
Percona Operator for

PostgreSQL

documentation

2.1.0 (May 04, 2023)

Percona Technical Documentation Team

Percona LLC and/or its affiliates, © 2009 - 2023

Table of contents

31. Percona Operator for PostgreSQL

32. Features

33. Quickstart

34. Installation

35. Configuration

36. Management

47. Reference

68. Features

68.1 System Requirements

78.2 Design overview

109. Quickstart

109.1 Install Percona Distribution for PostgreSQL using Helm

129.2 Install Percona Distribution for PostgreSQL using kubectl

1710. Installation

1710.1 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)

2210.2 Install Percona Distribution for PostgreSQL on Kubernetes

2411. Configuration

2411.1 Users

2611.2 Exposing cluster

2811.3 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes

3011.4 Transport Layer Security (TLS)

3211.5 Telemetry

3312. Management

3312.1 Providing Backups

4612.2 High availability and scaling

4912.3 Monitoring

5112.4 Using sidecar containers

5312.5 Pause/resume PostgreSQL Cluster

5413. Reference

5413.1 Custom Resource options

7413.2 Percona certified images

7614. Release Notes

7614.1 Percona Operator for PostgreSQL Release Notes

7714.2 Percona Operator for PostgreSQL 2.1.0 (Tech preview)

7914.3 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

Table of contents

2 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

1. Percona Operator for PostgreSQL

Kubernetes have added a way to manage containerized systems, including database clusters. This

management is achieved by controllers, declared in configuration files. These controllers provide

automation with the ability to create objects, such as a container or a group of containers called pods, to

listen for an specific event and then perform a task.

This automation adds a level of complexity to the container-based architecture and stateful applications,

such as a database. A Kubernetes Operator is a special type of controller introduced to simplify complex

deployments. The Operator extends the Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for configuration and setup of a Percona

Distribution for PostgreSQL cluster. The benefits of the Operator are many, but saving time and delivering a

consistent and vetted environment is key.

2. Features

System Requirements

Design and architecture

3. Quickstart

Install with Helm

Install with kubectl

4. Installation

Install on Google Kubernetes Engine (GKE)

Generic Kubernetes installation

5. Configuration

Application and system users

Exposing the cluster

Anti-affinity and tolerations

Telemetry

6. Management

Backup and restore

High availability and scaling

This is version 2.0.0 of the Percona Operator for PostgreSQL. It is a tech preview release and it is not

recommended for production environments. As of today, we recommend using Percona Operator for PostgreSQL

1.x, which is production-ready and contains everything you need to quickly and consistently deploy and scale

PostgreSQL clusters in a Kubernetes-based environment, on-premises or in the cloud.

Note

•

•

•

•

•

•

•

•

•

•

•

•

1. Percona Operator for PostgreSQL

3 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/https://docs.percona.com/percona-operator-for-postgresql/index.html
https://www.percona.com/https://docs.percona.com/percona-operator-for-postgresql/index.html
https://github.com/percona/percona-postgresql-operator

Monitor with Percona Monitoring and Management (PMM)

Add sidecar containers

Restart or pause the cluster

7. Reference

Custom Resource options

Percona certified images

Release Notes

•

•

•

•

•

•

7. Reference

4 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-04

7. Reference

5 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

8. Features

8.1 System Requirements

The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is cloud native

and storage agnostic, working with a wide variety of storage classes, hostPath, and NFS.

8.1.1 Officially supported platforms

The following platforms were tested and are officially supported by the Operator 2.1.0:

Google Kubernetes Engine (GKE) 1.23 - 1.25

Amazon Elastic Container Service for Kubernetes (EKS) 1.23 - 1.25

Other Kubernetes platforms may also work but have not been tested.

•

•

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-04

8. Features

6 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

8.2 Design overview

The Percona Operator for PostgreSQL automates and simplifies deploying and managing open source

PostgreSQL clusters on Kubernetes. The Operator is based on CrunchyData’s PostgreSQL Operator.

DB Pod N

Kubernetes API Operator

CSI

Storage

Area

Network

Container Suite
Custom Resource

Definitions

clusters

(perconapgcluster)

backup, restore

(perconapgbackups,

perconapgrestores)

pgbouncer
primary

PostgreSQL

replica

PostgreSQL
pgbackrest

PostgreSQL containers deployed with the Operator include the following components:

The PostgreSQL database management system, including:

PostgreSQL Additional Supplied Modules,

pgAudit PostgreSQL auditing extension,

PostgreSQL set_user Extension Module,

wal2json output plugin,

The pgBackRest Backup & Restore utility,

The pgBouncer connection pooler for PostgreSQL,

The PostgreSQL high-availability implementation based on the Patroni template,

the pg_stat_monitor PostgreSQL Query Performance Monitoring utility,

LLVM (for JIT compilation).

To provide high availability the Operator involves node affinity to run PostgreSQL Cluster instances on

separate worker nodes if possible. If some node fails, the Pod with it is automatically re-created on another

node.

•

•

•

•

•

•

•

•

•

•

8.2 Design overview

7 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://access.crunchydata.com/documentation/postgres-operator/v5/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json
https://pgbackrest.org/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage

Area

Network

Kubernetes API

Operator

CSI

Percona Distribution for PostgreSQL

Namespace

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A

PersistentVolumeClaim (PVC) is used to implement the automatic storage provisioning to pods. If a failure

occurs, the Container Storage Interface (CSI) should be able to re-mount storage on a different node.

The Operator functionality extends the Kubernetes API with Custom Resources Definitions. These CRDs

provide extensions to the Kubernetes API, and, in the case of the Operator, allow you to perform actions such

as creating a PostgreSQL Cluster, updating PostgreSQL Cluster resource allocations, adding additional

utilities to a PostgreSQL cluster, e.g. pgBouncer for connection pooling and more.

When a new Custom Resource is created or an existing one undergoes some changes or deletion, the

Operator automatically creates/changes/deletes all needed Kubernetes objects with the appropriate

settings to provide a proper Percona PostgreSQL Cluster operation.

Following CRDs are created while the Operator installation:

perconapgclusters stores information required to manage a PostgreSQL cluster. This includes things like

the cluster name, what storage and resource classes to use, which version of PostgreSQL to run,

information about how to maintain a high-availability cluster, etc.

perconapgbackups and perconapgrestores are in charge for making backups and restore them.

•

•

8.2 Design overview

8 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-04-14

8.2 Design overview

9 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

9. Quickstart

9.1 Install Percona Distribution for PostgreSQL using Helm

Helm is the package manager for Kubernetes. Percona Helm charts can be found in percona/percona-

helm-charts repository in Github.

9.1.1 Pre-requisites

Install Helm following its official installation instructions.

9.1.2 Installation

Add the Percona’s Helm charts repository and make your Helm client up to date with it:

Install the Percona Operator for PostgreSQL:

The my-operator parameter in the above example is the name of a new release object which is created for

the Operator when you install its Helm chart (use any name you like).

Install PostgreSQL:

The my-db parameter in the above example is the name of a new release object which is created for the

Percona Distribution for PostgreSQL when you install its Helm chart (use any name you like).

Helm v3 is needed to run the following steps.

Note

1.

$ helm repo add percona https://percona.github.io/percona-helm-charts/

$ helm repo update

2.

$ helm install my-operator percona/pg-operator

If nothing explicitly specified, helm install command will work with the default namespace and the latest

version of the Helm chart.

To use different namespace, provide its name with the following additional parameter: --namespace my-

namespace .

To use different Helm chart version, provide it as follows: --version 2.1.0

Note

•

•

3.

$ helm install my-db percona/pg-db --namespace my-namespace

9. Quickstart

10 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/helm/helm
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-03

9.1.2 Installation

11 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

9.2 Install Percona Distribution for PostgreSQL using kubectl

The kubectl command line utility is a tool used before anything else to interact with Kubernetes and

containerized applications running on it. Users can run kubectl to deploy applications, manage cluster

resources, check logs, etc.

9.2.1 Pre-requisites

The following tools are used in this guide and therefore should be preinstalled:

The Git distributed version control system. You can install it following the official installation instructions.

The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes

distributions. Install it, if not present, following the official installation instructions.

1.

2.

9.2 Install Percona Distribution for PostgreSQL using kubectl

12 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/tasks/tools/
https://github.com/git-guides/install-git
https://kubernetes.io/docs/tasks/tools/install-kubectl/

9.2.2 Install the Operator and Percona Distribution for PostgreSQL

The following steps are needed to deploy the Operator and Percona Distribution for PostgreSQL in your

Kubernetes environment:

9.2.2 Install the Operator and Percona Distribution for PostgreSQL

13 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

Add the postgres-operator namespace to Kubernetes, not forgetting to set the correspondent context for

further steps:

Deploy the Operator with the following command:

As the result you will have the Operator Pod up and running.

Deploy Percona Distribution for PostgreSQL:

1.

$ kubectl create namespace postgres-operator

$ kubectl config set-context $(kubectl config current-context) --namespace=postgres-

operator

To use different namespace, you should edit all occurrences of the namespace: postgres-operator line in both

deploy/cr.yaml and deploy/bundle.yaml configuration files.

Note

2.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-

postgresql-operator/v2.1.0/deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pg.percona.com serverside-

applied

customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pg.percona.com serverside-

applied

customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pg.percona.com serverside-

applied

customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-

operator.crunchydata.com serverside-applied

serviceaccount/percona-postgresql-operator serverside-applied

role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied

rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-

applied

deployment.apps/percona-postgresql-operator serverside-applied

3.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/

v2.1.0/deploy/cr.yaml

Expected output

perconapgcluster.pg.percona.com/cluster1 created

9.2.2 Install the Operator and Percona Distribution for PostgreSQL

14 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

Creation process will take some time. The process is over when both Operator and replica set Pods have

reached their Running status:

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml and Custom

Resource Options for the configuration options. You can clone the repository with all manifests and source code

by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

Note

$ git clone -b v2.1.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-backup-7hsq-9ch48 0/1 Completed 0 35s

cluster1-instance1-mtnz-0 4/4 Running 0 87s

cluster1-pgbouncer-f4dcfffc8-lrs2d 2/2 Running 0 87s

cluster1-repo-host-0 2/2 Running 0 87s

percona-postgresql-operator-75fd989d98-wvx4h 1/1 Running 0 109s

9.2.2 Install the Operator and Percona Distribution for PostgreSQL

15 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.1.0/deploy/cr.yaml

9.2.3 Verifying the cluster operation

When creation process is over, you can try to connect to the cluster.

During the installation, the Operator has generated several secrets, including the one with password for

default PostgreSQL user. This default user has the login name same as the the cluster.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested

in is named as <cluster_name>-pguser-<cluster_name> , so the default variant will be cluster1-pguser-

cluster1 . You can use the following command to get the password of this user:

Run a container with psql tool and connect its console output to your terminal. The following command

will do this, naming the new Pod pg-client :

Executing it may require some time to deploy the correspondent Pod.

This command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL interactive

terminal.

1.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> --

template='{{.data.password | base64decode}}{{"\n"}}'

2.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:

15 --restart=Never -- bash -il

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-

operator.svc -p 5432 -U cluster1 cluster1

psql (15)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-01

9.2.3 Verifying the cluster operation

16 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

10. Installation

10.1 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine

(GKE)

Following steps will allow you to install the Operator and use it to manage Percona Distribution for

PostgreSQL with the Google Kubernetes Engine. The document assumes some experience with Google

Kubernetes Engine (GKE). For more information on the GKE, see the Kubernetes Engine Quickstart.

10.1.1 Prerequisites

All commands from this installation guide can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

gcloud. This tool is part of the Google Cloud SDK. To install it, select your operating system on the official

Google Cloud SDK documentation page and then follow the instructions.

kubectl. It is the Kubernetes command-line tool you will use to manage and deploy applications. To install

the tool, run the following command:

10.1.2 Create and configure the GKE cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local

shell (if you have installed Google Cloud SDK locally on the previous step). The following command will

create a cluster named cluster-1 :

You may wait a few minutes for the cluster to be generated.

1.

2.

$ gcloud auth login

$ gcloud components install kubectl

$ gcloud container clusters create cluster-1 --project <project name> --zone us-central1-a

--cluster-version --machine-type n1-standard-4 --num-nodes=3

You must edit the above command and other command-line statements to replace the <project name>

placeholder with your project name. You may also be required to edit the zone location, which is set to us-

central1 in the above example. Other parameters specify that we are creating a cluster with 3 nodes and with

machine type of 4 vCPUs and 45 GB memory.

Note

10. Installation

17 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart

Select Kubernetes Engine → Clusters in the left menu panel:

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

Now you should configure the command-line access to your newly created cluster to make kubectl be able

to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You

will see the connect statement which configures the command-line access. After you have edited the

statement, you may run the command in your local shell:

Finally, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster. The

following command will give you the ability to create Roles and RoleBindings:

10.1.3 Install the Operator and deploy your PostgreSQL cluster

First of all, use the following git clone command to download the correct branch of the percona-

postgresql-operator repository:

Add the postgres-operator namespace to Kubernetes, not forgetting to set the correspondent context for

further steps:

Deploy the operator with the following command:

When the process is over, you can see it listed in the Google Cloud console

$ gcloud container clusters get-credentials cluster-1 --zone us-central1-a --project

<project name>

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --

user $(gcloud config get-value core/account)

Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

1.

$ git clone -b v2.1.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

2.

$ kubectl create namespace postgres-operator

$ kubectl config set-context $(kubectl config current-context) --namespace=postgres-

operator

To use different namespace, you should edit all occurrences of the namespace: postgres-operator line in both

deploy/cr.yaml and deploy/bundle.yaml configuration files.

Note

3.

10.1.3 Install the Operator and deploy your PostgreSQL cluster

18 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/iam

As the result you will have the Operator Pod up and running.

Deploy Percona Distribution for PostgreSQL:

Creation process will take some time. The process is over when the Operator and PostgreSQL Pods have

reached their Running status:

$ kubectl apply --server-side -f deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pg.percona.com serverside-

applied

customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pg.percona.com serverside-

applied

customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pg.percona.com serverside-

applied

customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-

operator.crunchydata.com serverside-applied

serviceaccount/percona-postgresql-operator serverside-applied

role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied

rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator serverside-

applied

deployment.apps/percona-postgresql-operator serverside-applied

4.

$ kubectl apply -f deploy/cr.yaml

Expected output

perconapgcluster.pg.percona.com/cluster1 created

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-backup-7hsq-9ch48 0/1 Completed 0 35s

cluster1-instance1-mtnz-0 4/4 Running 0 87s

cluster1-pgbouncer-f4dcfffc8-lrs2d 2/2 Running 0 87s

cluster1-repo-host-0 2/2 Running 0 87s

percona-postgresql-operator-75fd989d98-wvx4h 1/1 Running 0 109s

10.1.3 Install the Operator and deploy your PostgreSQL cluster

19 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

When the creation process is finished, it will look as follows:

Name Status Type Namespace ClusterPods

cluster1-backup-7hsq OK Job pg-opertor cluster10/1

cluster1-instance1-mntz OK Stateful Set pg-opertor cluster11/1

cluster1-pgbouncer OK Deployment pg-opertor cluster11/1

cluster1-repo-host OK Stateful Set pg-opertor cluster11/1

cluster1-repo1-full OK Cron Job pg-opertor cluster10/0

percona-postgresql-operator OK Deployment pg-opertor cluster11/1

10.1.4 Verifying the cluster operation

When creation process is over, you can try to connect to the cluster.

During the installation, the Operator has generated several secrets, including the one with password for

default PostgreSQL user. This default user has the login name same as the the cluster.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested

in is named as <cluster_name>-pguser-<cluster_name> , so the default variant will be cluster1-pguser-

cluster1 . You can use the following command to get the password of this user:

Run a container with psql tool and connect its console output to your terminal. The following command

will do this, naming the new Pod pg-client :

Executing it may require some time to deploy the correspondent Pod.

This command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL interactive

terminal.

10.1.5 Removing the GKE cluster

There are several ways that you can delete the cluster.

You can clean up the cluster with the gcloud command as follows:

You can also track the creation process in Google Cloud console via the Object Browser

1.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> --

template='{{.data.password | base64decode}}{{"\n"}}'

2.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:

15 --restart=Never -- bash -il

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-

operator.svc -p 5432 -U cluster1 cluster1

psql (15)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

$ gcloud container clusters delete <cluster name>

10.1.4 Verifying the cluster operation

20 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/

The return statement requests your confirmation of the deletion. Type y to confirm.

Just click the Delete popup menu item in the clusters list:

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

The cluster deletion may take time.

Also, you can delete your cluster via the Google Cloud console

After deleting the cluster, all data stored in it will be lost!

Warning

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-01

10.1.5 Removing the GKE cluster

21 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

10.2 Install Percona Distribution for PostgreSQL on Kubernetes

Following steps will allow you to install the Operator and use it to manage Percona Distribution for

PostgreSQL in a Kubernetes-based environment.

First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

The next thing to do is to add the postgres-operator namespace to Kubernetes, not forgetting to set the

correspondent context for further steps:

Deploy the operator with the following command:

After the operator is started Percona Distribution for PostgreSQL can be created at any time with the

following command:

Creation process will take some time. The process is over when both Operator and replica set Pods have

reached their Running status:

1.

$ git clone -b v2.1.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

Note

2.

$ kubectl create namespace postgres-operator

$ kubectl config set-context $(kubectl config current-context) --namespace=postgres-

operator

To use different namespace, you should edit all occurrences of the namespace: postgres-operator line in both

deploy/cr.yaml and deploy/bundle.yaml configuration files.

Note

3.

$ kubectl apply --server-side -f deploy/bundle.yaml

4.

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-backup-7hsq-9ch48 0/1 Completed 0 35s

cluster1-instance1-mtnz-0 4/4 Running 0 87s

cluster1-pgbouncer-f4dcfffc8-lrs2d 2/2 Running 0 87s

cluster1-repo-host-0 2/2 Running 0 87s

percona-postgresql-operator-75fd989d98-wvx4h 1/1 Running 0 109s

10.2 Install Percona Distribution for PostgreSQL on Kubernetes

22 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

10.2.1 Verifying the cluster operation

When creation process is over, you can try to connect to the cluster.

During the installation, the Operator has generated several secrets, including the one with password for

default PostgreSQL user. This default user has the login name same as the the cluster.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested

in is named as <cluster_name>-pguser-<cluster_name> , so the default variant will be cluster1-pguser-

cluster1 . You can use the following command to get the password of this user:

Run a container with psql tool and connect its console output to your terminal. The following command

will do this, naming the new Pod pg-client :

Executing it may require some time to deploy the correspondent Pod.

This command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL interactive

terminal.

1.

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> --

template='{{.data.password | base64decode}}{{"\n"}}'

2.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:

15 --restart=Never -- bash -il

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer.postgres-

operator.svc -p 5432 -U cluster1 cluster1

psql (15)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)

Type "help" for help.

pgdb=>

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-01

10.2.1 Verifying the cluster operation

23 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11. Configuration

11.1 Users

User accounts within the Cluster can be divided into two different groups:

application-level users: the user accounts to be used by the application (probably, the unprivileged

ones),

system-level users: the accounts needed to automate the cluster deployment and management tasks.

The Operator creates needed system users at the cluster deployment time with generated random

passwords. It can manage additional (application-level) users also if their data are placed into the Custom

Resource users section. Changes in this section will be tracked and immediately applied by the Operator.

For example, here is a self-explanatory deploy/cr.yaml configuration file fragment which would add a new

rhino user with administrative privileges over the zoo database:

Credentials for users managed by the Operator are stored as Kubernetes Secrets objects. Each such user

has its own dedicated Secret named as <cluster_name>-<user_name>-<cluster_name> .

By default, the Operator creates only pguser administrative user (the superuser), and it would have a Secret

named cluster1-pguser-cluster1 in case of the default cluster name.

Secrets object for each user contains password field stored as data - i.e., base64-encoded string. You can

find out user’s password by querying the correspondent Secret as follows (don’t forget to use the real user

login and cluster name instead of the <cluster_name>-<user_name>-<cluster_name> placeholder):

•

•

...

users:

 - name: rhino

 databases:

 - zoo

 options: "SUPERUSER"

 password:

 type: ASCII

...

You can connect to PostgreSQL and login as pguser to PostgreSQL Pods, but pgBouncer (the connection pooler for

PostgreSQL) doesn’t allow pguser user access by default. That’s done for security reasons.

Note

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> --template='{{.data.password

| base64decode}}{{"\n"}}'

The {{"\n"}} fragment at the end of the above command provides a newline to improve the readability of the

command output. In case of automation (for example, in a script), this fragment can be safely omitted.

Note

11. Configuration

24 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/
http://pgbouncer.github.io/

If you want to rotate user’s password, just remove the old password in the correspondent Secret: the

Operator will immediately generate a new password and save it to the appropriate Secret. You can remove

the old password with the kubectl patch secret command :

Also, you can set a custom password for the user. Do it as follows (use the real user login and cluster name

instead of the <cluster_name>-<user_name>-<cluster_name> , and new password instead of the

<custom_password> placeholders):

$ kubectl patch secret <cluster_name>-<user_name>-<cluster_name> -p '{"data":

{"password":""}}'

$ kubectl patch secret <cluster_name>-<user_name>-<cluster_name> -p '{"stringData":

{"password":"<custom_password>", "verifier":""}}'

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-04

11.1 Users

25 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11.2 Exposing cluster

The Operator provides entry points for accessing the database by client applications. The database cluster

is exposed with regular Kubernetes Service objects configured by the Operator.

This document describes the usage of Custom Resource manifest options to expose the clusters deployed

with the Operator.

11.2.1 PgBouncer

We recommend exposing the cluster through PgBouncer, which is enabled by default. You can disable

pgBouncer by setting proxy.pgBouncer.replicas to 0.

The following example deploys two pgBouncer nodes exposed through a LoadBalancer Service object:

The Service will be called <clusterName>-pgbouncer :

You can connect to the database using the External IP of the load balancer and port 5432 .

If your application runs inside the Kubernetes cluster as well, you might want to use the Cluster IP Service

type in proxy.pgBouncer.expose.type , which is the default. In this case to connect to the database use the

internal domain name - cluster1-pgbouncer.<namespace>.svc.cluster.local .

11.2.2 Exposing the cluster without PgBouncer

You can connect to the cluster without a proxy. For that use <clusterName>-ha Service object:

This service points to the active primary. In case of failover to the replica node, will change the endpoint

automatically.

proxy:

 pgBouncer:

 replicas: 2

 image: percona/percona-postgresql-operator:2.1.0-ppg14-pgbouncer

 expose:

 type: LoadBalancer

$ kubectl get service

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

cluster1-pgbouncer LoadBalancer 10.88.8.48 34.133.38.186 5432:30601/TCP 20m

$ kubectl get service

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

cluster1-ha ClusterIP 10.88.8.121 <none> 5432/TCP 115s

11.2 Exposing cluster

26 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/services-networking/service/

To change the Service type, use expose.type in the Custom Resource manifest. For example, the following

manifest will expose this service through a load balancer:

spec:

...

 expose:

 type: LoadBalancer

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-04

11.2.2 Exposing the cluster without PgBouncer

27 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11.3 Binding Percona Distribution for PostgreSQL components to Specific

Kubernetes/OpenShift Nodes

The operator does good job automatically assigning new Pods to nodes with sufficient resources to achieve

balanced distribution across the cluster. Still there are situations when it is worth to ensure that pods will

land on specific nodes: for example, to get speed advantages of the SSD equipped machine, or to reduce

network costs choosing nodes in a same availability zone.

Appropriate sections of the deploy/cr.yaml file (such as proxy.pgBouncer) contain keys which can be used

to do this, depending on what is the best for a particular situation.

11.3.1 Affinity and anti-affinity

Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which

already has Pods with specific labels, or has specific labels itself (so called “Node affinity”). Particularly, Pod

anti-affinity is good to reduce costs making sure several Pods with intensive data exchange will occupy the

same availability zone or even the same node - or, on the contrary, to make them land on different nodes or

even different availability zones for the high availability and balancing purposes. Node affinity is useful to

assign PostgreSQL instances to specific Kubernetes Nodes (ones with specific hardware, zone, etc.).

Pod anti-affinity is controlled by the affinity.podAntiAffinity subsection, which can be put into

proxy.pgBouncer and backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration file.

podAntiAffinity allows you to use standard Kubernetes affinity constraints of any complexity:

You can see the explanation of these affinity options in Kubernetes documentation.

11.3.2 Topology Spread Constraints

Topology Spread Constraints allow you to control how Pods are distributed across the cluster based on

regions, zones, nodes, and other topology specifics. This can be useful for both high availability and resource

efficiency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection, which can be

put into proxy.pgBouncer and backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration file

as follows:

affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 podAffinityTerm:

 labelSelector:

 matchLabels:

 postgres-operator.crunchydata.com/cluster: keycloakdb

 postgres-operator.crunchydata.com/role: pgbouncer

 topologyKey: kubernetes.io/hostname

topologySpreadConstraints:

 - maxSkew: 1

 topologyKey: my-node-label

 whenUnsatisfiable: DoNotSchedule

 labelSelector:

 matchLabels:

 postgres-operator.crunchydata.com/instance-set: instance1

11.3 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes

28 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

You can see the explanation of these affinity options in Kubernetes documentation.

11.3.3 Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is

expressed as a key with and operator , which is either exists or equal (the latter variant also requires a

value the key is equal to). Moreover, toleration should have a specified effect , which may be a self-

explanatory NoSchedule , less strict PreferNoSchedule , or NoExecute . The last variant means that if a taint with

NoExecute is assigned to node, then any Pod not tolerating this taint will be removed from the node,

immediately or after the tolerationSeconds interval, like in the following example.

You can use instances.tolerations and backups.pgbackrest.jobs.tolerations subsections in the deploy/

cr.yaml configuration file as follows:

The Kubernetes Taints and Toleratins contains more examples on this topic.

tolerations:

- effect: NoSchedule

 key: role

 operator: Equal

 value: connection-poolers

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-12-30

11.3.3 Tolerations

29 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11.4 Transport Layer Security (TLS)

The Percona Operator for PostgreSQL uses Transport Layer Security (TLS) cryptographic protocol for the

following types of communication:

Internal - communication between PostgreSQL instances in the cluster

External - communication between the client application and the cluster

The internal certificate is also used as an authorization method for PostgreSQL Replica instances.

TLS security can be configured in several ways:

the Operator can generate certificates automatically at cluster creation time,

you can also generate certificates manually.

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to

temporarily disable it if needed.

11.4.1 Allow the Operator to generate certificates automatically

The Operator is able to generate long-term certificates automatically and turn on encryption at cluster

creation time, if there are no certificate secrets available. Just deploy your cluster as usual, with the

kubectl apply -f deploy/cr.yaml command, and certificates will be generated.

11.4.2 Check connectivity to the cluster

You can check TLS communication with use of the psql , the standard interactive terminal-based frontend

to PostgreSQL. The following command will spawn a new pg-client container, which includes needed

command and can be used for the check (use your real cluster name instead of the <cluster-name>

placeholder):

•

•

•

•

$ cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

 name: pg-client

spec:

 replicas: 1

 selector:

 matchLabels:

 name: pg-client

 template:

 metadata:

 labels:

 name: pg-client

 spec:

 containers:

 - name: pg-client

 image: perconalab/percona-distribution-postgresql:15

 imagePullPolicy: Always

 command:

 - sleep

 args:

 - "100500"

 volumeMounts:

 - name: ca

 mountPath: "/tmp/tls"

 volumes:

11.4 Transport Layer Security (TLS)

30 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal to

check connectivity over the encrypted channel (please use real cluster-name, PostgreSQL user login and

password):

Now you should see the prompt of PostgreSQL interactive terminal:

11.4.3 Keep certificates after deleting the cluster

In case of cluster deletion, objects, created for SSL (Secret, certificate, and issuer) are not deleted by default.

If the user wants the cleanup of objects created for SSL, there is a finalizers.percona.com/delete-ssl Custom

Resource option, which can be set in deploy/cr.yaml : if this finalizer is set, the Operator will delete Secret,

certificate and issuer after the cluster deletion event.

 - name: ca

 secret:

 secretName: <cluster_name>-ssl-ca

 items:

 - key: ca.crt

 path: ca.crt

 mode: 0777

EOF

$ kubectl exec -it deployment/pg-client -- bash -il

[postgres@pg-client /]$ PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt psql postgres://

<postgresql-user>:<postgresql-password>@<cluster-name>-

pgbouncer.<namespace>.svc.cluster.local

$ psql (15)

Type "help" for help.

pgdb=>

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-02

11.4.3 Keep certificates after deleting the cluster

31 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11.5 Telemetry

The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona,

which helps us to determine where to focus the development and what is the uptake for each release of

Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid field)

Kubernetes version

Platform (is it Kubernetes or Openshift)

Is PMM enabled, and the PMM Version

Operator version

PostgreSQL version

PgBackRest version

Was the Operator deployed with Helm

Are sidecar containers used

Are backups used

We do not gather anything that identify a system, but the following thing should be mentioned: Custom

Resource ID is a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it at

scheduled times to obtain fresh information about version numbers and valid image paths needed for the

upgrade.

The landing page for this service, check.percona.com, explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

if you don’t use helm for installation, you have to edit the operator.yaml before applying it with the

kubectl apply -f deploy/operator.yaml command. Open the operator.yaml file with your text editor, find

the disable_telemetry key and set it to true :

•

•

•

•

•

•

•

•

•

•

•

$ helm install my-db percona/pg-db --version 2.1.0 --namespace my-namespace --set

disable_telemetry="true"

•

...

disable_telemetry: "true"

...

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-03

11.5 Telemetry

32 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://check.percona.com/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12. Management

12.1 Providing Backups

The Operator allows doing backups in two ways. Scheduled backups are configured in the deploy/cr.yaml

file to be executed automatically in proper time. On-demand backups can be done manually at any

moment.

The Operator uses the open source pgBackRest backup and restore utility.

Backup repositories

A special pgBackRest repository is created by the Operator along with creating a new PostgreSQL cluster to

facilitate the usage of the pgBackRest features in it.

The Operator can use the following variants of cloud storage outside the Kubernetes cluster to keep

PostgreSQL backups:

Amazon S3, or any S3-compatible storage,

Google Cloud Storage,

Azure Blob Storage

It is also possible to store backups in Kubernetes, just on a Persistent Volume attached to the pgBackRest

Pod.

Each pgBackRest repository consists of the following Kubernetes objects:

A Deployment,

A Secret that contains information that is specific to the PostgreSQL cluster (e.g. SSH keys, AWS S3 keys,

etc.),

A Pod with a number of supporting scripts,

A Service.

12.1.1 Backup types

The PostgreSQL Operator supports three types of pgBackRest backups:

full : A full backup of all the contents of the PostgreSQL cluster,

differential : A backup of only the files that have changed since the last full backup,

incremental : A backup of only the files that have changed since the last full or differential backup.

Incremental backup is the default choice.

12.1.2 Backup retention

The Operator also supports setting pgBackRest retention policies for full and differential backups. When a

full backup expires according to the retention policy, pgBackRest cleans up all the files related to this

backup and to write-ahead log. So, expiring of a full backup with some incremental backups based on it

results in expiring all these incremental backups.

Backup retention can be controlled by the following pgBackRest options:

--<repo name>-retention-full how much full backups to retain,

--<repo name>-retention-diff how much differential backups to retain.

•

•

•

•

•

•

•

•

•

•

•

•

12. Management

33 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Backup retention type can be either count (the number of backups to keep) or time (the number of days a

backup should be kept for).

You can set both backups type and retention policy for each of 4 repositories as follows.

12.1.3 Backup storage

You should configure backup storage for your repositories in the backups.pgbackrest.repos section of the

deploy/cr.yaml configuration file.

Configuring the S3-compatible backup storage

In order to use S3-compatible storage for backups you need to provide some S3-related information, such

as proper S3 bucket name, endpoint, etc. This information can be passed to pgBackRest via the following

deploy/cr.yaml options in the backups.pgbackrest.repos subsection:

bucket specifies the AWS S3 bucket that should be utilized, for example my-postgresql-backups-example ,

endpoint specifies the S3 endpoint that should be utilized, for example s3.amazonaws.com ,

region specifies the AWS S3 region that should be utilized, for example us-east-1 .

backups:

 pgbackrest:

...

 global:

 repo1-retention-full: "14"

 repo1-retention-full-type: time

 ...

•

•

•

12.1.3 Backup storage

34 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

You also need to supply pgBackRest with base64-encoded AWS S3 key and AWS S3 key secret stored along

with other sensitive information in Kubernetes Secrets.

12.1.3 Backup storage

35 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/

Put your AWS S3 key and AWS S3 key secret into the base64 encoded pgBackRest configuration as follows:

Create the Secret configuration file with the resulted base64-encoded string as the following cluster1-

pgbackrest-secrets.yaml example:

When done, create the Secrets object from this yaml file:

Update your deploy/cr.yaml configuration with the your S3 credentials Secret in the

backups.pgbackrest.configuration subsection, and put all other S3 related information into the options of

one of your repositories in the backups.pgbackrest.repos subsection. For example, the S3 storage for the

repo2 repository would look as follows.

1.

in Linux

in macOS

$ cat <<EOF | base64 --wrap=0

[global]

repo1-s3-key=<YOUR_AWS_S3_KEY>

repo1-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

EOF

$ cat <<EOF | base64

[global]

repo1-s3-key=<YOUR_AWS_S3_KEY>

repo1-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

EOF

2.

apiVersion: v1

kind: Secret

metadata:

 name: cluster1-pgbackrest-secrets

type: Opaque

data:

 s3.conf: <base64-encoded-configuration-contents>

This Secret can store credentials for several repositories presented as separate data keys.

Note

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml

3.

...

backups:

 pgbackrest:

 ...

 configuration:

 - secret:

 name: cluster1-pgbackrest-secrets

 ...

 repos:

 ...

 - name: repo2

 s3:

 bucket: "<YOUR_AWS_S3_BUCKET_NAME>"

 endpoint: "<YOUR_AWS_S3_ENDPOINT>"

 region: "<YOUR_AWS_S3_REGION>"

12.1.3 Backup storage

36 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

Finally, create or update the cluster:

Configuring Google Cloud Storage for backups

You can configure Google Cloud Storage as an object store for backups similarly to S3 storage.

In order to use Google Cloud Storage (GCS) for backups you need to provide a proper GCS bucket name.

Bucket name can be passed to pgBackRest via the gcs.bucket key in the backups.pgbackrest.repos

subsection of deploy/cr.yaml .

4.

$ kubectl apply -f deploy/cr.yaml

12.1.3 Backup storage

37 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/storage

The Operator will also need your service account key to access storage.

12.1.3 Backup storage

38 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

Create your service account key following the official Google Cloud instructions.

Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin → Service Accounts in the left

menu panel, then click your account and open the KEYS tab):

my-service-account

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.

Learn more about setting organization policies for service accounts

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the

Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

ADD KEY

DETAILS PERMISSIONS KEYS METRICS LOGS

Click the ADD KEY button, chose Create new key and chose JSON as a key type. These actions will result in

downloading a file in JSON format with your new private key and related information.

Now you should use a base64-encoded version of this file and create the Kubernetes Secret. You can

encode the file with the base64 <filename> command. When done, create a yaml file with your cluster

name and base64-encoded file contents as the following cluster1-pgbackrest-secrets.yaml example:

Create the Secrets object from this yaml file:

Update your deploy/cr.yaml configuration with the your GCS credentials Secret in the

backups.pgbackrest.configuration subsection, and put GCS bucket name into the bucket option of one of

your repositories in the backups.pgbackrest.repos subsection. For example, GCS storage for the repo3

repository would look as follows.

1.

2.

3.

apiVersion: v1

kind: Secret

metadata:

 name: cluster1-pgbackrest-secrets

type: Opaque

data:

 gcs-key.json: <base64-encoded-json-file-contents>

This Secret can store credentials for several repositories presented as separate data keys.

Note

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml

4.

...

backups:

 pgbackrest:

 ...

 configuration:

 - secret:

 name: cluster1-pgbackrest-secrets

 ...

 repos:

 ...

 - name: repo3

12.1.3 Backup storage

39 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://kubernetes.io/docs/concepts/configuration/secret/

Finally, create or update the cluster:

Configuring Azure Blob Storage for backups

You can configure Microsoft Azure Blob Storage as an object store for backups similarly to S3 or GCS

storage.

In order to use Azure Blob Storage for backups you need to provide a proper Azure container name. It can be

passed to pgBackRest via the azure.container key in the backups.pgbackrest.repos subsection of deploy/

cr.yaml .

 gcs:

 bucket: "<YOUR_GCS_BUCKET_NAME>"

5.

$ kubectl apply -f deploy/cr.yaml

12.1.3 Backup storage

40 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://azure.microsoft.com/en-us/services/storage/blobs/

The Operator will also need a Kubernetes Secret with your Azure Storage credentials to access the storage.

12.1.3 Backup storage

41 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/

Put your Azure storage account name and key into the base64 encoded pgBackRest configuration as

follows:

Create the Secret configuration file with the resulted base64-encoded string as the following cluster1-

pgbackrest-secrets.yaml example:

When done, create the Secrets object from this yaml file:

Update your deploy/cr.yaml configuration with the your S3 credentials Secret in the

backups.pgbackrest.configuration subsection, and put all other S3 related information into the options of

one of your repositories in the backups.pgbackrest.repos subsection. For example, the S3 storage for the

repo4 repository would look as follows.

1.

in Linux

in macOS

$ cat <<EOF | base64 --wrap=0

[global]

repo1-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>

repo1-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

$ cat <<EOF | base64

[global]

repo1-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>

repo1-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

2.

apiVersion: v1

kind: Secret

metadata:

 name: cluster1-pgbackrest-secrets

type: Opaque

data:

 azure.conf: <base64-encoded-configuration-contents>

This Secret can store credentials for several repositories presented as separate data keys.

Note

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml

3.

...

backups:

 pgbackrest:

 ...

 configuration:

 - secret:

 name: cluster1-pgbackrest-secrets

 ...

 repos:

 ...

 - name: repo4

 azure:

 container: "<YOUR_AZURE_CONTAINER>"

12.1.3 Backup storage

42 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

Finally, create or update the cluster:

12.1.4 Scheduling backups

Backups schedule is defined on per-repository basis in the backups.pgbackrest.repos subsection of the

deploy/cr.yaml file. You can supply each repository with a schedules.<backup type> key equal to an actual

schedule specified in crontab format.

Here is an example of deploy/cr.yaml which uses repo1 repository for backups:

The schedule is specified in crontab format as explained in Custom Resource options.

12.1.5 Making on-demand backup

To make an on-demand backup, the user should use a backup configuration file. The example of the

backup configuration file is deploy/backup.yaml:

Fill it with the proper repository name to be used for this backup, and any needed pgBackRest command

line options.

When the backup options are configured, execute the actual backup command:

12.1.6 Restore the cluster from a previously saved backup

The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-

time-recovery. There are two types of ways to restore a cluster:

restore to a new cluster using the dataSource.postgresCluster subsection,

restore in-place, to an existing cluster (note that this is destructive) using the backups.restore

subsection.

4.

$ kubectl apply -f deploy/cr.yaml

...

backups:

 pgbackrest:

 ...

 repos:

 - name: repo1

 schedules:

 full: "0 0 * * 6"

 differential: "0 1 * * 1-6"

 ...

apiVersion: pg.percona.com/v2beta1

kind: PerconaPGBackup

metadata:

 name: backup1

spec:

 pgCluster: cluster1

 repoName: repo1

options:

- --type=full

$ kubectl apply -f deploy/backup.yaml

•

•

12.1.4 Scheduling backups

43 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

Restore to an existing PostgreSQL cluster

To restore the previously saved backup the user should use a backup restore configuration file. The example

of the backup configuration file is deploy/restore.yaml:

The following keys are the most important ones:

pgCluster specifies the name of your cluster,

repoName specifies the name of one of the 4 pgBackRest repositories, already configured in the

backups.pgbackrest.repos subsection,

options passes through any pgBackRest command line options.

The actual restoration process can be started as follows:

Restore the cluster with point-in-time recovery

Point-in-time recovery functionality allows users to revert the database back to a state before an unwanted

change had occurred.

You can set up a point-in-time recovery using the normal restore command of pgBackRest with few

additional spec.options fields in deploy/restore.yaml :

set --type option to time ,

set --target to a specific time you would like to restore to. You can use the typical string formatted as

<YYYY-MM-DD HH:MM:DD> , optionally followed by a timezone offset: "2021-04-16 15:13:32+00" (+00 in the

above example means just UTC),

optional --set argument allows you to choose the backup which will be the starting point for point-in-

time recovery (look through the available backups to find out the proper backup name). This option

must be specified if the target is one or more backups away from the current moment.

After setting these options in the backup restore configuration file, follow the standard restore instructions.

apiVersion: pg.percona.com/v2beta1

kind: PerconaPGRestore

metadata:

 name: restore1

spec:

 pgCluster: cluster1

 repoName: repo1

 options:

 - --type=time

 - --target="2022-11-30 15:12:11+03"

•

•

•

$ kubectl apply -f deploy/restore.yaml

•

•

•

Make sure you have a backup that is older than your desired point in time. You obviously can’t restore from a time

where you do not have a backup. All relevant write-ahead log files must be successfully pushed before you make

the restore.

Note

12.1.6 Restore the cluster from a previously saved backup

44 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://pgbackrest.org/configuration.html

Restore to a new PostgreSQL cluster

Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL cluster that

can run alongside an existing one. There are several scenarios where using this technique is helpful:

Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting

this is creating a clone.

Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To create a new PostgreSQL cluster from either the active one, or a former cluster whose pgBackRest

repository still exists, use the dataSource.postgresCluster subsection options. The content of this subsection

should copy the backups keys of the original cluster - ones needed to carry on the restore:

dataSource.postgresCluster.clusterName should contain the new cluster name,

dataSource.postgresCluster.options allow you to set the needed pgBackRest command line options,

dataSource.postgresCluster.repoName should contain the name of the pgBackRest repository, while the

actual storage configuration keys for this repository should be placed into dataSource.pgbackrest.repo

subsection,

dataSource.pgbackrest.configuration.secret.name should contain the name of a Kubernetes Secret with

credentials needed to access cloud storage, if any.

•

•

•

•

•

•

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-03

12.1.6 Restore the cluster from a previously saved backup

45 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.2 High availability and scaling

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an

application scaling. Scaling an application results in adding resources or Pods and scheduling them to

available Kubernetes nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to MySQL

nodes; horizontal scaling is about adding more nodes to the cluster. High availability looks technically

similar, because it also involves additional nodes, but the reason is maintaining liveness of the system in

case of server or network failures.

12.2.1 Vertical scaling

There are multiple components that Operator deploys and manages: PostgreSQL instances, pgBouncer

connection pooler, etc. To add or reduce CPU or Memory you need to edit corresponding sections in the

Custom Resource. We follow the structure for requests and limits that Kubernetes provides.

To add more resources to your PostgreSQL instances edit the following section in the Custom Resource:

Use our reference documentation for the Custom Resource options for more details about other

components.

12.2.2 High availability

Percona Operator allows you to deploy highly-available PostgreSQL clusters. There are two ways how to

control replicas in your HA cluster:

Through changing spec.instances.replicas value

By adding new entry into spec.instances

12.2.3 Using spec.instances.replicas

For example, you have the following Custom Resource manifest:

This will provision a cluster with two nodes - one Primary and one Replica. Add the node by changing the

manifest…

spec:

...

 instances:

 - name: instance1

 replicas: 3

 resources:

 limits:

 cpu: 2.0

 memory: 4Gi

1.

2.

spec:

...

 instances:

 - name: instance1

 replicas: 2

spec:

...

12.2 High availability and scaling

46 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

…and applying the Custom Resource:

The Operator will provision a new replica node. It will be ready and available once data is synchronized from

Primary.

12.2.4 Using spec.instances

Each instance’s entry has its own set of parameters, like resources, storage configuration, sidecars, etc.

When you add a new entry into instances, this creates replica PostgreSQL nodes, but with a new set of

parameters. This can be useful in various cases:

Test or migrate to new hardware

Blue-green deployment of a new configuration

Try out new versions of your sidecar containers

For example, you have the following Custom Resource manifest:

Now you have a goal to migrate to new disks, which are coming with the new-ssd storage class. You can

create a new instance entry. This will instruct the Operator to create additional nodes with the new

configuration keeping your existing nodes intact.

 instances:

 - name: instance1

 replicas: 3

$ kubectl apply -f deploy/cr.yaml

•

•

•

spec:

...

 instances:

 - name: instance1

 replicas: 2

 dataVolumeClaimSpec:

 storageClassName: old-ssd

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

spec:

...

 instances:

 - name: instance1

 replicas: 2

 dataVolumeClaimSpec:

 storageClassName: old-ssd

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

 - name: instance2

 replicas: 2

 dataVolumeClaimSpec:

 storageClassName: new-ssd

 accessModes:

 - ReadWriteOnce

12.2.4 Using spec.instances

47 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

 resources:

 requests:

 storage: 100Gi

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-04

12.2.4 Using spec.instances

48 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.3 Monitoring

Percona Monitoring and Management (PMM) provides an excellent solution to monitor Percona Distribution

for PostgreSQL.

PMM is a client/server application. PMM Client runs on each node with the database you wish to monitor: it

collects needed metrics and sends gathered data to PMM Server. As a user, you connect to PMM Server to

see database metrics on a number of dashboards.

That’s why PMM Server and PMM Client need to be installed separately.

12.3.1 Installing the PMM Server

PMM Server runs as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the official

PMM documentation for the installation instructions.

Only PMM 2.x versions are supported by the Operator.

Note

12.3 Monitoring

49 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html

12.3.2 Installing the PMM Client

The following steps are needed for the PMM client installation in your Kubernetes-based environment:

The PMM client installation is initiated by updating the pmm section in the deploy/cr.yaml file.

set pmm.enabled=true

set the pmm.serverHost key to your PMM Server hostname,

check that the serverUser key contains your PMM Server user name (admin by default),

make sure the pmmserver key in the deploy/pmm-secret.yaml secrets file contains the password

specified for the PMM Server during its installation.

Apply changes with the kubectl apply -f deploy/pmm-secret.yaml command.

When done, apply the edited deploy/cr.yaml file:

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are

errors on the previous steps:

Now you can access PMM via https in a web browser, with the login/password authentication, and the

browser is configured to show Percona Distribution for PostgreSQL metrics.

1.

•

•

•

•

You use deploy/pmm-secret.yaml file to create Secrets Object. The file contains all values for each key/value pair

in a convenient plain text format. But the resulting Secrets contain passwords stored as base64-encoded

strings. If you want to update password field, you’ll need to encode the value into base64 format. To do this, you

can run echo -n "password" | base64 --wrap=0 (or just echo -n "password" | base64 in case of Apple macOS) in

your local shell to get valid values. For example, setting the PMM Server user’s password to new_password in the

cluster1-pmm-secret object can be done with the following command:

Info

in Linux

in macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"pmmserver": '$(echo -n new_password |

base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"pmmserver": '$(echo -n new_password |

base64)'}}'

$ kubectl apply -f deploy/cr.yaml

2.

$ kubectl get pods

$ kubectl logs cluster1-7b7f7898d5-7f5pz -c pmm-client

3.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-12-20

12.3.2 Installing the PMM Client

50 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/pmm-secret.yaml
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.4 Using sidecar containers

The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this

feature to run debugging tools, some specific monitoring solutions, etc.

Therefore they should be used carefully and by experienced users only.

12.4.1 Adding a sidecar container

You can add sidecar containers to PostgreSQL instance and pgBouncer Pods. Just use sidecars subsection

in the instances or proxy.pgBouncer Custom Resource section in the deploy/cr.yaml configuration file. In this

subsection, you should specify at least the name and image of your container, and possibly a command to

run:

Apply your modifications as usual:

Running kubectl describe command for the appropriate Pod can bring you the information about the newly

created container:

Custom sidecar containers can easily access other components of your cluster.

Note

spec:

 instances:

 sidecars:

 - image: busybox

 command: ["/bin/sh"]

 args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]

 name: my-sidecar-1

$ kubectl apply -f deploy/cr.yaml

More options suitable for the sidecars subsection can be found in the Custom Resource options reference.

Note

$ kubectl describe pod cluster1-instance1

12.4 Using sidecar containers

51 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

12.4.2 Getting shell access to a sidecar container

You can login to your sidecar container as follows:

Expected output

Name: cluster1-instance1-n8v4-0

....

Containers:

....

my-sidecar-1:

 Container ID: docker://f0c3437295d0ec819753c581aae174a0b8d062337f80897144eb8148249ba742

 Image: busybox

 Image ID: docker-pullable://

busybox@sha256:139abcf41943b8bcd4bc5c42ee71ddc9402c7ad69ad9e177b0a9bc4541f14924

 Port: <none>

 Host Port: <none>

 Command:

 /bin/sh

 Args:

 -c

 while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done

 State: Running

 Started: Thu, 11 Nov 2021 10:38:15 +0300

 Ready: True

 Restart Count: 0

 Environment: <none>

 Mounts:

 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fbrbn (ro)

....

$ kubectl exec -it cluster1-instance1n8v4-0 -c my-sidecar-1 -- sh

/ #

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-03

12.4.2 Getting shell access to a sidecar container

52 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.5 Pause/resume PostgreSQL Cluster

There may be external situations when it is needed to pause your Cluster for a while and then start it back

up (some works related to the maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully stops the

cluster:

To start the cluster after it was paused just revert the spec.pause key to false .

spec:

 pause: true

There is an option also to put the cluster into a standby (read-only) mode instead of completely shutting it down.

This is done by a special spec.standby key, which should be set to true for read-only state or should be set to

false for normal cluster operation:

Note

spec:

 standby: false

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-03

12.5 Pause/resume PostgreSQL Cluster

53 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.postgresql.org/docs/12/warm-standby.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13. Reference

13.1 Custom Resource options

The Cluster is configured via the deploy/cr.yaml file.

The metadata part of this file contains the following keys:

name (cluster1 by default) sets the name of your Percona Distribution for PostgreSQL Cluster; it should

include only URL-compatible characters, not exceed 22 characters, start with an alphabetic character,

and end with an alphanumeric character;

 finalizers.percona.com/delete-ssl if present, activates the Finalizer which deletes objects, created for

SSL (Secret, certificate, and issuer) after the cluster deletion event (off by default).

finalizers.percona.com/delete-pvc if present, activates the Finalizer which deletes Persistent Volume

Claims for Percona XtraDB Cluster Pods after the cluster deletion event (off by default).

•

•

•

13. Reference

54 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

The spec part of the deploy/cr.yaml file contains the following:

13.1 Custom Resource options

55 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Key standby.enabled

Value boolean

Example false

Description Enables or disables running the cluster in a standby mode (read-only copy of an existing

cluster, useful for disaster recovery, etc)

Key standby.host

Value string

Example "<primary-ip>"

Description Host address of the primary cluster this standby cluster connects to

Key standby.port

Value string

Example "<primary-port>"

Description Port number used by a standby copy to connect to the primary cluster

Key openshift

Value boolean

Example true

Description Set to true if the cluster is being deployed on OpenShift, set to false otherwise, or unset

it for autodetection

Key standby.repoName

Value string

Example repo1

Description Name of the pgBackRest repository in the primary cluster this standby cluster connects

to

Key secrets.customTLSSecret.name

Value string

Example cluster1-cert

Description A secret with TLS certificate generated for external communications, see Transport Layer

Security (TLS) for details

Key secrets.customReplicationTLSSecret.name

Value string

Example replication1-cert

Description A secret with TLS certificate generated for internal communications, see Transport Layer

Security (TLS) for details

Key users.name

Value string

13.1 Custom Resource options

56 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

Example rhino

Description The name of the PostgreSQL user

Key users.databases

Value string

Example zoo

Description Databases accessible by a specific PostgreSQL user with rights to create objects in them

(the option is ignored for postgres user; also, modifying it can’t be used to revoke the

already given access)

Key users.password.type

Value string

Example ASCII

Description The set of characters used for password generation: can be either ASCII (default) or

AlphaNumeric

Key users.options

Value string

Example "SUPERUSER"

Description The ALTER ROLE options other than password (the option is ignored for postgres user)

Key databaseInitSQL.key

Value string

Example init.sql

Description Data key for the Custom configuration options ConfigMap with the init SQL file, which will

be executed at cluster creation time

Key databaseInitSQL.name

Value string

Example cluster1-init-sql

Description Name of the ConfigMap with the init SQL file, which will be executed at cluster creation

time

Key pause

Value string

Example false

Description Setting it to true gracefully stops the cluster, scaling workloads to zero and suspending

CronJobs; setting it to false after shut down starts the cluster back

Key unmanaged

Value string

Example false

13.1 Custom Resource options

57 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/

Description Setting it to true stops the Operator’s activity including the rollout and reconciliation of

changes made in the Custom Resource; setting it to false starts the Operator’s activity

back

Key dataSource.postgresCluster.clusterName

Value string

Example cluster1

Description Name of an existing cluster to use as the data source when restoring backup to a new

cluster

Key dataSource.postgresCluster.repoName

Value string

Example repo1

Description Name of the pgBackRest repository in the source cluster that contains the backup to be

restored to a new cluster

Key dataSource.postgresCluster.options

Value string

Example

Description The pgBackRest command-line options for the pgBackRest restore command

Key dataSource.pgbackrest.stanza

Value string

Example db

Description Name of the pgBackRest stanza to use as the data source when restoring backup to a

new cluster

Key dataSource.pgbackrest.configuration.secret.name

Value string

Example pgo-s3-creds

Description Name of the Kubernetes Secret object with custom pgBackRest configuration, which will

be added to the pgBackRest configuration generated by the Operator

Key dataSource.pgbackrest.global

Value subdoc

Example /pgbackrest/postgres-operator/hippo/repo1

Description Settings, which are to be included in the global section of the pgBackRest configuration

generated by the Operator

Key dataSource.pgbackrest.repo.name

Value string

Example repo1

Description Name of the pgBackRest repository

13.1 Custom Resource options

58 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://pgbackrest.org/command.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

Key dataSource.pgbackrest.repo.s3.bucket

Value string

Example "my-bucket"

Description The Amazon S3 bucket or Google Cloud Storage bucket

name used

for backups

Key dataSource.pgbackrest.repo.s3.endpoint

Value string

Example "s3.ca-central-1.amazonaws.com"

Description The endpoint URL of the S3-compatible storage to be used for backups (not needed for

the original Amazon S3 cloud)

Key dataSource.pgbackrest.repo.s3.region

Value boolean

Example "ca-central-1"

Description The AWS region to use for Amazon and all S3-compatible storages

Key image

Value string

Example perconalab/percona-postgresql-operator:main-ppg14-postgres

Description The PostgreSQL Docker image to use

Key imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for updating PostgreSQL images

Key postgresVersion

Value int

Example 14

Description The major version of PostgreSQL to use

Key port

Value int

Example 5432

Description The port number for PostgreSQL

Key expose.annotations

Value label

13.1 Custom Resource options

59 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://kubernetes.io/docs/concepts/containers/images/#updating-images

Example my-annotation: value1

Description The Kubernetes annotations metadata for PostgreSQL

Key expose.labels

Value label

Example my-label: value2

Description Set labels for the PostgreSQL Service

Key expose.type

Value string

Example LoadBalancer

Description Specifies the type of Kubernetes Service for PostgreSQL

Key instances.name

Value string

Example rs 0

Description The name of the PostgreSQL instance

Key instances.replicas

Value int

Example 3

Description The number of Replicas to create for the PostgreSQL instance

Key instances.resources.limits.cpu

Value string

Example 2.0

Description Kubernetes CPU limits for a PostgreSQL instance

Key instances.resources.limits.memory

Value string

Example 4Gi

Description The Kubernetes memory limits for a PostgreSQL instance

Key instances.sidecars.image

Value string

Example mycontainer1:latest

Description Image for the custom sidecar container for PostgreSQL Pods

Key instances.sidecars.name

Value string

13.1 Custom Resource options

60 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Example testcontainer

Description Name of the custom sidecar container for PostgreSQL Pods

Key instances.sidecars.imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for the PostgreSQL Pod sidecar container

Key instances.sidecars.env

Value subdoc

Example

Description The environment variables set as key-value pairs for the custom sidecar container for

PostgreSQL Pods

Key instances.sidecars.envFrom

Value subdoc

Example

Description The environment variables set as key-value pairs in ConfigMaps for the custom sidecar

container for PostgreSQL Pods

Key instances.sidecars.command

Value array

Example ["/bin/sh"]

Description Command for the custom sidecar container for PostgreSQL Pods

Key instances.sidecars.args

Value array

Example ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Description Command arguments for the custom sidecar container for PostgreSQL Pods

Key instances.topologySpreadConstraints.maxSkew

Value int

Example 1

Description The degree to which Pods may be unevenly distributed under the Kubernetes Pod

Topology Spread Constraints

Key instances.topologySpreadConstraints.topologyKey

Value string

Example my-node-label

Description The key of node labels for the Kubernetes Pod Topology Spread Constraints

Key instances.topologySpreadConstraints.whenUnsatisfiable

13.1 Custom Resource options

61 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Value string

Example DoNotSchedule

Description What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread

Constraints

Key instances.topologySpreadConstraints.labelSelector.matchLabels

Value label

Example postgres-operator.crunchydata.com/instance-set: instance1

Description The Label selector for the Kubernetes Pod Topology Spread Constraints

Key instances.tolerations.effect

Value string

Example NoSchedule

Description The Kubernetes Pod tolerations effect for the PostgreSQL instance

Key instances.tolerations.key

Value string

Example role

Description The Kubernetes Pod tolerations key for the PostgreSQL instance

Key instances.tolerations.operator

Value string

Example Equal

Description The Kubernetes Pod tolerations operator for the PostgreSQL instance

Key instances.tolerations.value

Value string

Example connection-poolers

Description The Kubernetes Pod tolerations value for the PostgreSQL instance

Key instances.priorityClassName

Value string

Example high-priority

Description The Kuberentes Pod priority class for PostgreSQL instance Pods

Key instances.walVolumeClaimSpec.accessModes

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Write-ahead

Log storage

13.1 Custom Resource options

62 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

Key instances.walVolumeClaimSpec.resources.requests.storage

Value string

Example 1Gi

Description The Kubernetes storage requests for the storage the PostgreSQL instance will use

Key instances.dataVolumeClaimSpec.accessModes

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Write-ahead

Log storage

Key instances.dataVolumeClaimSpec.resources.requests.storage

Value string

Example 1Gi

Description The Kubernetes storage requests for the storage the PostgreSQL instance will use

13.1 Custom Resource options

63 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

13.1.1 Backup Section

The backup section in the deploy/cr.yaml file contains the following configuration options for the regular

Percona Distribution for PostgreSQL backups.

13.1.1 Backup Section

64 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Key backups.pgbackrest.image

Value string

Example perconalab/percona-postgresql-operator:main-ppg14-pgbackrest

Description The Docker image for pgBackRest

Key backups.pgbackrest.configuration.secret.name

Value string

Example cluster1-pgbackrest-secrets

Description Name of the Kubernetes Secret object with custom pgBackRest configuration, which will

be added to the pgBackRest configuration generated by the Operator

Key backups.pgbackrest.jobs.priorityClassName

Value string

Example high-priority

Description The Kuberentes Pod priority class for pgBackRest jobs

Key backups.pgbackrest.jobs.resources.limits.cpu

Value int

Example 200

Description Kubernetes CPU limits for a pgBackRest job

Key backups.pgbackrest.jobs.resources.limits.memory

Value int

Example 128Mi

Description The Kubernetes memory limits for a pgBackRest job

Key backups.pgbackrest.jobs.tolerations.effect

Value string

Example NoSchedule

Description The Kubernetes Pod tolerations effect for a pgBackRest job

Key backups.pgbackrest.jobs.tolerations.key

Value string

Example role

Description The Kubernetes Pod tolerations key for a pgBackRest job

Key backups.pgbackrest.jobs.tolerations.operator

Value string

Example Equal

Description The Kubernetes Pod tolerations operator for a pgBackRest job

13.1.1 Backup Section

65 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Key backups.pgbackrest.jobs.tolerations.value

Value string

Example connection-poolers

Description The Kubernetes Pod tolerations value for a pgBackRest job

Key backups.pgbackrest.global

Value subdoc

Example /pgbackrest/postgres-operator/hippo/repo1

Description Settings, which are to be included in the global section of the pgBackRest configuration

generated by the Operator

Key backups.pgbackrest.repoHost.priorityClassName

Value string

Example high-priority

Description The Kuberentes Pod priority class for pgBackRest repo

Key backups.pgbackrest.repoHost.topologySpreadConstraints.maxSkew

Value int

Example 1

Description The degree to which Pods may be unevenly distributed under the Kubernetes Pod

Topology Spread Constraints

Key backups.pgbackrest.repoHost.topologySpreadConstraints.topologyKey

Value string

Example my-node-label

Description The key of node labels for the Kubernetes Pod Topology Spread Constraints

Key backups.pgbackrest.repoHost.topologySpreadConstraints.whenUnsatisfiable

Value string

Example ScheduleAnyway

Description What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints

Key backups.pgbackrest.repoHost.topologySpreadConstraints.labelSelector.matchLabels

Value label

Example postgres-operator.crunchydata.com/pgbackrest: ""

Description The Label selector for the Kubernetes Pod Topology Spread Constraints

Key backups.pgbackrest.repoHost.affinity.podAntiAffinity

Value subdoc

Example

13.1.1 Backup Section

66 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Description Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any

complexity

Key backups.pgbackrest.manual.repoName

Value string

Example repo1

Description Name of the pgBackRest repository for on-demand backups

Key backups.pgbackrest.manual.options

Value string

Example --type=full

Description The on-demand backup command-line options which will be passed to pgBackRest for

on-demand backups

Key backups.pgbackrest.repos.name

Value string

Example repo1

Description Name of the pgBackRest repository for backups

Key backups.pgbackrest.repos.schedules.full

Value string

Example 0 0 * * 6

Description Scheduled time to make a full backup specified in the crontab format

Key backups.pgbackrest.repos.schedules.differential

Value string

Example 0 0 * * 6

Description Scheduled time to make a differential backup specified in the crontab format

Key backups.pgbackrest.repos.volume.volumeClaimSpec.accessModes

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the pgBackRest Storage

Key backups.pgbackrest.repos.volume.volumeClaimSpec.resources.requests.storage

Value string

Example 1Gi

Description The Kubernetes storage requests for the pgBackRest storage

Key backups.pgbackrest.repos.s3.bucket

Value string

13.1.1 Backup Section

67 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Example "my-bucket"

Description The Amazon S3 bucket

name used

for backups

Key backups.pgbackrest.repos.s3.endpoint

Value string

Example "s3.ca-central-1.amazonaws.com"

Description The endpoint URL of the S3-compatible storage to be used for backups (not needed for

the original Amazon S3 cloud)

Key backups.pgbackrest.repos.s3.region

Value boolean

Example "ca-central-1"

Description The AWS region to use for Amazon and all S3-compatible storages

Key backups.pgbackrest.repos.gcs.bucket

Value string

Example "my-bucket"

Description The Google Cloud Storage bucket

name used

for backups

Key backups.pgbackrest.repos.azure.container

Value string

Example my-container

Description Name of the Azure Blob Storage container for backups

Key backups.restore.enabled

Value boolean

Example false

Description Enables or disables restoring a previously made backup

Key backups.restore.repoName

Value string

Example repo1

Description Name of the pgBackRest repository that contains the backup to be restored

Key backups.restore.options

Value string

Example

13.1.1 Backup Section

68 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers

13.1.2 PMM Section

The pmm section in the deploy/cr.yaml file contains configuration options for Percona Monitoring and

Management.

Description The pgBackRest command-line options for the pgBackRest restore command

Key pmm.enabled

Value boolean

Example false

Description Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM

Key pmm.image

Value string

Example percona/pmm-client:2.37.0

Description Percona Monitoring and Management (PMM) Client Docker image

Key pmm.imagePullPolicy

Value string

Example IfNotPresent

Description This option is used to set the policy for updating PMM Client images

Key pmm.pmmSecret

Value string

Example cluster1-pmm-secret

Description Name of the Kubernetes Secret object for the PMM Server password

Key pmm.serverHost

Value string

Example monitoring-service

Description Address of the PMM Server to collect data from the cluster

13.1.2 PMM Section

69 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

13.1.3 proxy Section

The proxy section in the deploy/cr.yaml file contains configuration options for the pgBouncer connection

pooler for PostgreSQL.

13.1.3 proxy Section

70 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/

Key proxy.pgBouncer.replicas

Value int

Example 3

Description The number of the pgBouncer Pods to provide connection pooling

Key proxy.pgBouncer.image

Value string

Example perconalab/percona-postgresql-operator:main-ppg14-pgbouncer

Description Docker image for the pgBouncer connection pooler

Key proxy.pgBouncer.exposePostgresUser

Value boolean

Example false

Description Enables or disables exposing postgres user through pgBouncer

Key proxy.pgBouncer.resources.limits.cpu

Value int

Example 200m

Description Kubernetes CPU limits for a pgBouncer container

Key proxy.pgBouncer.resources.limits.memory

Value int

Example 128Mi

Description The Kubernetes memory limits for a pgBouncer container

Key proxy.pgBouncer.expose.type

Value string

Example ClusterIP

Description Specifies the type of Kubernetes Service for pgBouncer

Key proxy.pgBouncer.expose.annotations

Value label

Example pg-cluster-annot: cluster1

Description The Kubernetes annotations metadata for pgBouncer

Key proxy.pgBouncer.expose.labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for the pgBouncer Service

13.1.3 proxy Section

71 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Value string

Example preferred

Description Pod anti-affinity type, can be either preferred or required

Key proxy.pgBouncer.sidecars.image

Value string

Example mycontainer1:latest

Description Image for the custom sidecar container for pgBouncer Pods

Key proxy.pgBouncer.sidecars.name

Value string

Example testcontainer

Description Name of the custom sidecar container for pgBouncer Pods

Key proxy.pgBouncer.sidecars.imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for the pgBouncer Pod sidecar container

Key proxy.pgBouncer.sidecars.env

Value subdoc

Example

Description The environment variables set as key-value pairs for the custom sidecar container for

pgBouncer Pods

Key proxy.pgBouncer.sidecars.envFrom

Value subdoc

Example

Description The environment variables set as key-value pairs in ConfigMaps for the custom sidecar

container for pgBouncer Pods

Key proxy.pgBouncer.sidecars.command

Value array

Example ["/bin/sh"]

Description Command for the custom sidecar container for pgBouncer Pods

Key proxy.pgBouncer.sidecars.args

Value array

Example ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Description Command arguments for the custom sidecar container for pgBouncer Pods

13.1.3 proxy Section

72 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

13.1.4 patroni Section

The patroni section in the deploy/cr.yaml file contains configuration options to customize the PostgreSQL

high-availability implementation based on Patroni.

Key proxy.pgBouncer.config

Value subdoc

Example

Description Custom configuration options for pgBouncer. Please note that configuration changes are

automatically applied to the running instances without validation, so having an invalid

config can make the cluster unavailable

global:

pool_mode: transaction

Key patroni.dynamicConfiguration

Value subdoc

Example

Description Custom PostgreSQL configuration options. Please note that configuration changes are

automatically applied to the running instances without validation, so having an invalid

config can make the cluster unavailable

postgresql:

 parameters:

 max_parallel_workers: 2

 max_worker_processes: 2

 shared_buffers: 1GB

 work_mem: 2MB

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-04

13.1.4 patroni Section

73 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://patroni.readthedocs.io/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.2 Percona certified images

Following table presents Percona’s certified docker images to be used with the Percona Operator for

PostgreSQL:

Image Digest

percona/percona-

postgresql-operator:

2.1.0

538076c55e2fb2e7c8964a793dfaf56dea4ce276e839e0cd8ac7da54966784a8

percona/percona-

postgresql-operator:

2.1.0-ppg12-postgres

950b63972fb5ddcdb50adca3306b3894ae6c2c64d16c36096101a64a6bc9bbb2

percona/percona-

postgresql-operator:

2.1.0-ppg13-postgres

e728d6f70b427e7752703cb20b38b456090e47079535d2f62ef224f7544bddfd

percona/percona-

postgresql-operator:

2.1.0-ppg14-postgres

1f1ae0278071f3331db3fbd368baa0ef2c28fadd497e2d8fb7ad5904f5113945

percona/percona-

postgresql-operator:

2.1.0-ppg15-postgres

a00da56a3a907b585a6eab8b4522864285878291240e07914c060eefbbc7c543

percona/percona-

postgresql-operator:

2.1.0-ppg12-pgbouncer

cd52276253214f37f66714dcd5a9fcafa21e2aff02048e8fda2f3d5affba13ca

percona/percona-

postgresql-operator:

2.1.0-ppg13-pgbouncer

cdeb1de7882067a49d20024a7959cadb5efa627420bad6a95e4036b1643aa7a4

percona/percona-

postgresql-operator:

2.1.0-ppg14-pgbouncer

c144eb7bf7c0f332785ec49785f5c974325c9bd467488d9e624ca8d744da4cfc

percona/percona-

postgresql-operator:

2.1.0-ppg15-pgbouncer

ff89002b697ad820e638410e8851d8b71ec2b2c1b008dc18ec0aaf69ff03da91

percona/percona-

postgresql-operator:

2.1.0-ppg12-pgbackrest

8b3515ad7bd0fd572d2ee3334eeb8f6c213baf39be65ff2c1dde5c1b50fe4ea2

percona/percona-

postgresql-operator:

2.1.0-ppg13-pgbackrest

05fb839203eecc2f3151bf72df3bccc31d5d6409d6bc7ba288fcdf06896c5029

percona/percona-

postgresql-operator:

2.1.0-ppg14-pgbackrest

80df91c4d8d9092351ff33f2d476df74366c4eb82c296dbc4edb307fc0407171

percona/percona-

postgresql-operator:

2.1.0-ppg15-pgbackrest

06ca64615c324ae97c79e95349f33995cc47843caa452ce9740ea4ccd3a455e1

percona/pmm-client:

2.37.0

e1e2f4cbfd4ce4be5d883330d810e9962a62531e2da07f1b115077a49ff97ed5

13.2 Percona certified images

74 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-04

13.2 Percona certified images

75 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14. Release Notes

14.1 Percona Operator for PostgreSQL Release Notes

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)

Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

•

•

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-04

14. Release Notes

76 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14.2 Percona Operator for PostgreSQL 2.1.0 (Tech preview)

Date

May 4, 2023

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator built with best practices of configuration and setup of Percona Distribution for

PostgreSQL on Kubernetes.

Percona Operator for PostgreSQL helps create and manage highly available, enterprise-ready PostgreSQL

clusters on Kubernetes. It is 100% open source, free from vendor lock-in, usage restrictions and expensive

contracts, and includes enterprise-ready features: backup/restore, high availability, replication, logging, and

more.

The benefits of using Percona Operator for PostgreSQL include saving time on database operations via

automation of Day-1 and Day-2 operations and deployment of consistent and vetted environment on

Kubernetes.

14.2.1 Release Highlights

PostgreSQL 15 is now officially supported by the Operator with the new exciting features it brings to

developers

UX improvements related to Custom Resource have been added in this release, including the handy

pg , pg-backup , and pg-restore short names useful to quickly query the cluster state with the kubectl

get command and additional information in the status fields, which now show name , endpoint , status ,

and age

14.2.2 New Features

K8SPG-328: The new delete-pvc finalizer allows to either delete or preserve Persistent Volumes at

Custom Resource deletion

K8SPG-330: The new delete-ssl finalizer can now be used to automatically delete objects created for

SSL (Secret, certificate, and issuer) in case of cluster deletion

K8SPG-331: Starting from now, the Operator adds short names to its Custom Resources: pg , pg-backup ,

and pg-restore

K8SPG-282: PostgreSQL 15 is now officially supported by the Operator

14.2.3 Improvements

K8SPG-262: The Operator now does not attempt to start Percona Monitoring and Management (PMM)

client if the corresponding secret does not contain the pmmserver or pmmserverkey key

K8SPG-285: To improve the Operator we capture anonymous telemetry and usage data. In this release

we add more data points to it

•

•

Version 2.1.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for

production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is

production-ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL

clusters in a Kubernetes-based environment, on-premises or in the cloud.

Note

•

•

•

•

•

•

•

•

14.2 Percona Operator for PostgreSQL 2.1.0 (Tech preview)

77 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.percona.com/percona-operator-for-postgresql/2.0/index.html#installation-guide
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/index.html
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/
https://jira.percona.com/browse/K8SPG-328
https://jira.percona.com/browse/K8SPG-330
https://jira.percona.com/browse/K8SPG-331
https://jira.percona.com/browse/K8SPG-282
https://jira.percona.com/browse/K8SPG-262
https://jira.percona.com/browse/K8SPG-285

K8SPG-295: Additional information was added to the status of the Operator Custom Resource, which

now shows name , endpoint , status , and age fields

K8SPG-304: The Operator stops using trust authentication method in pg_hba.conf for better security

K8SPG-325: Custom Resource options previously named paused and shutdown were renamed to

unmanaged and pause for better alignment with other Percona Operators

14.2.4 Bugs Fixed

K8SPG-272: Fix a bug due to which PMM agent related to the Pod wasn’t deleted from the PMM Server

inventory on Pod termination

K8SPG-279: Fix a bug which made the Operator to crash after creating a backup if there was no

backups.pgbackrest.manual section in the Custom Resource

K8SPG-298: Fix a bug due to which the shutdown Custom Resource option didn’t work making it

impossible to pause the cluster

K8SPG-334: Fix a bug which made it possible for the monitoring user to have special characters in the

autogenerated password, making it incompatible with the PMM Client

14.2.5 Supported platforms

The following platforms were tested and are officially supported by the Operator 2.1.0:

Google Kubernetes Engine (GKE) 1.23 - 1.25

Amazon Elastic Container Service for Kubernetes (EKS) 1.23 - 1.25

This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.

•

•

•

•

•

•

•

•

•

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-04

14.2.4 Bugs Fixed

78 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://jira.percona.com/browse/K8SPG-295
https://jira.percona.com/browse/K8SPG-304
https://jira.percona.com/browse/K8SPG-325
https://jira.percona.com/browse/K8SPG-272
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-298
https://jira.percona.com/browse/K8SPG-334
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14.3 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

Date

December 30, 2022

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator is based on best practices for configuration and setup of a Percona Distribution for

PostgreSQL on Kubernetes. The benefits of the Operator are many, but saving time and delivering a

consistent and vetted environment is key.

The Percona Operator for PostgreSQL 2.x is based on the 5.x branch of the Postgres Operator developed by

Crunchy Data. Please see the main changes in this version below.

14.3.1 Architecture

Operator SDK is now used to build and package the Operator. It simplifies the development and brings more

contribution friendliness to the code, resulting in better potential for growing the community. Users now

have full control over Custom Resource Definitions that Operator relies on, which simplifies the deployment

and management of the operator.

In version 1.x we relied on Deployment resources to run PostgreSQL clusters, whereas in 2.0 Statefulsets are

used, which are the de-facto standard for running stateful workloads in Kubernetes. This change improves

stability of the clusters and removes a lot of complexity from the Operator.

14.3.2 Backups

One of the biggest challenges in version 1.x is backups and restores. There are two main problems that our

user faced:

Not possible to change backup configuration for the existing cluster

Restoration from backup to the newly deployed cluster required workarounds

In this version both these issues are fixed. In addition to that:

Run up to 4 pgBackrest repositories

Bootstrap the cluster from the existing backup through Custom Resource

Azure Blob Storage support

14.3.3 Operations

Deploying complex topologies in Kubernetes is not possible without affinity and anti-affinity rules. In version

1.x there were various limitations and issues, whereas this version comes with substantial improvements that

enables users to craft the topology of their choice.

•

•

Version 2.0.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for

production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is

production-ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL

clusters in a Kubernetes-based environment, on-premises or in the cloud.

Note

•

•

•

•

•

14.3 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

79 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/doc/kubernetes-operator-for-postgresql/2.0/index.html#installation-guide
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/https://docs.percona.com/percona-operator-for-postgresql/index.html
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://sdk.operatorframework.io/
https://docs.percona.com/percona-operator-for-postgresql/2.0/backups.html
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#use-azure-blob-storage-for-backups
https://docs.percona.com/percona-operator-for-postgresql/2.0/constraints.html

Within the same cluster users can deploy multiple instances. These instances are going to have the same

data, but can have different configuration and resources. This can be useful if you plan to migrate to new

hardware or need to test the new topology.

Each postgreSQL node can have sidecar containers now to provide integration with your existing tools or

expand the capabilities of the cluster.

14.3.4 Try it out now

Excited with what you read above?

We encourage you to install the Operator following our documentation.

Feel free to share feedback with us on the forum or raise a bug or feature request in JIRA.

See the source code in our Github repository.

•

•

•

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-12-30

14.3.4 Try it out now

80 of 80 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#instances-name
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#instances-sidecars-image
https://docs.percona.com/percona-operator-for-postgresql/2.0/index.html#quickstart-guides
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG/issues
https://github.com/percona/percona-postgresql-operator
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

	Percona Operator for PostgreSQL documentation
	1. Percona Operator for PostgreSQL
	2. Features
	3. Quickstart
	4. Installation
	5. Configuration
	6. Management
	7. Reference
	Contact Us

	8. Features
	8.1 System Requirements
	8.1.1 Officially supported platforms
	CONTACT US

	8.2 Design overview
	CONTACT US

	9. Quickstart
	9.1 Install Percona Distribution for PostgreSQL using Helm
	9.1.1 Pre-requisites
	9.1.2 Installation
	CONTACT US

	9.2 Install Percona Distribution for PostgreSQL using kubectl
	9.2.1 Pre-requisites
	9.2.2 Install the Operator and Percona Distribution for PostgreSQL
	9.2.3 Verifying the cluster operation
	CONTACT US

	10. Installation
	10.1 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)
	10.1.1 Prerequisites
	10.1.2 Create and configure the GKE cluster
	10.1.3 Install the Operator and deploy your PostgreSQL cluster
	10.1.4 Verifying the cluster operation
	10.1.5 Removing the GKE cluster
	CONTACT US

	10.2 Install Percona Distribution for PostgreSQL on Kubernetes
	10.2.1 Verifying the cluster operation
	CONTACT US

	11. Configuration
	11.1 Users
	CONTACT US

	11.2 Exposing cluster
	11.2.1 PgBouncer
	11.2.2 Exposing the cluster without PgBouncer
	CONTACT US

	11.3 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes
	11.3.1 Affinity and anti-affinity
	11.3.2 Topology Spread Constraints
	11.3.3 Tolerations
	CONTACT US

	11.4 Transport Layer Security (TLS)
	11.4.1 Allow the Operator to generate certificates automatically
	11.4.2 Check connectivity to the cluster
	11.4.3 Keep certificates after deleting the cluster
	CONTACT US

	11.5 Telemetry
	CONTACT US

	12. Management
	12.1 Providing Backups
	Backup repositories
	12.1.1 Backup types
	12.1.2 Backup retention
	12.1.3 Backup storage
	Configuring the S3-compatible backup storage
	Configuring Google Cloud Storage for backups
	Configuring Azure Blob Storage for backups

	12.1.4 Scheduling backups
	12.1.5 Making on-demand backup
	12.1.6 Restore the cluster from a previously saved backup
	Restore to an existing PostgreSQL cluster
	Restore the cluster with point-in-time recovery
	Restore to a new PostgreSQL cluster
	CONTACT US

	12.2 High availability and scaling
	12.2.1 Vertical scaling
	12.2.2 High availability
	12.2.3 Using spec.instances.replicas
	12.2.4 Using spec.instances
	CONTACT US

	12.3 Monitoring
	12.3.1 Installing the PMM Server
	12.3.2 Installing the PMM Client
	CONTACT US

	12.4 Using sidecar containers
	12.4.1 Adding a sidecar container
	12.4.2 Getting shell access to a sidecar container
	CONTACT US

	12.5 Pause/resume PostgreSQL Cluster
	CONTACT US

	13. Reference
	13.1 Custom Resource options
	13.1.1 Backup Section
	13.1.2 PMM Section
	13.1.3 proxy Section
	13.1.4 patroni Section
	CONTACT US

	13.2 Percona certified images
	CONTACT US

	14. Release Notes
	14.1 Percona Operator for PostgreSQL Release Notes
	CONTACT US

	14.2 Percona Operator for PostgreSQL 2.1.0 (Tech preview)
	14.2.1 Release Highlights
	14.2.2 New Features
	14.2.3 Improvements
	14.2.4 Bugs Fixed
	14.2.5 Supported platforms
	CONTACT US

	14.3 Percona Operator for PostgreSQL 2.0.0 (Tech preview)
	14.3.1 Architecture
	14.3.2 Backups
	14.3.3 Operations
	14.3.4 Try it out now
	CONTACT US

