
Percona Operator for

PostgreSQL

documentation

1.5.1 (January 29, 2024)

Percona Technical Documentation Team

Percona LLC and/or its affiliates, © 2009 - 2024

Table of contents

41. Percona Operator for PostgreSQL

42. Requirements

43. Quickstart guides

44. Installation guides

45. Configuration

56. Management

57. HOWTOs

58. Reference

79. Requirements

79.1 System Requirements

79.2 Design overview

109.3 Compare various solutions to deploy PostgreSQL in Kubernetes

1310. Quickstart guides

1310.1 Install Percona Distribution for PostgreSQL on Minikube

1610.2 Install Percona Distribution for PostgreSQL using Helm

1811. Installation guide

1811.1 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)

2111.2 Install Percona Distribution for PostgreSQL on Kubernetes

2411.3 Install Percona Distribution for PostgreSQL on OpenShift

2712. Configuration

2712.1 Users

2812.2 Changing PostgreSQL Options

3112.3 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes

3412.4 Transport Layer Security (TLS)

3812.5 Telemetry

4013. Management

4013.1 Providing Backups

4713.2 Update Percona Operator for PostgreSQL

5113.3 Scale Percona Distribution for PostgreSQL on Kubernetes and OpenShift

5113.4 Monitoring

5313.5 Pause/resume PostgreSQL Cluster

5414. How to

5414.1 How to deploy a standby cluster for Disaster Recovery

5814.2 Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

6214.3 Using PostgreSQL tablespaces with Percona Operator for PostgreSQL

Table of contents

2 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

6614.4 Creating a private S3-compatible cloud for backups

6815. Reference

6815.1 Custom Resource options

8515.2 The Operator installation options

8715.3 Percona certified images

8815.4 Frequently Asked Questions

9115.5 Copyright and licensing information

9115.6 Trademark policy

9416. Release Notes

9416.1 Percona Operator for PostgreSQL Release Notes

9416.2 Percona Operator for PostgreSQL 1.5.1

9516.3 Percona Operator for PostgreSQL 1.5.0

9616.4 Percona Operator for PostgreSQL 1.4.0

9716.5 Percona Operator for PostgreSQL 1.3.0

9916.6 Percona Operator for PostgreSQL 1.2.0

10016.7 Percona Distribution for PostgreSQL Operator 1.1.0

10116.8 Percona Distribution for PostgreSQL Operator 1.0.0

10316.9 Percona Distribution for PostgreSQL Operator 0.2.0

10416.10 Percona Distribution for PostgreSQL Operator 0.1.0

Table of contents

3 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

1. Percona Operator for PostgreSQL

This is version 1.5.1 of the Percona Operator for PostgreSQL. The Operator 1.x is now in maintenance mode. We
strongly recommend to use Percona Operator for PostgreSQL 2.x.

Kubernetes have added a way to manage containerized systems, including database clusters. This
management is achieved by controllers, declared in configuration files. These controllers provide
automation with the ability to create objects, such as a container or a group of containers called pods, to
listen for an specific event and then perform a task.

This automation adds a level of complexity to the container-based architecture and stateful applications,
such as a database. A Kubernetes Operator is a special type of controller introduced to simplify complex
deployments. The Operator extends the Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for configuration and setup of a Percona
Distribution for PostgreSQL cluster. The benefits of the Operator are many, but saving time and delivering a
consistent and vetted environment is key.

2. Requirements

System Requirements

Design and architecture

Comparison with other solutions

3. Quickstart guides

Install on Minikube

Install on Google Kubernetes Engine (GKE)

Install with Helm

4. Installation guides

Generic Kubernetes installation

Install on OpenShift

5. Configuration

Application and system users

Changing PostgreSQL Options

Anti-affinity and tolerations

Transport Encryption (TLS/SSL)

Telemetry

Note

•

•

•

•

•

•

•

•

•

•

•

•

•

1. Percona Operator for PostgreSQL

4 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/percona-operator-for-postgresql/2.0/index.html
https://github.com/percona/percona-postgresql-operator

6. Management

Backup and restore

Upgrade Percona Distribution for PostgreSQL and the Operator

Horizontal and vertical scaling

Monitor with Percona Monitoring and Management (PMM)

Restart or pause the cluster

7. HOWTOs

How to deploy a standby cluster for Disaster Recovery

Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

Using PostgreSQL tablespaces with Percona Operator for PostgreSQL

Creating a private S3-compatible cloud for backups

8. Reference

Custom Resource options

Operator installation options

Percona certified images

Frequently Asked Questions

Old releases (documentation archive)

Release Notes

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

6. Management

5 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://docs.percona.com/legacy-documentation/

Contact Us

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-06-30

8. Reference

6 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

9. Requirements

9.1 System Requirements

The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is cloud native
and storage agnostic, working with a wide variety of storage classes, hostPath, and NFS.

9.1.1 Officially supported platforms

The Operator was developed and tested with PostgreSQL versions 12.16, 13.12, and 14.9. Other options may
also work but have not been tested. The Operator 1.5.1 provides connection pooling based on pgBouncer
1.20.0 and high-availability implementation based on Patroni 2.1.4.

The following platforms were tested and are officially supported by the Operator 1.5.1:

Google Kubernetes Engine (GKE) 1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS) 1.24 - 1.28

OpenShift 4.11 - 4.14

Minikube 1.32

Other Kubernetes platforms may also work but have not been tested.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

9.2 Design overview

The Percona Operator for PostgreSQL automates and simplifies deploying and managing open source
PostgreSQL clusters on Kubernetes. The Operator is based on CrunchyData’s PostgreSQL Operator.

•

•

•

•

Last update: 2023-12-11

9. Requirements

7 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://access.crunchydata.com/documentation/postgres-operator/v4/

DB Pod N

Kubernetes API Operator

CSI

Storage
Area

Network

Container Suite
Custom Resource

Definitions

clusters
(perconapgcluster)

tasks
(pgtasks)

pgbouncerprimary
PostgreSQL

replica
PostgreSQL

pgbackrest

PostgreSQL containers deployed with the Operator include the following components:

The PostgreSQL database management system, including:

PostgreSQL Additional Supplied Modules,

pgAudit PostgreSQL auditing extension,

PostgreSQL set_user Extension Module,

wal2json output plugin,

The pgBackRest Backup & Restore utility,

The pgBouncer connection pooler for PostgreSQL,

The PostgreSQL high-availability implementation based on the Patroni template,

the pg_stat_monitor PostgreSQL Query Performance Monitoring utility,

LLVM (for JIT compilation).

To provide high availability the Operator involves node affinity to run PostgreSQL Cluster instances on
separate worker nodes if possible. If some node fails, the Pod with it is automatically re-created on another
node.

•

•

•

•

•

•

•

•

•

•

9.2 Design overview

8 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json
https://pgbackrest.org/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

CSI

Percona Distribution for PostgreSQL
Namespace

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A
PersistentVolumeClaim (PVC) is used to implement the automatic storage provisioning to pods. If a failure
occurs, the Container Storage Interface (CSI) should be able to re-mount storage on a different node.

The Operator functionality extends the Kubernetes API with Custom Resources Definitions. These CRDs
provide extensions to the Kubernetes API, and, in the case of the Operator, allow you to perform actions such
as creating a PostgreSQL Cluster, updating PostgreSQL Cluster resource allocations, adding additional
utilities to a PostgreSQL cluster, e.g. pgBouncer for connection pooling and more.

When a new Custom Resource is created or an existing one undergoes some changes or deletion, the
Operator automatically creates/changes/deletes all needed Kubernetes objects with the appropriate
settings to provide a proper Percona PostgreSQL Cluster operation.

9.2 Design overview

9 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/

Following CRDs are created while the Operator installation:

pgclusters stores information required to manage a PostgreSQL cluster. This includes things like the cluster
name, what storage and resource classes to use, which version of PostgreSQL to run, information about
how to maintain a high-availability cluster, etc.

pgreplicas stores information required to manage the replicas within a PostgreSQL cluster. This includes
things like the number of replicas, what storage and resource classes to use, special affinity rules, etc.

pgtasks is a general purpose CRD that accepts a type of task that is needed to run against a cluster (e.g.
take a backup) and tracks the state of said task through its workflow.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

9.3 Compare various solutions to deploy PostgreSQL in Kubernetes

There are multiple ways to deploy and manage PostgreSQL in Kubernetes. Here we will focus on comparing
the following open source solutions:

Crunchy Data PostgreSQL Operator (PGO)

CloudNative PG from Enterprise DB

Stackgres from OnGres

Zalando Postgres Operator

Percona Operator for PostgreSQL

9.3.1 Generic

•

•

•

Last update: 2023-04-14

•

•

•

•

•

Feature/
Product

Percona
Operator

for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Open-source
license

Apache 2.0 AGPL 3 Apache 2.0,
but images
are under
Developer
Program

Apache 2.0 MIT

PostgreSQL
versions

12, 13, 14 14 12, 13, 14 11 - 14, 15 in Beta 11 - 14

Kubernetes
conformance

Various
versions

are tested

Various
versions

are tested

Various
versions are

tested

Various
versions are

tested

AWS EKS

9.3 Compare various solutions to deploy PostgreSQL in Kubernetes

10 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://github.com/CrunchyData/postgres-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/ongres/stackgres
https://github.com/zalando/postgres-operator
https://github.com/percona/percona-postgresql-operator/

9.3.2 Maintenance

9.3.3 PostgreSQL topologies

9.3.4 Backups

Feature/
Product

Percona
Operator

for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Operator
upgrade

Database
upgrade

Automated
and safe

Automated
and safe

Manual Manual Manual

Compute
scaling

Horizontal
and

vertical

Horizontal
and

vertical

Horizontal
and vertical

Horizontal and
vertical

Horizontal
and

vertical

Storage
scaling

Manual Manual Manual Manual Manual,
automated

for AWS
EBS

Feature/
Product

Percona
Operator

for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Warm
standby

Hot standby

Connection
pooling

Delayed
replica

Tablespaces

Feature/
Product

Percona
Operator

for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Scheduled
backups

WAL
archiving

PITR

GCS

S3

Azure

9.3.2 Maintenance

11 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

9.3.5 Monitoring

9.3.6 Miscellaneous

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Feature/
Product

Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Solution Percona
Monitoring

and
Management

Exposing
metrics in

Prometheus
format

Prometheus
stack and
pgMonitor

Exposing
metrics in

Prometheus
format

Sidecars

Feature/
Product

Percona
Operator

for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Customize
PostgreSQL
configuration

Helm

Transport
encryption

Data-at-rest
encryption

Through
storage

class

Through
storage

class

Through
storage class

Through
storage class

Through
storage

class

Create
users/roles

limited limited

Last update: 2023-05-09

9.3.5 Monitoring

12 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

10. Quickstart guides

10.1 Install Percona Distribution for PostgreSQL on Minikube

Installing the Percona Operator for PostgreSQL on minikube is the easiest way to try it locally without a cloud
provider. Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide
hypervisor, such as VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test the
Kubernetes application locally prior to deploying it on a cloud.

The following steps are needed to run Percona Operator for PostgreSQL on minikube:

Install minikube, using a way recommended for your system. This includes the installation of the following
three components:

kubectl tool,

a hypervisor, if it is not already installed,

actual minikube package

After the installation, run minikube start command. Being executed, this command will download needed
virtualized images, then initialize and run the cluster. After minikube is successfully started, you can optionally
run the Kubernetes dashboard, which visually represents the state of your cluster. Executing minikube dashboard

will start the dashboard and open it in your default web browser.

The first thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent
context for further steps:

To use different namespace, you should edit all occurrences of the namespace: pgo line in both deploy/cr.yaml and
deploy/operator.yaml configuration files.

If you use Kubernetes dashboard, choose your newly created namespace to be shown instead of the default
one:

 Searchpgo

Workloads N

Cron Jobs

Daemon Sets

Deployments

Workloads

pgo

NAMESPACES

All namespaces

pgo

Deploy the operator with the following command:

1.

a.

b.

c.

2.

$ kubectl create namespace pgo
$ kubectl config set-context $(kubectl config current-context) --namespace=pgo

Note

3.

10. Quickstart guides

13 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/

The last line of the command output mentions the pgo-deploy Kubernetes Job created to carry on the Operator
deployment process. It can take several minutes to be completed. You can track it with the following
command:

When it reaches the COMPLETIONS count of 1/1 , you can safely delete the job as follows:

Deleting the pgo-deploy job will be needed before upgrading the Operator.

Deploy Percona Distribution for PostgreSQL:

This deploys PostgreSQL on one node, because deploy/cr-minimal.yaml is for minimal non-production
deployment. For more configuration options please see deploy/cr.yaml and Custom Resource Options.

Creation process will take some time. The process is over when both operator and replica set pod have
reached their Running status:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v1.5.1/deploy/operator.yaml

Expected output

serviceaccount/pgo-deployer-sa created
clusterrole.rbac.authorization.k8s.io/pgo-deployer-cr created
configmap/pgo-deployer-cm created
clusterrolebinding.rbac.authorization.k8s.io/pgo-deployer-crb created
job.batch/pgo-deploy created

$ kubectl get job/pgo-deploy

Expected output

NAME COMPLETIONS DURATION AGE
pgo-deploy 1/1 81s 5m53s

$ kubectl delete job/pgo-deploy

Note

4.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-postgresql-operator/v1.5.1/deploy/cr-
minimal.yaml

$ kubectl get pods

10.1 Install Percona Distribution for PostgreSQL on Minikube

14 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

You can also track the progress via the Kubernetes dashboard:

Workload Status

Running: 4

Deployments

Succeeded: 2

Jobs

Running: 4

Succeeded: 2

Pods

Running: 4

Replica Sets

Deployments

Images Labels Pods

minimal-cluster-pgbouncer

Show all

1 / 1 3 minutes ago

minimal-cluster

Show all

1 / 1 5 minutes ago

minimal-cluster-backrest-shared-repo

Show all

1 / 1 5 minutes ago


Name Created

perconalab/percona-postgresql-operator:main-pp
g14-pgbouncer

crunchy-pgbouncer: true

name: minimal-cluster-pgbouncer

pg-cluster: minimal-cluster

perconalab/percona-postgresql-operator:main-pp
g14-postgres-ha

crunchy-pgha-scope: minimal-cluster

deployment-name: minimal-cluster

name: minimal-cluster

perconalab/percona-postgresql-operator:main-pp
g14-pgbackrest-repo

name: minimal-cluster-backrest-shared-repo

pg-cluster: minimal-cluster

pgo-backrest-repo: true

Workloads

During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use kubectl get secrets command to see the list of Secrets objects (by default Secrets object you are interested
in has minimal-cluster-pguser-secret name). Then you can use kubectl get secret minimal-cluster-pguser-secret -o yaml to
look through the YAML file with generated secrets (the actual password will be base64-encoded), or just get
the needed password with the following command:

Check connectivity to a newly created cluster.

Run new Pod to use it as a client and connect its console output to your terminal (running it may require some
time to deploy). When you see the command line prompt of the newly created Pod, run psql tool using the
password obtained from the secret. The following command will do this, naming the new Pod pg-client :

This command will connect you to the PostgreSQL interactive terminal.

Expected output

NAME READY STATUS RESTARTS AGE
backrest-backup-minimal-cluster-dcvkw 0/1 Completed 0 68s
minimal-cluster-6dfd645d94-42xsr 1/1 Running 0 2m5s
minimal-cluster-backrest-shared-repo-77bd498dfd-9msvp 1/1 Running 0 2m23s
minimal-cluster-pgbouncer-594bf56d-kjwrp 1/1 Running 0 84s
pgo-deploy-lnbv7 0/1 Completed 0 4m14s
postgres-operator-6c4c558c5-dkk8v 4/4 Running 0 3m37s

5.

$ kubectl get secrets minimal-cluster-users -o yaml -o jsonpath='{.data.pguser}' | base64 --decode | tr '\n' ' ' && echo " "

6.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:14.9 --restart=Never -- bash -il
[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h minimal-cluster -p 5432 -U pguser pgdb

10.1 Install Percona Distribution for PostgreSQL on Minikube

15 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

10.2 Install Percona Distribution for PostgreSQL using Helm

Helm is the package manager for Kubernetes. Percona Helm charts can be found in percona/percona-
helm-charts repository in Github.

10.2.1 Pre-requisites

Install Helm following its official installation instructions.

Helm v3 is needed to run the following steps.

10.2.2 Installation

Add the Percona’s Helm charts repository and make your Helm client up to date with it:

Install the Percona Operator for PostgreSQL:

The my-operator parameter in the above example is the name of a new release object which is created for the
Operator when you install its Helm chart (use any name you like).

$ psql (14.9)
Type "help" for help.
pgdb=>

Last update: 2023-12-08

Note

1.

$ helm repo add percona https://percona.github.io/percona-helm-charts/
$ helm repo update

2.

$ helm install my-operator percona/pg-operator

10.2 Install Percona Distribution for PostgreSQL using Helm

16 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://github.com/helm/helm
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://helm.sh/docs/intro/using_helm/#three-big-concepts

If nothing explicitly specified, helm install command will work with the default namespace and the latest version of the
Helm chart.

To use different namespace, provide its name with the following additional parameter: --namespace my-namespace .

To use different Helm chart version, provide it as follows: --version 1.5.1

Install PostgreSQL:

The my-db parameter in the above example is the name of a new release object which is created for the
Percona Distribution for PostgreSQL when you install its Helm chart (use any name you like).

10.2.3 Installing Percona Distribution for PostgreSQL with customized parameters

The command above installs Percona Distribution for PostgreSQL with default parameters. Custom options
can be passed to a helm install command as a --set key=value[,key=value] argument. The options passed with a
chart can be any of the Operator’s Custom Resource options.

The following example will deploy a Percona Distribution for PostgreSQL Cluster in the pgdb namespace, with
enabled Percona Monitoring and Management (PMM) and 20 Gi storage for a Primary PostgreSQL node:

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Note

•

•

3.

$ helm install my-db percona/pg-db

$ helm install my-db percona/pg-db --version 1.5.1 --namespace my-namespace \
--set pgPrimary.volumeSpec.size=20Gi \
--set pmm.enabled=true

Last update: 2023-04-17

10.2.3 Installing Percona Distribution for PostgreSQL with customized parameters

17 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11. Installation guide

11.1 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine

(GKE)

Following steps will allow you to install the Operator and use it to manage Percona Distribution for
PostgreSQL with the Google Kubernetes Engine. The document assumes some experience with Google
Kubernetes Engine (GKE). For more information on the GKE, see the Kubernetes Engine Quickstart.

11.1.1 Prerequisites

All commands from this quickstart can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

gcloud. This tool is part of the Google Cloud SDK. To install it, select your operating system on the official
Google Cloud SDK documentation page and then follow the instructions.

kubectl. It is the Kubernetes command-line tool you will use to manage and deploy applications. To install the
tool, run the following command:

11.1.2 Configuring default settings for the cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local
shell (if you have installed Google Cloud SDK locally on the previous step). The following command will
create a cluster named my-cluster-1 :

You must edit the following command and other command-line statements to replace the <project name>

placeholder with your project name. You may also be required to edit the zone location, which is set to us-central1

in the above example. Other parameters specify that we are creating a cluster with 3 nodes and with machine
type of 4 vCPUs and 45 GB memory.

You may wait a few minutes for the cluster to be generated, and then you will see it listed in the Google
Cloud console (select Kubernetes Engine → Clusters in the left menu panel):

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

1.

2.

$ gcloud auth login
$ gcloud components install kubectl

$ gcloud container clusters create cluster-1 --project <project name> --zone us-central1-a --cluster-version --machine-
type n1-standard-4 --num-nodes=3

Note

11. Installation guide

18 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart

Now you should configure the command-line access to your newly created cluster to make kubectl be able
to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You
will see the connect statement configures command-line access. After you have edited the statement, you
may run the command in your local shell:

11.1.3 Installing the Operator

First of all, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster. The
following command will give you the ability to create Roles and RoleBindings:

Use the following git clone command to download the correct branch of the percona-postgresql-operator
repository:

The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent
context for further steps:

To use different namespace, you should edit all occurrences of the namespace: pgo line in both deploy/cr.yaml and
deploy/operator.yaml configuration files.

Deploy the operator with the following command:

$ gcloud container clusters get-credentials cluster-1 --zone us-central1-a --project <project name>

1.

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user $(gcloud config get-value
core/account)

Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

2.

$ git clone -b v1.5.1 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

3.

$ kubectl create namespace pgo
$ kubectl config set-context $(kubectl config current-context) --namespace=pgo

Note

4.

$ kubectl apply -f deploy/operator.yaml

Expected output

serviceaccount/pgo-deployer-sa created
clusterrole.rbac.authorization.k8s.io/pgo-deployer-cr created
configmap/pgo-deployer-cm created
clusterrolebinding.rbac.authorization.k8s.io/pgo-deployer-crb created
job.batch/pgo-deploy created

11.1.3 Installing the Operator

19 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/iam

The last line of the command output mentions the pgo-deploy Kubernetes Job created to carry on the Operator
deployment process. It can take several minutes to be completed. You can track it with the following
command:

When it reaches the COMPLETIONS count of 1/1 , you can safely delete the job as follows:

Deleting the pgo-deploy job will be needed before upgrading the Operator.

After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following
commands:

Creation process will take some time. The process is over when the Operator and PostgreSQL Pods have
reached their Running status:

Also, you can see the same information when browsing Pods of your cluster in Google Cloud console via the
Object Browser:

$ kubectl get job/pgo-deploy

Expected output

NAME COMPLETIONS DURATION AGE
pgo-deploy 1/1 81s 5m53s

$ kubectl delete job/pgo-deploy

Note

5.

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE
backrest-backup-cluster1-4nq2x 0/1 Completed 0 10m
cluster1-6c9d4f9678-qdfx2 1/1 Running 0 10m
cluster1-backrest-shared-repo-7cb4dd8f8f-sh5gg 1/1 Running 0 10m
cluster1-pgbouncer-6cd69d8966-vlxdt 1/1 Running 0 10m
pgo-deploy-bp2ts 0/1 Completed 0 5m
postgres-operator-67f58bcb8c-9p4tl 4/4 Running 1 5m

11.1.3 Installing the Operator

20 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

Name Status Type Namespace Cluster Location

core API Group

Pod Kind

backrest-backup-cluster1-t6s42 Succeeded Pod pgo cluster1 europe-west3-b

cluster1-6c9d4f9678-qdfx2 Running Pod pgo cluster1 europe-west3-b

cluster1-backrest-shared-repo-7cb4dd8f8f-sh5gg Running Pod pgo cluster1 europe-west3-b

cluster1-pgbouncer-6cd69d8966-vlxdt Running Pod pgo cluster1 europe-west3-b

pgo-deploy-bp2ts Succeeded Pod pgo cluster1 europe-west3-b

postgres-operator-67f58bcb8c-9p4tl Running Pod pgo cluster1 europe-west3-b

During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use kubectl get secrets command to see the list of Secrets objects (by default Secrets object you are interested
in has cluster1-pguser-secret name). Then you can use kubectl get secret cluster1-pguser-secret -o yaml to look through
the YAML file with generated secrets (the actual password will be base64-encoded), or just get the needed
password with the following command:

Check connectivity to newly created cluster. Run a new Pod to use it as a client and connect its console output
to your terminal (running it may require some time to deploy). When you see the command line prompt of the
newly created Pod, run psql tool using the password obtained from the secret. The following command will do
this, naming the new Pod pg-client :

This command will connect you to the PostgreSQL interactive terminal.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

11.2 Install Percona Distribution for PostgreSQL on Kubernetes

Following steps will allow you to install the Operator and use it to manage Percona Distribution for
PostgreSQL in a Kubernetes-based environment.

6.

$ kubectl get secrets cluster1-users -o yaml -o jsonpath='{.data.pguser}' | base64 --decode | tr '\n' ' ' && echo " "

7.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:14.9 --restart=Never -- bash -il
[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer -p 5432 -U pguser pgdb

$ psql (14.9)
Type "help" for help.
pgdb=>

Last update: 2023-07-21

11.2 Install Percona Distribution for PostgreSQL on Kubernetes

21 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent
context for further steps:

To use different namespace, you should edit all occurrences of the namespace: pgo line in both deploy/cr.yaml and
deploy/operator.yaml configuration files.

Deploy the operator with the following command:

The last line of the command output mentions the pgo-deploy Kubernetes Job created to carry on the Operator
deployment process. It can take several minutes to be completed. You can track it with the following
command:

When it reaches the COMPLETIONS count of 1/1 , you can safely delete the job as follows:

1.

$ git clone -b v1.5.1 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

Note

2.

$ kubectl create namespace pgo
$ kubectl config set-context $(kubectl config current-context) --namespace=pgo

Note

3.

$ kubectl apply -f deploy/operator.yaml

Expected output

serviceaccount/pgo-deployer-sa created
clusterrole.rbac.authorization.k8s.io/pgo-deployer-cr created
configmap/pgo-deployer-cm created
clusterrolebinding.rbac.authorization.k8s.io/pgo-deployer-crb created
job.batch/pgo-deploy created

$ kubectl get job/pgo-deploy

Expected output

NAME COMPLETIONS DURATION AGE
pgo-deploy 1/1 81s 5m53s

$ kubectl delete job/pgo-deploy

11.2 Install Percona Distribution for PostgreSQL on Kubernetes

22 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

Deleting the pgo-deploy job will be needed before upgrading the Operator.

After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following
command:

Creation process will take some time. The process is over when both operator and replica set pod have
reached their Running status:

During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use kubectl get secrets command to see the list of Secrets objects (by default Secrets object you are interested
in has cluster1-pguser-secret name). Then you can use kubectl get secret cluster1-pguser-secret -o yaml to look through
the YAML file with generated secrets (the actual password will be base64-encoded), or just get the needed
password with the following command:

Check connectivity to newly created cluster. Run a new Pod to use it as a client and connect its console output
to your terminal (running it may require some time to deploy). When you see the command line prompt of the
newly created Pod, run psql tool using the password obtained from the secret. The following command will do
this, naming the new Pod pg-client :

This command will connect you to the PostgreSQL interactive terminal.

CONTACT US

For free technical help, visit the Percona Community Forum.

Note

4.

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE
backrest-backup-cluster1-j275w 0/1 Completed 0 10m
cluster1-85486d645f-gpxzb 1/1 Running 0 10m
cluster1-backrest-shared-repo-6495464548-c8wvl 1/1 Running 0 10m
cluster1-pgbouncer-fc45869f7-s86rf 1/1 Running 0 10m
pgo-deploy-rhv6k 0/1 Completed 0 5m
postgres-operator-8646c68b57-z8m62 4/4 Running 1 5m

5.

$ kubectl get secrets cluster1-users -o yaml -o jsonpath='{.data.pguser}' | base64 --decode | tr '\n' ' ' && echo " "

6.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:14.9 --restart=Never -- bash -il
[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer -p 5432 -U pguser pgdb

$ psql (14.9)
Type "help" for help.
pgdb=>

11.2 Install Percona Distribution for PostgreSQL on Kubernetes

23 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

11.3 Install Percona Distribution for PostgreSQL on OpenShift

Following steps will allow you to install the Operator and use it to manage Percona Distribution for
PostgreSQL on Red Hat OpenShift platform. For more information on the OpenShift, see its official
documentation.

Following steps will allow you to install the Operator and use it to manage Percona Distribution for
PostgreSQL on OpenShift.

First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent
context for further steps:

To use different namespace, you should edit all occurrences of the namespace: pgo line in both deploy/cr.yaml and
deploy/operator.yaml configuration files.

If you are going to use the operator with anyuid https://docs.openshift.com/container-platform/4.9/
authentication/managing-security-context-constraints.html security context constraint please execute the
following command:

Deploy the operator with the following command:

After the operator is started, Percona Distribution for PostgreSQL can be created at any time with the following
command:

Last update: 2023-07-21

1.

git clone -b v1.5.1 https://github.com/percona/percona-postgresql-operator
cd percona-postgresql-operator

Note

2.

$ oc create namespace pgo
$ oc config set-context $(kubectl config current-context) --namespace=pgo

Note

3.

$ sed -i '/disable_auto_failover: "false"/a \ \ \ \ disable_fsgroup: "false"' deploy/operator.yaml

4.

$ oc apply -f deploy/operator.yaml

5.

11.3 Install Percona Distribution for PostgreSQL on OpenShift

24 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://access.redhat.com/documentation/en-us/openshift_container_platform
https://access.redhat.com/documentation/en-us/openshift_container_platform
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html

Creation process will take some time. The process is over when both operator and replica set pod have
reached their Running status:

During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use oc get secrets command to see the list of Secrets objects (by default Secrets object you are interested in
has cluster1-pguser-secret name). Then you can use oc get secret cluster1-pguser-secret -o yaml to look through the
YAML file with generated secrets (the actual password will be base64-encoded), or just get the needed
password with the following command:

Here the actual password is base64-encoded, and echo 'cGd1c2VyX3Bhc3N3b3JkCg==' | base64 --decode will bring it
back to a human-readable form (in this example it will be a pguser_password string).

Check connectivity to newly created cluster. Run a new Pod to use it as a client and connect its console output
to your terminal (running it may require some time to deploy). When you see the command line prompt of the
newly created Pod, run psql tool using the password obtained from the secret. The following command will do
this, naming the new Pod pg-client :

This command will connect you to the PostgreSQL interactive terminal.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

$ oc apply -f deploy/cr.yaml

$ oc get pods

Expected output

NAME READY STATUS RESTARTS AGE
backrest-backup-cluster1-j275w 0/1 Completed 0 10m
cluster1-85486d645f-gpxzb 1/1 Running 0 10m
cluster1-backrest-shared-repo-6495464548-c8wvl 1/1 Running 0 10m
cluster1-pgbouncer-fc45869f7-s86rf 1/1 Running 0 10m
pgo-deploy-rhv6k 0/1 Completed 0 5m
postgres-operator-8646c68b57-z8m62 4/4 Running 1 5m

6.

$ oc get secrets cluster1-users -o yaml -o jsonpath='{.data.pguser}' | base64 --decode | tr '\n' ' ' && echo " "

7.

$ oc run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:14.9 --restart=Never -- bash -il
[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer -p 5432 -U pguser pgdb

$ psql (14.9)
Type "help" for help.
pgdb=>

11.3 Install Percona Distribution for PostgreSQL on OpenShift

25 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Last update: 2023-06-26

11.3 Install Percona Distribution for PostgreSQL on OpenShift

26 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

12. Configuration

12.1 Users

User accounts within the Cluster can be divided into two different groups:

application-level users: the unprivileged user accounts,

system-level users: the accounts needed to automate the cluster deployment and management tasks.

12.1.1 System Users

Credentials for system users are stored as a Kubernetes Secrets object. The Operator requires to be
deployed before PostgreSQL Cluster is started. The name of the required secrets (cluster1-users by default)
should be set in the spec.secretsName option of the deploy/cr.yaml configuration file.

The following table shows system users’ names and purposes.

These users should not be used to run an application.

The default PostgreSQL instance installation via the Percona Operator for PostgreSQL comes with the
following users:

The postgres user will be the admin user for the database instance. The primaryuser is used for replication
between primary and replicas. The pguser is the default non-privileged user (you can configure different
name of this user in the spec.user Custom Resource option).

YAML Object Format

The default name of the Secrets object for these users is cluster1-users and can be set in the CR for your
cluster in spec.secretsName to something different. When you create the object yourself, it should match the
following simple format:

•

•

Warning

Role name Attributes

postgres Superuser, Create role, Create DB, Replication, Bypass RLS

primaryuser Replication

pguser Non-privileged user

pgbouncer Administrative user for the pgBouncer connection pooler

apiVersion: v1
kind: Secret
metadata:
name: cluster1-users

type: Opaque
stringData:
pgbouncer: pgbouncer_password
postgres: postgres_password
primaryuser: primaryuser_password
pguser: pguser_password

12. Configuration

27 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
http://pgbouncer.github.io/

The example above matches what is shipped in the deploy/secrets.yaml file.

As you can see, we use the stringData type when creating the Secrets object, so all values for each key/value
pair are stated in plain text format convenient from the user’s point of view. But the resulting Secrets object
contains passwords stored as data - i.e., base64-encoded strings. If you want to update any field, you’ll
need to encode the value into base64 format. To do this, you can run echo -n "password" | base64 --wrap=0 (or
just echo -n "password" | base64 in case of Apple macOS) in your local shell to get valid values. For example,
setting the PMM Server user’s password to new_password in the cluster1-users object can be done with the
following command:

12.1.2 Application users

By default you can connect to PostgreSQL as non-privileged pguser user. Also, you can login as postgres (the
superuser) to PostgreSQL Pods, but pgBouncer (the connection pooler for PostgreSQL) doesn’t allow postgres

user access by default. That’s done for security reasons.

If you still need to provide postgres user access to PostgreSQL instances from the outside, set the
pgBouncer.exposePostgresUser option in the deploy/cr.yaml configuration file to true and apply changes as usual
by the kubectl apply -f deploy/cr.yaml command.

Allowing superusers to access to the cluster is not recommended.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

12.2 Changing PostgreSQL Options

You may require a configuration change for your application. PostgreSQL allows customizing the database
with configuration files. You can use a ConfigMap to provide the PostgreSQL configuration options specific to
the following configuration files:

PostgreSQL main configuration, postgresql.conf,

client authentication configuration, pg_hba.conf,

user name configuration, pg_ident.conf.

in Linux in macOS

$ kubectl patch secret/cluster1-users -p '{"data":{"pguser": "'$(echo -n new_password | base64 --wrap=0)'"}}'

$ kubectl patch secret/cluster1-users -p '{"data":{"pguser": "'$(echo -n new_password | base64)'"}}'

Note

Last update: 2023-11-15

•

•

•

12.1.2 Application users

28 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/users-secret.yaml
http://pgbouncer.github.io/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://www.postgresql.org/docs/current/config-setting.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/auth-username-maps.html

Configuration options may be applied in two ways:

globally to all database servers in the cluster via Patroni Distributed Configuration Store (DCS),

locally to each database server (Primary and Replica) within the cluster.

PostgreSQL cluster is managed by the Operator, and so there is no need to set custom configuration options in
common usage scenarios. Also, changing certain options may cause PostgreSQL cluster malfunction. Do not
customize configuration unless you know what you are doing!

Use the kubectl command to create the ConfigMap from external resources, for more information, see
Configure a Pod to use a ConfigMap.

You can either create a PostgreSQL Cluster With Custom Configuration, or use ConfigMap to set options for
the already existing cluster.

To create a cluster with custom options, you should first place these options in a postgres-ha.yaml file under
specific bootstrap section, then use kubectl create configmap command with this file to create a ConfigMap, and
finally put the ConfigMap name to pgPrimary.customconfig key in the deploy/cr.yaml configuration file.

In both cases, the postgres-ha.yaml file doesn’t fully overwrite PostgreSQL configuration files: options present in
postgres-ha.yaml will be overwritten, while non-present options will be left intact.

12.2.1 Creating a cluster with custom options

For example, you can create a cluster with a custom max_connections option in a postgresql.conf configuration
file using the following postgres-ha.yaml contents:

dsc.postgresql subsection means that option will be applied globally to postgresql.conf of all database servers.

You can create a ConfigMap from this file. The syntax for kubectl create configmap command is:

ConfigMap name should include your cluster name and a dash as a prefix (cluster1- by default).

The following example defines cluster1-custom-config as the ConfigMap name:

To view the created ConfigMap, use the following command:

•

•

Note

bootstrap:
dcs:
postgresql:
parameters:
max_connections: 30

Note

kubectl -n <namespace> create configmap <configmap-name> --from-file=postgres-ha.yaml

$ kubectl create -n pgo configmap cluster1-custom-config --from-file=postgres-ha.yaml

$ kubectl describe configmaps cluster1-custom-config

12.2.1 Creating a cluster with custom options

29 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

Don’t forget to put the name of your ConfigMap to the deploy/cr.yaml configuration file:

Now you can create the cluster following the regular installation instructions.

12.2.2 Modifying options for the existing cluster

If you need to update cluster’s configuration settings, you should modify settings in the <clusterName>-pgha-

config ConfigMap.

This ConfigMap contains <clusterName>-dcs-config configuration applied globally to postgresql.conf of all database
servers, and local configurations for the PostgreSQL cluster database servers: <clusterName>-local-config for the
current primary, <clusterName>-repl1-local-config for the first replica, and so on.

For example, let’s change the max_connections option in a globally applied postgresql.conf configuration file for
the cluster named cluster1 . Edit the cluster1-pgha-config ConfigMap with the following command:

This will open the ConfigMap in a local text editor of your choice. Make sure to modify it as follows:

Now restart the cluster to ensure the update took effect.

You can check if the changes are applied by querying the appropriate Pods of your cluster using the kubectl

exec command with a specific Pod name.

First find out names of your Pods in a common way, using the kubectl get pods command:

spec:
...
pgPrimary:
...
customconfig: "cluster1-custom-config"

Note

$ kubectl edit -n pgo configmap cluster1-pgha-config

...
cluster1-dcs-config: |
postgresql:
parameters:
...
max_connections: 50
...

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE
backrest-backup-cluster1-j275w 0/1 Completed 0 10m
cluster1-85486d645f-gpxzb 1/1 Running 0 10m
cluster1-backrest-shared-repo-6495464548-c8wvl 1/1 Running 0 10m
cluster1-pgbouncer-fc45869f7-s86rf 1/1 Running 0 10m
pgo-deploy-rhv6k 0/1 Completed 0 5m
postgres-operator-8646c68b57-z8m62 4/4 Running 1 5m

12.2.2 Modifying options for the existing cluster

30 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

Now let’s check the cluster1-85486d645f-gpxzb Pod for the current max_connections value:

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

12.3 Binding Percona Distribution for PostgreSQL components to Specific

Kubernetes/OpenShift Nodes

The operator does good job automatically assigning new Pods to nodes with sufficient resources to achieve
balanced distribution across the cluster. Still there are situations when it is worth to ensure that pods will
land on specific nodes: for example, to get speed advantages of the SSD equipped machine, or to reduce
network costs choosing nodes in a same availability zone.

Appropriate sections of the deploy/cr.yaml file (such as pgPrimary or pgReplicas) contain keys which can be
used to do this, depending on what is the best for a particular situation.

12.3.1 Affinity and anti-affinity

Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which
already has Pods with specific labels, or has specific labels itself (so called “Node affinity”). Particularly, Pod
anti-affinity is good to reduce costs making sure several Pods with intensive data exchange will occupy the
same availability zone or even the same node - or, on the contrary, to make them land on different nodes or
even different availability zones for the high availability and balancing purposes. Node affinity is useful to
assign PostgreSQL instances to specific Kubernetes Nodes (ones with specific hardware, zone, etc.).

Pod anti-affinity is controlled by the antiAffinityType option, which can be put into pgPrimary , pgBouncer , and
backup sections of the deploy/cr.yaml configuration file. This option can be set to one of two values:

preferred Pod anti-affinity is a sort of a soft rule. It makes Kubernetes trying to schedule Pods matching the
anti-affinity rules to different Nodes. If it is not possible, then one or more Pods are scheduled to the same
Node. This variant is used by default.

required Pod anti-affinity is a sort of a hard rule. It forces Kubernetes to schedule each Pod matching the
anti-affinity rules to different Nodes. If it is not possible, then a Pod will not be scheduled at all.

$ kubectl -n pgo exec -it cluster1-85486d645f-gpxzb -- psql -c 'show max_connections;'

Expected output

max_connections

50
(1 row)

Last update: 2022-12-20

•

•

12.3 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes

31 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml

Node affinity can be controlled by the pgPrimary.affinity.nodeAffinityType option in the deploy/cr.yaml configuration
file. This option can be set to either preferred or required similarly to the antiAffinityType option.

12.3.2 Simple approach - configure Node Affinity based on nodeLabel

The Operator provides the pgPrimary.affinity.nodeLabel option, which should contains one or more key-value
pairs. If the node is not labeled with each key-value pair and nodeAffinityType is set to required , the Pod will not
be able to land on it.

The following example forces Operator to lend Percona Distribution for PostgreSQL instances on the Nodes
having the kubernetes.io/region: us-central1 label:

Advanced approach - use standard Kubernetes constraints

Previous way can be used with no special knowledge of the Kubernetes way of assigning Pods to specific
Nodes. Still in some cases more complex tuning may be needed. In this case pgPrimary.affinity.advanced option
placed in the deploy/cr.yaml file turns off the effect of the nodeLabel and allows to use standard Kubernetes
affinity constraints of any complexity:

affinity:
nodeAffinityType: required
nodeLabel:
kubernetes.io/region: us-central1

affinity:
advanced:
podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: security
operator: In
values:
- S1

topologyKey: failure-domain.beta.kubernetes.io/zone
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: security
operator: In
values:
- S2

topologyKey: kubernetes.io/hostname
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/e2e-az-name
operator: In
values:
- e2e-az1
- e2e-az2

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:

12.3.2 Simple approach - configure Node Affinity based on nodeLabel

32 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

You can see the explanation of these affinity options in Kubernetes documentation.

Default Affinity rules

The following anti-affinity rules are applied to all Percona Distribution for PostgreSQL Pods:

You can see the explanation of these affinity options in Kubernetes documentation.

Setting required anti-affinity type will result in placing all Pods on separate nodes, so default configuration will
require 7 Kubernetes nodes to deploy the cluster with separate nodes assigned to one PostgreSQL primary, two
PostgreSQL replica instances, three pgBouncer and one pgBackrest Pod.

12.3.3 Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is
expressed as a key with and operator , which is either exists or equal (the latter variant also requires a value

the key is equal to). Moreover, toleration should have a specified effect , which may be a self-explanatory
NoSchedule , less strict PreferNoSchedule , or NoExecute . The last variant means that if a taint with NoExecute is
assigned to node, then any Pod not tolerating this taint will be removed from the node, immediately or after
the tolerationSeconds interval, like in the following example.

You can use pgPrimary.tolerations key in the deploy/cr.yaml configuration file as follows:

The Kubernetes Taints and Toleratins contains more examples on this topic.

- key: another-node-label-key
operator: In
values:
- another-node-label-value

affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- podAffinityTerm:

labelSelector:
matchExpressions:
- key: vendor
operator: In
values:
- crunchydata

- key: pg-pod-anti-affinity
operator: Exists

- key: pg-cluster
operator: In
values:
- cluster1

topologyKey: kubernetes.io/hostname
weight: 1

Note

tolerations:
- key: "node.alpha.kubernetes.io/unreachable"
operator: "Exists"
effect: "NoExecute"
tolerationSeconds: 6000

12.3.3 Tolerations

33 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

12.4 Transport Layer Security (TLS)

The Percona Operator for PostgreSQL uses Transport Layer Security (TLS) cryptographic protocol for the
following types of communication:

Internal - communication between PostgreSQL instances in the cluster

External - communication between the client application and the cluster

The internal certificate is also used as an authorization method for PostgreSQL Replica instances.

TLS security can be configured in several ways:

the Operator can generate certificates automatically at cluster creation time,

you can also generate certificates manually.

You can also use pre-generated certificates available in the deploy/ssl-secrets.yaml file for test purposes, but
we strongly recommend avoiding their usage on any production system!

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to
temporarily disable it if needed.

12.4.1 Allow the Operator to generate certificates automatically

The Operator is able to generate long-term certificates automatically and turn on encryption at cluster
creation time, if there are no certificate secrets available. It generates certificates with the help of cert-
manager - a Kubernetes certificate management controller widely used to automate the management and
issuance of TLS certificates. Cert-manager is community-driven and open source.

Installation of the cert-manager

You can install cert-manager as follows:

Create a namespace,

Disable resource validations on the cert-manager namespace,

Install the cert-manager.

The following commands perform all the needed actions:

Last update: 2023-11-15

•

•

•

•

•

•

•

$ kubectl create namespace cert-manager
$ kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true
$ kubectl apply -f https://github.com/jetstack/cert-manager/releases/download/v1.9.0/cert-manager.yaml

12.4 Transport Layer Security (TLS)

34 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://cert-manager.io/docs/
https://cert-manager.io/docs/

After the installation, you can verify the cert-manager by running the following command:

The result should display the cert-manager and webhook active and running.

Turning automatic generation of certificates on

When you have already installed cert-manager, the operator is able to request a certificate from it. To make
this happend, uncomment sslCA , sslSecretName , and sslReplicationSecretName options in the deploy/cr.yaml

configuration file:

When done, deploy your cluster as usual, with the kubectl apply -f deploy/cr.yaml command. Certificates will be
generated if there are no certificate secrets available.

12.4.2 Generate certificates manually

To generate certificates manually, follow these steps:

Provision a to generate TLS certificates,

Generate a key and certificate file with the server details,

Create the server TLS certificates using the keys, certs, and server details.

The set of commands generates certificates with the following attributes:

Server-pem - Certificate

Server-key.pem - the private key

ca.pem - Certificate Authority

You should generate one set of certificates for external communications, and another set for internal ones.

Supposing that your cluster name is cluster1 , you can use the following commands to generate certificates:

$ kubectl get pods -n cert-manager

...
spec:
secretsName: cluster1-users
sslCA: cluster1-ssl-ca
sslSecretName: cluster1-ssl-keypair
sslReplicationSecretName: cluster1-ssl-keypair

...

1.

2.

3.

•

•

•

$ CLUSTER_NAME=cluster1
$ NAMESPACE=default
$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
{
 "CN": "*",
 "key": {
 "algo": "ecdsa",
 "size": 384
 }
}
EOF

$ cat <<EOF > ca-config.json
{
 "signing": {
 "default": {

12.4.2 Generate certificates manually

35 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

If your PostgreSQL cluster includes replica instances (this feature is on by default), generate certificates for
them in a similar way:

When certificates are generated, set the following keys in the deploy/cr.yaml configuration file:

spec.sslCA key should contain the name of the secret with TLS used for both connection encryption
(external traffic), and replication (internal traffic),

spec.sslSecretName key should contain the name of the secret created to encrypt external communications,

spec.secrets.sslReplicationSecretName key should contain the name of the secret created to encrypt internal
communications,

spec.tlsOnly key set to true enforces encryption

 "expiry": "87600h",
 "usages": ["digital signature", "key encipherment", "content commitment"]
 }
 }
}
EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare server
{
 "hosts": [
 "localhost",
 "${CLUSTER_NAME}",
 "${CLUSTER_NAME}.${NAMESPACE}",
 "${CLUSTER_NAME}.${NAMESPACE}.svc.cluster.local",
 "${CLUSTER_NAME}-pgbouncer",
 "${CLUSTER_NAME}-pgbouncer.${NAMESPACE}",
 "${CLUSTER_NAME}-pgbouncer.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}",
 "*.${CLUSTER_NAME}.${NAMESPACE}",
 "*.${CLUSTER_NAME}.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}-pgbouncer",
 "*.${CLUSTER_NAME}-pgbouncer.${NAMESPACE}",
 "*.${CLUSTER_NAME}-pgbouncer.${NAMESPACE}.svc.cluster.local"
],
 "CN": "${CLUSTER_NAME}",
 "key": {
 "algo": "ecdsa",
 "size": 384
 }
}
EOF

$ kubectl create secret generic ${CLUSTER_NAME}-ssl-ca --from-file=ca.crt=ca.pem
$ kubectl create secret tls ${CLUSTER_NAME}-ssl-keypair --cert=server.pem --key=server-key.pem

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare replicas
{
 "CN": "primaryuser",
 "key": {
 "algo": "ecdsa",
 "size": 384
 }
}
EOF

$ kubectl create secret tls ${CLUSTER_NAME}-ssl-replicas --cert=replicas.pem --key=replicas-key.pem

•

•

•

•

12.4.2 Generate certificates manually

36 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

Don’t forget to apply changes as usual:

12.4.3 Check connectivity to the cluster

You can check TLS communication with use of the psql , the standard interactive terminal-based frontend to
PostgreSQL. The following command will spawn a new pg-client container, which includes needed command
and can be used for the check (use your real cluster name instead of the <cluster-name> placeholder):

Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal to
check connectivity over the encrypted channel (please use real cluster-name, PostgreSQL user login and
password):

Now you should see the prompt of PostgreSQL interactive terminal:

$ kubectl apply -f deploy/cr.yaml

$ cat <<EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
 name: pg-client
spec:
 replicas: 1
 selector:
 matchLabels:
 name: pg-client
 template:
 metadata:
 labels:
 name: pg-client
 spec:
 containers:
 - name: pg-client
 image: perconalab/percona-distribution-postgresql:14.9
 imagePullPolicy: Always
 command:
 - sleep
 args:
 - "100500"
 volumeMounts:
 - name: ca
 mountPath: "/tmp/tls"
 volumes:
 - name: ca
 secret:
 secretName: <cluster_name>-ssl-ca
 items:
 - key: ca.crt
 path: ca.crt
 mode: 0777
EOF

$ kubectl exec -it deployment/pg-client -- bash -il
[postgres@pg-client /]$ PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt psql postgres://<postgresql-
user>:<postgresql-password>@<cluster-name>-pgbouncer.<namespace>.svc.cluster.local

12.4.3 Check connectivity to the cluster

37 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

12.4.4 Run Percona Distribution for PostgreSQL without TLS

Omitting TLS is also possible, but we recommend that you run your cluster with the TLS protocol enabled.

To disable TLS protocol (e.g. for demonstration purposes) set the spec.tlsOnly key to false , and make sure that
there are no certificate secrets configured in the deploy/cr.yaml file.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

12.5 Telemetry

The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona,
which helps us to determine where to focus the development and what is the uptake for each release of
Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid field)

Kubernetes version

Platform (is it Kubernetes or Openshift)

PMM Version

Operator version

PostgreSQL version

PgBackRest version

We do not gather anything that identify a system, but the following thing should be mentioned: Custom
Resource ID is a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server - the same server that the Operator
uses to obtain fresh information about version numbers and valid image paths needed for the upgrade.

The landing page for this service, check.percona.com, explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

$ psql (14.9)
Type "help" for help.
pgdb=>

Last update: 2023-04-17

•

•

•

•

•

•

•

•

12.4.4 Run Percona Distribution for PostgreSQL without TLS

38 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://check.percona.com/

if you don’t use helm for installation, you have to edit the operator.yaml before applying it with the kubectl

apply -f deploy/operator.yaml command. Open the operator.yaml file with your text editor, find the
disable_telemetry key and set it to true :

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

$ helm install my-db percona/pg-db --version 1.5.1 --namespace my-namespace --set disable_telemetry="true"

•

...
disable_telemetry: "true"
...

Last update: 2023-12-11

12.5 Telemetry

39 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13. Management

13.1 Providing Backups

The Operator allows doing backups in two ways. Scheduled backups are configured in the deploy/cr.yaml
file to be executed automatically in proper time. On-demand backups can be done manually at any
moment.

The Operator uses the open source pgBackRest backup and restore utility. A special pgBackRest repository
is created by the Operator along with creating a new PostgreSQL cluster to facilitate the usage of the
pgBackRest features in it.

The Operator can store PostgreSQL backups on Amazon S3, any S3-compatible storage and Google Cloud
Storage outside the Kubernetes cluster. Storing backups on Persistent Volume attached to the pgBackRest
Pod is also possible. At PostgreSQL cluster creation time, you can specify a specific Storage Class for the
pgBackRest repository. Additionally, you can also specify the type of the pgBackRest repository that can be
used for backups:

local : Uses the storage that is provided by the Kubernetes cluster’s Storage Class that you select (for
historical reasons this repository type can be alternatively named posix),

s3 : Use Amazon S3 or an object storage system that uses the S3 protocol,

local,s3 : Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select
AND Amazon S3 (or equivalent object storage system that uses the S3 protocol).

gcs : Use Google Cloud Storage,

local,gcs : Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select
AND Google Cloud Storage.

The pgBackRest repository consists of the following Kubernetes objects:

A Deployment,

A Secret that contains information that is specific to the PostgreSQL cluster that it is deployed with (e.g.
SSH keys, AWS S3 keys, etc.),

A Pod with a number of supporting scripts,

A Service.

The PostgreSQL primary is automatically configured to use the pgbackrest archive-push and push the write-
ahead log (WAL) archives to the correct repository.

The PostgreSQL Operator supports three types of pgBackRest backups:

Full (full): A full backup of all the contents of the PostgreSQL cluster,

Differential (diff): A backup of only the files that have changed since the last full backup,

Incremental (incr): A backup of only the files that have changed since the last full or differential backup.
Incremental backup is the default choice.

The Operator also supports setting pgBackRest retention policies for backups. Backup retention can be
controlled by the following pgBackRest options:

--repo1-retention-full the number of full backups to retain,

--repo1-retention-diff the number of differential backups to retain,

--repo1-retention-archive how many sets of write-ahead log archives to retain alongside the full and
differential backups that are retained.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

13. Management

40 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://pgbackrest.org/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://cloud.google.com/storage
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

You can set both backups type and retention policy when Making on-demand backup.

Also you should first configure the backup storage in the deploy/cr.yaml configuration file to have backups
enabled.

13.1.1 Configuring the S3-compatible backup storage

In order to use S3-compatible storage for backups you need to provide some S3-related information, such
as proper S3 bucket name, endpoint, etc. This information can be passed to pgBackRest via the following
deploy/cr.yaml options in the backup.storages subsection:

bucket specifies the AWS S3 bucket that should be utilized, for example my-postgresql-backups-example ,

endpointUrl specifies the S3 endpoint that should be utilized, for example s3.amazonaws.com ,

region specifies the AWS S3 region that should be utilized, for example us-east-1 ,

uriStyle specifies whether host or path style URIs should be utilized,

verifyTLS should be set to true to enable TLS verification or set to false to disable it,

type should be set to s3 .

Here is an example which configures Amazon S3 storage for backups:

You also need to supply pgBackRest with base64-encoded AWS S3 key and AWS S3 key secret stored along
with other sensitive information in Kubernetes Secrets, e.g. encoding needed data with the following
command:

Edit the deploy/backup/cluster1-backrest-repo-config-secret.yaml configuration file: set there proper cluster name, AWS
S3 key, and key secret:

When done, create the secret as follows:

•

•

•

•

•

•

...
backup:
...
storages:
s3-us-west:
type: s3
bucket: S3-BACKUP-BUCKET-NAME-HERE
region: us-west-2

...

in Linux in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

apiVersion: v1
kind: Secret
metadata:
name: <cluster-name>-backrest-repo-config

type: Opaque
data:
aws-s3-key: <base64-encoded-AWS-S3-key>
aws-s3-key-secret: <base64-encoded-AWS-S3-key-secret>

$ kubectl apply -f deploy/backup/cluster1-backrest-repo-config-secret.yaml

13.1.1 Configuring the S3-compatible backup storage

41 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/

Finally, create or update the cluster:

13.1.2 Use Google Cloud Storage for backups

You can configure Google Cloud Storage as an object store for backups similarly to S3 storage.

In order to use Google Cloud Storage (GCS) for backups you need to provide some GCS-related
information, such as a proper GCS bucket name. This information can be passed to pgBackRest via the
following options in the backup.storages subsection of the deploy/cr.yaml configuration file:

bucket should contain the proper bucket name,

type should be set to gcs .

The Operator will also need your service account key to access storage.

Create your service account key following the official Google Cloud instructions.

Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin → Service Accounts in the left menu
panel, then click your account and open the KEYS tab):

my-service-account

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.
Learn more about setting organization policies for service accounts

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the

Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

ADDKEY

DETAILS PERMISSIONS KEYS METRICS LOGS

Click the ADD KEY button, chose Create new key and chose JSON as a key type. These actions will result in
downloading a file in JSON format with your new private key and related information.

Now you should use a base64-encoded version of this file and to create the Kubernetes Secret. You can
encode the file with the base64 <filename> command. When done, create the following yaml file with your cluster
name and base64-encoded file contents:

When done, create the secret as follows:

Finally, create or update the cluster:

$ kubectl apply -f deploy/cr.yaml

•

•

1.

2.

3.

apiVersion: v1
kind: Secret
metadata:
name: <cluster-name>-backrest-repo-config

type: Opaque
data:
gcs-key: <base64-encoded-json-file-contents>

$ kubectl apply -f ./my-gcs-account-secret.yaml

4.

13.1.2 Use Google Cloud Storage for backups

42 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://cloud.google.com/storage
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://kubernetes.io/docs/concepts/configuration/secret/

13.1.3 Scheduling backups

Backups schedule is defined in the backup section of the deploy/cr.yaml file. This section contains following
subsections:

storages subsection contains data needed to access the S3-compatible cloud to store backups.

schedule subsection allows to actually schedule backups (the schedule is specified in crontab format).

Here is an example of deploy/cr.yaml which uses Amazon S3 storage for backups:

The schedule is specified in crontab format as explained in Custom Resource options.

13.1.4 Making on-demand backup

To make an on-demand backup, the user should use a backup configuration file. The example of the
backup configuration file is deploy/backup/backup.yaml.

The following keys are most important in the parameters section of this file:

parameters.backrest-opts is the string with command line options which will be passed to pgBackRest, for
example --type=full --repo1-retention-full=5 ,

parameters.pg-cluster is the name of the PostgreSQL cluster to back up, for example cluster1 .

When the backup options are configured, execute the actual backup command:

13.1.5 List existing backups

To get list of all existing backups in the pgBackrest repo, use the following command:

You can find out the appropriate Pod name using the `` kubectl get pods`` command, as usual. Here is an
example of the backups list:

$ kubectl apply -f deploy/cr.yaml

•

•

...
backup:
...
schedule:
- name: "sat-night-backup"
schedule: "0 0 * * 6"
keep: 3
type: full
storage: s3

...

•

•

$ kubectl apply -f deploy/backup/backup.yaml

$ kubectl exec <name-of-backrest-shared-repo-pod> -it -- pgbackrest info

$ kubectl exec cluster1-backrest-shared-repo-5ffc465b85-gvhlh -it -- pgbackrest info
stanza: db

status: ok
cipher: none

13.1.3 Scheduling backups

43 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/backup/backup.yaml

In this example there is only one backup named 20220614-104859F .

13.1.6 Restore the cluster from a previously saved backup

The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-
time-recovery. There are two types of ways to restore a cluster:

restore to a new cluster using the pgDataSource.restoreFrom option (and possibly,
pgDataSource.restoreOpts for custom pgBackRest options),

restore in-place, to an existing cluster (note that this is destructive).

Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL cluster that
can run alongside an existing one. There are several scenarios where using this technique is helpful:

Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is
creating a clone.

Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To restore the previously saved backup the user should use a backup restore configuration file. The example
of the backup configuration file is deploy/backup/restore.yaml:

The following keys are the most important in the parameters section of this file:

parameters.backrest-restore-cluster specifies the name of a PostgreSQL cluster which will be restored (this
option had name parameters.backrest-restore-from-cluster before the Operator 1.2.0). It includes stopping the
database and recreating a new primary with the restored data (for example, cluster1),

parameters.backrest-restore-opts passes through additional options for pgBackRest,

parameters.backrest-storage-type the type of the pgBackRest repository, (for example, local).

The actual restoration process can be started as follows:

db (current)
wal archive min/max (14): 000000010000000000000001/000000010000000000000003

full backup: 20220614-104859F
timestamp start/stop: 2022-06-14 10:48:59 / 2022-06-14 10:49:13
wal start/stop: 000000010000000000000002 / 000000010000000000000002
database size: 33.5MB, database backup size: 33.5MB
repo1: backup set size: 4.3MB, backup size: 4.3MB

•

•

•

•

apiVersion: pg.percona.com/v1
kind: Pgtask
metadata:
labels:
pg-cluster: cluster1
pgouser: admin

name: cluster1-backrest-restore
namespace: pgo

spec:
name: cluster1-backrest-restore
namespace: pgo
parameters:
backrest-restore-from-cluster: cluster1
backrest-restore-opts: --type=time --target="2021-04-16 15:13:32+00"
backrest-storage-type: local

tasktype: restore

•

•

•

13.1.6 Restore the cluster from a previously saved backup

44 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/backup/restore.yaml

To create a new PostgreSQL cluster from either the active one, or a former cluster whose pgBackRest
repository still exists, use the pgDataSource.restoreFrom option.

The following example will create a new cluster named cluster2 from an existing one named``cluster1``.

First, create the cluster2-config-secrets.yaml configuration file with the following content:

When done, create the secrets as follows:

Edit the deploy/cr.yaml configuration file:

set a new cluster name (cluster2),

set the option pgDataSource.restoreFrom to cluster1 .

Create the cluster as follows:

$ kubectl apply -f deploy/backup/restore.yaml

1.

apiVersion: v1
data:
password: <base64-encoded-password-for-pguser>
username: <base64-encoded-pguser-user-name>

kind: Secret
metadata:
labels:
pg-cluster: cluster2
vendor: crunchydata

name: cluster2-pguser-secret
type: Opaque

apiVersion: v1
data:
password: <base64-encoded-password-for-primaryuser>
username: <base64-encoded-primaryuser-user-name>

kind: Secret
metadata:
labels:
pg-cluster: cluster2
vendor: crunchydata

name: cluster2-primaryuser-secret
type: Opaque

apiVersion: v1
data:
password: <base64-encoded-password-for-postgres-user>
username: <base64-encoded-pguser-postgres-name>

kind: Secret
metadata:
labels:
pg-cluster: cluster2
vendor: crunchydata

name: cluster2-postgres-secret
type: Opaque

2.

$ kubectl apply -f ./cluster2-config-secrets.yaml

3.

•

•

4.

$ kubectl apply -f deploy/cr.yaml

13.1.6 Restore the cluster from a previously saved backup

45 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

13.1.7 Restore the cluster with point-in-time recovery

Point-in-time recovery functionality allows users to revert the database back to a state before an unwanted
change had occurred.

You can set up a point-in-time recovery using the normal restore command of pgBackRest with few
additional options specified in the parameters.backrest-restore-opts key in the backup restore configuration file:

set --type option to time ,

set --target to a specific time you would like to restore to. You can use the typical string formatted as
<YYYY-MM-DD HH:MM:DD> , optionally followed by a timezone offset: "2021-04-16 15:13:32+00" (+00 in the above
example means just UTC),

optional --set argument allows you to choose the backup which will be the starting point for point-in-time
recovery (look through the available backups to find out the proper backup name). This option must be
specified if the target is one or more backups away from the current moment.

After setting these options in the backup restore configuration file, follow the standard restore instructions.

Make sure you have a backup that is older than your desired point in time. You obviously can’t restore from a time
where you do not have a backup. All relevant write-ahead log files must be successfully pushed before you make
the restore.

13.1.8 Delete a previously saved backup

The maximum amount of stored backups is controlled by the backup.schedule.keep option (only successful
backups are counted). Older backups are automatically deleted, so that amount of stored backups do not
exceed this number.

If you want to delete some backup manually, you need to delete both the pgtask object and the
corresponding job itself. Deletion of the backup object can be done using the same YAML file which was
used for the on-demand backup:

Deletion of the job which corresponds to the backup can be done using kubectl delete jobs command with the
backup name:

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

...
spec:
name: cluster1-backrest-restore
namespace: pgo
parameters:
backrest-restore-from-cluster: cluster1
backrest-restore-opts: --type=time --target="2021-04-16 15:13:32+00"

•

•

•

Note

$ kubectl delete -f deploy/backup/backup.yaml

$ kubectl delete jobs cluster1-backrest-full-backup

13.1.7 Restore the cluster with point-in-time recovery

46 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/backup/restore.yaml
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

13.2 Update Percona Operator for PostgreSQL

Percona Operator for PostgreSQL allows upgrades to newer versions. This includes upgrades of the Operator
itself, and upgrades of the Percona Distribution for PostgreSQL.

13.2.1 Upgrading the Operator

Only the incremental update to a nearest minor version of the Operator 1.x is supported. To update to a
newer version, which differs from the current version by more than one, make several incremental updates
sequentially. See documentation archive for documentation on previous versions of the Operator.

You can check the Operator images to find out the current Operator version with the following command (in
case it is deployed in the pgo namespace):

The above command and other commands in this section follow the assumption that the context with the
Operator namespace (pgo by default) was set. You can set context as follows:

Alternatively, you can specify the proper namespace explicitly: for example, by adding the -n pgo option to kubectl

in all commands.

The following steps will update the Operator to a newer version:

Check that the Operator deployment job is not still present in your cluster:

Last update: 2023-11-15

$ kubectl get deployment postgres-operator -o yaml | grep percona-postgresql-operator

Expected output

image: percona/percona-postgresql-operator:1.4.0-pgo-apiserver
image: percona/percona-postgresql-operator:1.4.0-postgres-operator
image: percona/percona-postgresql-operator:1.4.0-pgo-scheduler
image: percona/percona-postgresql-operator:1.4.0-pgo-event

Note

$ kubectl config set-context $(kubectl config current-context) --namespace=pgo

1.

$ kubectl get job/pgo-deploy -n pgo

13.2 Update Percona Operator for PostgreSQL

47 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://docs.percona.com/legacy-documentation/

If the job is not present, you will get a message that it is not found. Otherwise you should delete this job before
upgrading the Operator:

Upgrading the Operator is similar to deploying a new Operator version, but you should change the
DEPLOY_ACTION option in the deploy/operator.yaml file before applying it from install to update :

You can automate this with the yq tool as follows, assuming that you are upgrading to the Operator version
1.5.1:

The example above (and other examples in this document) uses the yq version 3.4.0. Note that the syntax for the yq

command may be slightly different in other versions.

Applying the modified operator.yaml will produce the command output as follows:

The pgo-deploy Kubernetes Job created to carry on the Operator deployment process can take a minute or
more to be completed. You can track it with the following command:

Expected output

NAME COMPLETIONS DURATION AGE
pgo-deploy 1/1 81s 5m53s

$ kubectl delete job/pgo-deploy -n pgo

2.

...
containers:
- name: pgo-deploy
image: percona/percona-postgresql-operator:1.4.0-pgo-deployer
imagePullPolicy: Always
env:
- name: DEPLOY_ACTION
value: update

...

$ curl -s https://raw.githubusercontent.com/percona/percona-postgresql-operator/v1.5.1/deploy/operator.yaml | yq w --
doc 4 - "spec.template.spec.containers[0].env[0].value" "update" | kubectl apply -f -
$ kubectl wait --for=condition=Complete job/pgo-deploy --timeout=90s

Note

serviceaccount/pgo-deployer-sa unchanged
clusterrole.rbac.authorization.k8s.io/pgo-deployer-cr unchanged
configmap/pgo-deployer-cm configured
clusterrolebinding.rbac.authorization.k8s.io/pgo-deployer-crb unchanged
job.batch/pgo-deploy created

3.

$ kubectl get job/pgo-deploy

13.2.1 Upgrading the Operator

48 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/mikefarah/yq/#install
https://github.com/mikefarah/yq/releases/tag/3.4.0

When it reaches the COMPLETIONS count of 1/1 , you can safely delete the job as follows:

Deleting the pgo-deploy job will be needed before the next upgrade of the Operator.

13.2.2 Upgrading Percona Distribution for PostgreSQL

Automatic upgrade

Starting from version 1.1.0, the Operator does fully automatic upgrades to the newer versions of Percona
PostgreSQL Cluster within the method named Smart Updates.

The Operator will carry on upgrades according to the following algorithm. It will query a special Version
Service server at scheduled times to obtain fresh information about version numbers and valid image paths
needed for the upgrade. If the current version should be upgraded, the Operator updates the CR to reflect
the new image paths and carries on sequential Pods deletion in a safe order, allowing the cluster Pods to be
re-deployed with the new image.

Version Service is in technical preview status and is disabled by default for the Operator version 1.1.0. Disabling
Version Service makes Smart Updates rely on the image keys in the Operator’s Custom Resource.

The upgrade details are set in the upgradeOptions section of the deploy/cr.yaml configuration file. Make the
following edits to configure updates:

Set the apply option to one of the following values:

recommended - automatic upgrades will choose the most recent version of software flagged as recommended
(for clusters created from scratch, the Percona Distribution for PostgreSQL 14 version will be selected instead of
the Percona Distribution for PostgreSQL 13 or 12 version regardless of the image path; for already existing
clusters, 14 vs. 13 or 12 branch choice will be preserved),

14-recommended , 13-recommended , 12-recommended - same as above, but preserves specific major Percona
Distribution for PostgreSQL version for newly provisioned clusters (for example, 14 will not be automatically
used instead of 13),

latest - automatic upgrades will choose the most recent version of the software available,

14-latest , 13-latest , 12-latest - same as above, but preserves specific major Percona Distribution for PostgreSQL
version for newly provisioned clusters (for example, 14 will not be automatically used instead of 13),

version number - specify the desired version explicitly,

never or disabled - disable automatic upgrades

Expected output

NAME COMPLETIONS DURATION AGE
pgo-deploy 1/1 81s 5m53s

$ kubectl delete job/pgo-deploy

Note

Note

1.

•

•

•

•

•

•

13.2.2 Upgrading Percona Distribution for PostgreSQL

49 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

When automatic upgrades are disabled by the apply option, Smart Update functionality will continue working for
changes triggered by other events, such as updating a ConfigMap, rotating a password, or changing resource
values.

Make sure the versionServiceEndpoint key is set to a valid Version Server URL (otherwise Smart Updates will not
occur).

Version Service is never checked if automatic updates are disabled. If automatic updates are enabled, but Version
Service URL can not be reached, upgrades will not occur.

Use the schedule option to specify the update checks time in CRON format.

The following example sets the midnight update checks with the official Percona’s Version Service:

Semi-automatic upgrade

The following command will allow you to update the Operator to current version (use the name of your
cluster instead of the <cluster-name> placeholder).

The above example is composed in assumption of using PostgreSQL 14 as a database management system. For
PostgreSQL 13 you should change all occurrences of the ppg14 substring to ppg13 .

Note

2.

You can use the URL of the official Percona’s Version Service (default). Set versionServiceEndpoint to https://

check.percona.com .

Alternatively, you can run Version Service inside your cluster. This can be done with the kubectl command as
follows:

Percona’s Version Service Version Service inside your cluster

$ kubectl run version-service --image=perconalab/version-service --env="SERVE_HTTP=true" --port 11000 --expose

Note

3.

spec:
upgradeOptions:
apply: recommended
versionServiceEndpoint: https://check.percona.com
schedule: "0 4 * * *"

...

$ kubectl patch perconapgcluster/<cluster-name> --type json -p '[{"op": "replace", "path": "/spec/backup/
backrestRepoImage", "value": "percona/percona-postgresql-operator:1.5.1-ppg14-pgbackrest-repo"},
{"op":"replace","path":"/spec/backup/image","value":"percona/percona-postgresql-operator:1.5.1-ppg14-pgbackrest"},
{"op":"replace","path":"/spec/pgBadger/image","value":"percona/percona-postgresql-operator:1.5.1-ppg14-
pgbadger"},{"op":"replace","path":"/spec/pgBouncer/image","value":"percona/percona-postgresql-operator:1.5.1-
ppg14-pgbouncer"},{"op":"replace","path":"/spec/pgPrimary/image","value":"percona/percona-postgresql-operator:
1.5.1-ppg14-postgres-ha"},{"op":"replace","path":"/spec/userLabels/pgo-version","value":"1.5.1"},
{"op":"replace","path":"/metadata/labels/pgo-version","value":"1.5.1"}]'

Note

13.2.2 Upgrading Percona Distribution for PostgreSQL

50 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

This will carry on the image and the cluster version update.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

13.3 Scale Percona Distribution for PostgreSQL on Kubernetes and OpenShift

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an
application scaling. Scaling an application results in adding or removing the Pods and scheduling them to
available Kubernetes nodes.

Size of the cluster is dynamically controlled by a pgReplicas.REPLICA-NAME.size key in the Custom Resource
options configuration. That’s why scaling the cluster needs nothing more but changing this option and
applying the updated configuration file. This may be done in a specifically saved config, or on the fly, using
the following command:

In this example we have changed the number of PostgreSQL Replicas to 5 instances.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

13.4 Monitoring

Percona Monitoring and Management (PMM) provides an excellent solution to monitor Percona Distribution
for PostgreSQL.

Only PMM 2.x versions are supported by the Operator.

Last update: 2023-12-11

$ kubectl scale --replicas=5 perconapgcluster/cluster1

Last update: 2022-12-20

Note

13.3 Scale Percona Distribution for PostgreSQL on Kubernetes and OpenShift

51 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html

PMM is a client/server application. PMM Client runs on each node with the database you wish to monitor: it
collects needed metrics and sends gathered data to PMM Server. As a user, you connect to PMM Server to
see database metrics on a number of dashboards.

That’s why PMM Server and PMM Client need to be installed separately.

13.4.1 Installing the PMM Server

PMM Server runs as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the official
PMM documentation for the installation instructions.

13.4.2 Installing the PMM Client

The following steps are needed for the PMM client installation in your Kubernetes-based environment:

The PMM client installation is initiated by updating the pmm section in the deploy/cr.yaml file.

set pmm.enabled=true

set the pmm.serverHost key to your PMM Server hostname or IP address (it should be resolvable and reachable
from within your cluster)

check that the pmm.serverUser key contains your PMM Server user name (admin by default),

make sure the password key in the
deploy/pmm-secret.yaml secrets file contains the password specified for the PMM Server during its
installation.

Apply changes with the kubectl apply -f deploy/pmm-secret.yaml command.

You use deploy/pmm-secret.yaml file to create Secrets Object. The file contains all values for each key/value pair in a
convenient plain text format. But the resulting Secrets contain passwords stored as base64-encoded strings. If you
want to update password field, you’ll need to encode the value into base64 format. To do this, you can run echo -n

"password" | base64 --wrap=0 (or just echo -n "password" | base64 in case of Apple macOS) in your local shell to get valid
values. For example, setting the PMM Server user’s password to new_password in the cluster1-pmm-secret object can be
done with the following command:

When done, apply the edited deploy/cr.yaml file:

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are
errors on the previous steps:

Now you can access PMM via https in a web browser, with the login/password authentication, and the browser
is configured to show Percona Distribution for PostgreSQL metrics.

1.

•

•

•

•

Info

in Linux in macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"password": '$(echo -n new_password | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"password": '$(echo -n new_password | base64)'}}'

$ kubectl apply -f deploy/cr.yaml

2.

$ kubectl get pods
$ kubectl logs cluster1-7b7f7898d5-7f5pz -c pmm-client

3.

13.4.1 Installing the PMM Server

52 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://github.com/percona/percona-postgresql-operator/blob/v1.5.1/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/v1.5.1/deploy/pmm-secret.yaml

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

13.5 Pause/resume PostgreSQL Cluster

There may be external situations when it is needed to pause your Cluster for a while and then start it back
up (some works related to the maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully stops the cluster:

To start the cluster after it was paused just revert the spec.pause key to false .

There is an option also to put the cluster into a standby (read-only) mode instead of completely shutting it down.
This is done by a special spec.standby key, which should be set to true for read-only state or should be set to false

for normal cluster operation:

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-19

spec:
.......
pause: true

Note

spec:
.......
standby: false

Last update: 2022-08-04

13.5 Pause/resume PostgreSQL Cluster

53 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://www.postgresql.org/docs/12/warm-standby.html
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14. How to

14.1 How to deploy a standby cluster for Disaster Recovery

Deployment of a standby PostgreSQL cluster is mainly targeted for Disaster Recovery (DR), though it can
also be used for migrations.

In both cases, it involves using some object storage system for backups, such as AWS S3 or GCP Cloud
Storage, which the standby cluster can access:

DB Pod N

pgBackRest

Operator

cluster1

Backup storage
DB Pods

pgBackRest

Operator

cluster2 (standby)

DB Pods

there is a primary cluster with configured pgbackrest tool, which pushes the write-ahead log (WAL)
archives to the correct remote repository,

the standby cluster is built from one of these backups, and it is kept in sync with the primary cluster by
consuming the WAL files copied from the remote repository.

The primary node in the standby cluster is not a streaming replica from any of the nodes in the primary cluster. It
relies only on WAL archives to replicate events. For this reason, this approach cannot be used as a High Availability
solution.

•

•

Note

14. How to

54 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.postgresql.org/docs/12/warm-standby.html

Creating such a standby cluster involves the following steps:

14.1 How to deploy a standby cluster for Disaster Recovery

55 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

Copy needed passwords from the primary cluster Secrets and adjust them to use the standby cluster
name.

You need the yq tool installed.

The following commands save the secrets files from cluster1 under /tmp/copied-secrets directory and
prepare them to be used in cluster2 :

Create the Operator in the Kubernetes environment for the standby cluster, if not done:

Apply the Adjusted Kubernetes Secrets:

Set the backup.repoPath option in the deploy/cr.yaml file of your standby cluster to the actual place where
the primary cluster stores backups. If this option is not set in deploy/cr.yaml of your primary cluster, then the
following default naming is used: /backrestrepo/<primary-cluster-name>-backrest-shared-repo . For example, in case
of myPrimaryCluster and myStandbyCluster clusters, it should look as follows:

Supply your standby cluster with the Kubernetes Secret used by pgBackRest of the primary cluster to
Access the Storage Bucket. The name of this Secret is <cluster-name>-backrest-repo-config , and its content
depends on the cloud used for backups (refer to the Operator’s backups documentation for this step).
The contents of the Secret needs to be the same for both primary and standby clusters except for the
name: e.g. cluster1-backrest-repo-config should be recreated as cluster2-backrest-repo-config .

Enable the standby option in your standby cluster’s deploy/cr.yaml file:

•

Note

$ mkdir -p /tmp/copied-secrets/
$ export primary_cluster_name=cluster1
$ export standby_cluster_name=cluster2
$ export secrets="${primary_cluster_name}-users"
$ kubectl get secret/$secrets -o yaml \
yq eval 'del(.metadata.creationTimestamp)' - \
yq eval 'del(.metadata.uid)' - \
yq eval 'del(.metadata.selfLink)' - \
yq eval 'del(.metadata.resourceVersion)' - \
yq eval 'del(.metadata.namespace)' - \
yq eval 'del(.metadata.annotations."kubectl.kubernetes.io/last-applied-configuration")' - \
yq eval '.metadata.name = "'"${secrets/$primary_cluster_name/$standby_cluster_name}"'"' - \
yq eval '.metadata.labels.pg-cluster = "'"${standby_cluster_name}"'"' - \
>/tmp/copied-secrets/${secrets/$primary_cluster_name/$standby_cluster_name}

•

$ kubectl apply -f deploy/operator.yaml

•

$ export standby_cluster_name=cluster2
$ kubectl create -f /tmp/copied-secrets/${standby_cluster_name}-users

•

...
name: myStandbyCluster

...
backup:
...
repoPath: "/backrestrepo/myPrimaryCluster-backrest-shared-repo"

•

•

standby: true

14.1 How to deploy a standby cluster for Disaster Recovery

56 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/mikefarah/yq/#install

When you have applied your new cluster configuration with the usual kubectl -f deploy/cr.yaml command, it
starts the synchronization via pgBackRest, and your Disaster Recovery preparations are over.

When you need to actually use your new cluster, get it out from standby mode, changing the standby option
in your deploy/cr.yaml file:

Please take into account, that your cluster1 cluster should not exist at the moment when you get out your
cluster2 from standby:

DB Pod N

pgBackRest

Operator

cluster1

Backup storage
DB Pods

pgBackRest

Operator

cluster2

DB Pods

If cluster1 still exists for some reason, make sure it can not connect to backup storage. Otherwise, both clusters
sending WAL archives to it would cause data corruption!

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

standby: false

Note

Last update: 2022-12-20

14.1 How to deploy a standby cluster for Disaster Recovery

57 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14.2 Percona Operator for PostgreSQL single-namespace and multi-

namespace deployment

There are two design patterns that you can choose from when deploying Percona Operator for PostgreSQL
and PostgreSQL clusters in Kubernetes:

Namespace-scope - one Operator per Kubernetes namespace,

Cluster-wide - one Operator can manage clusters in multiple namespaces.

This how-to explains how to configure Percona Operator for PostgreSQL for each scenario.

14.2.1 Namespace-scope

By default, Percona Operator for PostgreSQL functions in a specific Kubernetes namespace. You can create
default pgo one or some other Namespace during installation (like it is shown in the installation
instructions). This approach allows several Operators to co-exist in one Kubernetes-based environment,
being separated in different namespaces:

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Kubernetes API

OperatorOperator

DB Pod 1 DB Pod N

CSI

Storage
Area

Network

percona-db-2 Namespacepercona-db-1 Namespace

Normally this is a recommended approach, as isolation minimizes impact in case of various failure
scenarios. This is the default configuration of our Operator.

Let’s say you have a Namespace in your Kubernetes cluster called percona-db-1 .

Edit the following lines in your deploy/operator.yaml:

•

•

1.

14.2 Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

58 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/v1.5.1/deploy/operator.yaml

Deploy the Operator:

Once Operator is up and running, deploy the database cluster itself:

You can deploy multiple clusters in this namespace.

Add more namespaces

What if there is a need to deploy clusters in another namespace? The solution for namespace-scope
deployment is to have more than one Operator in the corresponding namespace. We will use the percona-

db-2 namespace as an example.

Edit or copy operator.yaml :

apiVersion: v1
kind: ConfigMap
metadata:
name: pgo-deployer-cm
data:
values.yaml: |-
...
namespace: "percona-db-1"
pgo_operator_namespace: "percona-db-1"

...
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: pgo-deployer-crb

subjects:
...

- kind: ServiceAccount
namespace: percona-db-1

2.

$ kubectl apply -f deploy/operator.yaml -n percona-db-1

3.

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

1.

apiVersion: v1
kind: ConfigMap
metadata:
name: pgo-deployer-cm

data:
values.yaml: |-

...
namespace: "percona-db-2"
pgo_operator_namespace: "percona-db-2"

...
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: pgo-deployer-crb

subjects:
...

14.2.1 Namespace-scope

59 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

Deploy the Operator:

Once Operator is up and running deploy the database cluster itself:

Cluster names may be the same in different namespaces.

14.2.2 Install the Operator cluster-wide

Sometimes it is more convenient to have one Operator watching for Percona Distribution for PostgreSQL
custom resources in several namespaces.

We recommend running Percona Operator for PostgreSQL in a traditional way, limited to a specific
namespace. But it is possible to run it in so-called cluster-wide mode, one Operator watching several
namespaces, if needed:

Kubernetes API

Percona Operator for PostgreSQL

DB Pod 1 DB Pod 2

CSI

Storage
Area

Network

api

DB Pod DB Pod

Operator Namespace (percona-operator)

Percona-db-1
Namespace

Percona-db-2
Namespace

percona-db-3
Namespace

- kind: ServiceAccount
namespace: percona-db-2

2.

$ kubectl apply -f deploy/operator.yaml -n percona-db-2

3.

$ kubectl apply -f deploy/cr.yaml -n percona-db-2

Note

14.2.2 Install the Operator cluster-wide

60 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

Please take into account that if several Operators are configured to watch the same namespace, it is entirely
unpredictable which one will get ownership of the Custom Resource in it, so this situation should be avoided.

The following simple example shows how to install Operator cluster-wide on Kubernetes. It does the
following:

deploys Operator into a separate percona-operator Namespace,

allows Operator to control databases in two Namespaces: percona-db-1 and percona-db-2 .

Edit the following lines in your deploy/operator.yaml:

Before deploying the Operator, please ensure that all Namespaces exist.

Deploy the Operator:

You can now deploy databases into the namespaces listed in the namespace: variable.

Add more namespaces

Let’s say we want the Operator to manage databases in one more Namespace: percona-db-3 .

Edit the operator.yaml and add one more Namespace into the corresponding field:

Note

•

•

•

apiVersion: v1
kind: ConfigMap
metadata:
name: pgo-deployer-cm

data:
values.yaml: |-
...
namespace: "percona-db-1,percona-db-2"
pgo_operator_namespace: "percona-operator"

...
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: pgo-deployer-crb

subjects:
...
- kind: ServiceAccount
namespace: percona-operator

Note

•

$ kubectl apply -f deploy/operator.yaml -n percona-operator

•

$ kubectl apply -f deploy/cr.yaml -n percona-db-1
$ kubectl apply -f deploy/cr.yaml -n percona-db-2

1.

apiVersion: v1
kind: ConfigMap

14.2.2 Install the Operator cluster-wide

61 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/v1.5.1/deploy/operator.yaml

Delete the Operator deployment and deploy job:

Deletion of the Operator does not affect your existing clusters’ availability, but limits your ability to manage them. For
example, you will not be able to scale the clusters or take backups.

Deploy the Operator again with the new Namespace added:

You can now deploy databases into the new Namespace:

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

14.3 Using PostgreSQL tablespaces with Percona Operator for PostgreSQL

Tablespaces allow DBAs to store a database on multiple file systems within the same server and to control
where (on which file systems) specific parts of the database are stored. You can think about it as if you were
giving names to your disk mounts and then using those names as additional parameters when creating
database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory, and
Percona Operator for PostgreSQL is a good option to bring this to your Kubernetes environment when
needed.

metadata:
name: pgo-deployer-cm

data:
values.yaml: |-
...
namespace: "percona-db-1,percona-db-2,percona-db-3"

2.

$ kubectl -n percona-operator delete -f deploy/operator.yaml
$ kubectl -n percona-operator delete deploy postgres-operator

Note

3.

$ kubectl apply -f deploy/operator.yaml -n percona-operator

4.

$ kubectl apply -f deploy/cr.yaml -n percona-db-3

Last update: 2022-12-20

14.3 Using PostgreSQL tablespaces with Percona Operator for PostgreSQL

62 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14.3.1 Possible use cases

The most obvious use case for tablespaces is performance optimization. You place appropriate parts of the
database on fast but expensive storage and engage slower but cheaper storage for lesser-used database
objects. The classic example would be using an SSD for heavily-used indexes and using a large slow HDD for
archive data.

Of course, the Operator already provides you with traditional Kubernetes approaches to achieve this on a
per-Pod basis (Tolerations, etc.). But if you would like to go deeper and make such differentiation at the level
of your database objects (tables and indexes), tablespaces are exactly what you would need for that.

Another well-known use case for tablespaces is quickly adding a new partition to the database cluster
when you run out of space on the initially used one and cannot extend it (which may look less typical for
cloud storage). Finally, you may need tablespaces when migrating your existing architecture to the cloud.

Each tablespace created by Percona Operator for PostgreSQL corresponds to a separate Persistent Volume,
mounted in a container to the /tablespaces directory.

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

Percona Operator for PostgreSQL
Namespace

CSI

Tablespace Storages
for DB Pod N

14.3.1 Possible use cases

63 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

14.3.2 Creating a new tablespace

Providing a new tablespace for your database in Kubernetes involves two parts:

Configure the new tablespace storage with the Operator,

Create database objects in this tablespace with PostgreSQL.

The first part is done in the traditional way of Percona Operators, by modifying Custom Resource via the
deploy/cr.yaml configuration file. It has a special spec.tablespaceStorages section with subsections names
equal to PostgreSQL tablespace names.

The example already present in deploy/cr.yaml shows how to create tablespace storage named lake 1Gb in
size with dynamic provisioning (you can see official Kubernetes documentation on Persistent Volumes for
details):

After you apply this by running the kubectl apply -f deploy/cr.yaml command, the new lake tablespace will
appear within your database. Please take into account that if you add your new tablespace to the already
existing PostgreSQL cluster, it may take time for the Operator to create Persistent Volume Claims and get
Persistent Volumes actually mounted.

Now you can append TABLESPACE <tablespace_name> to your CREATE SQL statements to implicitly create tables,
indexes, or even entire databases in specific tablespaces (of course, your user should have appropriate
CREATE privileges to make it possible).

Let’s create an example table in the already mentioned lake tablespace:

It is also possible to set a default tablespace with the SET default_tablespace = <tablespace_name>; statement. It will
affect all further CREATE TABLE and CREATE INDEX commands without an explicit tablespace specifier, until you
unset it with an empty string.

As you can see, Percona Operator for PostgreSQL simplifies tablespace creation by carrying on all necessary
modifications with Persistent Volumes and Pods. The same would not be true for the deletion of an already
existing tablespace, which is not automated, neither by the Operator nor by PostgreSQL.

14.3.3 Deleting an existing tablespace

Deleting an existing tablespace from your database in Kubernetes also involves two parts:

Delete related database objects and tablespace with PostgreSQL,

Delete tablespace storage in Kubernetes.

1.

2.

spec:
...
tablespaceStorages:
lake:
volumeSpec:
size: 1G
accessmode: ReadWriteOnce
storagetype: dynamic
storageclass: ""
matchLabels: ""

CREATE TABLE products (
product_sku character(10),
quantity int,
manufactured_date timestamptz)

TABLESPACE lake;

•

•

14.3.2 Creating a new tablespace

64 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

To make tablespace deletion with PostgreSQL possible, you should make this tablespace empty (it is
impossible to drop a tablespace until all objects in all databases using this tablespace have been
removed). Tablespaces are listed in the pg_tablespace table, and you can use it to find out which objects are
stored in a specific tablespace. The example command for the lake tablespace will look as follows:

When your tablespace is empty, you can log in to the PostgreSQL Primary instance as a superuser, and then
execute the DROP TABLESPACE <tablespace_name>; command.

Now, when the PostgreSQL part is finished, you can remove the tablespace entry from the tablespaceStorages

section (don’t forget to run the kubectl apply -f deploy/cr.yaml command to apply changes).

However, Persistent Volumes will still be mounted to the /tablespaces directory in PostgreSQL Pods. To remove
these mounts, you should edit all Deployment objects for pgPrimary and pgReplica instances in your
Kubernetes cluster and remove the Volume and VolumeMount entries related to your tablespace.

You can see the list of Deployment objects with the kubectl get deploy command. Running it for a default
cluster named cluster1 results in the following output:

Now run kubectl edit deploy <oblect_name> for cluster1 , cluster1-repl1 , and cluster1-repl2 objects consequently. Each
command will open a text editor, where you should remove the appropriate lines, which in case of the lake

tablespace will look as follows:

Finishing the edit causes Pods to be recreated without tablespace mounts.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

SELECT relname FROM pg_class WHERE reltablespace=(SELECT oid FROM pg_tablespace WHERE spcname='lake');

NAME READY UP-TO-DATE AVAILABLE AGE
cluster1 1/1 1 1 156m
cluster1-backrest-shared-repo 1/1 1 1 156m
cluster1-pgbouncer 3/3 3 3 154m
cluster1-repl1 1/1 1 1 154m
cluster1-repl2 1/1 1 1 154m
postgres-operator 1/1 1 1 157m

...
spec:

...
containers:
- name: database
...
volumeMounts:
- name: tablespace-lake
mountPath: /tablespaces/lake

volumes:
...
- name: tablespace-lake
persistentVolumeClaim:
claimName: cluster1-tablespace-lake

...

14.3.3 Deleting an existing tablespace

65 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14.4 Creating a private S3-compatible cloud for backups

As it is mentioned in backups, any cloud storage which implements the S3 API can be used for backups. The
one way to setup and implement the S3 API storage on Kubernetes or OpenShift is Minio - the S3-
compatible object storage server deployed via Docker on your own infrastructure.

Setting up Minio to be used with Percona Operator for PostgreSQL backups involves the following steps:

Install Minio in your Kubernetes or OpenShift environment and create the correspondent Kubernetes Service
as follows:

Don’t forget to substitute default some-access-key and some-secret-key strings in this command with actual unique
key values. The values can be used later for access control. The storageClass option is needed if you are using
the special Kubernetes Storage Class for backups. Otherwise, this setting may be omitted. You may also
notice the MINIO_REGION value which is may not be used within a private cloud. Use the same region value
here and on later steps (us-east-1 is a good default choice).

Create an S3 bucket for backups:

This command creates the bucket named operator-testing with the selected access and secret keys (substitute
some-access-key and some-secret-key with the values used on the previous step).

Now edit the backup section of the deploy/cr.yaml file to set proper values for your newly created storage as
follows (you can find more on these options in backup and restore documentation).

Last update: 2023-04-17

1.

$ helm install \
--name minio-service \
--version 8.0.5 \
--set accessKey=some-access-key \
--set secretKey=some-secret-key \
--set service.type=ClusterIP \
--set configPath=/tmp/.minio/ \
--set persistence.size=2G \
--set environment.MINIO_REGION=us-east-1 \
stable/minio

2.

$ kubectl run -i --rm aws-cli --image=perconalab/awscli --restart=Never -- \
bash -c 'AWS_ACCESS_KEY_ID=some-access-key \

 AWS_SECRET_ACCESS_KEY=some-secret-key \
 AWS_DEFAULT_REGION=us-east-1 \
 /usr/bin/aws \
 --endpoint-url http://minio-service:9000 \
 s3 mb s3://operator-testing'

3.

...
backup:
...
storages:
minio:
type: s3
bucket: operator-testing
region: us-east-1
endpointUrl: http://minio-service:9000

14.4 Creating a private S3-compatible cloud for backups

66 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.minio.io/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml

You will also need to supply pgBackRest with base64-encoded access and secret keys stored in Kubernetes
Secrets.

You can encode needed data to base64 with the following command:

Edit the deploy/backup/cluster1-backrest-repo-config-secret.yaml configuration file: set name , aws-s3-key , and aws-s3-key-

secret with proper cluster name, key, and key secret.

When done, create the secret as follows:

Finally, create or update the cluster:

When the setup process is completed, you can make on-demand and scheduled backups and/or backup
restore following the official backup/restore documentation.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

uriStyle: "path"
verifyTLS: false

Note

in Linux in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

apiVersion: v1
kind: Secret
metadata:
name: <cluster-name>-backrest-repo-config

type: Opaque
data:
aws-s3-key: c29tZS1hY2Nlc3Mta2V5
aws-s3-key-secret: c29tZS1zZWNyZXQta2V5

$ kubectl apply -f deploy/backup/cluster1-backrest-repo-config-secret.yaml

$ kubectl apply -f deploy/cr.yaml

4.

Last update: 2023-11-15

14.4 Creating a private S3-compatible cloud for backups

67 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15. Reference

15.1 Custom Resource options

The Cluster is configured via the deploy/cr.yaml file.

The metadata part of this file contains the following keys:

name (cluster1 by default) sets the name of your Percona Distribution for PostgreSQL Cluster; it should
include only URL-compatible characters, not exceed 22 characters, start with an alphabetic character,
and end with an alphanumeric character;

The spec part of the deploy/cr.yaml file contains the following sections:

•

Key Value
type

Default Description

pause boolean false Pause/resume: setting it to true gracefully stops
the cluster, and setting it to false after shut down
starts the cluster back.

upgradeOptions subdoc Percona Distribution for PostgreSQL upgrade
options section

pgPrimary subdoc PostgreSQL Primary instance options section

walStorage subdoc Tablespaces Storage Section

walStorage subdoc Write-ahead Log Storage Section

backup subdoc Section to configure backups and pgBackRest

pmm subdoc Percona Monitoring and Management section

pgBouncer subdoc The pgBouncer connection pooler section

pgReplicas subdoc Section required to manage the replicas within a
PostgreSQL cluster

pgBadger subdoc The pgBadger PostgreSQL log analyzer section

Key database

Value string

Example pgdb

Description The name of a database that the PostgreSQL user can log into after the PostgreSQL
cluster is created

Key disableAutofail

Value boolean

Example false

Description Turns high availability on or off. By default, every cluster can have high availability if
there is at least one replica

Key tlsOnly

15. Reference

68 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
http://pgbouncer.github.io/
https://github.com/darold/pgbadger

Value boolean

Example false

Description Enforece Operator to use only Transport Layer Security (TLS) for both internal and
external communications

Key sslCA

Value string

Example cluster1-ssl-ca

Description The name of the secret with TLS used for both connection encryption (external traffic),
and replication (internal traffic)

Key secretsName

Value string

Example cluster1-secrets

Description The name of the secret created to store credentials for system users

Key sslSecretName

Value string

Example cluster1-ssl-keypair

Description The name of the secret created to encrypt external communications

Key sslReplicationSecretName

Value string

Example cluster1-ssl-keypair"

Description The name of the secret created to encrypt internal communications

Key keepData

Value boolean

Example true

Description If true , PVCs will be kept after the cluster deletion

Key keepBackups

Value boolean

Example true

Description If true , local backups will be kept after the cluster deletion

Key pgDataSource.restoreFrom

Value string

Example ""

Description The name of a data source PostgreSQL cluster, which is used to restore backup to a new
cluster

15.1 Custom Resource options

69 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

15.1.1 Upgrade Options Section

The upgradeOptions section in the deploy/cr.yaml file contains various configuration options to control
Percona Distribution for PostgreSQL upgrades.

15.1.2 pgPrimary Section

The pgPrimary section controls the PostgreSQL Primary instance.

Key pgDataSource.restoreOpts

Value string

Example ""

Description Custom pgBackRest options to restore backup to a new cluster

Key upgradeOptions.versionServiceEndpoint

Value string

Example https://check.percona.com

Description The Version Service URL used to check versions compatibility for upgrade

Key upgradeOptions.apply

Value string

Example disabled

Description Specifies how updates are processed by the Operator. Never or Disabled will completely
disable automatic upgrades, otherwise it can be set to Latest or Recommended or to a
specific version number of Percona Distribution for PostgreSQL to have it version-locked
(so that the user can control the version running, but use automatic upgrades to move
between them).

Key upgradeOptions.schedule

Value string

Example 0 2 * * *

Description Scheduled time to check for updates, specified in the crontab format

Key pgPrimary.image

Value string

Example perconalab/percona-postgresql-operator:main-ppg13-postgres-ha

Description The Docker image of the PostgreSQL Primary instance

Key pgPrimary.imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for updating pgPrimary and pgReplicas images

15.1.1 Upgrade Options Section

70 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/containers/images/#updating-images

Key pgPrimary.resources.requests.memory

Value int

Example 256Mi

Description The Kubernetes memory requests for a PostgreSQL Primary container

Key pgPrimary.resources.requests.cpu

Value string

Example 500m

Description Kubernetes CPU requests for a PostgreSQL Primary container

Key pgPrimary.resources.limits.cpu

Value string

Example 500m

Description Kubernetes CPU limits for a PostgreSQL Primary container

Key pgPrimary.resources.limits.memory

Value string

Example 256Mi

Description The Kubernetes memory limits for a PostgreSQL Primary container

Key pgPrimary.affinity.antiAffinityType

Value string

Example preferred

Description Pod anti-affinity type, can be either preferred or required

Key pgPrimary.affinity.nodeAffinityType

Value string

Example preferred

Description Node affinity type, can be either preferred or required

Key pgPrimary.affinity.nodeLabel

Value label

Example kubernetes.io/region: us-central1

Description Set labels for PostgreSQL instances Node affinity

Key pgPrimary.affinity.advanced

Value subdoc

Example

Description Allows using standard Kubernetes affinity constraints for advanced affinity and anti-
affinity tuning

15.1.2 pgPrimary Section

71 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Key pgPrimary.volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Primary storage

Key pgPrimary.tolerations

Value subdoc

Example node.alpha.kubernetes.io/unreachable

Description Kubernetes Pod tolerations

Key pgPrimary.volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Primary storage

Key pgPrimary.volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Primary storage

Key pgPrimary.volumeSpec.storagetype

Value string

Example dynamic

Description Type of the PostgreSQL Primary storage provisioning: create (the default variant; used if
storage is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage provisioner,
e.g. via a StorageClass)

Key pgPrimary.volumeSpec.storageclass

Value string

Example ""

Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Primary storage
PersistentVolumeClaim

Key pgPrimary.volumeSpec.matchLabels

Value string

Example ""

Description A PostgreSQL Primary storage label selector

Key pgPrimary.imagePullPolicy

Value string

Example Always

15.1.2 pgPrimary Section

72 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

15.1.3 Tablespaces Storage Section

The tablespaceStorages section in the deploy/cr.yaml file contains configuration options for PostgreSQL
Tablespace.

Description This option is used to set the policy for updating pgPrimary and pgReplicas images

Key pgPrimary.expose.serviceType

Value string

Example ClusterIP

Description Specifies the type of Kubernetes Service for pgPrimary

Key pgPrimary.expose.loadBalancerIP

Value string

Example 127.0.0.1

Description The static IP-address for the load balancer

Key pgPrimary.expose.loadBalancerSourceRanges

Value string

Example "10.0.0.0/8"

Description The range of client IP addresses from which the load balancer should be reachable (if not
set, there is no limitations)

Key pgPrimary.expose.annotations

Value label

Example pg-cluster-annot: cluster1

Description The Kubernetes annotations metadata for pgPrimary

Key pgPrimary.expose.labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for the pgPrimary Service

Key pgPrimary.customconfig

Value string

Example ""

Description Name of the Custom configuration options ConfigMap for PostgreSQL cluster

Key tablespaceStorages.<storage-name>.volumeSpec.size

Value int

Example 1G

15.1.3 Tablespaces Storage Section

73 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://www.postgresql.org/docs/current/manage-ag-tablespaces.html

15.1.4 Write-ahead Log Storage Section

The walStorage section in the deploy/cr.yaml file contains configuration options for PostgreSQL write-ahead
logging.

Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Tablespaces storage

Key tablespaceStorages.<storage-name>.volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Tablespaces
storage

Key tablespaceStorages.<storage-name>.volumeSpec.storagetype

Value string

Example dynamic

Description Type of the PostgreSQL Tablespaces storage provisioning: create (the default variant;
used if storage is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage
provisioner, e.g. via a StorageClass)

Key tablespaceStorages.<storage-name>.volumeSpec.storageclass

Value string

Example ""

Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Tablespaces
storage PersistentVolumeClaim

Key tablespaceStorages.<storage-name>.volumeSpec.matchLabels

Value string

Example ""

Description A PostgreSQL Tablespaces storage label selector

Key walStorage.volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Write-ahead Log storage

Key walStorage.volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Write-ahead
Log storage

Key walStorage.volumeSpec.storagetype

15.1.4 Write-ahead Log Storage Section

74 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/docs/current/wal-intro.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

15.1.5 Backup Section

The backup section in the deploy/cr.yaml file contains the following configuration options for the regular
Percona Distribution for PostgreSQL backups.

Value string

Example dynamic

Description Type of the PostgreSQL Write-ahead Log storage provisioning: create (the default variant;
used if storage is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage
provisioner, e.g. via a StorageClass)

Key walStorage.volumeSpec.storageclass

Value string

Example ""

Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Write-ahead Log
storage PersistentVolumeClaim

Key walStorage.volumeSpec.matchLabels

Value string

Example ""

Description A PostgreSQL Write-ahead Log storage label selector

Key backup.image

Value string

Example perconalab/percona-postgresql-operator:main-ppg13-pgbackrest

Description The Docker image for pgBackRest

Key backup.backrestRepoImage

Value string

Example perconalab/percona-postgresql-operator:main-ppg13-pgbackrest-repo

Description The Docker image for the BackRest repository

Key backup.resources.requests.cpu

Value string

Example 500m

Description Kubernetes CPU requests for a pgBackRest container

Key backup.resources.requests.memory

Value int

Example 48Mi

Description The Kubernetes memory requests for a pgBackRest container

15.1.5 Backup Section

75 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Key backup.resources.limits.cpu

Value int

Example 1

Description Kubernetes CPU limits for a pgBackRest container

Key backup.resources.limits.memory

Value int

Example 64Mi

Description The Kubernetes memory limits for a pgBackRest container

Key backup.affinity.antiAffinityType

Value string

Example preferred

Description Pod anti-affinity type, can be either preferred or required

Key backup.volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the pgBackRest Storage

Key backup.volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the pgBackRest Storage

Key backup.volumeSpec.storagetype

Value string

Example dynamic

Description Type of the pgBackRest storage provisioning: create (the default variant; used if
storage is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage
provisioner, e.g. via a StorageClass)

Key backup.volumeSpec.storageclass

Value string

Example ""

Description Optionally sets the Kubernetes storage class to use with the pgBackRest Storage
PersistentVolumeClaim

Key backup.volumeSpec.matchLabels

Value string

Example ""

15.1.5 Backup Section

76 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

Description A pgBackRest storage label selector

Key backup.storages.<storage-name>.type

Value string

Example s3

Description Type of the storage used for backups

Key backup.storages.<storage-name>.endpointURL

Value string

Example minio-gateway-svc:9000

Description The endpoint URL of the S3-compatible storage to be used for backups (not needed for
the original Amazon S3 cloud)

Key backup.storages.<storage-name>.bucket

Value string

Example ""

Description The Amazon S3 bucket or Google Cloud Storage bucket

name used for
backups

Key backup.storages.<storage-name>.region

Value boolean

Example us-east-1

Description The AWS region to use for Amazon and all S3-compatible storages

Key backup.storages.<storage-name>.uriStyle

Value string

Example path

Description Optional parameter that specifies if pgBackRest should use the path or host S3 URI
style

Key backup.storages.<storage-name>.verifyTLS

Value boolean

Example false

Description Enables or disables TLS verification for pgBackRest

Key backup.storageTypes

Value array

Example ["s3"]

Description The backup storage types for the pgBackRest repository

Key backup.repoPath

15.1.5 Backup Section

77 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.aws.amazon.com/general/latest/gr/rande.html

Value string

Example ""

Description Custom path for pgBackRest repository backups

Key backup.schedule.name

Value string

Example sat-night-backup

Description The backup name

Key backup.schedule.schedule

Value string

Example 0 0 * * 6

Description Scheduled time to make a backup specified in the

crontab format

Key backup.schedule.keep

Value int

Example 3

Description The amount of most recent backups to store. Older backups are automatically deleted.
Set keep to zero or completely remove it to disable automatic deletion of backups

Key backup.schedule.type

Value string

Example full

Description The type of the pgBackRest backup

Key backup.schedule.storage

Value string

Example local

Description The type of the pgBackRest repository

Key backup.schedule.backrestOpts

Value string

Example --annotation=source=scheduled-backup

Description Custom pgBackRest configuration options for scheduled backups

Key backup.customconfig

Value string

Example ""

Description Name of the ConfigMap to pass custom pgBackRest configuration options

15.1.5 Backup Section

78 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/configuration/configmap/

15.1.6 PMM Section

The pmm section in the deploy/cr.yaml file contains configuration options for Percona Monitoring and
Management.

Key backup.imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for updating pgBackRest images

Key pmm.enabled

Value boolean

Example false

Description Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM

Key pmm.image

Value string

Example percona/pmm-client:2.40.1

Description Percona Monitoring and Management (PMM) Client Docker image

Key pmm.serverHost

Value string

Example monitoring-service

Description Address of the PMM Server to collect data from the cluster

Key pmm.serverUser

Value string

Example admin

Description The PMM Server User. The PMM Server password should be configured using Secrets

Key pmm.pmmSecret

Value string

Example cluster1-pmm-secret

Description Name of the Kubernetes Secret object for the PMM Server password

Key pmm.resources.requests.memory

Value string

Example 200M

Description The Kubernetes memory requests for a PMM container

Key pmm.resources.requests.cpu

15.1.6 PMM Section

79 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/glossary.option.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

15.1.7 pgBouncer Section

The pgBouncer section in the deploy/cr.yaml file contains configuration options for the pgBouncer
connection pooler for PostgreSQL.

Value string

Example 500m

Description Kubernetes CPU requests for a PMM container

Key pmm.resources.limits.cpu

Value string

Example 500m

Description Kubernetes CPU limits for a PMM container

Key pmm.resources.limits.memory

Value string

Example 200M

Description The Kubernetes memory limits for a PMM container

Key pmm.imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for updating PMM Client images

Key pgBouncer.image

Value string

Example perconalab/percona-postgresql-operator:main-ppg13-pgbouncer

Description Docker image for the pgBouncer connection pooler

Key pgBouncer.exposePostgresUser

Value boolean

Example false

Description Enables or disables exposing postgres user through pgBouncer

Key pgBouncer.size

Value int

Example 1G

Description The number of the pgBouncer Pods to provide connection pooling

Key pgBouncer.resources.requests.cpu

Value int

15.1.7 pgBouncer Section

80 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
http://pgbouncer.github.io/
http://pgbouncer.github.io/

Example 1

Description Kubernetes CPU requests for a pgBouncer container

Key pgBouncer.resources.requests.memory

Value int

Example 128Mi

Description The Kubernetes memory requests for a pgBouncer container

Key pgBouncer.resources.limits.cpu

Value int

Example 2

Description Kubernetes CPU limits for a pgBouncer container

Key pgBouncer.resources.limits.memory

Value int

Example 512Mi

Description The Kubernetes memory limits for a pgBouncer container

Key pgBouncer.affinity.antiAffinityType

Value string

Example preferred

Description Pod anti-affinity type, can be either preferred or required

Key pgBouncer.expose.serviceType

Value string

Example ClusterIP

Description Specifies the type of Kubernetes Service for pgBouncer

Key pgBouncer.expose.loadBalancerIP

Value string

Example 127.0.0.1

Description The static IP-address for the load balancer

Key pgBouncer.expose.loadBalancerSourceRanges

Value string

Example "10.0.0.0/8"

Description The range of client IP addresses from which the load balancer should be reachable (if
not set, there is no limitations)

Key pgBouncer.expose.annotations

15.1.7 pgBouncer Section

81 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

15.1.8 pgReplicas Section

The pgReplicas section in the deploy/cr.yaml file stores information required to manage the replicas within a
PostgreSQL cluster.

Value label

Example pg-cluster-annot: cluster1

Description The Kubernetes annotations metadata for pgBouncer

Key pgBouncer.expose.labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for the pgBouncer Service

Key pgBouncer.imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for updating pgBouncer images

Key pgReplicas..size

Value int

Example 1G

Description The number of the PostgreSQL Replica Pods

Key pgReplicas..resources.requests.cpu

Value int

Example 500m

Description Kubernetes CPU requests for a PostgreSQL Replica container

Key pgReplicas..resources.requests.memory

Value int

Example 256Mi

Description The Kubernetes memory requests for a PostgreSQL Replica container

Key pgReplicas..resources.limits.cpu

Value int

Example 500m

Description Kubernetes CPU limits for a PostgreSQL Replica container

Key pgReplicas..resources.limits.memory

Value int

15.1.8 pgReplicas Section

82 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Example 256Mi

Description The Kubernetes memory limits

for a PostgreSQL
Replica
container

Key pgReplicas..volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Replica
storage

Key pgReplicas..volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Replica storage

Key pgReplicas..volumeSpec.storagetype

Value string

Example dynamic

Description Type of the PostgreSQL Replica storage provisioning: create (the default variant; used
if storage is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage
provisioner, e.g. via a StorageClass)

Key pgReplicas..volumeSpec.storageclass

Value string

Example standard

Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Replica
storage PersistentVolumeClaim

Key pgReplicas..volumeSpec.matchLabels

Value string

Example ""

Description A PostgreSQL Replica storage label selector

Key pgReplicas..labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for PostgreSQL Replica Pods

Key pgReplicas..annotations

Value label

15.1.8 pgReplicas Section

83 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

15.1.9 pgBadger Section

The pgBadger section in the deploy/cr.yaml file contains configuration options for the pgBadger PostgreSQL
log analyzer.

Example pg-cluster-annot: cluster1-1

Description The Kubernetes annotations metadata for PostgreSQL Replica

Key pgReplicas..expose.serviceType

Value string

Example ClusterIP

Description Specifies the type of Kubernetes Service for for PostgreSQL Replica

Key pgReplicas..expose.loadBalancerSourceRanges

Value string

Example "10.0.0.0/8"

Description The range of client IP addresses from which the load balancer should be reachable
(if not set, there is no limitations)

Key pgReplicas..expose.annotations

Value label

Example pg-cluster-annot: cluster1

Description The Kubernetes annotations metadata for PostgreSQL Replica

Key pgReplicas..expose.labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for the PostgreSQL Replica Service

Key pgBadger.enabled

Value boolean

Example false

Description Enables or disables the pgBadger PostgreSQL log analyzer

Key pgBadger.image

Value string

Example perconalab/percona-postgresql-operator:main-ppg13-pgbadger

Description pgBadger PostgreSQL log analyzer Docker image

Key pgBadger.port

Value int

15.1.9 pgBadger Section

84 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

15.2 The Operator installation options

When installing The Operator, you can customize additional configuration options. These options are
specified in deploy/operator.yaml file and already have reasonable defaults, so most users have no need
modifying them.

15.2.1 General Configuration

These variables affect the general configuration of the PostgreSQL Operator.

Example 10000

Description The port number for pgBadger

Key pgBadger.imagePullPolicy

Value string

Example Always

Description This option is used to set the policy for updating pgBadger images

Last update: 2023-11-15

Name Default Required Description

archive_mode true If true , enables archive logging
on all newly created clusters

archive_timeout 60 Set to a value in seconds to
configure the timeout threshold
for archiving

ccp_image_pull_secret "" Name of a Secret with
credentials for the container
image registries for the
PostgreSQL cluster

ccp_image_pull_secret_manifest "" A path to the Secret manifest to
be installed in each
namespace (optional)

create_rbac true Set to true if the installer should
create the RBAC resources
required to run the PostgreSQL
Operator

15.2 The Operator installation options

85 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Name Default Required Description

delete_operator_namespace false If true , the Operator
namespace (one defined using
the pgo_operator_namespace

variable) will be deleted when
uninstalling the Operator

delete_watched_namespaces false If true , the Operator watched
namespaces (ones defined
using the namespace variable)
will be deleted when
uninstalling the Operator

disable_telemetry false If true , gathering telemetry by
the Operator will be disabled

namespace pgo A comma delimited string of all
the namespaces the Operator
should manage

namespace_mode disabled Determines which namespace
permissions are assigned to the
PostgreSQL Operator using a
ClusterRole; can be dynamic ,
readonly , and disabled

pgo_image_prefix percona/

percona-

postgresql-

operator

The image prefix used when
creating containers for the
Operator (apiserver, operator,
scheduler, etc.)

pgo_image_pull_policy Always The policy for updating the
Operator images

pgo_image_pull_secret "" Name of a Secret with
credentials for the Operator’s
container image registries

pgo_image_pull_secret_manifest "" Optionally provides a path to
the Secret manifest to be
installed in each namespace

pgo_image_tag 1.5.1 Configures the image tag used
when creating the Operator’s
containers (apiserver, operator,
scheduler, etc.)

pgo_operator_namespace pgo The namespace where the
Operator will be deployed

15.2.1 General Configuration

86 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15.3 Percona certified images

Following table presents Percona’s certified docker images to be used with the Percona Operator for
PostgreSQL:

Last update: 2022-09-02

Image Digest

percona/percona-
postgresql-operator:
1.5.1-pgo-deployer

565366c2ffcfb46a45f461602f6a2ba392524e1de3b82867a77a305c7b6f76db

percona/percona-
postgresql-operator:
1.5.1-postgres-operator

45a100162e7ef4e0b014909d2ca84f4a3d95a8a1d02f8144ab2ed09b7eec4129

percona/percona-
postgresql-operator:
1.5.1-pgo-scheduler

5f15e10d3c9a69dae0ed6baa4c57924368179659f351eb3cf35e3312fe56155c

percona/percona-
postgresql-operator:
1.5.1-pgo-rmdata

b705e755daecac4054f2e07fb8b14c4f316f53f26187ebc4be8d1ed5bd3ffe61

percona/percona-
postgresql-operator:
1.5.1-pgo-event

141305674261d49a8156a43e6acb1964b41b98e388546b88464839ad97dbd590

percona/percona-
postgresql-operator:
1.5.1-pgo-apiserver

e61b9c2d8f845a01ac7c8ff3537a7e59bad6b518d9d9eb000a9ee1b3aa050169

percona/percona-
postgresql-operator:
1.5.1-ppg12-pgbadger

af0bff618b5f66647c35779163a53854c5457832adedb0926c7990c64ca5c510

percona/percona-
postgresql-operator:
1.5.1-ppg13-pgbadger

38c705a4a03db98c090b0595f23b9de2cb5c9636e0a149ae0d15950e4a4f763f

percona/percona-
postgresql-operator:
1.5.1-ppg14-pgbadger

74acf90e9471513b0e33867ca4f7b6c4c5df3125a95dbf336523300285d85525

percona/percona-
postgresql-operator:
1.5.1-ppg12-postgres-ha

cf8eded64d1da50f430d5eaeb22c5cd425750e7b361c7b5382d48762094dbfc8

percona/percona-
postgresql-operator:
1.5.1-ppg13-postgres-ha

9ccbeab54947a33fe681f9f9ad3511cbf446be0cf619887bd4157152c3c207af

percona/percona-
postgresql-operator:
1.5.1-ppg14-postgres-ha

bcd7c6edf3890749ce32219079e63cb24dd255daf38cca54f272d01a34b5f53a

percona/percona-
postgresql-operator:
1.5.1-ppg12-pgbouncer

c72276b647231380f30185a6943bec583895068eda0219b15f9bad90cf29f9ce

percona/percona-
postgresql-operator:
1.5.1-ppg13-pgbouncer

dfad497290026cf5b14af970daf38b1d1b482ce712a4e36e0f2e302994786251

15.3 Percona certified images

87 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

15.4 Frequently Asked Questions

15.4.1 Why do we need to follow “the Kubernetes way” when Kubernetes was never intended to

run databases?

As it is well known, the Kubernetes approach is targeted at stateless applications but provides ways to store
state (in Persistent Volumes, etc.) if the application needs it. Generally, a stateless mode of operation is
supposed to provide better safety, sustainability, and scalability, it makes the already-deployed

Image Digest

percona/percona-
postgresql-operator:
1.5.1-ppg14-pgbouncer

019c12422c9a33da1bf59d8065c172d82f097c0153b357b8066bf6c7a5268146

percona/percona-
postgresql-operator:
1.5.1-ppg12-pgbackrest

bbe89ae227b6c8a9afe49e4ba269e412f45da4ef43752a6b9b2083bd6e77c290

percona/percona-
postgresql-operator:
1.5.1-ppg13-pgbackrest

dcf286797f313ef3039a7fdc76dfcc0f17433fd90e81496134e6e25e5f385bd1

percona/percona-
postgresql-operator:
1.5.1-ppg14-pgbackrest

cdb4c7a3251efee0bb851d0ae7e73b0e55b8a7b786b47f2f9e6fc557446643a8

percona/percona-
postgresql-operator:
1.5.1-ppg12-pgbackrest-
repo

e107395950e72eb7b93cf82952a0e1a888cebffed443491aafb6b771a1e40f19

percona/percona-
postgresql-operator:
1.5.1-ppg13-pgbackrest-
repo

7147f21a6b43f946cebd584a198ea956137fe71f05ffca8b95b6666d694467eb

percona/percona-
postgresql-operator:
1.5.1-ppg14-pgbackrest-
repo

f375f40628b4f1f26f11a4a1e5b77f1324d11a78b261ff96dea04887bffeb112

percona/pmm-client:
2.40.1

6ebb6f7ef111949bcb83f0e51dec0682e389517a46347a4b1a0402c7aec8efa8

Last update: 2024-01-29

15.4 Frequently Asked Questions

88 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

components interchangeable. You can find more about substantial benefits brought by Kubernetes to
databases in this blog post.

The architecture of state-centric applications (like databases) should be composed in a right way to avoid
crashes, data loss, or data inconsistencies during hardware failure. Percona Operator for PostgreSQL
provides out-of-the-box functionality to automate provisioning and management of highly available
PostgreSQL database clusters on Kubernetes.

15.4.2 How can I contact the developers?

The best place to discuss Percona Operator for PostgreSQL with developers and other community members
is the community forum.

If you would like to report a bug, use the Percona Operator for PostgreSQL project in JIRA.

15.4.3 How can I analyze PostgreSQL logs with pgBadger?

pgBadger is a report generator for PostgreSQL, which can analyze PostgreSQL logs and provide you web-
based representation with charts and various statistics. You can configure it via the pgBadger Section in the
deploy/cr.yaml file. The most important option there is pgBadger.enabled, which is off by default. When
enabled, a separate pgBadger sidecar container with a specialized HTTP server is added to each PostgreSQL
Pod.

You can generate the log report and access it through an exposed port (10000 by default) and an /api/

badgergenerate endpoint: http://<Pod-address>:10000/api/badgergenerate . Also, this report is available in the
appropriate pgBadger container as a /report/index.html file.

15.4.4 How can I set the Operator to control PostgreSQL in several namespaces?

Sometimes it is convenient to have one Operator watching for PostgreSQL Cluster custom resources in
several namespaces.

You can set additional namespace to be watched by the Operator as follows:

First of all clean up the installer artifacts:1.

$ kubectl delete -f deploy/operator.yaml

15.4.2 How can I contact the developers?

89 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/blog/2020/10/08/the-criticality-of-a-kubernetes-operator-for-databases/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG
https://pgbadger.darold.net/
https://github.com/percona/percona-postgresql-operator/blob/1.x/deploy/cr.yaml

Make changes in the deploy/operator.yaml file:

Find the pgo-deployer-cm ConfigMap. It contains the values.yaml configuration file. Find the namespace key in this
file (it is set to "pgo" by default) and append your additional namespace to it in a comma-separated list.

Find the pgo-deploy container template in the pgo-deploy job spec. It has env element named DEPLOY_ACTION ,
which you should change from install to update :

Now apply your changes as usual:

You need to perform cleanup between each DEPLOY_ACTION activity, which can be either install , update , or uninstall .

15.4.5 How can I store backups on S3-compatible storage with self-issued certificates?

The Operator allows you to store backups on any S3-compatible storage including your private one (for
example, a local MinIO installation). Backup and restore with a private S3-compatible storage can be done
following the official instruction except the case when you use self-signed certificates and would like to skip
TLS verification (which can be reasonable when both your database and storage are located in the same
Kubernetes cluster or in the same protected intranet segment).

The backup.storages. option in the deploy/cr.yaml configuration file allows you to skip TLS verification for
specific S3-compatible storage. Setting it to true is enough to make a backup.

2.

•

...
apiVersion: v1
kind: ConfigMap
metadata:
name: pgo-deployer-cm

data:
values.yaml: |-
...
namespace: "pgo,myadditionalnamespace"
...

•

...
apiVersion: batch/v1
kind: Job
metadata:
name: pgo-deploy
...

containers:
- name: pgo-deploy
...
env:
- name: DEPLOY_ACTION
value: update
...

3.

$ kubectl apply -f deploy/operator.yaml

Note

15.4.5 How can I store backups on S3-compatible storage with self-issued certificates?

90 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://en.wikipedia.org/wiki/MinIO

Restoring a backup without TLS requires you to make two changes in the parameters subsection of the
deploy/restore.yaml file:

set backrest-s3-verify-tls option to false ,

add --no-repo1-storage-verify-tls value to backrest-restore-opts field.

The following example shows how the resulting parameters section may look like:

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

15.5 Copyright and licensing information

15.5.1 Documentation licensing

Percona Operator for PostgreSQL documentation is (C)2009-2023 Percona LLC and/or its affiliates and is
distributed under the Creative Commons Attribution 4.0 International License.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

15.6 Trademark policy

This Trademark Policy is to ensure that users of Percona-branded products or services know that what they
receive has really been developed, approved, tested and maintained by Percona. Trademarks help to

•

•

...
parameters:
backrest-restore-from-cluster: cluster1
backrest-restore-opts: --type=time --target="2022-05-03 15:22:42" --no-repo1-storage-verify-tls
backrest-storage-type: "s3"
backrest-s3-verify-tls: "false"
tasktype: restore

Last update: 2023-11-15

Last update: 2023-06-27

15.5 Copyright and licensing information

91 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://creativecommons.org/licenses/by/4.0/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://www.percona.com/trademark-policy

prevent confusion in the marketplace, by distinguishing one company’s or person’s products and services
from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB, XtraBackup,
Percona XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons and logos
associated with these marks. Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service,
website, or other use is not permitted without Percona’s written permission with the following three limited
exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona
fide Percona product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”),
you may use the appropriate Percona mark when distributing a verbatim copy of that product in
accordance with the terms and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona software
that has been modified with minor changes for the sole purpose of allowing the software to operate on an
operating system or hardware platform for which Percona has not yet released the software, provided that
those third party changes do not affect the behavior, functionality, features, design or performance of the
software. Users who acquire this Percona-branded software receive substantially exact implementations of
the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example, if
Percona believes that your modification is beyond the scope of the limited license granted in this Policy or
that your use of the Percona mark is detrimental to Percona, Percona will revoke this authorization. Upon
revocation, you must immediately cease using the applicable Percona mark. If you do not immediately
cease using the Percona mark upon revocation, Percona may take action to protect its rights and interests
in the Percona mark. Percona does not grant any license to use any Percona mark for any other modified
versions of Percona software; such use will require our prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate,
modify or otherwise use any Percona mark as part of your own brand. For example, if XYZ creates a modified
version of the Percona Server, XYZ may not brand that modification as “XYZ Percona Server” or “Percona XYZ
Server”, even if that modification otherwise complies with the third exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as
amended from time to time. For instance, any mention of Percona trademarks should include the full
trademarked name, with proper spelling and capitalization, along with attribution of ownership to Percona
Inc. For example, the full proper name for XtraBackup is Percona XtraBackup. However, it is acceptable to
omit the word “Percona” for brevity on the second and subsequent uses, where such omission does not
cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy, please
contact trademarks@percona.com for assistance and we will do our very best to be helpful.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

15.6 Trademark policy

92 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

mailto:trademarks@percona.com
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Last update: 2023-06-27

15.6 Trademark policy

93 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

16. Release Notes

16.1 Percona Operator for PostgreSQL Release Notes

Percona Ooerator for PostgreSQL 1.5.1 (2024-01-29)

Percona Ooerator for PostgreSQL 1.5.0 (2023-12-11)

Percona Operator for PostgreSQL 1.4.0 (2023-03-31)

Percona Operator for PostgreSQL 1.3.0 (2022-08-04)

Percona Operator for PostgreSQL 1.2.0 (2022-04-06)

Percona Distribution for PostgreSQL Operator 1.1.0 (2021-12-07)

Percona Distribution for PostgreSQL Operator 1.0.0 (2021-10-07)

Percona Distribution for PostgreSQL Operator 0.2.0 (2021-08-12)

Percona Distribution for PostgreSQL Operator 0.1.0 (2021-05-10)

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

16.2 Percona Operator for PostgreSQL 1.5.1

Date

January 29, 2024

Installation

Percona Operator for PostgreSQL

16.2.1 Release Highlights

This release provides fixes for the following vulnerabilities in PostgreSQL, pgBackRest, and pgBouncer images
used by the Operator:

OpenSSH could cause remote code execution by ssh-agent if a user establishes an SSH connection to a
compromised or malicious SSH server and has agent forwarding enabled (CVE-2023-38408). This
vulnerability affects pgBackRest and PostgreSQL images.

The c-ares library could cause a Denial of Service with 0-byte UDP payload (CVE-2023-32067). This
vulnerability affects pgBouncer image.

Users of the Operator version 1.x are recommended to upgrade to 1.5.1 to resolve these issues.

•

•

•

•

•

•

•

•

•

Last update: 2024-01-25

•

•

•

•

16. Release Notes

94 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-32067

16.2.2 Bugs Fixed

K8SPG-494: Fix vulnerabilities in PostgreSQL, pgBackRest, and pgBouncer images

16.2.3 Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.16, 13.12, and 14.9. Other options may
also work but have not been tested. The Operator 1.5.1 provides connection pooling based on pgBouncer
1.20.0 and high-availability implementation based on Patroni 2.1.4.

The following platforms were tested and are officially supported in this release:

Google Kubernetes Engine (GKE) 1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS) 1.24 - 1.28

OpenShift 4.11 - 4.14

Minikube 1.32

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

16.3 Percona Operator for PostgreSQL 1.5.0

Date

December 11, 2023

Installation

Percona Operator for PostgreSQL

16.3.1 Release highlights

This release contains a number of fixes and improvements made within the maintenance mode that the
Operator 1.x is in.

The Operator 1.x goes end-of-life in July, 2024, so we strongly recommend to use Percona Operator for
PostgreSQL 2.x instead. The Operator version 2 has newer PostgreSQL versions, new features and
improvements, which will not find their way to the Operator 1.x version.

16.3.2 Improvements

K8SPG-340: To continuously improve the Operator we capture anonymous telemetry and usage data. In
this release we add more data points to it

•

•

•

•

•

Last update: 2024-01-25

•

•

•

16.2.2 Bugs Fixed

95 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-494
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://docs.percona.com/percona-operator-for-postgresql/2.0/index.html
https://docs.percona.com/percona-operator-for-postgresql/2.0/index.html
https://jira.percona.com/browse/K8SPG-340

16.3.3 Bugs Fixed

K8SPG-420: Fix a bug due to which pausing and unpausing the cluster after modification of Custom
Resource could result in wrong scale of replica and backrest repo Pods

K8SPG-314: Version Service at check.percona.com was was incorrectly parsing the version string which
lead to issues with automated upgrades

K8SPG-404: Fix a bug due to which upgrading the Operator version 1.3 to 1.4 could cause the cluster to
have no replicas

K8SPG-464: Our Affinity configuration was not taking components into account. This led to unschedulable
Pods that were stuck in Pending state. It is fixed in this release through adding component labels

16.3.4 Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.16, 13.12, and 14.9. Other options may
also work but have not been tested. The Operator 1.5.0 provides connection pooling based on pgBouncer
1.20.0 and high-availability implementation based on Patroni 2.1.4.

The following platforms were tested and are officially supported in this release:

Google Kubernetes Engine (GKE) 1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS) 1.24 - 1.28

OpenShift 4.11 - 4.14

Minikube 1.32

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

16.4 Percona Operator for PostgreSQL 1.4.0

Date

March 31, 2023

Installation

Percona Operator for PostgreSQL

16.4.1 Improvements

K8SPG-188: Add Custom Resource options to set static IP address for the pgPrimary, pgReplicas, and
pgBouncer LoadBalancers

K8SPG-269: It is now possible to define affinity and anti-affinity rules for backup Pods

•

•

•

•

•

•

•

•

Last update: 2023-12-11

•

•

•

•

16.3.3 Bugs Fixed

96 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-420
https://jira.percona.com/browse/K8SPG-314
https://jira.percona.com/browse/K8SPG-404
https://jira.percona.com/browse/K8SPG-464
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://jira.percona.com/browse/K8SPG-188
https://jira.percona.com/browse/K8SPG-269

K8SPG-270: The new schedule.backrestOpts Custom Resource option allows customizing pgBackRest
parameters for scheduled backups

K8SPG-292: The Operator now uses units based on the power of 2 (e.g. GiB instead of G) for the storage
size, to make it multiple of the 1024 default kernel block size (thanks to Rodney Karemba for contribution)

16.4.2 Bugs Fixed

K8SPG-286: Fix a bug which caused PMM client connection fail when the TLSOnly Custom Resource option
was set to require TLS for all connections

K8SPG-290: Fix a bug due to which ssh connection used for backups and new replica creation could hang
if exceeding the PostgreSQL 60 seconds timeout (e.g. because of network problems); to avoid such
orphaned connections, gbackrest archive-push command is now automatically killed after timeout

K8SPG-291: Fix a bug which prevented backup schedule in the Custom Resource to be updated without
deleting the existing schedule first and recreating it as a new one

16.4.3 Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.14, 13.10, and 14.7. Other options may
also work but have not been tested. The Operator 1.4.0 provides connection pooling based on pgBouncer
1.18.0 and high-availability implementation based on Patroni 2.1.4.

The following platforms were tested and are officially supported in this release:

Google Kubernetes Engine (GKE) 1.22 - 1.25

Amazon Elastic Container Service for Kubernetes (EKS) 1.22 - 1.25

OpenShift 4.10 - 4.12

Minikube 1.28 (based on Kubernetes 1.25)

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

16.5 Percona Operator for PostgreSQL 1.3.0

Date

August 4, 2022

Installation

•

•

•

•

•

•

•

•

•

Last update: 2023-03-31

•

•

16.4.2 Bugs Fixed

97 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-270
https://jira.percona.com/browse/K8SPG-292
https://jira.percona.com/browse/K8SPG-286
https://jira.percona.com/browse/K8SPG-290
https://jira.percona.com/browse/K8SPG-291
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Percona Operator for PostgreSQL

16.5.1 Release Highlights

The automated upgrade is now disabled by default to prevent an unplanned downtimes for user
applications and to provide defaults more focused on strict user’s control over the cluster

Flexible anti-affinity configuration is now available, which allows the Operator to isolate PostgreSQL cluster
instances on different Kubernetes nodes or to increase its availability by placing PostgreSQL instances in
different availability zones

16.5.2 Improvements

K8SPG-155: Flexible anti-affinity configuration

K8SPG-196: Add possibility for postgres user to connect to PostgreSQL through PgBouncer with a new
pgBouncer.exposePostgresUser Custom Resource option

K8SPG-218: The automated upgrade is now disabled by default to prevent an unplanned downtimes for
user applications and to provide defaults more focused on strict user’s contol over the cluster; also the
user is now able to turn off sending data to the Version Service server

K8SPG-226: A new build and testing guide allows user to easily experiment with the source code of the
Operator

16.5.3 Bugs Fixed

K8SPG-178: Fix the bug in the instruction on passing custom configuration options for PostgreSQL which
made it usable for the new cluster only

K8SPG-193: Fix the bug which caused the Operator crash without pgReplicas section in Custom Resource
definition

K8SPG-197: Fix the bug which caused the Operator to make connection requests to Version Service even
with disabled Smart Update

K8SPG-207: Fix the bug due to which restoring S3 backup from storage with self-signed certificates didn’t
work, by introducing the special backup.storages.verifyTLS option to address this issue

16.5.4 Supported platforms

The following platforms were tested and are officially supported by the Operator 1.3.0:

Google Kubernetes Engine (GKE) 1.21 - 1.24

Amazon Elastic Container Service for Kubernetes (EKS) 1.20 - 1.22

OpenShift 4.7 - 4.10

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

•

•

•

•

•

•

•

•

•

•

•

•

•

16.5.1 Release Highlights

98 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-155
https://jira.percona.com/browse/K8SPG-196
https://jira.percona.com/browse/K8SPG-218
https://jira.percona.com/browse/K8SPG-226
https://github.com/percona/percona-postgresql-operator/blob/main/e2e-tests/README.md
https://jira.percona.com/browse/K8SPG-178
https://jira.percona.com/browse/K8SPG-193
https://jira.percona.com/browse/K8SPG-197
https://jira.percona.com/browse/K8SPG-207
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

16.6 Percona Operator for PostgreSQL 1.2.0

Date

April 6, 2022

Installation

Percona Operator for PostgreSQL

16.6.1 Release Highlights

With this release, the Operator turns to a simplified naming convention and changes its official name to
Percona Operator for PostgreSQL

Starting from this release, the Operator automatically generates TLS certificates and turns on encryption
by default at cluster creation time. This includes both external certificates which allow users to connect to
pgBouncer and PostgreSQL via the encrypted channel, and internal ones used for communication
between PostgreSQL cluster nodes

Various cleanups in the deploy/cr.yaml configuration file simplify the deployment of the cluster, making
no need in going into YAML manifests and tuning them

16.6.2 Improvements

K8SPG-149: It is now possible to explicitly set the version of PostgreSQL for newly provisioned clusters.
Before that, all new clusters were started with the latest PostgreSQL version if Version Service was enabled

K8SPG-148: Add possibility of specifying imagePullPolicy option for all images in the Custom Resource of the
cluster to run in air-gapped environments

K8SPG-147: Users now can pass additional customizations to pgBackRest with the pgBackRest
configuration options provided via ConfigMap

K8SPG-142: Introduce deploy/cr-minimal.yaml configuration file to deploy minimal viable clusters - useful
for developers to deploy PostgreSQL on local Kubernetes clusters, such as Minikube

K8SPG-141: YAML manifest cleanup simplifies cluster deployment, reducing it to just two commands

K8SPG-112: Enable automated generation of TLS certificates and provide encryption for all new clusters by
default

K8SPG-161: The Operator documentation now has a how-to that covers deploying a standby PostgreSQL
cluster on Kubernetes

16.6.3 Bugs Fixed

K8SPG-115: Fix the bug that caused creation a “cloned” cluster with pgDataSource to fail due to missing
Secrets

Last update: 2022-08-04

•

•

•

•

•

•

•

•

•

•

•

•

•

16.6 Percona Operator for PostgreSQL 1.2.0

99 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://jira.percona.com/browse/K8SPG-149
https://jira.percona.com/browse/K8SPG-148
https://jira.percona.com/browse/K8SPG-147
https://jira.percona.com/browse/K8SPG-142
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr-minimal.yaml
https://jira.percona.com/browse/K8SPG-141
https://jira.percona.com/browse/K8SPG-112
https://jira.percona.com/browse/K8SPG-161
https://jira.percona.com/browse/K8SPG-115

K8SPG-163: Fix the security vulnerability CVE-2021-40346 by removing the unused dependency in the
Operator images

K8SPG-152: Fix the bug that prevented deploying the Operator in disabled/readonly namespace mode. It
is now possible to deploy several operators in different namespaces in the same cluster

16.6.4 Options Changes

K8SPG-116: The backrest-restore-from-cluster parameter was renamed to backrest-restore-cluster for clarity in the
deploy/backup/restore.yaml file used to restore the cluster from a previously saved backup

16.6.5 Supported platforms

The following platforms were tested and are officially supported by the Operator 1.2.0:

Google Kubernetes Engine (GKE) 1.19 - 1.22

Amazon Elastic Container Service for Kubernetes (EKS) 1.19 - 1.21

OpenShift 4.7 - 4.9

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

16.7 Percona Distribution for PostgreSQL Operator 1.1.0

Date

December 7, 2021

Installation

Installing Percona Distribution for PostgreSQL Operator

16.7.1 Release Highlights

A Kubernetes-native horizontal scaling capability was added to the Custom Resource to unblock
Horizontal Pod Autoscaler and Kubernetes Event-driven Autoscaling (KEDA) usage

The Smart Upgrade functionality along with the technical preview of the Version Service allows users to
automatically get the latest version of the software compatible with the Operator and apply it safely

Percona Distribution for PostgreSQL Operator now supports PostgreSQL 14

•

•

•

•

•

•

Last update: 2022-07-19

•

•

•

•

•

16.6.4 Options Changes

100 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-163
https://nvd.nist.gov/vuln/detail/CVE-2021-20329
https://jira.percona.com/browse/K8SPG-152
https://jira.percona.com/browse/K8SPG-116
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup/restore.yaml
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide

16.7.2 New Features

K8SPG-101: Add support for Kubernetes horizontal scaling to set the number of Replicas dynamically via
the kubectl scale command or Horizontal Pod Autoscaler

K8SPG-77: Add support for PostgreSQL 14 in the Operator

K8SPG-75: Manage Operator’s system users hrough a single Secret resource even after cluster creation

K8SPG-71: Add Smart Upgrade functionality to automate Percona Distribution for PostgreSQL upgrades

16.7.3 Improvements

K8SPG-96: PMM container does not cause the crash of the whole database Pod if pmm-agent is not
working properly

16.7.4 Bugs Fixed

K8SPG-120: The Operator default behavior is now to keep backups and PVCs when the cluster is deleted

Supported platforms

The following platforms were tested and are officially supported by the Operator 1.1.0:

Google Kubernetes Engine (GKE) 1.19 - 1.22

Amazon Elastic Container Service for Kubernetes (EKS) 1.18 - 1.21

OpenShift 4.7 - 4.9

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

16.8 Percona Distribution for PostgreSQL Operator 1.0.0

Date

October 7, 2021

Installation

Installing Percona Distribution for PostgreSQL Operator

Percona announces the general availability of Percona Distribution for PostgreSQL Operator 1.0.0.

•

•

•

•

•

•

•

•

•

Last update: 2022-07-20

•

•

16.7.2 New Features

101 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://jira.percona.com/browse/K8SPG-101
https://jira.percona.com/browse/K8SPG-77
https://jira.percona.com/browse/K8SPG-75
https://jira.percona.com/browse/K8SPG-71
https://jira.percona.com/browse/K8SPG-96
https://jira.percona.com/browse/K8SPG-120
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide

The Percona Distribution for PostgreSQL Operator automates the lifecycle, simplifies deploying and
managing open source PostgreSQL clusters on Kubernetes.

The Operator follows best practices for configuration and setup of the Percona Distribution for PostgreSQL.
The Operator provides a consistent way to package, deploy, manage, and perform a backup and a restore
for a Kubernetes application. Operators deliver automation advantages in cloud-native applications.

The advantages are the following:

Deploy a Percona Distribution for PostgreSQL with no single point of failure and environment which can
span multiple availability zones

Modify the Percona Distribution for PostgreSQL size parameter to add or remove PostgreSQL instances

Use single Custom Resource as a universal entry point to configure the cluster, similar to other Percona
Operators

Carry on semi-automatic upgrades of the Operator and PostgreSQL to newer versions

Integrate with Percona Monitoring and Management (PMM) to seamlessly monitor your Percona
Distribution for PostgreSQL

Automate backups or perform on-demand backups as needed with support for performing an automatic
restore

Use cloud storage with S3-compatible APIs or Google Cloud for backups

Use Transport Layer Security (TLS) for the replication and client traffic

Support advanced Kubernetes features such as pod disruption budgets, node selector, constraints,
tolerations, priority classes, and affinity/anti-affinity

Percona Distribution for PostgreSQL Operator is based on Postgres Operator developed by Crunchy Data.

16.8.1 Release Highlights

It is now possible to configure scheduled backups following the declarative approach in the deploy/cr.yaml

file, similar to other Percona Kubernetes Operators

OpenShift compatibility allows running Percona Distribution for PostgreSQL on Red Hat OpenShift
Container Platform

For the first time, the main functionality of the Operator is covered by functional tests, which ensure the
overall quality and stability

16.8.2 New Features and Improvements

K8SPG-96: PMM Client container does not cause the crash of the whole database Pod if pmm-agent is not
working properly

K8SPG-86: The Operator is now compatible with the OpenShift platform

K8SPG-62: Configuring scheduled backups through the main Custom Resource is now supported

K8SPG-99, K8SPG-131: The Operator documentation was substantially improved, and now it covers among
other things the usage of Transport Layer Security (TLS) for internal and external communications, and
cluster upgrades

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

16.8.1 Release Highlights

102 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.percona.com/doc/postgresql/LATEST/index.html
https://crunchydata.github.io/postgres-operator/latest/
https://jira.percona.com/browse/K8SPG-96
https://jira.percona.com/browse/K8SPG-86
https://jira.percona.com/browse/K8SPG-62
https://jira.percona.com/browse/K8SPG-99
https://jira.percona.com/browse/K8SPG-131

16.8.3 Supported Platforms

The following platforms were tested and are officially supported by Operator 1.0.0:

OpenShift 4.6 - 4.8

Google Kubernetes Engine (GKE) 1.17 - 1.21

Amazon Elastic Container Service for Kubernetes (EKS) 1.21

This list only includes the platforms that the Operator is specifically tested on as a part of the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

16.9 Percona Distribution for PostgreSQL Operator 0.2.0

Date

August 12, 2021

Installation

Installing Percona Distribution for PostgreSQL Operator

Version 0.2.0 of the Percona Distribution for PostgreSQL Operator is a Beta release, and it is not
recommended for production environments.

16.9.1 New Features and Improvements

K8SPG-80: The Custom Resource structure was reworked to provide the same look and feel as in other
Percona Operators. Read more about Custom Resource options in the documentation and review the
default deploy/cr.yaml configuration file on GitHub.

K8SPG-53: Merged upstream CrunchyData Operator v4.7.0 made it possible to use Google Cloud Storage
as an object store for backups without using third-party tools

K8SPG-42: There is no need to specify the name of the pgBackrest Pod in the backup manifest anymore
as it is detected automatically by the Operator

K8SPG-30: Replicas management is now performed through a main Custom Resource manifest instead
of creating separate Kubernetes resources. This also adds the possibility of scaling up/scaling down
replicas via the ‘deploy/cr.yaml’ configuration file

K8SPG-66: Helm chart is now officially provided with the Operator

•

•

•

Last update: 2022-07-20

•

•

•

•

•

•

•

16.8.3 Supported Platforms

103 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://jira.percona.com/browse/K8SPG-80
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://jira.percona.com/browse/K8SPG-53
https://github.com/CrunchyData/postgres-operator/releases/tag/v4.7.0
https://jira.percona.com/browse/K8SPG-42
https://jira.percona.com/browse/K8SPG-30
https://jira.percona.com/browse/K8SPG-66

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

16.10 Percona Distribution for PostgreSQL Operator 0.1.0

Date

May 10, 2021

Installation

Installing Percona Distribution for PostgreSQL Operator

The Percona Operator is based on best practices for configuration and setup of a Percona Distribution for
PostgreSQL on Kubernetes. The benefits of the Operator are many, but saving time and delivering a
consistent and vetted environment is key.

Kubernetes provides users with a distributed orchestration system that automates the deployment,
management, and scaling of containerized applications. The Operator extends the Kubernetes API with a
new custom resource for deploying, configuring, and managing the application through the whole life cycle.
You can compare the Kubernetes Operator to a System Administrator who deploys the application and
watches the Kubernetes events related to it, taking administrative/operational actions when needed.

Version 0.1.0 of the Percona Distribution for PostgreSQL Operator is a tech preview release and it is not
recommended for production environments.

You can install Percona Distribution for PostgreSQL Operator on Kubernetes, Google Kubernetes Engine
(GKE), and Amazon Elastic Kubernetes Service (EKS) clusters. The Operator is based on Postgres Operator
developed by Crunchy Data.

Here are the main differences between v 0.1.0 and the original Operator:

Percona Distribution for PostgreSQL is now used as the main container image.

It is possible to specify custom images for all components separately. For example, users can easily build
and use custom images for one or several components (e.g. pgBouncer) while all other images will be the
official ones. Also, users can build and use all custom images.

All container images are reworked and simplified. They are built on Red Hat Universal Base Image (UBI) 8.

The Operator has built-in integration with Percona Monitoring and Management v2.

A build/test infrastructure was created, and we have started adding e2e tests to be sure that all pieces of
the cluster work together as expected.

We have phased out the pgo CLI tool, and the Custom Resource UX will be completely aligned with other
Percona Operators in the following release.

Once Percona Operator is promoted to GA, users would be able to get the full package of services from
Percona teams.

Last update: 2022-07-20

•

•

•

•

•

•

•

•

16.10 Percona Distribution for PostgreSQL Operator 0.1.0

104 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/

While the Operator is in its very first release, instructions on how to install and configure it are already
available along with the source code hosted in our Github repository.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system.

CONTACT US

For free technical help, visit the Percona Community Forum.

To get early access to new product features, invite-only ”ask me anything” sessions with Percona
Kubernetes experts, and monthly swag raffles, join K8S Squad.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-07-12

16.10 Percona Distribution for PostgreSQL Operator 0.1.0

105 of 105 Percona LLC and/or its affiliates, © 2009 - 2024

https://percona.com/doc/kubernetes-operator-for-postgresql
https://percona.com/doc/kubernetes-operator-for-postgresql
https://github.com/percona/percona-postgresql-operator
https://jira.percona.com/secure/Dashboard.jspa
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68?utm_campaign=Doc-20pages
https://www.percona.com/k8s
https://jira.percona.com/projects/K8SPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

	Percona Operator for PostgreSQL documentation
	1. Percona Operator for PostgreSQL
	2. Requirements
	3. Quickstart guides
	4. Installation guides
	5. Configuration
	6. Management
	7. HOWTOs
	8. Reference
	Contact Us

	9. Requirements
	9.1 System Requirements
	9.1.1 Officially supported platforms
	Contact Us

	9.2 Design overview
	Contact Us

	9.3 Compare various solutions to deploy PostgreSQL in Kubernetes
	9.3.1 Generic
	9.3.2 Maintenance
	9.3.3 PostgreSQL topologies
	9.3.4 Backups
	9.3.5 Monitoring
	9.3.6 Miscellaneous
	Contact Us

	10. Quickstart guides
	10.1 Install Percona Distribution for PostgreSQL on Minikube
	Contact Us

	10.2 Install Percona Distribution for PostgreSQL using Helm
	10.2.1 Pre-requisites
	10.2.2 Installation
	10.2.3 Installing Percona Distribution for PostgreSQL with customized parameters
	Contact Us

	11. Installation guide
	11.1 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)
	11.1.1 Prerequisites
	11.1.2 Configuring default settings for the cluster
	11.1.3 Installing the Operator
	Contact Us

	11.2 Install Percona Distribution for PostgreSQL on Kubernetes
	Contact Us

	11.3 Install Percona Distribution for PostgreSQL on OpenShift
	Contact Us

	12. Configuration
	12.1 Users
	12.1.1 System Users
	YAML Object Format

	12.1.2 Application users
	Contact Us

	12.2 Changing PostgreSQL Options
	12.2.1 Creating a cluster with custom options
	12.2.2 Modifying options for the existing cluster
	Contact Us

	12.3 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes
	12.3.1 Affinity and anti-affinity
	12.3.2 Simple approach - configure Node Affinity based on nodeLabel
	Advanced approach - use standard Kubernetes constraints
	Default Affinity rules

	12.3.3 Tolerations
	Contact Us

	12.4 Transport Layer Security (TLS)
	12.4.1 Allow the Operator to generate certificates automatically
	Installation of the cert-manager
	Turning automatic generation of certificates on

	12.4.2 Generate certificates manually
	12.4.3 Check connectivity to the cluster
	12.4.4 Run Percona Distribution for PostgreSQL without TLS
	Contact Us

	12.5 Telemetry
	Contact Us

	13. Management
	13.1 Providing Backups
	13.1.1 Configuring the S3-compatible backup storage
	13.1.2 Use Google Cloud Storage for backups
	13.1.3 Scheduling backups
	13.1.4 Making on-demand backup
	13.1.5 List existing backups
	13.1.6 Restore the cluster from a previously saved backup
	13.1.7 Restore the cluster with point-in-time recovery
	13.1.8 Delete a previously saved backup
	Contact Us

	13.2 Update Percona Operator for PostgreSQL
	13.2.1 Upgrading the Operator
	13.2.2 Upgrading Percona Distribution for PostgreSQL
	Automatic upgrade
	Semi-automatic upgrade
	Contact Us

	13.3 Scale Percona Distribution for PostgreSQL on Kubernetes and OpenShift
	Contact Us

	13.4 Monitoring
	13.4.1 Installing the PMM Server
	13.4.2 Installing the PMM Client
	Contact Us

	13.5 Pause/resume PostgreSQL Cluster
	Contact Us

	14. How to
	14.1 How to deploy a standby cluster for Disaster Recovery
	Contact Us

	14.2 Percona Operator for PostgreSQL single-namespace and multi-namespace deployment
	14.2.1 Namespace-scope
	Add more namespaces

	14.2.2 Install the Operator cluster-wide
	Add more namespaces
	Contact Us

	14.3 Using PostgreSQL tablespaces with Percona Operator for PostgreSQL
	14.3.1 Possible use cases
	14.3.2 Creating a new tablespace
	14.3.3 Deleting an existing tablespace
	Contact Us

	14.4 Creating a private S3-compatible cloud for backups
	Contact Us

	15. Reference
	15.1 Custom Resource options
	15.1.1 Upgrade Options Section
	15.1.2 pgPrimary Section
	15.1.3 Tablespaces Storage Section
	15.1.4 Write-ahead Log Storage Section
	15.1.5 Backup Section
	15.1.6 PMM Section
	15.1.7 pgBouncer Section
	15.1.8 pgReplicas Section
	15.1.9 pgBadger Section
	Contact Us

	15.2 The Operator installation options
	15.2.1 General Configuration
	Contact Us

	15.3 Percona certified images
	Contact Us

	15.4 Frequently Asked Questions
	15.4.1 Why do we need to follow “the Kubernetes way” when Kubernetes was never intended to run databases?
	15.4.2 How can I contact the developers?
	15.4.3 How can I analyze PostgreSQL logs with pgBadger?
	15.4.4 How can I set the Operator to control PostgreSQL in several namespaces?
	15.4.5 How can I store backups on S3-compatible storage with self-issued certificates?
	Contact Us

	15.5 Copyright and licensing information
	15.5.1 Documentation licensing
	Contact Us

	15.6 Trademark policy
	Contact Us

	16. Release Notes
	16.1 Percona Operator for PostgreSQL Release Notes
	Contact Us

	16.2 Percona Operator for PostgreSQL 1.5.1
	16.2.1 Release Highlights
	16.2.2 Bugs Fixed
	16.2.3 Supported platforms
	Contact Us

	16.3 Percona Operator for PostgreSQL 1.5.0
	16.3.1 Release highlights
	16.3.2 Improvements
	16.3.3 Bugs Fixed
	16.3.4 Supported platforms
	Contact Us

	16.4 Percona Operator for PostgreSQL 1.4.0
	16.4.1 Improvements
	16.4.2 Bugs Fixed
	16.4.3 Supported platforms
	Contact Us

	16.5 Percona Operator for PostgreSQL 1.3.0
	16.5.1 Release Highlights
	16.5.2 Improvements
	16.5.3 Bugs Fixed
	16.5.4 Supported platforms
	Contact Us

	16.6 Percona Operator for PostgreSQL 1.2.0
	16.6.1 Release Highlights
	16.6.2 Improvements
	16.6.3 Bugs Fixed
	16.6.4 Options Changes
	16.6.5 Supported platforms
	Contact Us

	16.7 Percona Distribution for PostgreSQL Operator 1.1.0
	16.7.1 Release Highlights
	16.7.2 New Features
	16.7.3 Improvements
	16.7.4 Bugs Fixed
	Supported platforms
	Contact Us

	16.8 Percona Distribution for PostgreSQL Operator 1.0.0
	16.8.1 Release Highlights
	16.8.2 New Features and Improvements
	16.8.3 Supported Platforms
	Contact Us

	16.9 Percona Distribution for PostgreSQL Operator 0.2.0
	16.9.1 New Features and Improvements
	Contact Us

	16.10 Percona Distribution for PostgreSQL Operator 0.1.0
	Contact Us

