image paths needed for the
upgrade.

The landing page for this service, check.percona.com, explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

if you don’t use helm for installation, you have to edit the operator.yaml before applying it with the kubectl apply -f

deploy/operator.yaml command. Open the operator.yaml file with your text editor, find the DISABLE_TELEMETRY

environment variable and set it to "true"

4.7.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

•

•

•

•

•

•

•

$ helm install my-db percona/pg-db --version 2.3.1 --namespace my-namespace --set disable_telemetry="true"

•

...
- name: DISABLE_TELEMETRY
value: "true"

...

4.7 Telemetry

71 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://check.percona.com/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

Last update: 2023-11-01

4.7.1 Get expert help

72 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

5. Management

5.1 Upgrade Database and Operator

5.1.1 Upgrade from the Operator version 1.x to version 2.x

The Operator version 2.x has a lot of differences compared to the version 1.x. This makes upgrading from version
1.x to version 2.x quite different from a normal upgrade. In fact, you have to migrate the cluster from version 1.x to
version 2.x.

There are several ways to do such version 1.x to version 2.x upgrade. Choose the method based on your downtime
preference and roll back strategy:

5.1.2 Update Database and Operator version 2.x

Starting from the version 2.2.0 Percona Operator for PostgreSQL allows upgrades to newer 2.x versions. The
upgradable components of the cluster are the following ones:

the Operator;

Custom Resource Definition (CRD),

Database Management System (Percona Distribution for PostgreSQL).

The list of recommended upgrade scenarios includes two variants:

Upgrade to the new versions of the Operator and Percona Distribution for PostgreSQL,

Minor Percona Distribution for PostgreSQL version upgrade without the Operator upgrade.

Upgrading the Operator and CRD

The Operator supports last 3 versions of the CRD, so it is technically possible to skip upgrading the CRD and just
upgrade the Operator. If the CRD is older than the new Operator version by no more than three releases, you will be able to
continue using the old CRD and even carry on Percona Distribution for PostgreSQL minor version upgrades with it. But
the recommended way is to update the Operator and CRD.

Only the incremental update to a nearest version of the Operator is supported (for example, update from 2.2.0 to
2.3.0). To update to a newer version, which differs from the current version by more than one, make several
incremental updates sequentially.

Pros Cons

Data Volumes migration - re-use the volumes that
were created by the Operator version 1.x

The simplest
method

- Requires downtime
- Impossible to roll back

Backup and restore - take the backup with the
Operator version 1.x and restore it to the cluster
deployed by the Operator version 2.x

Allows you to
quickly test
version 2.x

Provides significant downtime
in case of migration

Replication - replicate the data from the Operator
version 1.x cluster to the standby cluster deployed
by the Operator version 2.x

- Quick test of v2
cluster
- Minimal
downtime during
upgrade

Requires significant
computing resources to run
two clusters in parallel

•

•

•

•

•

Note

5. Management

73 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Considering the Operator uses postgres-operator namespace, upgrade to the version 2.3.1 includes the following
steps.

Update the Custom Resource Definition for the Operator, taking it from the official repository on Github, and do the
same for the Role-based access control:

In case of cluster-wide installation, use deploy/cw-rbac.yaml instead of deploy/rbac.yaml .

Now you should apply a patch to your deployment, supplying necessary image name with a newer version tag. You
can find the proper image name for the current Operator release in the list of certified images. updating to the 2.3.1

version should look as follows:

The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process in real
time with the kubectl rollout status command with the name of your cluster:

1.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/
crd.yaml
$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/rbac.yaml -n
postgres-operator

Note

2.

$ kubectl -n postgres-operator patch deployment percona-postgresql-operator \
-p'{"spec":{"template":{"spec":{"containers":[{"name":"operator","image":"percona/percona-postgresql-operator:

2.3.1"}]}}}}'

3.

$ kubectl rollout status deployments percona-postgresql-operator

5.1.2 Update Database and Operator version 2.x

74 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

5.1.3 Upgrading Percona Distribution for PostgreSQL

Upgrading Percona Distribution for PostgreSQL can be done as follows:

Apply a patch to your Custom Resource, setting necessary Custom Resource version and image names with a newer
version tag.

Check the version of the Operator you have in your Kubernetes environment. Please refer to the Operator upgrade guide to
upgrade the Operator and CRD, if needed.

Patching Custom Resource is done with the kubectl patch pg command. Actual image names can be found in the list of
certified images. For example, updating cluster1 cluster to the 2.3.1 version should look as follows:

The above command upgrades various components of the cluster including PMM Client. It is highly recommended to
upgrade PMM Server before upgrading PMM Client. If it wasn’t done and you would like to avoid PMM Client upgrade,
remove it from the list of images, reducing the last of two patch commands as follows:

The deployment rollout will be automatically triggered by the applied patch. The update process is successfully
finished when all Pods have been restarted.

5.1.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

Note

$ kubectl -n postgres-operator patch pg cluster1 --type=merge --patch '{
 "spec": {
 "crVersion":"2.3.1",
 "image": "percona/percona-postgresql-operator:2.3.1-ppg15-postgres",
 "proxy": { "pgBouncer": { "image": "percona/percona-postgresql-operator:2.3.1-ppg15-pgbouncer" } },
 "backups": { "pgbackrest": { "image": "percona/percona-postgresql-operator:2.3.1-ppg15-pgbackrest" } },
 "pmm": { "image": "percona/pmm-client:2.41.0" }
 }}'

Warning

$ kubectl -n postgres-operator patch pg cluster1 --type=merge --patch '{
 "spec": {
 "crVersion":"2.3.1",
 "image": "percona/percona-postgresql-operator:2.3.1-ppg15-postgres",
 "proxy": { "pgBouncer": { "image": "percona/percona-postgresql-operator:2.3.1-ppg15-pgbouncer" } },
 "backups": { "pgbackrest": { "image": "percona/percona-postgresql-operator:2.3.1-ppg15-pgbackrest" } }
 }}'

Last update: 2023-12-21

5.1.3 Upgrading Percona Distribution for PostgreSQL

75 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.2 Upgrade from version 1 to version 2

5.2.1 Upgrade using data volumes

Prerequisites:

The following conditions should be met for the Volumes-based migration:

You have a version 1.x cluster with spec.keepData: true in the Custom Resource

You have both Operators deployed and allow them to control resources in the same namespace

Old and new clusters must be of the same PostgreSQL major version

This migration method has two limitations. First of all, this migration method introduces a downtime. Also, you can
only reverse such migration by restoring the old cluster from the backup. See other migration methods if you need
lower downtime and a roll back plan.

Prepare version 1.x cluster for the migration

Remove all Replicas from the cluster, keeping only primary running. It is required to assure that Volume of the
primary PVC does not change. The deploy/cr.yaml configuration file should have it as follows:

Apply the Custom Resource in a usual way:

When all Replicas are gone, proceed with removing the cluster. Double check that spec.keepData is in place, otherwise
the Operator will delete the volumes!

Find PVC for the Primary and pgBackRest :

A third PVC used to store write-ahead logs (WAL) may also be present if external WAL volumes were enabled for the
cluster.

•

•

•

1.

...
pgReplicas:

hotStandby:
size: 0

2.

$ kubectl apply -f deploy/cr.yaml

3.

$ kubectl delete perconapgcluster cluster1

4.

$ kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

Expected output

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
cluster1 Bound pvc-940cdc23-cd4c-4f62-ac3a-dc69850042b0 1Gi RWO standard-rwo 57m
cluster1-pgbr-repo Bound pvc-afb00490-5a45-45cb-a1cb-10af8e48bb13 1Gi RWO standard-rwo 57m

5.2 Upgrade from version 1 to version 2

76 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Permissions for pgBackRest repo folders are managed differently in version 1 and version 2. We need to change the
ownership of the backrest folder on the Persistent Volume to avoid errors during migration. Running a chown

command within a container fixes this problem. You can use the following manifest to execute it:

Apply it as follows:

5.

chown-pod.yaml

apiVersion: v1
kind: Pod
metadata:
name: chown-pod

spec:
volumes:
- name: backrestrepo
persistentVolumeClaim:
claimName: cluster1-pgbr-repo

containers:
- name: task-pv-container
image: ubuntu
command:
- chown
- -R
- 26:26
- /backrestrepo/cluster1-backrest-shared-repo
volumeMounts:
- mountPath: "/backrestrepo"
name: backrestrepo

$ kubectl apply -f chown-pod.yaml -n pgo

5.2.1 Upgrade using data volumes

77 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Execute the migration to version 2.x

The old cluster is shut down, and Volumes are ready to be used to provision the new cluster managed by the
Operator version 2.x.

Install the Operator version 2 (if not done yet). Pick your favorite method from our documentaion.

Run the following command to show the names of PVC belonging to the old cluster:

Now edit the Custom Resource manifest (deploy/cr.yaml configuration file) of the version 2.x cluster: add fields to the
dataSource.volumes subsection, pointing to the PVCs of the version 1.x cluster:

Do not forget to set the proper PostgreSQL major version. It must be the same version that was used in version 1
cluster. You can set the version in the corresponding image sections and postgresVersion . The following example sets
version 14:

Apply the manifest:

The new cluster will be provisioned shortly using the volume of the version 1.x cluster. You should remove the
spec.datasource.volumes section from your manifest.

1.

2.

$ kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

Expected output

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
cluster1 Bound pvc-db9bf618-04d5-4807-948d-e32e81098575 1Gi RWO standard-rwo 87m
cluster1-pgbr-repo Bound pvc-37d93aa9-bf02-4295-bbbc-c1f834ed6045 1Gi RWO standard-rwo 87m

3.

...
dataSource:
volumes:

pgDataVolume:
pvcName: cluster1
directory: cluster1

pgBackRestVolume:
pvcName: cluster1-pgbr-repo
directory: cluster1-backrest-shared-repo

4.

spec:
image: percona/percona-postgresql-operator:2.3.1-ppg14-postgres
postgresVersion: 14
proxy:
pgBouncer:
image: percona/percona-postgresql-operator:2.3.1-ppg14-pgbouncer

backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.3.1-ppg14-pgbackrest

5.

$ kubectl apply -f deploy/cr.yaml

5.2.1 Upgrade using data volumes

78 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-12-08

5.2.1 Upgrade using data volumes

79 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.2.2 Upgrade using backup and restore

This method allows you to migrate from the version 1.x to version 2.x cluster by restoring (actually creating) a new
version 2.x PostgreSQL cluster using a backup from the version 1.x cluster.

To make sure that all transactions are captured in the backup, you need to stop the old cluster. This brings downtime to
the application.

Prepare the backup

Create the backup on the version 1.x cluster, following the official guide for manual (on-demand) backups. This
involves preparing the manifest in YAML and applying it in the ususal way:

Pause or delete the version 1.x cluster to ensure that you have the latest data.

Before deleting the cluster, make sure that the spec.keepBackups Custom Resource option is set to true . When it’s set, local
backups will be kept after the cluster deletion, so you can proceed with deleting your cluster as follows:

Note

1.

$ kubectl apply -f deploy/backup/backup.yaml

2.

Warning

$ kubectl delete perconapgcluster cluster1

5.2.2 Upgrade using backup and restore

80 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-operator-for-postgresql/1.0/backups.html#making-on-demand-backup
https://docs.percona.com/percona-operator-for-postgresql/1.0/pause.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/operator.html#spec-keepbackups

Restore the backup as a version 2.x cluster

Restore from S3 / Google Cloud Storage for backups repository

To restore from the S3 or Google Cloud Storage for backups (GCS) repository, you should first configure the
spec.backups.pgbackrest.repos subsection in your version 2.x cluster Custom Resource to point to the backup storage
system. Just follow the repository documentation instruction for S3 or GCS. For example, for GCS you can define the
repository similar to the following:

Create and configure any required Secrets or desired custom pgBackrest configuration as described in the backup
documentation for te Operator version 2.x.

Set the repository path in the backups.pgbackrest.global subsection. By default it
is /backrestrepo/<clusterName>-backrest-shared-repo :

Set the spec.dataSource option to create the version 2.x cluster from the specific repository:

You can also provide other pgBackRest restore options, e.g. if you wish to restore to a specific point-in-time (PITR).

Create the version 2.x cluster:

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

spec:
backups:
pgbackrest:
repos:
- name: repo1
gcs:
bucket: MY-BUCKET
region: us-central1

2.

3.

spec:
backups:
pgbackrest:
global:
repo1: /backrestrepo/cluster1-backrest-shared-repo

4.

spec:
dataSource:
postgresCluster:
repoName: repo1

5.

$ kubectl apply -f cr.yaml

Last update: 2023-12-08

5.2.2 Upgrade using backup and restore

81 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.2.3 Migrate using Standby

This method allows you to migrate from version 1.x to version 2.x by creating a new version 2.x PostgreSQL cluster
in a “standby” mode, mirroring the version 1.x cluster to it continuously. This method can provide minimal
downtime, but requires additional computing resources to run two clusters in parallel.

This method only works if the version 1.x cluster uses Amazon S3 or S3-compatible storage, or Google Cloud
storage (GCS) for backups. For more information on standby clusters, please refer to this article.

Migrate to version 2

There is no need to perform any additional configuration on version 1.x cluster, you will only need to configure the
version 2.x one.

Configure spec.backups.pgbackrest.repos Custom Resource option to point to the backup storage system. For example,
for GCS, the repository would be defined similar to the following:

Create and configure any required secrets or desired custom pgBackrest configuration as described in the backup
documentation for the version 2.x.

Set the repository path in backups.pgbackrest.global section of the Custom Resource configuration file. By default it will
be /backrestrepo/<clusterName>-backrest-shared-repo :

Enable the standby mode in spec.standby and point to the repository:

Create the version 2.x cluster:

1.

spec:
backups:
pgbackrest:
repos:
- name: repo1
gcs:
bucket: MY-BUCKET
region: us-central1

2.

3.

spec:
backups:
pgbackrest:
global:
repo1: /backrestrepo/cluster1-backrest-shared-repo

4.

spec:
standby:
enabled: true
repoName: repo1

5.

$ kubectl apply -f deploy/cr.yaml

5.2.3 Migrate using Standby

82 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://cloud.google.com/storage
https://www.postgresql.org/docs/current/warm-standby.html

Promote version 2.x cluster

Once the standby cluster is up and running, you can promote it.

Delete version 1.x cluster, but ensure that spec.keepBackups is set to true .

Promote version 2.x cluster by disabling the standby mode:

You can use version 2.x cluster now. Also the 2.x version is now managing the object storage with backups, so you
should not start your old cluster.

Create the replication user

Right after disabling standby, run the following SQL commands as a PostgreSQL superuser. For example, you can
login as the postgres user, or exec into the Pod and use psql :

add the managed replication user

allow for the replication user to execute the functions required as part of “rewinding”

The above step will be automated in upcoming releases.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

$ kubectl delete perconapgcluster cluster1

2.

spec:
standby:
enabled: false

•

CREATE ROLE _crunchyrepl WITH LOGIN REPLICATION;

•

GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint, boolean) TO _crunchyrepl;

Last update: 2023-12-08

5.2.3 Migrate using Standby

83 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3 Back up and restore

5.3.1 About backups

In this section you will learn how to set up and manage backups of your data using the Operator.

You can make backups in two ways:

On-demand. You can do them manually at any moment.

Schedule backups. Configure backups and their schedule in the deploy/cr.yaml file. The Operator makes them
automatically according to the schedule.

What you need to know

BACKUP REPOSITORIES

To make backups, the Operator uses the open source pgBackRest backup and restore utility.

When the Operator creates a new PostgreSQL cluster, it also creates a special pgBackRest repository to facilitate the
usage of the pgBackRest features. You can notice an additional repo-host Pod after the cluster creation.

A pgBackRest repository consists of the following Kubernetes objects:

A Deployment,

A Secret that contains information specific to the PostgreSQL cluster (e.g. SSH keys, AWS S3 keys, etc.),

A Pod with a number of supporting scripts,

A Service.

In the /deploy/cr.yml file, pgBackRest repositories are listed in the backups.pgbackrest.repos subsection. You can have
up to 4 repositories as repo1 , repo2 , repo3 , and repo4 .

BACKUP TYPES

You can make the following types of backups:

full : A full backup of all the contents of the PostgreSQL cluster,

differential : A backup of only the files that have changed since the last full backup,

incremental : Default. A backup of only the files that have changed since the last full or differential backup.

BACKUP STORAGE

You have the following options to store PostgreSQL backups outside the Kubernetes cluster:

Cloud storage:

Amazon S3, or any S3-compatible storage,

Google Cloud Storage,

Azure Blob Storage

A Persistent Volume attached to the pgBackRest Pod.

Next steps

Ready to move forward? Configure backup storage

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3 Back up and restore

84 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/
https://aws.amazon.com/s3/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-09-14

5.3.1 About backups

85 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.2 Configure backup storage

Configure backup storage for your backup repositories in the

5.3.2 Configure backup storage

86 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

backups.pgbackrest.repos section of the deploy/cr.yaml configuration file.

5.3.2 Configure backup storage

87 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

To use S3-compatible storage for backups, you need to have the following S3-related information:

The name of S3 bucket;

The endpoint - the URL to access the bucket

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage. These are stored in an encoded form in Kubernetes
Secrets along with other sensitive information.

Configuration steps

Encode the S3 credentials and the pgBackRest repo name that you will use for backups. In this example, we use
AWS S3 key and S3 key secret and repo2 .

The repo2-storage-verify-tls option in the above example enables TLS verification for pgBackRest (when set to y or
simply omitted) or disables it, when set to n .

Create the Secret configuration file and specify the base64-encoded string from the previous step. The following is
the example of the cluster1-pgbackrest-secrets.yaml Secret file:

This Secret can store credentials for several repositories presented as separate data keys.

Create the Secrets object from this YAML file. Replace the <namespace> placeholder with your value:

Update your deploy/cr.yaml configuration. Specify the Secret file you created in the backups.pgbackrest.configuration

subsection, and put all other S3 related information in the backups.pgbackrest.repos subsection under the repository
name that you intend to use for backups. This name must match the name you used when you encoded S3
credentials on step 1.

For example, the S3 storage for the repo2 repository looks as follows:

Create or update the cluster. Replace the <namespace> placeholder with your value:

To use Google Cloud Storage as an object store for backups, you need the following information:

a proper GCS bucket name. Pass the bucket name to pgBackRest via the gcs.bucket key in the
backups.pgbackrest.repos subsection of deploy/cr.yaml .

your service account key for the Operator to access the storage.

Configuration steps

Create your service account key following the official Google Cloud instructions.

Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin → Service Accounts in the left menu panel,
then click your account and open the KEYS tab):

my-service-account

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.
Learn more about setting organization policies for service accounts

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the

Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

ADDKEY

DETAILS PERMISSIONS KEYS METRICS LOGS

Click the ADD KEY button, choose Create new key and choose JSON as a key type. These actions will result in
downloading a file in JSON format with your new private key and related information (for example, gcs-key.json).

Create the Kubernetes Secret. The Secret consists of base64-encoded versions of two files: the gcs-key.json file with
the Google service account key you have just downloaded, and the special gcs.conf configuration file.

Create the gcs.conf configuration file. The file contents depends on the repository name for backups in the deploy/

cr.yaml file. In case of the repo3 repository, it looks as follows:

Encode both gcs-key.json and gcs.conf files.

Create the Kubernetes Secret configuration file and specify your cluster name and the base64-encoded contents of
the files from previous steps. The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

!!! note

Create the Secrets object from the Secret configuration file. Replace the <namespace> placeholder with your value:

Update your deploy/cr.yaml configuration. Specify your GCS credentials Secret in the backups.pgbackrest.configuration

subsection, and put GCS bucket name into the bucket option in the backups.pgbackrest.repos subsection. The
repository name must be the same as the name you specified when you created the gcs.conf file. For example, GCS
storage configuration for the repo3 repository would look as follows:

Create or update the cluster. Replace the <namespace> placeholder with your value:

To use Microsoft Azure Blob Storage for storing backups, you need the following:

a proper Azure container name.

Azure Storage credentials. These are stored in an encoded form in the Kubernetes Secret.

Configuration steps

Encode the Azure Storage credentials and the pgBackRest repo name that you will use for backups with base64. In
this example, we are using repo4 .

Create the Secret configuration file and specify the base64-encoded string from the previous step. The following is
the example of the cluster1-pgbackrest-secrets.yaml Secret file:

This Secret can store credentials for several repositories presented as separate data keys.

Create the Secrets object from this yaml file. Replace the <namespace> placeholder with your value:

Update your deploy/cr.yaml configuration. Specify the Secret file you have created in the previous step in the
backups.pgbackrest.configuration subsection. Put Azure container name in the backups.pgbackrest.repos subsection
under the repository name that you intend to use for backups. This name must match the name you used when
you encoded S3 credentials on step 1.

For example, the Azure storage for the repo1 repository looks as follows.

Create or update the cluster. Replace the <namespace> placeholder with your value:

 S3-compatible backup storage Google Cloud Storage Azure Blob Storage (tech preview)

•

•

•

•

1.

 Linux macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-storage-verify-tls=y
EOF

$ cat <<EOF | base64
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-storage-verify-tls=y
EOF

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets

type: Opaque
data:
s3.conf: <base64-encoded-configuration-contents>

Note

3.

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

4.

...
backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets
...
repos:
- name: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

5.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

•

•

1.

2.

3.

•

[global]
repo3-gcs-key=/etc/pgbackrest/conf.d/gcs-key.json

•

 Linux MacOS

base64 --wrap=0 <filename>

base64 <filename>

•

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets

type: Opaque
data:
gcs-key.json: <base64-encoded-json-file-contents>
gcs.conf: <base64-encoded-conf-file-contents>

 This Secret can store credentials for several repositories presented as
 separate data keys.

4.

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

5.

...
backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets
...
repos:
- name: repo3
gcs:
bucket: "<YOUR_GCS_BUCKET_NAME>"

6.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

•

•

1.

 Linux macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>
repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>
EOF

$ cat <<EOF | base64
[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>
repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>
EOF

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets

type: Opaque
data:
azure.conf: <base64-encoded-configuration-contents>

Note

3.

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

4.

...
backups:
pgbackrest:
...
configuration:
- secret:

name: cluster1-pgbackrest-secrets
...
repos:
- name: repo4
azure:
container: "<YOUR_AZURE_CONTAINER>"

5.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

5.3.2 Configure backup storage

88 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://cloud.google.com/storage
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://kubernetes.io/docs/concepts/configuration/secret/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kubernetes.io/docs/concepts/configuration/secret/

Speed-up backups with pgBackRest asynchronous archiving

Backing up a database with high write-ahead logs (WAL) generation can be rather slow, because PostgreSQL
archiving process is sequential, without any parallelism or batching. In extreme cases backup can be even
considered unsuccessful by the Operator because of the timeout.

The pgBackRest tool used by the Operator can, if necessary, solve this problem by using the WAL asynchronous
archiving feature.

You can set up asynchronous archiving in your storage configuration file for pgBackRest. Turn on the additional
archive-async flag, and set the process-max value for archive-push and archive-get commands. Your storage
configuration file may look as follows:

No modifications are needed aside of setting these additional parameters. You can find more information about
WAL asynchronous archiving in gpBackRest official documentation and in this blog pos.

Next steps

Make an on-demand backup

Make a scheduled backup

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

s3.conf

[global]
repo2-s3-key=REPLACE-WITH-AWS-ACCESS-KEY
repo2-s3-key-secret=REPLACE-WITH-AWS-SECRET-KEY
repo2-storage-verify-tls=n
repo2-s3-uri-style=path
archive-async=y
spool-path=/pgdata

[global:archive-get]
process-max=2

[global:archive-push]
process-max=4

•

•

Last update: 2023-12-20

5.3.2 Configure backup storage

89 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.3 Make scheduled backups

Backups schedule is defined on the per-repository basis in the backups.pgbackrest.repos subsection of the deploy/

cr.yaml file.

You can supply each repository with a schedules.<backup type> key equal to an actual schedule that you specify in
crontab format.

Before you start, make sure you have configured a backup storage.

Configure backup schedule in the deploy/cr.yaml file. The schedule is specified in crontab format as explained in
Custom Resource options. The repository name must be the same as the one you defined in the backup storage
configuration. The following example shows the schedule for repo1 repository:

Update the cluster:

Next steps

Restore from a backup

Useful links

Backup retention

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

...
backups:
pgbackrest:
...

repos:
- name: repo1
schedules:
full: "0 0 * * 6"
differential: "0 1 * * 1-6"

...

1.

$ kubectl apply -f deploy/cr.yaml

Last update: 2023-12-08

5.3.3 Make scheduled backups

90 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.4 Making on-demand backups

To make an on-demand backup manually, you need a backup configuration file. You can use the example of the
backup configuration file deploy/backup.yaml:

Here’s a sequence of steps to follow:

Before you start, make sure you have configured a backup storage.

In the deploy/backup.yaml configuration file, specify the cluster name and the repository name to be used for backups.
The repository name must be the same as the one you defined in the backup storage configuration. It must also
match the repository name specified in the backups.pgbackrest.manual subsection of the deploy/cr.yaml file.

If needed, you can add any pgBackRest command line options.

Make a backup with the following command:

To list the backup, run:

Next steps

Restore from a backup

Useful links

Backup retention

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backup1

spec:
pgCluster: cluster1
repoName: repo1

options:
- --type=full

1.

2.

3.

4.

$ kubectl apply -f deploy/backup.yaml

Tip

$ kubectl get pg-backup

Last update: 2023-12-08

5.3.4 Making on-demand backups

91 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml
https://pgbackrest.org/configuration.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.5 Backup retention

The Operator supports setting pgBackRest retention policies for full and differential backups. When a full backup
expires according to the retention policy, pgBackRest cleans up all the files related to this backup and to the write-
ahead log. Thus, the expiration of a full backup with some incremental backups based on it results in expiring of all
these incremental backups.

You can control backup retention by the following pgBackRest options:

--<repo name>-retention-full how much full backups to retain,

--<repo name>-retention-diff how much differential backups to retain.

Backup retention type can be either count (the number of backups to keep) or time (the number of days to keep a
backup for).

You can set both backup type and retention policy for each of 4 repositories as follows.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

backups:
pgbackrest:

...
global:
repo1-retention-full: "14"
repo1-retention-full-type: time
...

Last update: 2023-09-14

5.3.5 Backup retention

92 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.3.6 Restore the cluster from a previously saved backup

The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-
recovery. There are two ways to restore a cluster:

restore to a new cluster using the dataSource.postgresCluster subsection,

restore in-place to an existing cluster (note that this is destructive) using the backups.restore subsection.

Restore to a new PostgreSQL cluster

Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL cluster that can
run alongside an existing one. There are several scenarios where using this technique is helpful:

Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is
creating a clone.

Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To create a new PostgreSQL cluster from either the active one, or a former cluster whose pgBackRest repository
still exists, use the dataSource.postgresCluster subsection options. The content of this subsection should copy the
backups keys of the original cluster - ones needed to carry on the restore:

dataSource.postgresCluster.clusterName should contain the new cluster name,

dataSource.postgresCluster.options allow you to set the needed pgBackRest command line options,

dataSource.postgresCluster.repoName should contain the name of the pgBackRest repository, while the actual
storage configuration keys for this repository should be placed into dataSource.pgbackrest.repo subsection,

dataSource.pgbackrest.configuration.secret.name should contain the name of a Kubernetes Secret with credentials
needed to access cloud storage, if any.

Restore to an existing PostgreSQL cluster

To restore the previously saved backup, use a backup restore configuration file. The example of the backup
configuration file is deploy/restore.yaml:

The following keys are the most important ones:

pgCluster specifies the name of your cluster,

repoName specifies the name of one of the 4 pgBackRest repositories, already configured in the
backups.pgbackrest.repos subsection,

options passes through any pgBackRest command line options.

To start the restoration process, run the following command:

•

•

•

•

•

•

•

•

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restore1

spec:
pgCluster: cluster1
repoName: repo1
options:
- --type=time
- --target="2022-11-30 15:12:11+03"

•

•

•

$ kubectl apply -f deploy/restore.yaml

5.3.6 Restore the cluster from a previously saved backup

93 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://pgbackrest.org/configuration.html

Restore the cluster with point-in-time recovery

Point-in-time recovery functionality allows users to revert the database back to a state before an unwanted change
had occurred.

For this feature to work, the Operator initiates a full backup immediately after the cluster creation, to use it as a basis for
point-in-time recovery when needed (this backup is not listed in the output of the kubectl get pg-backup command).

You can set up a point-in-time recovery using the normal restore command of pgBackRest with few additional
spec.options fields in deploy/restore.yaml :

set --type option to time ,

set --target to a specific time you would like to restore to. You can use the typical string formatted as
<YYYY-MM-DD HH:MM:DD> , optionally followed by a timezone offset: "2021-04-16 15:13:32+00" (+00 in the above
example means UTC),

optional --set argument allows you to choose the backup which will be the starting point for point-in-time
recovery. You can look through the available backups with the kubectl get pg-backup command to find out the
proper backup name. This option must be specified if the target is one or more backups away from the current
moment.

After setting these options in the backup restore configuration file, follow the standard restore instructions.

Make sure you have a backup that is older than your desired point in time. You obviously can’t restore from a time where
you do not have a backup. All relevant write-ahead log files must be successfully pushed before you make the restore.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Note

•

•

•

Note

Last update: 2023-12-22

5.3.6 Restore the cluster from a previously saved backup

94 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.4 High availability and scaling

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an application
scaling. Scaling an application results in adding resources or Pods and scheduling them to available Kubernetes
nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to PostgreSQL
nodes; horizontal scaling is about adding more nodes to the cluster. High availability looks technically similar,
because it also involves additional nodes, but the reason is maintaining liveness of the system in case of server or
network failures.

5.4.1 Vertical scaling

There are multiple components that Operator deploys and manages: PostgreSQL instances, pgBouncer connection
pooler, etc. To add or reduce CPU or Memory you need to edit corresponding sections in the Custom Resource. We
follow the structure for requests and limits that Kubernetes provides.

To add more resources to your PostgreSQL instances edit the following section in the Custom Resource:

Use our reference documentation for the Custom Resource options for more details about other components.

5.4.2 High availability

Percona Operator allows you to deploy highly-available PostgreSQL clusters. There are two ways how to control
replicas in your HA cluster:

Through changing spec.instances.replicas value

By adding new entry into spec.instances

5.4.3 Using spec.instances.replicas

For example, you have the following Custom Resource manifest:

This will provision a cluster with two nodes - one Primary and one Replica. Add the node by changing the
manifest…

spec:
...
instances:
- name: instance1
replicas: 3
resources:
limits:
cpu: 2.0
memory: 4Gi

1.

2.

spec:
...
instances:
- name: instance1
replicas: 2

spec:
...

5.4 High availability and scaling

95 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

…and applying the Custom Resource:

The Operator will provision a new replica node. It will be ready and available once data is synchronized from
Primary.

5.4.4 Using spec.instances

Each instance’s entry has its own set of parameters, like resources, storage configuration, sidecars, etc. When you
add a new entry into instances, this creates replica PostgreSQL nodes, but with a new set of parameters. This can
be useful in various cases:

Test or migrate to new hardware

Blue-green deployment of a new configuration

Try out new versions of your sidecar containers

For example, you have the following Custom Resource manifest:

Now you have a goal to migrate to new disks, which are coming with the new-ssd storage class. You can create a
new instance entry. This will instruct the Operator to create additional nodes with the new configuration keeping
your existing nodes intact.

instances:
- name: instance1
replicas: 3

$ kubectl apply -f deploy/cr.yaml

•

•

•

spec:
...
instances:
- name: instance1
replicas: 2
dataVolumeClaimSpec:
storageClassName: old-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi

spec:
...
instances:
- name: instance1
replicas: 2
dataVolumeClaimSpec:
storageClassName: old-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi

- name: instance2
replicas: 2
dataVolumeClaimSpec:
storageClassName: new-ssd
accessModes:
- ReadWriteOnce

5.4.4 Using spec.instances

96 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

5.4.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

resources:
requests:
storage: 100Gi

Last update: 2023-06-22

5.4.5 Get expert help

97 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.5 Using sidecar containers

The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this feature to
run debugging tools, some specific monitoring solutions, etc.

Custom sidecar containers can easily access other components of your cluster.

Therefore they should be used carefully and by experienced users only.

5.5.1 Adding a sidecar container

You can add sidecar containers to PostgreSQL instance and pgBouncer Pods. Just use sidecars subsection in the
instances or proxy.pgBouncer Custom Resource section in the deploy/cr.yaml configuration file. In this subsection, you
should specify at least the name and image of your container, and possibly a command to run:

Apply your modifications as usual:

More options suitable for the sidecars subsection can be found in the Custom Resource options reference.

Running kubectl describe command for the appropriate Pod can bring you the information about the newly created
container:

Note

spec:
instances:
....
sidecars:
- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: my-sidecar-1

....

$ kubectl apply -f deploy/cr.yaml

Note

$ kubectl describe pod cluster1-instance1

5.5 Using sidecar containers

98 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

5.5.2 Getting shell access to a sidecar container

You can login to your sidecar container as follows:

5.5.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Expected output

Name: cluster1-instance1-n8v4-0
....
Containers:
....
my-sidecar-1:
 Container ID: docker://f0c3437295d0ec819753c581aae174a0b8d062337f80897144eb8148249ba742
 Image: busybox
 Image ID: docker-pullable://
busybox@sha256:139abcf41943b8bcd4bc5c42ee71ddc9402c7ad69ad9e177b0a9bc4541f14924
 Port: <none>
 Host Port: <none>
 Command:
 /bin/sh
 Args:
 -c
 while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done
 State: Running
 Started: Thu, 11 Nov 2021 10:38:15 +0300
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fbrbn (ro)
....

$ kubectl exec -it cluster1-instance1n8v4-0 -c my-sidecar-1 -- sh
/ #

Last update: 2023-05-03

5.5.2 Getting shell access to a sidecar container

99 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.6 Pause/resume PostgreSQL cluster

There may be external situations when it is needed to pause your Cluster for a while and then start it back up
(some works related to the maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully stops the cluster:

To start the cluster after it was paused just revert the spec.pause key to false .

There is an option also to put the cluster into a standby (read-only) mode instead of completely shutting it down. This is
done by a special spec.standby key, which should be set to true for read-only state or should be set to false for normal
cluster operation:

5.6.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

spec:
.......
pause: true

Note

spec:
.......
standby: false

Last update: 2023-12-08

5.6 Pause/resume PostgreSQL cluster

100 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/docs/12/warm-standby.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

5.7 Monitor with Percona Monitoring and Management (PMM)

In this section you will learn how to monitor the health of Percona Distribution for PostgreSQL with Percona
Monitoring and Management (PMM).

Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. It includes the PMM Server and the number of PMM Clients running on each
node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect to the
PMM Server to see database metrics on a number of dashboards.

PMM Server and PMM Client are installed separately.

5.7.1 Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on
an AWS instance. Please refer to the official PMM documentation for the installation instructions.

Note

5.7 Monitor with Percona Monitoring and Management (PMM)

101 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html

5.7.2 Install PMM Client

To install PMM Client as a side-car container in your Kubernetes-based environment, do the following:

5.7.2 Install PMM Client

102 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Get the PMM API key from PMM Server. The API key must have the role “Admin”. You need this key to authorize PMM
Client within PMM Server.

The API key is not rotated.

Specify the API key as the PMM_SERVER_KEY value in the deploy/secrets.yaml secrets file.

Create the Secrets object using the deploy/secrets.yaml file.

Update the pmm section in the deploy/cr.yaml file.

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM Server IP address should
be resolvable and reachable from within your cluster.

Update the cluster

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on
the previous steps:

1.

Generate the PMM API key

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and hostname in the
following command:

 From PMM UI From command line

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d '{"name":"operator", "role": "Admin"}' "https://
<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

2.

apiVersion: v1
kind: Secret
metadata:
name: cluster1-pmm-secret

type: Opaque
stringData:
PMM_SERVER_KEY: ""

3.

$ kubectl apply -f deploy/secrets.yaml -n postgres-operator

4.

•

•

pmm:
enabled: true
image: percona/pmm-client:2.41.0

imagePullPolicy: IfNotPresent
secret: cluster1-pmm-secret
serverHost: monitoring-service

5.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

6.

5.7.2 Install PMM Client

103 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

5.7.3 Update the secrets file

The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text format. But the
resulting Secrets Objects contains passwords stored as base64-encoded strings. If you want to update the
password field, you need to encode the new password into the base64 format and pass it to the Secrets Object.

To encode a password or any other parameter, run the following command:

For example, to set the new PMM API key in the my-cluster-name-secrets object, do the following:

5.7.4 Check the metrics

Let’s see how the collected data is visualized in PMM.

Log in to PMM server.

Click PostgreSQL from the left-hand navigation menu. You land on the Instances Overview page.

Click PostgreSQL → Other dashboards to see the list of available dashboards that allow you to drill down to the
metrics you are interested in.

5.7.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

$ kubectl get pods -n postgres-operator
$ kubectl logs <pod_name> -c pmm-client

 Linux macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

 Linux macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo -n new_key | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_KEY": '$(echo -n new_key | base64)'}}'

1.

2.

3.

Last update: 2023-12-08

5.7.3 Update the secrets file

104 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6. HowTo

6.1 Install Percona Distribution for PostgreSQL with customized parameters

You can customize the configuration of Percona Distribution for PostgreSQL and install it with customized
parameters.

To check available configuration options, see deploy/cr.yaml and Custom Resource Options.

6.1.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

To customize the configuration when installing with kubectl , do the following:

Clone the repository with all manifests and source code by executing the following command:

Edit the required options and apply your modified deploy/cr.yaml file as follows:

To install Percona Distribution for PostgreSQL with custom parameters using Helm, use the following command:

You can pass any of the Operator’s Custom Resource options as a --set key=value[,key=value] argument.

The following example deploys a PostgreSQL 16 based cluster in the my-namespace namespace, with enabled
Percona Monitoring and Management (PMM):

 kubectl Helm

1.

$ git clone -b v2.3.1 https://github.com/percona/percona-postgresql-operator

2.

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ helm install --set key=value

$ helm install my-db percona/pg-db --version 2.3.1 --namespace my-namespace \
--set postgresVersion=16 \
--set pmm.enabled=true

Last update: 2023-12-21

6. HowTo

105 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.3.1/deploy/cr.yaml
https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.2 How to deploy a standby cluster for Disaster Recovery

Disaster recovery is not optional for businesses operating in the digital age. With the ever-increasing reliance on
data, system outages or data loss can be catastrophic, causing significant business disruptions and financial losses.

With multi-cloud or multi-regional PostgreSQL deployments, the complexity of managing disaster recovery only
increases. This is where the Percona Operators come in, providing a solution to streamline disaster recovery for
PostgreSQL clusters running on Kubernetes. With the Percona Operators, businesses can manage multi-cloud or
hybrid-cloud PostgreSQL deployments with ease, ensuring that critical data is always available and secure, no
matter what happens.

6.2.1 Solution overview

Operators automate routine tasks and remove toil. For standby, the Percona Operator for PostgreSQL version 2
provides the following options:

pgBackrest repo based standby

Streaming replication

Combination of (1) and (2)

This document describes the pgBackRest repo-based standby as the simplest one. The following is the architecture
diagram:

DB Pod N

pgBackRest

Operator

cluster1

Backup storage
DB Pods

pgBackRest

Operator

cluster2 (standby)

DB Pods

This solution describes two Kubernetes clusters in different regions, clouds or running in hybrid mode (on-premises
and cloud). One cluster is Main and the other is Disaster Recovery (DR)

Each cluster includes the following components:

Percona Operator

PostgreSQL cluster

pgBackrest

pgBouncer

pgBackrest on the Main site streams backups and Write Ahead Logs (WALs) to the object storage

pgBackrest on the DR site takes these backups and streams them to the standby cluster

1.

2.

3.

1.

2.

a.

b.

c.

d.

3.

4.

6.2 How to deploy a standby cluster for Disaster Recovery

106 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

6.2.2 Deploy disaster recovery for PostgreSQL on Kubernetes

Configure Main site

Deploy the Operator using your favorite method. Once installed, configure the Custom Resource manifest, so that
pgBackrest starts using the Object Storage of your choice. Skip this step if you already have it configured.

Configure the backups.pgbackrest.repos section by adding the necessary configuration. The below example is for
Google Cloud Storage (GCS):

The main-pgbackrest-secrets value contains the keys for GCS. Read more about the configuration in the backup and
restore tutorial.

Once configured, apply the custom resource:

The backups should appear in the object storage. By default pgBackrest puts them into the pgbackrest folder.

Configure DR site

The configuration of the disaster recovery site is similar to that of the Main site, with the only difference in standby
settings.

The following manifest has standby.enabled set to true and points to the repoName where backups are (GCS in our
case):

1.

2.

spec:
backups:
configuration:
- secret:

name: main-pgbackrest-secrets
pgbackrest:
repos:
- name: repo1
gcs:
bucket: MY-BUCKET

3.

$ kubectl apply -f deploy/cr.yaml

Expected output

perconapgcluster.pg.percona.com/standby created

metadata:
name: standby

spec:
...
backups:
configuration:
- secret:

name: standby-pgbackrest-secrets
pgbackrest:
repos:
- name: repo1
gcs:
bucket: MY-BUCKET

standby:

6.2.2 Deploy disaster recovery for PostgreSQL on Kubernetes

107 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Deploy the standby cluster by applying the manifest:

6.2.3 Failover

In case of the Main site failure or in other cases, you can promote the standby cluster. The promotion effectively
allows writing to the cluster. This creates a net effect of pushing Write Ahead Logs (WALs) to the pgBackrest
repository. It might create a split-brain situation where two primary instances attempt to write to the same
repository. To avoid this, make sure the primary cluster is either deleted or shut down before trying to promote the
standby cluster.

Once the primary is down or inactive, promote the standby through changing the corresponding section:

Now you can start writing to the cluster.

Split brain

There might be a case, where your old primary comes up and starts writing to the repository. To recover from this
situation, do the following:

Keep only one primary with the latest data running

Stop the writes on the other one

Take the new full backup from the primary and upload it to the repo

Automate the failover

Automated failover consists of multiple steps and is outside of the Operator’s scope. There are a few steps that you
can take to reduce the Recovery Time Objective (RTO). To detect the failover we recommend having the 3rd site to
monitor both DR and Main sites. In this case you can be sure that Main really failed and it is not a network split
situation.

Another aspect of automation is to switch the traffic for the application from Main to Standby after promotion. It
can be done through various Kubernetes configurations and heavily depends on how your networking and
application are designed. The following options are quite common:

Global Load Balancer - various clouds and vendors provide their solutions

Multi Cluster Services or MCS - available on most of the public clouds

Federation or other multi-cluster solutions

enabled: true
repoName: repo1

$ kubectl apply -f deploy/cr.yaml

Expected output

perconapgcluster.pg.percona.com/standby created

spec:
standby:
enabled: false

1.

2.

3.

1.

2.

3.

6.2.3 Failover

108 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

6.2.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2023-07-20

6.2.4 Get expert help

109 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.3 Use Docker images from a custom registry

Using images from a private Docker registry may be required for privacy, security or other reasons. In these cases,
Percona Operator for PostgreSQL allows the use of a custom registry. The following example illustrates how this
can be done by the example of the Operator deployed in the OpenShift environment.

6.3.1 Prerequisites

First of all login to the OpenShift and create project.

There are two things you will need to configure your custom registry access:

the token for your user,

your registry IP address.

The token can be found with the following command:

And the following one tells you the registry IP address:

Use the user token and the registry IP address to login to the registry:

Use the Docker commands to pull the needed image by its SHA digest:

1.

$ oc login
Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin
Password:
Login successful.
$ oc new-project pg
Now using project "pg" on server "https://192.168.1.100:8443".

2.

•

•

$ oc whoami -t
ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

$ kubectl get services/docker-registry -n default
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

3.

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s 172.30.162.173:5000

Expected output

Login Succeeded

4.

$ docker pull docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

6.3 Use Docker images from a custom registry

110 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

You can find correct names and SHA digests in the current list of the Operator-related images officially certified by
Percona.

The following method can push an image to the custom registry for the example OpenShift pg project:

Verify the image is available in the OpenShift registry with the following command:

When the custom registry image is available, edit the the image: option in deploy/operator.yaml configuration file with
a Docker Repo + Tag string (it should look like docker-registry.default.svc:5000/pg/percona-postgresql-operator:16)

If the registry requires authentication, you can specify the imagePullSecrets option for all images.

Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml file.

Now follow the standard Percona Operator for PostgreSQL installation instruction.

6.3.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Expected output

Trying to pull repository docker.io/perconalab/percona-postgresql-operator ...
sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0: Pulling from docker.io/perconalab/
percona-server-mongodb
Digest: sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0
Status: Image is up to date for docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

5.

$ docker tag \
docker.io/perconalab/percona-postgresql-

operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0 \
172.30.162.173:5000/psmdb/percona-postgresql-operator:16

$ docker push 172.30.162.173:5000/pg/percona-postgresql-operator:16

6.

$ oc get is

Expected output

NAME DOCKER REPO TAGS UPDATED
percona-postgresql-operator docker-registry.default.svc:5000/pg/percona-postgresql-operator 16 2 hours ago

7.

Note

8.

9.

Last update: 2023-12-21

6.3.2 Get expert help

111 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.4 Add custom PostgreSQL extensions

One of the specific PostgreSQL features is the ability to provide it with additional functionality via Extensions.
Percona Distribution for PostgreSQL supports a number of extensions, making this list available for the database
cluster managed by the Operator as well.

Still there are cases when the needed extension is not in this list, or when it’s a custom extension developed by the
end-user. Adding more extensions is not an easy task in case of a containerized database in Kubernetes-based
environment, as normally it would make the user to build a custom PostgreSQL image.

Still, starting from the Operator version 2.3 there is an alternative way to extend Percona Distribution for
PostgreSQL by downloading prepackaged extensions from an external storage on the fly, as defined in the
extensions section of the Operator Custom Resource.

6.4.1 Enabling or disabling built-in extensions

Percona Distribution for PostgreSQL built-in extensions can be easily enabled or disabled in the extensions.builtin

subsection of the deploy/cr.yaml configuration file as follows:

Apply changes after editing with kubectl apply -f deploy/cr.yaml command.

Editing this section and applying it is causing Pods restart.

6.4.2 Adding custom extensions

Custom extensions are downloaded by the Operator from the cloud storage. User is in charge for properly
packaging extension and uploading it to the storage.

Packaging custom extensions

Custom extension needs specific packaging to make the Operator able using it. The package must be a .tar.gz

archive with all required files in a the correct directory structure.

Control file must be in SHAREDIR/extension directory

All required SQL script files must be in SHAREDIR/extension directory (there must be at least one SQL script)

Any shared library must be in LIBDIR

In case of Percona Distribution for PostgreSQL images, SHAREDIR corresponds to /usr/pgsql-${PG_MAJOR}/share and LIBDIR

to /usr/pgsql-${PG_MAJOR}/lib .

For example, the directory for pg_cron extension should look as follows:

extensions:
...
builtin:
pg_stat_monitor: true
pg_audit: true

Note

1.

2.

3.

Note

6.4 Add custom PostgreSQL extensions

112 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://docs.percona.com/postgresql/16/
https://docs.percona.com/postgresql/16/

The archive must be created with usr at the root and the name must conform ${EXTENSION}-pg${PG_MAJOR}-$

{EXTENSION_VERSION} :

To understand which files are required for given extension could be not an easy task. One of the option to figure this out
would be building and installing the extension from source on a virtual machine with Percona Distribution for PostgreSQL
and copy all the installed files to the archive.

$ tree ~/pg_cron-1.6.1/
/home/user/pg_cron-1.6.1/
└── usr
└── pgsql-15
├── lib
│ └── pg_cron.so
└── share
└── extension
├── pg_cron--1.0--1.1.sql
├── pg_cron--1.0.sql
├── pg_cron--1.1--1.2.sql
├── pg_cron--1.2--1.3.sql
├── pg_cron--1.3--1.4.sql
├── pg_cron--1.4--1.4-1.sql
├── pg_cron--1.4-1--1.5.sql
├── pg_cron--1.5--1.6.sql
└── pg_cron.control

$ cd pg_cron-1.6.1/
$ tar -czf pg_cron-pg15-1.6.1.tar.gz usr/

Note

6.4.2 Adding custom extensions

113 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

6.4.3 Configuring custom extension loading

When the extension is packaged, it should be uploaded to the cloud storage (for now, Amazon S3 is the only
supported storage type). When the upload is done, the storage and extension details should be specified in the
Custom Resource to make the Operator download and install it.

6.4.3 Configuring custom extension loading

114 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

The Operator will need the following data to access extensions stored on the Amazon S3:

the metadata.name key is the name which you wll further use to refer your Kubernetes Secret,

the data.AWS_ACCESS_KEY_ID and data.AWS_SECRET_ACCESS_KEY keys are base64-encoded credentials used to access the
storage (obviously these keys should contain proper values to make the access possible).

Create the Secrets file with these base64-encoded keys as follows:

You can use the following command to get a base64-encoded string from a plain text one:

Once the editing is over, create the Kubernetes Secret object as follows:

Storage credentials are specified in the Custom Resource extensions.storage subsection. The appropriate fragment of
the deploy/cr.yaml configuration file should look as follows:

When the storage is configured, and the archive with the extension is already present in the appropriate bucket, the
extension itself can be specified to the Operator in the Custom Resource via the deploy/cr.yaml configuration file as in
the following example:

1.

•

•

extensions-secret.yaml

apiVersion: v1
kind: Secret
metadata:
name: cluster1-extensions-secret

type: Opaque
data:
AWS_ACCESS_KEY_ID: <base64 encoded secret>
AWS_SECRET_ACCESS_KEY: <base64 encoded secret>

Note

For GNU/Linux:

For Apple macOS:

in Linux in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f extensions-secret.yaml

2.

extensions:
...
storage:
type: s3
bucket: pg-extensions
region: eu-central-1
secret:
name: cluster1-extensions-secret

3.

extensions:
...
custom:

6.4.3 Configuring custom extension loading

115 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

The installed extension will not be enabled by default. Enabling it in can be done for desired databases using the
CREATE EXTENSION statement:

Also, some extensions (such as pg_cron) can be used only if added to shared_preload_libraries . Users can do it via the
deploy/cr.yaml configuration file as follows:

yaml

...

patroni:

 dynamicConfiguration:

 postgresql:

 parameters:

 shared_preload_libraries: pg_cron

 ...

6.4.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

- name: pg_cron
version: 1.6.1

CREATE EXTENSION pg_cron;

Last update: 2023-12-21

6.4.4 Get expert help

116 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.5 Percona Operator for PostgreSQL single-namespace and multi-

namespace deployment

There are two design patterns that you can choose from when deploying Percona Operator for PostgreSQL and
PostgreSQL clusters in Kubernetes:

Namespace-scope - one Operator per Kubernetes namespace,

Cluster-wide - one Operator can manage clusters in multiple namespaces.

This how-to explains how to configure Percona Operator for PostgreSQL for each scenario.

6.5.1 Namespace-scope

By default, Percona Operator for PostgreSQL functions in a specific Kubernetes namespace. You can create one
during installation (like it is shown in the installation instructions) or just use the default namespace. This approach
allows several Operators to co-exist in one Kubernetes-based environment, being separated in different
namespaces:

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Kubernetes API

OperatorOperator

DB Pod 1 DB Pod N

CSI

Storage
Area

Network

percona-db-2 Namespacepercona-db-1 Namespace

Normally this is a recommended approach, as isolation minimizes impact in case of various failure scenarios. This
is the default configuration of our Operator.

•

•

6.5 Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

117 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

Let’s say you will use a Kubernetes Namespace called percona-db-1 .

Clone percona-postgresql-operator repository:

Create your percona-db-1 Namespace (if it doesn’t yet exist) as follows:

Deploy the Operator using the following command:

Once Operator is up and running, deploy the database cluster itself:

You can deploy multiple clusters in this namespace.

Add more namespaces

What if there is a need to deploy clusters in another namespace? The solution for namespace-scope deployment is
to have more than one Operator. We will use the percona-db-2 namespace as an example.

Create your percona-db-2 namespace (if it doesn’t yet exist) as follows:

Deploy the Operator:

Once Operator is up and running deploy the database cluster itself:

Cluster names may be the same in different namespaces.

6.5.2 Install the Operator cluster-wide

Sometimes it is more convenient to have one Operator watching for Percona Distribution for PostgreSQL custom
resources in several namespaces.

We recommend running Percona Operator for PostgreSQL in a traditional way, limited to a specific namespace, to
limit the blast radius. But it is possible to run it in so-called cluster-wide mode, one Operator watching several
namespaces, if needed:

1.

$ git clone -b v2.3.1 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

2.

$ kubectl create namespace percona-db-1

3.

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-1

4.

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

1.

$ kubectl create namespace percona-db-2

2.

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-2

3.

$ kubectl apply -f deploy/cr.yaml -n percona-db-2

Note

6.5.2 Install the Operator cluster-wide

118 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/

Kubernetes API

Percona Operator for PostgreSQL

DB Pod 1 DB Pod 2

CSI

Storage
Area

Network

api

DB Pod DB Pod

Operator Namespace (pg-operator)

Percona-db-1
Namespace

Percona-db-2
Namespace

percona-db-3
Namespace

To use the Operator in such cluster-wide mode, you should install it with a different set of configuration YAML files,
which are available in the deploy folder and have filenames with a special cw- prefix: e.g. deploy/cw-bundle.yaml .

While using this cluster-wide versions of configuration files, you should set the following information there:

subjects.namespace option should contain the namespace which will host the Operator,

WATCH_NAMESPACE key-value pair in the env section should have value equal to a comma-separated list of the
namespaces to be watched by the Operator, and the namespace in which the Operator resides. If this key is set
to a blank string, the Operator will watch only the namespace it runs in, which would be the same as single-
namespace deployment.

•

•

6.5.2 Install the Operator cluster-wide

119 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

The following simple example shows how to install Operator cluster-wide on Kubernetes.

Clone percona-postgresql-operator repository:

Let’s suppose that Operator’s namespace should be the pg-operator one. Create it as follows:

Edit the deploy/cw-bundle.yaml configuration file to make sure it contains proper namespace name for the Operator:

Apply the deploy/cw-bundle.yaml file with the following command:

Right now the operator deployed in cluster-wide mode will monitor all namespaces in the cluster, either already
existing or newly created ones.

Create the namespace you have chosen for the cluster, if needed. let’s call it percona-db-1 for example:

Deploy the cluster in the namespace of your choice:

6.5.3 Verifying the cluster operation

When creation process is over, you can try to connect to the cluster.

1.

$ git clone -b v2.3.1 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

2.

$ kubectl create namespace pg-operator

3.

...
subjects:
- kind: ServiceAccount
name: percona-postgresql-operator
namespace: pg-operator

...

4.

$ kubectl apply -f deploy/cw-bundle.yaml -n pg-operator

5.

$ kubectl create namespace percona-db-1

6.

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

6.5.3 Verifying the cluster operation

120 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

During the installation, the Operator has generated several secrets, including the one with password for default
PostgreSQL user. This default user has the same login name as the cluster name.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as
<cluster_name>-pguser-<cluster_name> (substitute <cluster_name> with the name of your Percona Distribution for
PostgreSQL Cluster). The default variant will be cluster1-pguser-cluster1 .

Use the following command to get the password of this user:

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do this, naming the
new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

Run a container with psql tool and connect its console output to your terminal. This command will connect you as a
cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

6.5.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n postgres-operator --template='{{.data.password |
base64decode}}{{"\n"}}'

3.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:16 --restart=Never -- bash -il

4.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-operator.svc -p 5432 -U
cluster1 cluster1

Sample output

psql (16)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
pgdb=>

Last update: 2023-12-21

6.5.4 Get expert help

121 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.6 Delete Percona Operator for PostgreSQL

When cleaning up your Kubernetes environment (e.g., moving from a trial deployment to a production one, or
testing experimental configurations), you may need to remove some (or all) of the following objects:

Percona Distribution for PosgreSQL cluster managed by the Operator

Percona Operator for PostgreSQL itself

Custom Resource Definition deployed with the Operator

6.6.1 Delete a database cluster

You can delete the Percona Distribution for PosgreSQL cluster managed by the Operator by deleting the
appropriate Custom Resource.

There are two finalizers defined in the Custom Resource, which define whether TLS-related objects and data volumes
should be deleted or preserved when the cluster is deleted.

finalizers.percona.com/delete-ssl : if present, objects, created for SSL (Secret, certificate, and issuer) are deleted when the
cluster deletion occurs.

finalizers.percona.com/delete-pvc : if present, Persistent Volume Claims for the database cluster Pods are deleted when the
cluster deletion occurs.

Both finalizers are off by default in the deploy/cr.yaml configuration file, and this allows you to recreate the cluster without
losing data, credentials for the system users, etc.

•

•

•

Note

•

•

6.6 Delete Percona Operator for PostgreSQL

122 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Here’s a sequence of steps to follow:

List Custom Resources, replacing the <namespace> placeholder with your namespace.

Delete the Custom Resource with the name of your cluster (for example, let’s use the default cluster1 name).

Check that the cluster is deleted by listing the available Custom Resources once again.

1.

$ kubectl get pg -n <namespace>

Sample output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

2.

$ kubectl delete pg cluster1 -n <namespace>

Sample output

perconapgcluster.pgv2.percona.com "cluster1" deleted

3.

$ kubectl get pg -n <namespace>

Sample output

No resources found in <namespace> namespace.

6.6.1 Delete a database cluster

123 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

6.6.2 Delete the Operator

You can uninstall the Operator by deleting the Deployments related to it.

List the deployments. Replace the <namespace> placeholder with your namespace.

Delete the percona-* deployment

Check that the Operator is deleted by listing the Pods. As a result you should have no Pods related to it.

6.6.3 Delete Custom Resource Definition

If you are not just deleting the Operator and PostgreSQL cluster from a specific namespace, but want to clean up
your entire Kubernetes environment, you can also delete the CustomRecourceDefinitions (CRDs).

CRDs in Kubernetes are non-namespaced but are available to the whole environment. This means that you shouldn’t
delete CRD if you still have the Operator and database cluster in some namespace.

1.

$ kubectl get deploy -n <namespace>

Sample output

NAME READY UP-TO-DATE AVAILABLE AGE
percona-postgresql-operator 1/1 1 1 13m

2.

$ kubectl delete deploy percona-postgresql-operator -n <namespace>

3.

$ kubectl get pods -n <namespace>

Sample output

No resources found in <namespace> namespace.

Warning

6.6.2 Delete the Operator

124 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

You can delete CRD as follows:

List the CRDs:

Now delete the percona*.pgv2.percona.com CRDs:

6.6.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

$ kubectl get crd

Sample output

allowlistedv2workloads.auto.gke.io 2023-09-07T14:15:30Z
allowlistedworkloads.auto.gke.io 2023-09-07T14:15:29Z
audits.warden.gke.io 2023-09-07T14:15:32Z
backendconfigs.cloud.google.com 2023-09-07T14:15:41Z
capacityrequests.internal.autoscaling.gke.io 2023-09-07T14:15:25Z
frontendconfigs.networking.gke.io 2023-09-07T14:15:41Z
managedcertificates.networking.gke.io 2023-09-07T14:15:41Z
memberships.hub.gke.io 2023-09-07T14:15:30Z
perconapgbackups.pgv2.percona.com 2023-09-07T14:28:59Z
perconapgclusters.pgv2.percona.com 2023-09-07T14:29:02Z
perconapgrestores.pgv2.percona.com 2023-09-07T14:29:03Z
postgresclusters.postgres-operator.crunchydata.com 2023-09-07T14:29:06Z
serviceattachments.networking.gke.io 2023-09-07T14:15:44Z
servicenetworkendpointgroups.networking.gke.io 2023-09-07T14:15:43Z
storagestates.migration.k8s.io 2023-09-07T14:15:53Z
storageversionmigrations.migration.k8s.io 2023-09-07T14:15:53Z
updateinfos.nodemanagement.gke.io 2023-09-07T14:15:55Z
volumesnapshotclasses.snapshot.storage.k8s.io 2023-09-07T14:15:52Z
volumesnapshotcontents.snapshot.storage.k8s.io 2023-09-07T14:15:52Z
volumesnapshots.snapshot.storage.k8s.io 2023-09-07T14:15:52Z

2.

$ kubectl delete crd perconapgbackups.pgv2.percona.com perconapgclusters.pgv2.percona.com
perconapgrestores.pgv2.percona.com

Sample output

customresourcedefinition.apiextensions.k8s.io "perconapgbackups.pgv2.percona.com" deleted
customresourcedefinition.apiextensions.k8s.io "perconapgclusters.pgv2.percona.com" deleted
customresourcedefinition.apiextensions.k8s.io "perconapgrestores.pgv2.percona.com" deleted

Last update: 2023-12-08

6.6.4 Get expert help

125 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

6.7 Monitor Kubernetes

Monitoring the state of the database is crucial to timely identify and react to performance issues. Percona
Monitoring and Management (PMM) solution enables you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it’s important to have
metrics that can depict the state of the Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has been tested
with the PMM Server as the centralized data storage and the Victoria Metrics Kubernetes monitoring stack as the
metrics collector. These steps may also apply if you use another Prometheus-compatible storage.

6.7.1 Pre-requisites

To set up monitoring of Kubernetes, you need the following:

PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an AWS instance.
Please refer to the official PMM documentation for the installation instructions.

Helm v3.

kubectl.

The PMM Server API key. The key must have the role “Admin”.

Get the PMM API key:

1.

2.

3.

4.

Generate the PMM API key

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and hostname in the
following command:

The API key is not rotated.

 From PMM UI From command line

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d {"name":"operator", "role": "Admin"}' "https://
<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

6.7 Monitor Kubernetes

126 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-monitoring-and-management/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/setting-up/server/index.html
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication

6.7.2 Install the Victoria Metrics Kubernetes monitoring stack

6.7.2 Install the Victoria Metrics Kubernetes monitoring stack

127 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

To install the Victoria Metrics Kubernetes monitoring stack with the default parameters, use the quick install
command. Replace the following placeholders with your values:

API-KEY - The API key of your PMM Server

PMM-SERVER-URL - The URL to access the PMM Server

UNIQUE-K8s-CLUSTER-IDENTIFIER - Identifier for the Kubernetes cluster. It can be the name you defined during the
cluster creation.

You should use a unique identifier for each Kubernetes cluster. The use of the same identifer for more than one
Kubernetes cluster will result in the conflicts during the metrics collection.

NAMESPACE - The namespace where the Victoria metrics Kubernetes stack will be installed. If you haven’t created
the namespace before, it will be created during the command execution.

We recommend to use a separate namespace like monitoring-system .

The Prometheus node exporter is not installed by default since it requires privileged containers with the access to the
host file system. If you need the metrics for Nodes, add the --node-exporter-enabled flag as follows:

You may need to customize the default parameters of the Victoria metrics Kubernetes stack.

Since we use the PMM Server for monitoring, there is no need to store the data in Victoria Metrics Operator.
Therefore, the Victoria Metrics Helm chart is installed with the vmsingle.enabled and vmcluster.enabled parameters
set to false in this setup.

Check all the role-based access control (RBAC) rules of the victoria-metrics-k8s-stack chart and the dependencies
chart, and modify them based on your requirements.

CONFIGURE AUTHENTICATION IN PMM

To access the PMM Server resources and perform actions on the server, configure authentication.

Encode the PMM Server API key with base64.

Create the Namespace where you want to set up monitoring. The following command creates the Namespace
monitoring-system . You can specify a different name. In the latter steps, specify your namespace instead of the
<namespace> placeholder.

Create the YAML file for the Kubernetes Secrets and specify the base64-encoded API key value within. Let’s name
this file pmm-api-vmoperator.yaml .

Create the Secrets object using the YAML file you created previously. Replace the <filename> placeholder with your
value.

Check that the secret is created. The following command checks the secret for the resource named pmm-token-

vmoperator (as defined in the metadata.name option in the secrets file). If you defined another resource name,
specify your value.

CREATE A CONFIGMAP TO MOUNT FOR KUBE-STATE-METRICS

The kube-state-metrics (KSM) is a simple service that listens to the Kubernetes API server and generates metrics
about the state of various objects - Pods, Deployments, Services and Custom Resources.

To define what metrics the kube-state-metrics should capture, create the ConfigMap and mount it to a container.

Use the example configmap.yaml configuration file to create the ConfigMap.

As a result, you have the customresource-config-ksm ConfigMap created.

INSTALL THE VICTORIA METRICS KUBERNETES MONITORING STACK

Add the dependency repositories of victoria-metrics-k8s-stack chart.

Add the Victoria Metrics Kubernetes monitoring stack repository.

Update the repositories.

Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the following
configuration:

the URL to access the PMM server in the externalVM.write.url option in the format
<PMM-SERVER-URL>/victoriametrics/api/v1/write . The URL can contain either the IP address or the hostname of the PMM
server.

the unique name or an ID of the Kubernetes cluster in the vmagent.spec.externalLabels.k8s_cluster_id option. Ensure to
set different values if you are sending metrics from multiple Kubernetes clusters to the same PMM Server.

the <namespace> placeholder with your value. The Namespace must be the same as the Namespace for the Secret
and ConfigMap

{.bash data-prompt="$" }

 $ helm install vm-k8s vm/victoria-metrics-k8s-stack \

 -f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/values.yaml \

 --set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1/write \

 --set vmagent.spec.externalLabels.k8s_cluster_id=<UNIQUE-CLUSTER-IDENTIFER/NAME> \

 -n <namespace>

To illustrate, say your PMM Server URL is https://pmm-example.com , the cluster ID is test-cluster and the Namespace
is monitoring-system . Then the command would look like this:

```{.bash  .no-copy  }  $  helm  install  vm-k8s  vm/victoria-metrics-k8s-stack  \  -f  https://raw.githubusercontent.com/
Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/values.yaml  \  –set  externalVM.write.url=https://pmm-
example.com/victoriametrics/api/v1/write  \  –set  vmagent.spec.externalLabels.k8s_cluster_id=test-cluster  \  -n
monitoring-system 

 Quick install  Install manually

1. 

• 

• 

• 

• 

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/quick-
install.sh | bash -s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-
CLUSTER-IDENTIFIER> --namespace <NAMESPACE>

Note

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/quick-install.sh |
bash -s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-IDENTIFIER> --
namespace <NAMESPACE> --node-exporter-enabled

• 

• 

1. 

 Linux  macOS

$ echo -n <API-key> | base64 --wrap=0

$ echo -n <API-key> | base64

2. 

$ kubectl create namespace monitoring-system

3. 

pmm-api-vmoperator.yaml

apiVersion: v1
data:
api_key: <base-64-encoded-API-key>

kind: Secret
metadata:
name: pmm-token-vmoperator
#namespace: default

type: Opaque

4. 

$ kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>

5. 

$ kubectl get secret pmm-token-vmoperator -n <namespace>

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/ksm-
configmap.yaml -n <namespace>

1. 

$ helm repo add grafana https://grafana.github.io/helm-charts
$ helm repo add prometheus-community https://prometheus-community.github.io/helm-charts

2. 

$ helm repo add vm https://victoriametrics.github.io/helm-charts/

3. 

$ helm repo update

4. 

• 

• 

• 

6.7.2 Install the Victoria Metrics Kubernetes monitoring stack

128 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://helm.sh/docs/topics/rbac/
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/Percona-Lab/k8s-monitoring/blob/main/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/main/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack


6.7.3 Validate the successful installation

What Pods are running depends on the configuration chosen in values used while installing victoria-metrics-k8s-stack

chart.

6.7.4 Verify metrics capture

Connect to the PMM server.

Click Explore and switch to the Code mode.

Check that the required metrics are captured, type the following in the Metrics browser dropdown:

cadvisor:

kubelet:

$ kubectl get pods -n <namespace>

Sample output

vm-k8s-stack-kube-state-metrics-d9d85978d-9pzbs                   1/1     Running   0          28m
vm-k8s-stack-victoria-metrics-operator-844d558455-gvg4n           1/1     Running   0          28m
vmagent-vm-k8s-stack-victoria-metrics-k8s-stack-55fd8fc4fbcxwhx   2/2     Running   0          28m

1. 

2. 

3. 

• 

• 

6.7.3 Validate the successful installation

129 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md


kube-state-metrics metrics that also include Custom resource metrics for the Operator and database deployed in
your Kubernetes cluster:

• 

6.7.4 Verify metrics capture

130 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/kubernetes/kube-state-metrics/tree/main/docs


6.7.5 Uninstall Victoria metrics Kubernetes stack

To remove Victoria metrics Kubernetes stack used for Kubernetes cluster monitoring, use the cleanup script. By
default,  the script  removes all  the  Custom Resource Definitions(CRD) and Secrets  associated with  the Victoria
metrics Kubernetes stack. To keep the CRDs, run the script with the --keep-crd  flag.

Check that the Victoria metrics Kubernetes stack is deleted:

The output should provide the empty list.

If you face any issues with the removal, uninstall the stack manually:

6.7.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Replace the  <NAMESPACE>  placeholder with the namespace you specified during the Victoria metrics Kubernetes
stack installation: 

Replace the  <NAMESPACE>  placeholder with the namespace you specified during the Victoria metrics Kubernetes
stack installation: 

 Remove CRDs  Keep CRDs

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/
cleanup.sh) --namespace <NAMESPACE>

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/
cleanup.sh) --namespace <NAMESPACE> --keep-crd

$ helm list -n <namespace>

$ helm uninstall vm-k8s-stack -n < namespace>

Last update: 2024-01-12 

6.7.5 Uninstall Victoria metrics Kubernetes stack

131 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


6.8 Use PostGIS extension with Percona Distribution for PostgreSQL

PostGIS is a PostgreSQL extension that adds GIS capabilities to this database.

Starting from the Operator version 2.3.0 it became possible to deploy and manage PostGIS-enabled PostgreSQL. 

Due to the large size and domain specifics of this extension, Percona provides separate PostgreSQL Distribution
images with it.

6.8 Use PostGIS extension with Percona Distribution for PostgreSQL

132 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://postgis.net/


6.8.1 Deploy the Operator with PostGIS-enabled database cluster

Following steps will allow you to deploy PostgreSQL cluster with these images.

6.8.1 Deploy the Operator with PostGIS-enabled database cluster

133 of 187 Percona LLC and/or its affiliates, © 2009 - 2024



Clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b  option while cloning the code on this step. Please be careful.

The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the deploy/crd.yaml

file. Custom Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new
items (in our case ones which are the core of the Operator). Apply it as follows:

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it postgres-operator ):

The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the deploy/rbac.yaml

file. Role-based access is based on defined roles and the available actions which correspond to each role. The role
and actions are defined for Kubernetes resources in the yaml file. Further details about users and roles can be found
in Kubernetes documentation.

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google Kubernetes Engine
can grant user needed privileges with the following command:

Start the Operator within Kubernetes:

After the Operator is started, modify the deploy/cr.yaml  configuration file with PostGIS-enabled image - use percona/

percona-postgresql-operator:2.3.1-ppg16-postgres-gis  instead of percona/percona-postgresql-operator:2.3.1-ppg16-postgres

When done, Percona Distribution for PostgreSQL cluster can be created at any time with the following command:

1. 

$ git clone -b v2.3.1 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

Note

2. 

$ kubectl apply --server-side -f deploy/crd.yaml

3. 

$ kubectl create namespace postgres-operator

4. 

$ kubectl apply -f deploy/rbac.yaml -n postgres-operator

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value core/
account)

5. 

$ kubectl apply -f deploy/operator.yaml -n postgres-operator

6. 

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
name: cluster1

spec:
...
image: percona/percona-postgresql-operator:2.3.1-ppg16-postgres-gis
...

6.8.1 Deploy the Operator with PostGIS-enabled database cluster

134 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings


The creation process may take some time. When the process is over your cluster will obtain the ready  status. You can
check it with the following command:

6.8.2 Check PostGIS extension

To use PostGIS extension you should enable it for a specific database. 

For example, you can create the new database named mygisdata  with the psql  tool as follows:

Next, enable the postgis  extension. Make sure you are connected to the database you created earlier and run the
following command:

Finally, check that the extension is enabled:

The output should resemble the following:

You can find more about using PostGIS in the official Percona Distribution for PostgreSQL documentation, as well
as in this blogpost.

6.8.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg -n postgres-operator

Expected output

NAME       ENDPOINT                         STATUS   POSTGRES   PGBOUNCER   AGE
cluster1   cluster1-pgbouncer.default.svc   ready    3          3           30m

CREATE database mygisdata;
\c mygisdata;
CREATE SCHEMA gis;

CREATE EXTENSION postgis;

SELECT postgis_full_version();

postgis_full_version
-----------------------------------------------------------------------------------------------------------------------------------------------------------------

POSTGIS="3.3.3" [EXTENSION] PGSQL="140" GEOS="3.10.2-CAPI-1.16.0" PROJ="8.2.1" LIBXML="2.9.13"
LIBJSON="0.15" LIBPROTOBUF="1.3.3" WAGYU="0.5.0 (Internal)"

6.8.2 Check PostGIS extension

135 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


Last update: 2023-12-21 

6.8.3 Get expert help

136 of 187 Percona LLC and/or its affiliates, © 2009 - 2024



7. Troubleshooting

7.1 Initial troubleshooting

Percona Operator for PostgreSQL uses Custom Resources to manage options for the various components of the
cluster.

PerconaPGCluster  Custom Resource with Percona PostgreSQL Cluster options (it has handy pg  shortname also),

PerconaPGBackup  and  PerconaPGRestore  Custom  Resources  contain  options  for  Percona  XtraBackup  used  to
backup  Percona  XtraDB  Cluster  and  to  restore  it  from  backups  ( pg-backup  and  pg-restore  shortnames  are
available for them).

The first thing you can check for the Custom Resource is to query it with kubectl get  command:

The Custom Resource should have Ready  status.

You can check which Percona’s Custom Resources are present and get some information about them as follows:

7.1.1 Check the Pods

If Custom Resource is not getting Ready  status, it makes sense to check individual Pods. You can do it as follows:

• 

• 

$ kubectl get pg

Expected output

NAME       ENDPOINT                         STATUS   POSTGRES   PGBOUNCER   AGE
cluster1   cluster1-pgbouncer.default.svc   ready    3          3           30m

Note

$ kubectl api-resources | grep -i percona

Expected output

perconapgbackups          pg-backup    pgv2.percona.com/v2            true         PerconaPGBackup
perconapgclusters         pg           pgv2.percona.com/v2            true         PerconaPGCluster
perconapgrestores         pg-restore   pgv2.percona.com/v2            true         PerconaPGRestore

$ kubectl get pods

7. Troubleshooting

137 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/


The above command provides the following insights:

READY  indicates how many containers in the Pod are ready to serve the traffic. In the above example, cluster1-

repo-host-0  container has all two containers ready (2/2). For an application to work properly, all containers of the
Pod should be ready.

STATUS  indicates  the current  status  of  the Pod.  The Pod should be in  a  Running  state  to  confirm that  the
application  is  working  as  expected.  You  can  find  out  other  possible  states  in  the  official  Kubernetes
documentation.

RESTARTS  indicates how many times containers of Pod were restarted. This is impacted by the Container Restart
Policy. In an ideal world, the restart count would be zero, meaning no issues from the beginning. If the restart
count exceeds zero, it may be reasonable to check why it happens.

AGE : Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

You can find more details about a specific Pod using the kubectl describe pods <pod-name>  command.

Expected output

NAME                                           READY   STATUS      RESTARTS   AGE
cluster1-backup-4vwt-p5d9j                     0/1     Completed   0          97m
cluster1-instance1-b5mr-0                      4/4     Running     0          99m
cluster1-instance1-b8p7-0                      4/4     Running     0          99m
cluster1-instance1-w7q2-0                      4/4     Running     0          99m
cluster1-pgbouncer-79bbf55c45-62xlk            2/2     Running     0          99m
cluster1-pgbouncer-79bbf55c45-9g4cb            2/2     Running     0          99m
cluster1-pgbouncer-79bbf55c45-9nrmd            2/2     Running     0          99m
cluster1-repo-host-0                           2/2     Running     0          99m
percona-postgresql-operator-79cd8586f5-2qzcs   1/1     Running     0          120m

• 

• 

• 

• 

$ $ kubectl describe pods cluster1-instance1-b5mr-0

Expected output

...
Name:         cluster1-instance1-b5mr-0
Namespace:    default
...
Controlled By:  StatefulSet/cluster1-instance1-b5mr
Init Containers:
 postgres-startup:
...
Containers:
 database:
...
 pgbackrest:
...
   Restart Count:  0
   Liveness:   http-get https://:8008/liveness delay=3s timeout=5s period=10s #success=1 #failure=3
   Readiness:  http-get https://:8008/readiness delay=3s timeout=5s period=10s #success=1 #failure=3
   Environment:
...
   Mounts:
...
Volumes:
...
Events:
...

7.1.1 Check the Pods

138 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy


This gives a lot of information about containers, resources, container status and also events. So, describe output
should be checked to see any abnormalities.

7.1.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2023-11-06 

7.1.2 Get expert help

139 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


7.2 Exec into the containers

If you want to examine the contents of a container “in place” using remote access to it, you can use the kubectl exec

command. It allows you to run any command or just open an interactive shell session in the container. Of course,
you can have shell access to the container only if container supports it and has a “Running” state.

In the following examples we will access the container database  of the cluster1-instance1-b5mr-0  Pod.

Run date  command:

You will see an error if the command is not present in a container. For example, trying to run the time  command,
which is not present in the container, by executing kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- time  would
show the following result:

Print log files to a terminal:

Similarly, opening an Interactive terminal, executing a pair of commands in the container, and exiting it may look
as follows:

7.2.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- date

Expected output

Wed Jun 14 11:18:47 UTC 2023

OCI runtime exec failed: exec failed: unable to start container process: exec: "time": executable file not found in 
$PATH: unknown command terminated with exit code 126

• 

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- cat /pgdata/pg16/log/postgresql-*.log

• 

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- bash
bash-4.4$ hostname
cluster1-pxc-0
bash-4.4$ ls /pgdata/pg16/log/
postgresql-Wed.log
bash-4.4$ exit
exit
$

Last update: 2023-12-21 

7.2 Exec into the containers

140 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


7.3 Check the logs

Logs provide valuable information. It makes sense to check the logs of the database Pods and the Operator Pod.
Following flags are helpful for checking the logs with the kubectl logs  command:

In the following examples we will access containers of the cluster1-instance1-b5mr-0  Pod.

Check logs of the database  container:

Check logs of the pgbackrest  container:

Filter logs of the database  container which are not older than 600 seconds:

Check logs of a previous instantiation of the database  container, if any:

7.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Flag Description

-c , --

container=<container-

name>

Print log of a specific container in case of multiple containers in a Pod

-f , --follow Follows the logs for a live output

--since=<time> Print logs newer than the specified time, for example: --since="10s"

--timestamps Print timestamp in the logs (timezone is taken from the container)

-p , --previous Print previous instantiation of a container. This is extremely useful in case of container
restart, where there is a need to check the logs on why the container restarted. Logs
of previous instantiation might not be available in all the cases.

• 

$ kubectl logs cluster1-instance1-b5mr-0 --container database

• 

$ kubectl logs cluster1-instance1-b5mr-0 --container pgbackrest

• 

$ kubectl logs cluster1-instance1-b5mr-0 --container database --since=600s

• 

$ kubectl logs cluster1-instance1-b5mr-0 --container database --previous

Last update: 2023-12-08 

7.3 Check the logs

141 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


8. Reference

8.1 Custom Resource options

The Cluster is configured via the deploy/cr.yaml file.

The metadata part of this file contains the following keys:

name  ( cluster1  by default) sets the name of your Percona Distribution for PostgreSQL Cluster; it should include
only  URL-compatible characters, not exceed 22 characters, start with an alphabetic character, and end with an
alphanumeric character;

finalizers.percona.com/delete-ssl  if present, activates the  Finalizer which deletes  objects, created for SSL (Secret,
certificate, and issuer) after the cluster deletion event (off by default).

finalizers.percona.com/delete-pvc  if present, activates the Finalizer which deletes  Persistent Volume Claims for the
database cluster Pods after the deletion event (off by default).

• 

• 

• 

8. Reference

142 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/


The spec part of the deploy/cr.yaml file contains the following:

8.1 Custom Resource options

143 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Key crVersion

Value string

Example 2.3.1

Description Version of the Operator the Custom Resource belongs to

Key standby.enabled

Value boolean

Example false

Description Enables or disables running the cluster in a standby mode (read-only copy of an existing
cluster, useful for disaster recovery, etc)

Key standby.host

Value string

Example "<primary-ip>"

Description Host address of the primary cluster this standby cluster connects to

Key standby.port

Value string

Example "<primary-port>"

Description Port number used by a standby copy to connect to the primary cluster

Key openshift

Value boolean

Example true

Description Set to true  if the cluster is being deployed on OpenShift, set to false  otherwise, or unset it for
autodetection

Key standby.repoName

Value string

Example repo1

Description Name of the pgBackRest repository in the primary cluster this standby cluster connects to

Key secrets.customTLSSecret.name

Value string

Example cluster1-cert

Description A secret with TLS certificate generated for external communications, see Transport Layer
Security (TLS) for details

Key secrets.customReplicationTLSSecret.name

Value string

Example replication1-cert

8.1 Custom Resource options

144 of 187 Percona LLC and/or its affiliates, © 2009 - 2024



Description A secret with TLS certificate generated for internal communications, see Transport Layer
Security (TLS) for details

Key users.name

Value string

Example rhino

Description The name of the PostgreSQL user

Key users.databases

Value string

Example zoo

Description Databases accessible by a specific PostgreSQL user with rights to create objects in them (the
option is ignored for postgres  user; also, modifying it can’t be used to revoke the already
given access)

Key users.password.type

Value string

Example ASCII

Description The set of characters used for password generation: can be either ASCII  (default) or 
AlphaNumeric

Key users.options

Value string

Example "SUPERUSER"

Description The ALTER ROLE  options other than password (the option is ignored for postgres  user)

Key users.secretName

Value string

Example "rhino-credentials"

Description The custom name of the user’s Secret; if not specified, the default <clusterName>-pguser-

<userName>  variant will be used

Key databaseInitSQL.key

Value string

Example init.sql

Description Data key for the Custom configuration options ConfigMap with the init SQL file, which will be
executed at cluster creation time

Key databaseInitSQL.name

Value string

Example cluster1-init-sql

Description Name of the ConfigMap with the init SQL file, which will be executed at cluster creation time

8.1 Custom Resource options

145 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/


Key pause

Value string

Example false

Description Setting it to true  gracefully stops the cluster, scaling workloads to zero and suspending
CronJobs; setting it to false  after shut down starts the cluster back

Key unmanaged

Value string

Example false

Description Setting it to true  stops the Operator’s activity including the rollout and reconciliation of
changes made in the Custom Resource; setting it to false  starts the Operator’s activity back

Key dataSource.postgresCluster.clusterName

Value string

Example cluster1

Description Name of an existing cluster to use as the data source when restoring backup to a new cluster

Key dataSource.postgresCluster.repoName

Value string

Example repo1

Description Name of the pgBackRest repository in the source cluster that contains the backup to be
restored to a new cluster

Key dataSource.postgresCluster.options

Value string

Example

Description The pgBackRest command-line options for the pgBackRest restore command

Key dataSource.pgbackrest.stanza

Value string

Example db

Description Name of the pgBackRest stanza to use as the data source when restoring backup to a new
cluster

Key dataSource.pgbackrest.configuration.secret.name

Value string

Example pgo-s3-creds

Description Name of the Kubernetes Secret object with custom pgBackRest configuration, which will be
added to the pgBackRest configuration generated by the Operator

Key dataSource.pgbackrest.global

Value subdoc

8.1 Custom Resource options

146 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://pgbackrest.org/command.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


Example /pgbackrest/postgres-operator/hippo/repo1

Description Settings, which are to be included in the global  section of the pgBackRest configuration
generated by the Operator

Key dataSource.pgbackrest.repo.name

Value string

Example repo1

Description Name of the pgBackRest repository

Key dataSource.pgbackrest.repo.s3.bucket

Value string

Example "my-bucket"

Description The Amazon S3 bucket or Google Cloud Storage bucket

name used for
backups

Key dataSource.pgbackrest.repo.s3.endpoint

Value string

Example "s3.ca-central-1.amazonaws.com"

Description The endpoint URL of the S3-compatible storage to be used for backups (not needed for the
original Amazon S3 cloud)

Key dataSource.pgbackrest.repo.s3.region

Value boolean

Example "ca-central-1"

Description The AWS region to use for Amazon and all S3-compatible storages

Key image

Value string

Example perconalab/percona-postgresql-operator:2.3.1-ppg16-postgres

Description The PostgreSQL Docker image to use

Key imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for updating PostgreSQL images

Key postgresVersion

Value int

Example 14

Description The major version of PostgreSQL to use

8.1 Custom Resource options

147 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://kubernetes.io/docs/concepts/containers/images/#updating-images


Key port

Value int

Example 5432

Description The port number for PostgreSQL

Key expose.annotations

Value label

Example my-annotation: value1

Description The Kubernetes annotations metadata for PostgreSQL

Key expose.labels

Value label

Example my-label: value2

Description Set labels for the PostgreSQL Service

Key expose.type

Value string

Example LoadBalancer

Description Specifies the type of Kubernetes Service for PostgreSQL

Key expose.loadBalancerSourceRanges

Value string

Example "10.0.0.0/8"

Description The range of client IP addresses from which the load balancer should be reachable (if not set,
there is no limitations)

8.1 Custom Resource options

148 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types


8.1.1 Instances section

The instances  section in the deploy/cr.yaml file contains configuration options for PostgreSQL instances.

8.1.1 Instances section

149 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Key instances.metadata.labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for PostgreSQL Pods

Key instances.name

Value string

Example rs 0

Description The name of the PostgreSQL instance

Key instances.replicas

Value int

Example 3

Description The number of Replicas to create for the PostgreSQL instance

Key instances.resources.limits.cpu

Value string

Example 2.0

Description Kubernetes CPU limits for a PostgreSQL instance

Key instances.resources.limits.memory

Value string

Example 4Gi

Description The Kubernetes memory limits for a PostgreSQL instance

Key instances.topologySpreadConstraints.maxSkew

Value int

Example 1

Description The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology
Spread Constraints

Key instances.topologySpreadConstraints.topologyKey

Value string

Example my-node-label

Description The key of node labels for the Kubernetes Pod Topology Spread Constraints

Key instances.topologySpreadConstraints.whenUnsatisfiable

Value string

Example DoNotSchedule

Description What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints

8.1.1 Instances section

150 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/


Key instances.topologySpreadConstraints.labelSelector.matchLabels

Value label

Example postgres-operator.crunchydata.com/instance-set: instance1

Description The Label selector for the Kubernetes Pod Topology Spread Constraints

Key instances.tolerations.effect

Value string

Example NoSchedule

Description The Kubernetes Pod tolerations effect for the PostgreSQL instance

Key instances.tolerations.key

Value string

Example role

Description The Kubernetes Pod tolerations key for the PostgreSQL instance

Key instances.tolerations.operator

Value string

Example Equal

Description The Kubernetes Pod tolerations operator for the PostgreSQL instance

Key instances.tolerations.value

Value string

Example connection-poolers

Description The Kubernetes Pod tolerations value for the PostgreSQL instance

Key instances.priorityClassName

Value string

Example high-priority

Description The Kuberentes Pod priority class for PostgreSQL instance Pods

Key instances.walVolumeClaimSpec.accessModes

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Write-ahead Log
storage

Key instances.walVolumeClaimSpec.resources.requests.storage

Value string

Example 1Gi

Description The Kubernetes storage requests for the storage the PostgreSQL instance will use

8.1.1 Instances section

151 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Key instances.dataVolumeClaimSpec.accessModes

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Write-ahead Log
storage

Key instances.dataVolumeClaimSpec.resources.requests.storage

Value string

Example 1Gi

Description The Kubernetes storage requests for the storage the PostgreSQL instance will use

8.1.1 Instances section

152 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


instances.sidecars subsection

The  instances.sidecars  subsection  in  the  deploy/cr.yaml file  contains  configuration  options  for  custom  sidecar
containers which can be added to PostgreSQL Pods.

Key instances.sidecars.image

Value string

Example mycontainer1:latest

Description Image for the custom sidecar container for PostgreSQL Pods

Key instances.sidecars.name

Value string

Example testcontainer

Description Name of the custom sidecar container for PostgreSQL Pods

Key instances.sidecars.imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for the PostgreSQL Pod sidecar container

Key instances.sidecars.env

Value subdoc

Example

Description The environment variables set as key-value pairs for the custom sidecar container for
PostgreSQL Pods

Key instances.sidecars.envFrom

Value subdoc

Example

Description The environment variables set as key-value pairs in ConfigMaps for the custom sidecar
container for PostgreSQL Pods

Key instances.sidecars.command

Value array

Example ["/bin/sh"]

Description Command for the custom sidecar container for PostgreSQL Pods

Key instances.sidecars.args

Value array

Example ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Description Command arguments for the custom sidecar container for PostgreSQL Pods

8.1.1 Instances section

153 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


8.1.2 Backup section

The backup  section in the deploy/cr.yaml file contains the following configuration options for the regular Percona
Distribution for PostgreSQL backups.

8.1.2 Backup section

154 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Key backups.pgbackrest.metadata.labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for pgBackRest Pods

Key backups.pgbackrest.image

Value string

Example perconalab/percona-postgresql-operator:2.3.1-ppg16-pgbackrest

Description The Docker image for pgBackRest

Key backups.pgbackrest.configuration.secret.name

Value string

Example cluster1-pgbackrest-secrets

Description Name of the Kubernetes Secret object with custom pgBackRest configuration, which will be
added to the pgBackRest configuration generated by the Operator

Key backups.pgbackrest.jobs.priorityClassName

Value string

Example high-priority

Description The Kuberentes Pod priority class for pgBackRest jobs

Key backups.pgbackrest.jobs.resources.limits.cpu

Value int

Example 200

Description Kubernetes CPU limits for a pgBackRest job

Key backups.pgbackrest.jobs.resources.limits.memory

Value int

Example 128Mi

Description The Kubernetes memory limits for a pgBackRest job

Key backups.pgbackrest.jobs.tolerations.effect

Value string

Example NoSchedule

Description The Kubernetes Pod tolerations effect for a pgBackRest job

Key backups.pgbackrest.jobs.tolerations.key

Value string

Example role

Description The Kubernetes Pod tolerations key for a pgBackRest job

8.1.2 Backup section

155 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Key backups.pgbackrest.jobs.tolerations.operator

Value string

Example Equal

Description The Kubernetes Pod tolerations operator for a pgBackRest job

Key backups.pgbackrest.jobs.tolerations.value

Value string

Example connection-poolers

Description The Kubernetes Pod tolerations value for a pgBackRest job

Key backups.pgbackrest.global

Value subdoc

Example /pgbackrest/postgres-operator/hippo/repo1

Description Settings, which are to be included in the global  section of the pgBackRest configuration
generated by the Operator

Key backups.pgbackrest.repoHost.priorityClassName

Value string

Example high-priority

Description The Kuberentes Pod priority class for pgBackRest repo

Key backups.pgbackrest.repoHost.topologySpreadConstraints.maxSkew

Value int

Example 1

Description The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology
Spread Constraints

Key backups.pgbackrest.repoHost.topologySpreadConstraints.topologyKey

Value string

Example my-node-label

Description The key of node labels for the Kubernetes Pod Topology Spread Constraints

Key backups.pgbackrest.repoHost.topologySpreadConstraints.whenUnsatisfiable

Value string

Example ScheduleAnyway

Description What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints

Key backups.pgbackrest.repoHost.topologySpreadConstraints.labelSelector.matchLabels

Value label

Example postgres-operator.crunchydata.com/pgbackrest: ""

Description The Label selector for the Kubernetes Pod Topology Spread Constraints

8.1.2 Backup section

156 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/


Key backups.pgbackrest.repoHost.affinity.podAntiAffinity

Value subdoc

Example

Description Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity

Key backups.pgbackrest.manual.repoName

Value string

Example repo1

Description Name of the pgBackRest repository for on-demand backups

Key backups.pgbackrest.manual.options

Value string

Example --type=full

Description The on-demand backup command-line options which will be passed to pgBackRest for on-
demand backups

Key backups.pgbackrest.repos.name

Value string

Example repo1

Description Name of the pgBackRest repository for backups

Key backups.pgbackrest.repos.schedules.full

Value string

Example 0 0 \* \* 6

Description Scheduled time to make a full backup specified in the crontab format

Key backups.pgbackrest.repos.schedules.differential

Value string

Example 0 0 \* \* 6

Description Scheduled time to make a differential backup specified in the crontab format

Key backups.pgbackrest.repos.volume.volumeClaimSpec.accessModes

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the pgBackRest Storage

Key backups.pgbackrest.repos.volume.volumeClaimSpec.resources.requests.storage

Value string

Example 1Gi

Description The Kubernetes storage requests for the pgBackRest storage

8.1.2 Backup section

157 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Key backups.pgbackrest.repos.s3.bucket

Value string

Example "my-bucket"

Description The Amazon S3 bucket

name used
for backups

Key backups.pgbackrest.repos.s3.endpoint

Value string

Example "s3.ca-central-1.amazonaws.com"

Description The endpoint URL of the S3-compatible storage to be used for backups (not needed for the
original Amazon S3 cloud)

Key backups.pgbackrest.repos.s3.region

Value boolean

Example "ca-central-1"

Description The AWS region to use for Amazon and all S3-compatible storages

Key backups.pgbackrest.repos.gcs.bucket

Value string

Example "my-bucket"

Description The Google Cloud Storage bucket

name used
for backups

Key backups.pgbackrest.repos.azure.container

Value string

Example my-container

Description Name of the Azure Blob Storage container for backups

8.1.2 Backup section

158 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers


8.1.3 PMM section

The  pmm  section  in  the  deploy/cr.yaml file  contains  configuration  options  for  Percona  Monitoring  and
Management.

Key pmm.enabled

Value boolean

Example false

Description Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM

Key pmm.image

Value string

Example percona/pmm-client:2.41.0

Description Percona Monitoring and Management (PMM) Client Docker image

Key pmm.imagePullPolicy

Value string

Example IfNotPresent

Description This option is used to set the policy for updating PMM Client images

Key pmm.pmmSecret

Value string

Example cluster1-pmm-secret

Description Name of the Kubernetes Secret object for the PMM Server password

Key pmm.serverHost

Value string

Example monitoring-service

Description Address of the PMM Server to collect data from the cluster

8.1.3 PMM section

159 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


8.1.4 Proxy section

The proxy  section in the deploy/cr.yaml file contains configuration options for the pgBouncer connection pooler for
PostgreSQL.

8.1.4 Proxy section

160 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/


Key proxy.pgBouncer.metadata.labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for pgBouncer Pods

Key proxy.pgBouncer.replicas

Value int

Example 3

Description The number of the pgBouncer Pods to provide connection pooling

Key proxy.pgBouncer.image

Value string

Example perconalab/percona-postgresql-operator:2.3.1-ppg16-pgbouncer

Description Docker image for the pgBouncer connection pooler

Key proxy.pgBouncer.exposeSuperusers

Value boolean

Example false

Description Enables or disables exposing superuser user through pgBouncer

Key proxy.pgBouncer.resources.limits.cpu

Value int

Example 200m

Description Kubernetes CPU limits for a pgBouncer container

Key proxy.pgBouncer.resources.limits.memory

Value int

Example 128Mi

Description The Kubernetes memory limits for a pgBouncer container

Key proxy.pgBouncer.expose.type

Value string

Example ClusterIP

Description Specifies the type of Kubernetes Service for pgBouncer

Key proxy.pgBouncer.expose.annotations

Value label

Example pg-cluster-annot: cluster1

Description The Kubernetes annotations metadata for pgBouncer

8.1.4 Proxy section

161 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/


Key proxy.pgBouncer.expose.labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for the pgBouncer Service

Key proxy.pgBouncer.expose.loadBalancerSourceRanges

Value string

Example "10.0.0.0/8"

Description The range of client IP addresses from which the load balancer should be reachable (if not set,
there is no limitations)

Value string

Example preferred

Description Pod anti-affinity type, can be either preferred  or required

Key proxy.pgBouncer.config

Value subdoc

Example

Description Custom configuration options for pgBouncer. Please note that configuration changes are
automatically applied to the running instances without validation, so having an invalid config
can make the cluster unavailable

global:
pool_mode: transaction

8.1.4 Proxy section

162 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


proxy.pgBouncer.sidecars subsection

The proxy.pgBouncer.sidecars  subsection in the deploy/cr.yaml file contains configuration options for custom sidecar
containers which can be added to pgBouncer Pods.

Key proxy.pgBouncer.sidecars.image

Value string

Example mycontainer1:latest

Description Image for the custom sidecar container for pgBouncer Pods

Key proxy.pgBouncer.sidecars.name

Value string

Example testcontainer

Description Name of the custom sidecar container for pgBouncer Pods

Key proxy.pgBouncer.sidecars.imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for the pgBouncer Pod sidecar container

Key proxy.pgBouncer.sidecars.env

Value subdoc

Example

Description The environment variables set as key-value pairs for the custom sidecar container for
pgBouncer Pods

Key proxy.pgBouncer.sidecars.envFrom

Value subdoc

Example

Description The environment variables set as key-value pairs in ConfigMaps for the custom sidecar
container for pgBouncer Pods

Key proxy.pgBouncer.sidecars.command

Value array

Example ["/bin/sh"]

Description Command for the custom sidecar container for pgBouncer Pods

Key proxy.pgBouncer.sidecars.args

Value array

Example ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Description Command arguments for the custom sidecar container for pgBouncer Pods

8.1.4 Proxy section

163 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


8.1.5 Patroni Section

The  patroni  section in the  deploy/cr.yaml file contains configuration options to customize the PostgreSQL high-
availability implementation based on Patroni.

Key patroni.dynamicConfiguration

Value subdoc

Example

Description Custom PostgreSQL configuration options. Please note that configuration changes are
automatically applied to the running instances without validation, so having an invalid config
can make the cluster unavailable

postgresql:
  parameters:
    max_parallel_workers: 2
    max_worker_processes: 2
    shared_buffers: 1GB
    work_mem: 2MB

8.1.5 Patroni Section

164 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://patroni.readthedocs.io/


8.1.6 Custom extensions Section

The extensions  section in the deploy/cr.yaml file contains configuration options to manage PostgreSQL extensions.

8.1.6 Custom extensions Section

165 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Key extensions.image

Value string

Example percona/percona-postgresql-operator:2.3.1

Description Image for the custom PostgreSQL extension loader sidecar container

Key extensions.imagePullPolicy

Value string

Example Always

Description Policy for the custom extension sidecar container

Key extensions.storage.type

Value string

Example s3

Description The cloud storage type used for backups. Only s3  type is currently supported

Key extensions.storage.bucket

Value string

Example pg-extensions

Description The Amazon S3 bucket name for prepackaged PostgreSQL custom extensions

Key extensions.storage.region

Value string

Example eu-central-1

Description The AWS region to use

Key extensions.storage.secret.name

Value string

Example cluster1-extensions-secret

Description The Kubernetes secret for the custom extensions storage. It should contain 
AWS_ACCESS_KEY_ID  and AWS_SECRET_ACCESS_KEY  keys.

Key extensions.builtin

Value label

Example pg_stat_monitor: true

Description The key-value pairs which enable or disable Percona Distribution for PostgreSQL builtin
extensions

Key extensions.custom.name

Value string

Example pg_cron

Description Name of the PostgreSQL custom extension

8.1.6 Custom extensions Section

166 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.percona.com/postgresql/16/
https://docs.percona.com/postgresql/16/


8.1.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Key extensions.custom.version

Value string

Example 1.6.1

Description Version of the PostgreSQL custom extension

Last update: 2023-12-22 

8.1.7 Get expert help

167 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


8.2 Percona certified images

Following table presents Percona’s certified docker images to be used with the Percona Operator for PostgreSQL:

8.2 Percona certified images

168 of 187 Percona LLC and/or its affiliates, © 2009 - 2024



Image Digest

percona/percona-postgresql-
operator:2.3.1

a6495c8e13d9fe3f50df12219e9d9cf64fa610fe5680a0a78d0e5c4fb3be2456

percona/percona-postgresql-
operator:2.3.1-ppg12-postgres

f65fec42a82c937ea0ce1b25898a245d469375ed6ffddd2a396a032c86ccc2ee

percona/percona-postgresql-
operator:2.3.1-ppg13-postgres

e6fd0b1f84d9ecf1baab04b477720ae46faf7f1df031b36dcf4eb94b4bdfc0d1

percona/percona-postgresql-
operator:2.3.1-ppg14-postgres

8476acea85f323f8f22e96c1aef59d84ad3997b2ccc3b1ab9d3eb70b734d5f8c

percona/percona-postgresql-
operator:2.3.1-ppg15-postgres

a8ef34191c6d29f93f4a9fdde3f97f89284d67726719c94f1f7f14bd2312677e

percona/percona-postgresql-
operator:2.3.1-ppg16-postgres

2f329755dda215e233512c6e453a850bfc7505a7dfceb3a6ed64b8b84e532c15

percona/percona-postgresql-
operator:2.3.1-ppg12-postgres-
gis

876daa942c3f564b87d9af0bb2d17fca52b377f7f65d6fae8ac876f061ae3c9b

percona/percona-postgresql-
operator:2.3.1-ppg13-postgres-
gis

f35605252375afc6c9126f0bedc1f3cc6bfa79cbb6bf14dd85eb9f949c030201

percona/percona-postgresql-
operator:2.3.1-ppg14-postgres-
gis

5d307ea8925187413b77eb7767abe699b977cfa5e2448a7bc74ce150648e61c2

percona/percona-postgresql-
operator:2.3.1-ppg15-postgres-
gis

7bb8c9c5c077e376d45822e77924f8f1f44a06d4e239cfe2d360e91fbe71a25c

percona/percona-postgresql-
operator:2.3.1-ppg16-postgres-
gis

9277a9c3b3e69865c293e671a834299866357adb8237e787283569be1faec714

percona/percona-postgresql-
operator:2.3.1-ppg12-
pgbouncer

2613992361e9b6fa7aa037a139c069ce9c7b6a2282cdb586782511ec4213bfaf

percona/percona-postgresql-
operator:2.3.1-ppg13-
pgbouncer

7569a872d999803f53b795a18babd897bfac8ce5aa20e09c4c10be1c643a9399

percona/percona-postgresql-
operator:2.3.1-ppg14-
pgbouncer

d7b3756b42ded49defc1a5e3641fbeec18d4f3ac4e498c96999c55e764412240

percona/percona-postgresql-
operator:2.3.1-ppg15-
pgbouncer

8b3f138102f19c9f04c02d1eda409c44a7894ea66108bbc4b18b61ed4b002c60

percona/percona-postgresql-
operator:2.3.1-ppg16-
pgbouncer

6b6ceba33c3105a40e43bc8e47cd24d6379373dbd6fc25970d46b69b528fcd59

percona/percona-postgresql-
operator:2.3.1-ppg12-
pgbackrest

3c1f34a752238496d70ce08c765e24416a7d9fa13771ad7088a9440385deb262

d659a6a6f2cd29425fb929c22226e5f48572bd83cca33a8cdb5d22846dd70299

8.2 Percona certified images

169 of 187 Percona LLC and/or its affiliates, © 2009 - 2024



8.2.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Image Digest

percona/percona-postgresql-
operator:2.3.1-ppg13-
pgbackrest

percona/percona-postgresql-
operator:2.3.1-ppg14-
pgbackrest

6033cbe86bf52b407196e5a5810b6323d5490fca68bb795d1e2192b27ba6dbc9

percona/percona-postgresql-
operator:2.3.1-ppg15-
pgbackrest

74679b3698b6b56a224280703c6423a13eb975f73f8cae6072ff6e523ba9db30

percona/percona-postgresql-
operator:2.3.1-ppg16-
pgbackrest

1c0271c06be6df3a02235f76364c2f7e92471f8b08385ed78219811bcce5338f

percona/pmm-client:2.41.0 60df62ef326075d42ad4eb30c037372ef1c20eff50e7d87c6da672be886e5ea7

Last update: 2024-01-23 

8.2.1 Get expert help

170 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


8.3 Versions compatibility

Versions of the cluster components and platforms tested with different Operator releases are shown below. Other
version combinations may also work but have not been tested.

Cluster components:

Platforms:

8.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Operator PostgreSQL pgBackRest pgBouncer

2.3.1 12 - 16 2.48 1.18.0

2.3.0 12 - 16 2.48 1.18.0

2.2.0 12 - 15 2.43 1.18.0

2.1.0 12 - 15 2.43 1.18.0

2.0.0 12 - 14 2.41 1.17.0

1.5.0 12 - 14 2.47 1.20.0

1.4.0 12 - 14 2.43 1.18.0

1.3.0 12 - 14 2.38 1.17.0

1.2.0 12 - 14 2.37 1.16.1

1.1.0 12 - 14 2.34 1.16.0 for PostgreSQL 12, 
1.16.1 for other versions

1.0.0 12 - 13 2.33 1.13.0

Operator GKE EKS Openshift Minikube

2.3.1 1.24 - 1.28 1.24 - 1.28 4.11.55 - 4.14.6 1.32

2.3.0 1.24 - 1.28 1.24 - 1.28 4.11.55 - 4.14.6 1.32

2.2.0 1.23 - 1.26 1.23 - 1.27 - 1.30.1

2.1.0 1.23 - 1.25 1.23 - 1.25 - -

2.0.0 1.22 - 1.25 - - -

1.5.0 1.24 - 1.28 1.24 - 1.28 4.11 - 4.14 1.32

1.4.0 1.22 - 1.25 1.22 - 1.25 4.10 - 4.12 1.28

1.3.0 1.21 - 1.24 1.20 - 1.22 4.7 - 4.10 -

1.2.0 1.19 - 1.22 1.19 - 1.21 4.7 - 4.10 -

1.1.0 1.19 - 1.22 1.18 - 1.21 4.7 - 4.9 -

1.0.0 1.17 - 1.21 1.21 4.6 - 4.8 -

8.3 Versions compatibility

171 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


Last update: 2024-01-23 

8.3.1 Get expert help

172 of 187 Percona LLC and/or its affiliates, © 2009 - 2024



8.4 Copyright and licensing information

8.4.1 Documentation licensing

Percona  Operator  for  PostgreSQL  documentation  is  (C)2009-2023  Percona  LLC  and/or  its  affiliates  and  is
distributed under the Creative Commons Attribution 4.0 International License.

8.4.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2023-06-27 

8.4 Copyright and licensing information

173 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://creativecommons.org/licenses/by/4.0/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


8.5 Trademark policy

This Trademark Policy is to ensure that users of Percona-branded products or services know that what they receive
has really been developed, approved, tested and maintained by Percona. Trademarks help to prevent confusion in
the marketplace, by distinguishing one company’s or person’s products and services from another’s.

Percona owns a number of  marks,  including but not limited to Percona,  XtraDB, Percona XtraDB, XtraBackup,
Percona XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons and logos associated with
these marks. Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service, website,
or other use is not permitted without Percona’s written permission with the following three limited exceptions.

First,  you may use the appropriate Percona mark when making a nominative fair use reference to a bona fide
Percona product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”), you may
use the appropriate Percona mark when distributing a verbatim copy of that product in accordance with the terms
and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona software that
has been modified with minor changes for the sole purpose of allowing the software to operate on an operating
system or hardware platform for which Percona has not yet released the software, provided that those third party
changes do not affect the behavior,  functionality,  features,  design or performance of the software.  Users who
acquire this Percona-branded software receive substantially exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example, if Percona
believes that your modification is beyond the scope of the limited license granted in this Policy or that your use of
the Percona mark is detrimental to Percona, Percona will revoke this authorization. Upon revocation, you must
immediately cease using the applicable Percona mark. If you do not immediately cease using the Percona mark
upon revocation, Percona may take action to protect its rights and interests in the Percona mark. Percona does not
grant any license to use any Percona mark for any other modified versions of Percona software; such use will
require our prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate, modify
or otherwise use any Percona mark as part of your own brand. For example, if XYZ creates a modified version of
the Percona Server, XYZ may not brand that modification as “XYZ Percona Server” or “Percona XYZ Server”, even if
that modification otherwise complies with the third exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as amended
from time to time. For instance, any mention of Percona trademarks should include the full trademarked name,
with proper spelling and capitalization, along with attribution of ownership to Percona Inc. For example, the full
proper name for XtraBackup is Percona XtraBackup. However, it is acceptable to omit the word “Percona” for brevity
on the second and subsequent uses, where such omission does not cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy, please contact
trademarks@percona.com for assistance and we will do our very best to be helpful.

8.5.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

8.5 Trademark policy

174 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/trademark-policy
mailto:trademarks@percona.com
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


Last update: 2023-06-27 

8.5.1 Get expert help

175 of 187 Percona LLC and/or its affiliates, © 2009 - 2024



9. Release Notes

9.1 Percona Operator for PostgreSQL Release Notes

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)

Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

9.1.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

Last update: 2024-01-23 

9. Release Notes

176 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


9.2 Percona Operator for PostgreSQL 2.3.1

Date

January 23, 2024

Installation

Installing Percona Operator for PostgreSQL

9.2.1 Release Highlights

This  release  provides  a  number  of  bug  fixes,  including  fixes  for  the  following  vulnerabilities  in  PostgreSQL,
pgBackRest, and pgBouncer images used by the Operator:

OpenSSH  could  cause  remote  code  execution  by  ssh-agent  if  a  user  establishes  an  SSH  connection  to  a
compromised or malicious SSH server and has agent forwarding enabled (CVE-2023-38408). This vulnerability
affects pgBackRest and PostgreSQL images.

The c-ares library could cause a Denial of Service with 0-byte UDP payload (CVE-2023-32067). This vulnerability
affects pgBouncer image.

Both Operator 1.x (including version 1.5.0) and Operator 2.x (including version 2.3.0) are affected. The 2.x
versions upgrade to 2.3.1 is recommended to resolve these issues.

9.2.2 Bugs Fixed

K8SPG-493: Fix a regression due to which the Operator could run scheduled backup only one time

K8SPG-494: Fix vulnerabilities in PostgreSQL, pgBackRest, and pgBouncer images

K8SPG-496: Fix the bug where setting the pause  Custom Resource option to true  for the cluster with a backup
running would not take effect even after the backup completed

9.2.3 Supported platforms

The  Operator  was  developed  and  tested  with  PostgreSQL  versions  12.17,  13.13,  14.10,  15.5,  and  16.1.  Other
options  may  also  work  but  have  not  been  tested.  The  Operator  2.3.1  provides  connection  pooling  based  on
pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.1:

Google Kubernetes Engine (GKE) 1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS) 1.24 - 1.28

OpenShift 4.11.55 - 4.14.6

Minikube 1.32

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

9.2.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.2 Percona Operator for PostgreSQL 2.3.1

177 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://jira.percona.com/browse/K8SPG-493
https://jira.percona.com/browse/K8SPG-494
https://jira.percona.com/browse/K8SPG-496
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


Last update: 2024-01-23 

9.2.4 Get expert help

178 of 187 Percona LLC and/or its affiliates, © 2009 - 2024



9.3 Percona Operator for PostgreSQL 2.3.0

Date

December 21, 2023

Installation

Installing Percona Operator for PostgreSQL

9.3.1 Release Highlights

PostGIS support

Modern businesses heavily rely on location-based data to gain valuable insights and make data-driven decisions.
However, integrating geospatial functionality into the existing database systems has often posed a challenge for
enterprises. PostGIS, an open-source software extension for PostgreSQL, addresses this difficulty by equipping
users  with  extensive  geospatial  operations  for  handling  geographic  data  efficiently.  Percona  Operator  now
supports PostGIS, available through a separate container image. You can read more about PostGIS and how to use
it with the Operator in our documentation.

9.3.2 OpenShift and PostgreSQL 16 support

The Operator is now compatible with the OpenShift platform empowering enterprise customers with seamless on-
premise or cloud deployments on the platform of their choice. Also, PostgreSQL 16 was added to the range of
supported database versions and is used by default starting with this release.

Experimental support for custom PostgreSQL extensions

One  of  great  features  of  PostgreSQL  is  support  for  Extensions,  which  allow  adding  new  functionality  to  the
database on a plugin basis. Starting from this release, users can add custom PostgreSQL extensions dynamically,
without the need to rebuild the container image (see this HowTo on how to create and connect yours). 

9.3.3 New features

K8SPG-311 and  K8SPG-389: A new  loadBalancerSourceRanges  Custom Resource option allows to customize the
range of IP addresses from which the load balancer should be reachable

K8SPG-375: Experimental support for custom PostgreSQL extensions was added to the Operator

K8SPG-391: The Operator is now compatible with the OpenShift platform

K8SPG-434: The Operator now supports Percona Distribution for PostgreSQL version 16 and uses it as default
database version

9.3.4 Improvements

K8SPG-413:  The  Operator  documentation  now  includes  a  comptibility  matrix for  each  Operator  version,
specifying exact versions of all core components as well as supported versions of the database and platforms

K8SPG-332: Creating backups and  pausing the cluster do not interfere with each other:  the Operator either
postpones the pausing until the active backup ends, or postpones the scheduled backup on the paused cluster

K8SPG-370:  Logging management is  now aligned with other  Percona Operators,  allowing to use structured
logging and to control log level

K8SPG-372:  The multi-namespace (cluster-wide)  mode of  the Operator  was improved,  making it  possible  to
customize the list of Kubernetes namespaces under the Operator’s control

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.3 Percona Operator for PostgreSQL 2.3.0

179 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://jira.percona.com/browse/K8SPG-311
https://jira.percona.com/browse/K8SPG-389
https://jira.percona.com/browse/K8SPG-375
https://jira.percona.com/browse/K8SPG-391
https://jira.percona.com/browse/K8SPG-434
https://jira.percona.com/browse/K8SPG-413
https://jira.percona.com/browse/K8SPG-332
https://jira.percona.com/browse/K8SPG-370
https://jira.percona.com/browse/K8SPG-372


K8SPG-400: The documentation now explains how to allow application users to connect to a database cluster
without TLS (for example, for testing or demonstration purposes)

K8SPG-410: Scheduled backups now create pg-backup  object to simplify backup management and tracking

K8SPG-416: PostgreSQL custom configuration is now supported in the Helm chart

K8SPG-422 and K8SPG-447: The user can now see backup type and status in the output of kubectl get pg-backup

and kubectl get pg-restore  commands

K8SPG-458: Affinity configuration examples were added to the default/cr.yaml  configuration file

9.3.5 Bugs Fixed

K8SPG-435: Fix a bug with insufficient size of /tmp filesystem which caused PostgreSQL Pods to be recreated
every few days due to running out of free space on it

K8SPG-453: Bug in pg_stat_monitor  PostgreSQL extensions could hang PostgreSQL

K8SPG-279:  Fix  regression  which  made  the  Operator  to  crash  after  creating  a  backup  if  there  was  no
backups.pgbackrest.manual section in the Custom Resource

K8SPG-310:  Documentation  didn’t  explain  how  to  apply  pgBackRest  verifyTLS  option  which  can  be  used  to
explicitly enable or disable TLS verification for it

K8SPG-432: Fix a bug due to which backup jobs and Pods were not deleted on deleting the backup object

K8SPG-442: The Operator didn’t allow to append custom items to the PostgreSQL shared_preload_libraries  option

K8SPG-443: Fix a bug due to which only English locale was installed in the PostgreSQL image, missing other
languages support

K8SPG-450: Fix a bug which prevented PostgreSQL to initialize the database on Kubernetes working nodes with
enabled huge memory pages if Pod resource limits didn’t allow using them

K8SPG-401:  Fix  a  bug which  caused  Operator  crash  if  deployed  with  no  pmm  section  in  the  deploy/cr.yaml

configuration file

9.3.6 Supported platforms

The  Operator  was  developed  and  tested  with  PostgreSQL  versions  12.17,  13.13,  14.10,  15.5,  and  16.1.  Other
options  may  also  work  but  have  not  been  tested.  The  Operator  2.3.0  provides  connection  pooling  based  on
pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.0:

Google Kubernetes Engine (GKE) 1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS) 1.24 - 1.28

OpenShift 4.11.55 - 4.14.6

Minikube 1.32

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

9.3.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.3.5 Bugs Fixed

180 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-400
https://jira.percona.com/browse/K8SPG-410
https://jira.percona.com/browse/K8SPG-416
https://jira.percona.com/browse/K8SPG-422
https://jira.percona.com/browse/K8SPG-447
https://jira.percona.com/browse/K8SPG-458
https://jira.percona.com/browse/K8SPG-435
https://jira.percona.com/browse/K8SPG-453
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-310
https://jira.percona.com/browse/K8SPG-432
https://jira.percona.com/browse/K8SPG-442
https://jira.percona.com/browse/K8SPG-443
https://jira.percona.com/browse/K8SPG-450
https://jira.percona.com/browse/K8SPG-401
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


Last update: 2023-12-21 

9.3.7 Get expert help

181 of 187 Percona LLC and/or its affiliates, © 2009 - 2024



9.4 Percona Operator for PostgreSQL 2.2.0

Date

June 30, 2023

Installation

Installing Percona Operator for PostgreSQL

Percona announces the general availability of Percona Operator for PostgreSQL 2.2.0.

Starting with this release, Percona Operator for PostgreSQL version 2 is out of technical preview and can be used in
production with all the improvements it brings over the version 1 in terms of architecture, backup and recovery
features, and overall flexibility.

We prepared a detailed migration guide which allows existing Operator 1.x users to move their PostgreSQL clusters
to the Operator 2.x. Also, see this blog post to find out more about the Operator 2.x features and benefits.

9.4.1 Improvements

K8SPG-378:  A  new  crVersion  Custom  Resource  option  was  added  to  indicate  the  API  version  this  Custom
Resource corresponds to

K8SPG-359: The new users.secretName  option allows to define a custom Secret name for the users defined in the
Custom Resource (thanks to Vishal Anarase for contributing)

K8SPG-301: Amazon Elastic Container Service for Kubernetes (EKS) was added to the list of officially supported
platforms

K8SPG-302: Minikube is now officially supported by the Operator to enable ease of testing and developing

K8SPG-326: Both the Operator and database can be now installed with the Helm package manager

K8SPG-342:  There  is  now no  need in  manual  restart  of  PostgreSQL Pods  after  the  monitor  user  password
changed in Secrets 

K8SPG-345:  The  new  proxy.pgBouncer.exposeSuperusers  Custom  Resource  option  makes  it  possible for
administrative users to connect to PostgreSQL through PgBouncer

K8SPG-355:  The  Operator  can  now  be  deployed in  multi-namespace  (“cluster-wide”)  mode  to  track  Custom
Resources and manage database clusters in several namespaces

9.4.2 Bugs Fixed

K8SPG-373: Fix the bug due to which the Operator did not not create Secrets for the pguser  user if PMM was
enabled in the Custom Resource

K8SPG-362:  It  was impossible  to install  Custom Resource Definitions for  both 1.x  and 2.x  Operators  in  one
environment, preventing the migration of a cluster to the newer Operator version

K8SPG-360: Fix a bug due to which manual password changing or resetting via Secret didn’t work

Known limitations

Query  analytics  (QAN)  will  not  be  available  in  Percona  Monitoring  and  Management  (PMM)  due  to  bugs
PMM-12024 and PMM-11938. The fixes are included in the upcoming PMM 2.38, so QAN can be used as soon as
it is released and both PMM Client and PMM Server are upgraded.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.4 Percona Operator for PostgreSQL 2.2.0

182 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://jira.percona.com/browse/K8SPG-378
https://jira.percona.com/browse/K8SPG-359
https://jira.percona.com/browse/K8SPG-301
https://aws.amazon.com
https://jira.percona.com/browse/K8SPG-302
https://github.com/kubernetes/minikube
https://jira.percona.com/browse/K8SPG-326
https://jira.percona.com/browse/K8SPG-342
https://jira.percona.com/browse/K8SPG-345
https://jira.percona.com/browse/K8SPG-355
https://jira.percona.com/browse/K8SPG-373
https://jira.percona.com/browse/K8SPG-362
https://jira.percona.com/browse/K8SPG-360
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-11938


9.4.3 Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.14, 13.10, 14.7, and 15.2. Other options may
also work but have not been tested. The Operator 2.2.0 provides connection pooling based on pgBouncer 1.18.0
and high-availability implementation based on Patroni 3.0.1.

The following platforms were tested and are officially supported by the Operator 2.2.0:

Google Kubernetes Engine (GKE) 1.23 - 1.26

Amazon Elastic Container Service for Kubernetes (EKS) 1.23 - 1.27

Minikube 1.30.1 (based on Kubernetes 1.27)

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

9.4.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

Last update: 2023-08-22 

9.4.3 Supported platforms

183 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://github.com/kubernetes/minikube
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


9.5 Percona Operator for PostgreSQL 2.1.0 (Tech preview)

Date

May 4, 2023

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator built with best practices of configuration and setup of Percona Distribution for PostgreSQL
on Kubernetes.

Percona Operator for PostgreSQL helps create and manage highly available, enterprise-ready PostgreSQL clusters
on Kubernetes. It is 100% open source, free from vendor lock-in, usage restrictions and expensive contracts, and
includes enterprise-ready features: backup/restore, high availability, replication, logging, and more.

The benefits of using Percona Operator for PostgreSQL include saving time on database operations via automation
of Day-1 and Day-2 operations and deployment of consistent and vetted environment on Kubernetes.

Version  2.1.0  of  the  Percona  Operator  for  PostgreSQL  is  a  tech  preview release and  it  is  not  recommended for
production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-
ready  and  contains  everything  you  need  to  quickly  and  consistently  deploy  and  scale  PostgreSQL  clusters  in  a
Kubernetes-based environment, on-premises or in the cloud.

9.5.1 Release Highlights

PostgreSQL 15 is now officially supported by the Operator with the new exciting features it brings to developers

UX improvements related to Custom Resource have been added in this release, including the handy  pg ,  pg-

backup , and pg-restore  short names useful to quickly query the cluster state with the kubectl get  command and
additional information in the status fields, which now show name , endpoint , status , and age

9.5.2 New Features

K8SPG-328:  The  new  delete-pvc  finalizer  allows  to  either  delete  or  preserve  Persistent  Volumes  at  Custom
Resource deletion

K8SPG-330: The new delete-ssl  finalizer can now be used to automatically delete objects created for SSL (Secret,
certificate, and issuer) in case of cluster deletion

K8SPG-331: Starting from now, the Operator adds short names to its Custom Resources: pg , pg-backup , and pg-

restore

K8SPG-282: PostgreSQL 15 is now officially supported by the Operator

9.5.3 Improvements

K8SPG-262: The Operator now does not attempt to start Percona Monitoring and Management (PMM) client if
the corresponding secret does not contain the pmmserver  or pmmserverkey  key

K8SPG-285: To improve the Operator we capture anonymous telemetry and usage data. In this release we add
more data points to it

• 

• 

Note

• 

• 

• 

• 

• 

• 

• 

• 

9.5 Percona Operator for PostgreSQL 2.1.0 (Tech preview)

184 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/index.html
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/
https://jira.percona.com/browse/K8SPG-328
https://jira.percona.com/browse/K8SPG-330
https://jira.percona.com/browse/K8SPG-331
https://jira.percona.com/browse/K8SPG-282
https://jira.percona.com/browse/K8SPG-262
https://jira.percona.com/browse/K8SPG-285


K8SPG-295: Additional information was added to the status of the Operator Custom Resource, which now shows
name , endpoint , status , and age  fields

K8SPG-304: The Operator stops using trust authentication method in pg_hba.conf  for better security

K8SPG-325: Custom Resource options previously named paused  and shutdown  were renamed to unmanaged  and
pause  for better alignment with other Percona Operators

9.5.4 Bugs Fixed

K8SPG-272: Fix a bug due to which PMM agent related to the Pod wasn’t deleted from the PMM Server inventory
on Pod termination

K8SPG-279:  Fix  a  bug  which  made  the  Operator  to  crash  after  creating  a  backup  if  there  was  no
backups.pgbackrest.manual  section in the Custom Resource

K8SPG-298: Fix a bug due to which the shutdown  Custom Resource option didn’t work making it impossible to
pause the cluster

K8SPG-334:  Fix  a  bug  which  made  it  possible  for  the  monitoring  user  to  have  special  characters  in  the
autogenerated password, making it incompatible with the PMM Client

9.5.5 Supported platforms

The following platforms were tested and are officially supported by the Operator 2.1.0:

Google Kubernetes Engine (GKE) 1.23 - 1.25

Amazon Elastic Container Service for Kubernetes (EKS) 1.23 - 1.25

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

9.5.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2023-08-22 

9.5.4 Bugs Fixed

185 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-295
https://jira.percona.com/browse/K8SPG-304
https://jira.percona.com/browse/K8SPG-325
https://jira.percona.com/browse/K8SPG-272
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-298
https://jira.percona.com/browse/K8SPG-334
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..


9.6 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

Date

December 30, 2022

Installation

Installing Percona Operator for PostgreSQL

The  Percona  Operator  is  based  on  best  practices  for  configuration  and  setup  of  a  Percona  Distribution  for
PostgreSQL on Kubernetes. The benefits of the Operator are many, but saving time and delivering a consistent and
vetted environment is key.

Version  2.0.0  of  the  Percona  Operator  for  PostgreSQL  is  a  tech  preview release and  it  is  not  recommended for
production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-
ready  and  contains  everything  you  need  to  quickly  and  consistently  deploy  and  scale  PostgreSQL  clusters  in  a
Kubernetes-based environment, on-premises or in the cloud.

The Percona Operator for PostgreSQL 2.x is based on the 5.x branch of the Postgres Operator developed by Crunchy
Data. Please see the main changes in this version below.

9.6.1 Architecture

Operator SDK is now used to build and package the Operator.  It  simplifies the development and brings more
contribution friendliness to the code, resulting in better potential for growing the community. Users now have full
control  over  Custom  Resource  Definitions  that  Operator  relies  on,  which  simplifies  the  deployment  and
management of the operator.

In version 1.x we relied on Deployment resources to run PostgreSQL clusters, whereas in 2.0 Statefulsets are used,
which are the de-facto standard for running stateful workloads in Kubernetes. This change improves stability of the
clusters and removes a lot of complexity from the Operator.

9.6.2 Backups

One of the biggest challenges in version 1.x is backups and restores. There are two main problems that our user
faced:

Not possible to change backup configuration for the existing cluster

Restoration from backup to the newly deployed cluster required workarounds

In this version both these issues are fixed. In addition to that:

Run up to 4 pgBackrest repositories

Bootstrap the cluster from the existing backup through Custom Resource

Azure Blob Storage support

9.6.3 Operations

Deploying complex topologies in Kubernetes is not possible without affinity and anti-affinity rules. In version 1.x
there were various limitations and issues, whereas this version comes with substantial improvements that enables
users to craft the topology of their choice. 

• 

• 

Note

• 

• 

• 

• 

• 

9.6 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

186 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/https://docs.percona.com/percona-operator-for-postgresql/index.html
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://sdk.operatorframework.io/
https://docs.percona.com/percona-operator-for-postgresql/2.0/backups.html
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#use-azure-blob-storage-for-backups
https://docs.percona.com/percona-operator-for-postgresql/2.0/constraints.html


Within the same cluster users can deploy multiple instances. These instances are going to have the same data, but
can have different configuration and resources. This can be useful if you plan to migrate to new hardware or need
to test the new topology.

Each postgreSQL node can have sidecar containers now to provide integration with your existing tools or expand
the capabilities of the cluster.

9.6.4 Try it out now

Excited with what you read above?

We encourage you to install the Operator following our documentation.

Feel free to share feedback with us on the forum or raise a bug or feature request in JIRA.

See the source code in our Github repository.

9.6.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

Last update: 2023-08-22 

9.6.4 Try it out now

187 of 187 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#instances-name
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#instances-sidecars-image
https://docs.percona.com/percona-operator-for-postgresql/2.0/index.html#quickstart-guides
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG/issues
https://github.com/percona/percona-postgresql-operator
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages&_gl=1*hqhs2g*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/about/contact
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..
https://www.percona.com/k8s?_gl=1*1x3nak3*_gcl_au*NDQzODI2NzEuMTY5MTQyMjA4OQ..

	Percona Operator for PostgreSQL documentation
	1. About
	1.1 Percona Operator for PostgreSQL documentation
	1.1.1  Installation guides
	1.1.2  Security and encryption
	Backup management
	Troubleshooting

	1.1.3 Get expert help

	1.2 Compare various solutions to deploy PostgreSQL in Kubernetes
	1.2.1 Generic
	1.2.2 Maintenance
	1.2.3 PostgreSQL topologies
	1.2.4 Backups
	1.2.5 Monitoring
	1.2.6 Miscellaneous
	1.2.7 Get expert help

	1.3 Design overview
	1.3.1 Get expert help


	2. Quickstart guide
	2.1 Overview
	2.1.1 Next steps
	2.1.2 Get expert help

	2.2 1 Quick install
	2.2.1 Install Percona Distribution for PostgreSQL using kubectl
	Prerequisites
	Procedure
	Next steps
	Get expert help

	2.2.2 Install Percona Distribution for PostgreSQL using Helm
	Prerequisites
	Installation
	Next steps
	Get expert help


	2.3 2 Connect to the PostgreSQL cluster
	2.3.1 Next steps
	2.3.2 Get expert help

	2.4 3 Insert sample data
	2.4.1 Create a schema
	2.4.2 Create a table
	2.4.3 Insert the data
	2.4.4 Next steps
	2.4.5 Get expert help

	2.5 4 Make a backup
	2.5.1 Considerations
	2.5.2 Configure backup storage
	2.5.3 Make a backup
	2.5.4 Next steps
	2.5.5 Get expert help

	2.6 5 Monitor the database
	2.6.1 Install PMM Server
	2.6.2 Install PMM Client
	2.6.3 Update the secrets file
	2.6.4 Check the metrics
	2.6.5 Next steps
	2.6.6 Get expert help

	2.7 What’s next?
	2.7.1 Get expert help


	3. Installation
	3.1 System requirements
	3.1.1 Supported versions
	3.1.2 Supported platforms
	3.1.3 Installation guidelines
	3.1.4 Get expert help

	3.2 Install Percona Distribution for PostgreSQL on Minikube
	3.2.1 Set up Minikube
	3.2.2 Deploy the Percona Operator for PostgreSQL
	3.2.3 Verify the Percona Distribution for PostgreSQL cluster operation
	3.2.4 Delete the cluster
	3.2.5 Get expert help

	3.3 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)
	3.3.1 Prerequisites
	3.3.2 Create and configure the GKE cluster
	3.3.3 Install the Operator and deploy your PostgreSQL cluster
	3.3.4 Verifying the cluster operation
	3.3.5 Removing the cluster
	3.3.6 Get expert help

	3.4 Install Percona Distribution for PostgreSQL on Amazon Elastic Kubernetes Service (EKS)
	3.4.1 Prerequisites
	Software installation
	Creating the EKS cluster

	3.4.2 Install the Operator and Percona Distribution for PostgreSQL
	3.4.3 Verifying the cluster operation
	3.4.4 Removing the cluster
	3.4.5 Get expert help

	3.5 Install Percona Distribution for PostgreSQL on OpenShift
	3.5.1 Install the Operator
	Install the Operator via the command-line interface

	3.5.2 Verifying the cluster operation
	3.5.3 Get expert help

	3.6 Install Percona Distribution for PostgreSQL on Kubernetes
	3.6.1 Verifying the cluster operation
	3.6.2 Deleting the cluster
	3.6.3 Get expert help


	4. Configuration
	4.1 Users
	4.1.1 Defaults
	4.1.2 Custom Users and Databases
	Creating a New User
	Adjusting privileges
	postgres User
	Deleting users and databases
	Managing user passwords
	Superuser and pgBouncer

	4.1.3 Get expert help

	4.2 Exposing cluster
	4.2.1 PgBouncer
	4.2.2 Exposing the cluster without PgBouncer
	4.2.3 Get expert help

	4.3 Changing PostgreSQL options
	4.3.1 Using host-based authentication (pg_hba)
	4.3.2 Get expert help

	4.4 Binding Percona Distribution for PostgreSQL components to specific Kubernetes/OpenShift Nodes
	4.4.1 Affinity and anti-affinity
	4.4.2 Topology Spread Constraints
	4.4.3 Tolerations
	4.4.4 Get expert help

	4.5 Labels and annotations
	4.5.1 Setting labels and annotations in the Custom Resource
	4.5.2 Settings labels and annotations to the Operator Pod
	4.5.3 Get expert help

	4.6 Transport layer security (TLS)
	4.6.1 Allow the Operator to generate certificates automatically
	4.6.2 Check connectivity to the cluster
	4.6.3 Generate certificates manually
	4.6.4 Check your certificates for expiration
	4.6.5 Keep certificates after deleting the cluster
	4.6.6 Connect to the database cluster without TLS
	4.6.7 Get expert help

	4.7 Telemetry
	4.7.1 Get expert help


	5. Management
	5.1 Upgrade Database and Operator
	5.1.1 Upgrade from the Operator version 1.x to version 2.x
	5.1.2 Update Database and Operator version 2.x
	Upgrading the Operator and CRD

	5.1.3 Upgrading Percona Distribution for PostgreSQL
	5.1.4 Get expert help

	5.2 Upgrade from version 1 to version 2
	5.2.1 Upgrade using data volumes
	Prerequisites:
	Prepare version 1.x cluster for the migration
	Execute the migration to version 2.x
	Get expert help

	5.2.2 Upgrade using backup and restore
	Prepare the backup
	Restore the backup as a version 2.x cluster
	Get expert help

	5.2.3 Migrate using Standby
	Migrate to version 2
	Promote version 2.x cluster
	Create the replication user
	Get expert help


	5.3 Back up and restore
	5.3.1 About backups
	What you need to know
	Backup repositories
	Backup types
	Backup storage

	Next steps
	Get expert help

	5.3.2 Configure backup storage
	Speed-up backups with pgBackRest asynchronous archiving
	Next steps
	Get expert help

	5.3.3 Make scheduled backups
	Next steps
	Useful links
	Get expert help

	5.3.4 Making on-demand backups
	Next steps
	Useful links
	Get expert help

	5.3.5 Backup retention
	Get expert help

	5.3.6 Restore the cluster from a previously saved backup
	Restore to a new PostgreSQL cluster
	Restore to an existing PostgreSQL cluster
	Restore the cluster with point-in-time recovery
	Get expert help


	5.4 High availability and scaling
	5.4.1 Vertical scaling
	5.4.2 High availability
	5.4.3 Using spec.instances.replicas
	5.4.4 Using spec.instances
	5.4.5 Get expert help

	5.5 Using sidecar containers
	5.5.1 Adding a sidecar container
	5.5.2 Getting shell access to a sidecar container
	5.5.3 Get expert help

	5.6 Pause/resume PostgreSQL cluster
	5.6.1 Get expert help

	5.7 Monitor with Percona Monitoring and Management (PMM)
	5.7.1 Install PMM Server
	5.7.2 Install PMM Client
	5.7.3 Update the secrets file
	5.7.4 Check the metrics
	5.7.5 Get expert help


	6. HowTo
	6.1 Install Percona Distribution for PostgreSQL with customized parameters
	6.1.1 Get expert help

	6.2 How to deploy a standby cluster for Disaster Recovery
	6.2.1 Solution overview
	6.2.2 Deploy disaster recovery for PostgreSQL on Kubernetes
	Configure Main site
	Configure DR site

	6.2.3 Failover
	Split brain
	Automate the failover

	6.2.4 Get expert help

	6.3 Use Docker images from a custom registry
	6.3.1 Prerequisites
	6.3.2 Get expert help

	6.4 Add custom PostgreSQL extensions
	6.4.1 Enabling or disabling built-in extensions
	6.4.2 Adding custom extensions
	Packaging custom extensions

	6.4.3 Configuring custom extension loading
	6.4.4 Get expert help

	6.5 Percona Operator for PostgreSQL single-namespace and multi-namespace deployment
	6.5.1 Namespace-scope
	Add more namespaces

	6.5.2 Install the Operator cluster-wide
	6.5.3 Verifying the cluster operation
	6.5.4 Get expert help

	6.6 Delete Percona Operator for PostgreSQL
	6.6.1 Delete a database cluster
	6.6.2 Delete the Operator
	6.6.3 Delete Custom Resource Definition
	6.6.4 Get expert help

	6.7 Monitor Kubernetes
	6.7.1 Pre-requisites
	6.7.2 Install the Victoria Metrics Kubernetes monitoring stack
	Configure authentication in PMM
	Create a ConfigMap to mount for KUBE-STATE-METRICS
	Install the Victoria Metrics Kubernetes monitoring stack

	6.7.3 Validate the successful installation
	6.7.4 Verify metrics capture
	6.7.5 Uninstall Victoria metrics Kubernetes stack
	6.7.6 Get expert help

	6.8 Use PostGIS extension with Percona Distribution for PostgreSQL
	6.8.1 Deploy the Operator with PostGIS-enabled database cluster
	6.8.2 Check PostGIS extension
	6.8.3 Get expert help


	7. Troubleshooting
	7.1 Initial troubleshooting
	7.1.1 Check the Pods
	7.1.2 Get expert help

	7.2 Exec into the containers
	7.2.1 Get expert help

	7.3 Check the logs
	7.3.1 Get expert help


	8. Reference
	8.1 Custom Resource options
	8.1.1 Instances section
	instances.sidecars subsection

	8.1.2 Backup section
	8.1.3 PMM section
	8.1.4 Proxy section
	proxy.pgBouncer.sidecars subsection

	8.1.5 Patroni Section
	8.1.6 Custom extensions Section
	8.1.7 Get expert help

	8.2 Percona certified images
	8.2.1 Get expert help

	8.3 Versions compatibility
	8.3.1 Get expert help

	8.4 Copyright and licensing information
	8.4.1 Documentation licensing
	8.4.2 Get expert help

	8.5 Trademark policy
	8.5.1 Get expert help


	9. Release Notes
	9.1 Percona Operator for PostgreSQL Release Notes
	9.1.1 Get expert help

	9.2 Percona Operator for PostgreSQL 2.3.1
	9.2.1 Release Highlights
	9.2.2 Bugs Fixed
	9.2.3 Supported platforms
	9.2.4 Get expert help

	9.3 Percona Operator for PostgreSQL 2.3.0
	9.3.1 Release Highlights
	PostGIS support

	9.3.2 OpenShift and PostgreSQL 16 support
	Experimental support for custom PostgreSQL extensions

	9.3.3 New features
	9.3.4 Improvements
	9.3.5 Bugs Fixed
	9.3.6 Supported platforms
	9.3.7 Get expert help

	9.4 Percona Operator for PostgreSQL 2.2.0
	9.4.1 Improvements
	9.4.2 Bugs Fixed
	9.4.3 Supported platforms
	9.4.4 Get expert help

	9.5 Percona Operator for PostgreSQL 2.1.0 (Tech preview)
	9.5.1 Release Highlights
	9.5.2 New Features
	9.5.3 Improvements
	9.5.4 Bugs Fixed
	9.5.5 Supported platforms
	9.5.6 Get expert help

	9.6 Percona Operator for PostgreSQL 2.0.0 (Tech preview)
	9.6.1 Architecture
	9.6.2 Backups
	9.6.3 Operations
	9.6.4 Try it out now
	9.6.5 Get expert help



