
Percona Distribution for PostgreSQL
Operator
Release 1.1.0

Percona LLC and/or its affiliates 2009-2021

Dec 07, 2021

CONTENTS

I Requirements 2

II Installation guide 7

III Configuration and Management 20

IV Reference 45

i

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Kubernetes have added a way to manage containerized systems, including database clusters. This management is
achieved by controllers, declared in configuration files. These controllers provide automation with the ability to create
objects, such as a container or a group of containers called pods, to listen for an specific event and then perform a task.

This automation adds a level of complexity to the container-based architecture and stateful applications, such as a
database. A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The
Operator extends the Kubernetes API with custom resources.

The Percona Distribution for PostgreSQL Operator is based on best practices for configuration and setup of a Percona
Distribution for PostgreSQL cluster. The benefits of the Operator are many, but saving time and delivering a consistent
and vetted environment is key.

CONTENTS 1

https://github.com/percona/percona-postgresql-operator

Part I

Requirements

2

CHAPTER

ONE

SYSTEM REQUIREMENTS

The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is cloud native and
storage agnostic, working with a wide variety of storage classes, hostPath, and NFS.

1.1 Officially supported platforms

The following platforms were tested and are officially supported by the Operator 1.1.0:

• Google Kubernetes Engine (GKE) 1.19 - 1.22

• Amazon Elastic Container Service for Kubernetes (EKS) 1.18 - 1.21

• OpenShift 4.7 - 4.9

Other Kubernetes platforms may also work but have not been tested.

3

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift

CHAPTER

TWO

DESIGN OVERVIEW

The Percona Distribution for PostgreSQL Operator automates and simplifies deploying and managing open source
PostgreSQL clusters on Kubernetes. The Operator is based on CrunchyData’s PostgreSQL Operator.

DB Pod N

Kubernetes API Operator

CSI

Storage
Area

Network

Container Suite
Custom Resource

Definitions

clusters
(perconapgcluster)

tasks
(pgtasks)

pgbouncer
primary

PostgreSQL

replica
PostgreSQL

pgbackrest

PostgreSQL containers deployed with the PostgreSQL Operator include the following components:

• The PostgreSQL database management system, including:

– PostgreSQL Additional Supplied Modules,

– pgAudit PostgreSQL auditing extension,

– PostgreSQL set_user Extension Module,

– wal2json output plugin,

4

https://crunchydata.github.io/postgres-operator/latest/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json

Percona Distribution for PostgreSQL Operator, Release 1.1.0

• The pgBackRest Backup & Restore utility,

• The pgBouncer connection pooler for PostgreSQL,

• The PostgreSQL high-availability implementation based on the Patroni template,

• the pg_stat_monitor PostgreSQL Query Performance Monitoring utility,

• LLVM (for JIT compilation).

To provide high availability the Operator involves node affinity to run PostgreSQL Cluster instances on separate worker
nodes if possible. If some node fails, the Pod with it is automatically re-created on another node.

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

CSI

Percona Distribution for PostgreSQL
Namespace

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC)
is used to implement the automatic storage provisioning to pods. If a failure occurs, the Container Storage Interface
(CSI) should be able to re-mount storage on a different node.

The Operator functionality extends the Kubernetes API with Custom Resources Definitions. These CRDs provide
extensions to the Kubernetes API, and, in the case of the Operator, allow you to perform actions such as creating a
PostgreSQL Cluster, updating PostgreSQL Cluster resource allocations, adding additional utilities to a PostgreSQL
cluster, e.g. pgBouncer for connection pooling and more.

When a new Custom Resource is created or an existing one undergoes some changes or deletion, the Operator automat-
ically creates/changes/deletes all needed Kubernetes objects with the appropriate settings to provide a proper Percona
PostgreSQL Cluster operation.

Following CRDs are created while the Operator installation:

• pgclusters stores information required to manage a PostgreSQL cluster. This includes things like the cluster
name, what storage and resource classes to use, which version of PostgreSQL to run, information about how to
maintain a high-availability cluster, etc.

• pgreplicas stores information required to manage the replicas within a PostgreSQL cluster. This includes
things like the number of replicas, what storage and resource classes to use, special affinity rules, etc.

5

https://pgbackrest.org/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/

Percona Distribution for PostgreSQL Operator, Release 1.1.0

• pgtasks is a general purpose CRD that accepts a type of task that is needed to run against a cluster (e.g. take a
backup) and tracks the state of said task through its workflow.

6

Part II

Installation guide

7

CHAPTER

THREE

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL ON
KUBERNETES

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL in a
Kubernetes-based environment.

1. First of all, clone the percona-postgresql-operator repository:

git clone -b v1.1.0 https://github.com/percona/percona-postgresql-operator
cd percona-postgresql-operator

Note: It is crucial to specify the right branch with -b option while cloning the code on this step. Please be
careful.

2. The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent context
for further steps:

$ kubectl create namespace pgo
$ kubectl config set-context $(kubectl config current-context) --namespace=pgo

Note: To use different namespace, you should edit all occurrences of the namespace: pgo line in both
deploy/cr.yaml and deploy/operator.yaml configuration files.

3. Deploy the operator with the following command:

$ kubectl apply -f deploy/operator.yaml

4. After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following
command:

$ kubectl apply -f deploy/cr.yaml

Creation process will take some time. The process is over when both operator and replica set pod have reached
their Running status:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
backrest-backup-cluster1-j275w 0/1 Completed 0 10m
cluster1-85486d645f-gpxzb 1/1 Running 0 10m
cluster1-backrest-shared-repo-6495464548-c8wvl 1/1 Running 0 10m

(continues on next page)

8

Percona Distribution for PostgreSQL Operator, Release 1.1.0

(continued from previous page)

cluster1-pgbouncer-fc45869f7-s86rf 1/1 Running 0 10m
pgo-deploy-rhv6k 0/1 Completed 0 5m
postgres-operator-8646c68b57-z8m62 4/4 Running 1 5m

5. During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use kubectl get secrets command to see the list of Secrets objects (by default Secrets object you are in-
terested in has cluster1-pguser-secret name). Then kubectl get secret cluster1-pguser-secret
-o yamlwill return the YAML file with generated secrets, including the password which should look as follows:

...
data:
...
password: cGd1c2VyX3Bhc3N3b3JkCg==

Here the actual password is base64-encoded, and echo 'cGd1c2VyX3Bhc3N3b3JkCg==' | base64
--decode will bring it back to a human-readable form (in this example it will be a pguser_password string).

6. Check connectivity to newly created cluster

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
→˓postgresql:13.2 --restart=Never -- bash -il
[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer -p␣
→˓5432 -U pguser pgdb

This command will connect you to the PostgreSQL interactive terminal.

psql (13.2)
Type "help" for help.
pgdb=>

9

https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER

FOUR

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL ON
OPENSHIFT

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL on
Red Hat OpenShift platform. For more information on the OpenShift, see its official documentation.

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL on
OpenShift.

1. First of all, clone the percona-postgresql-operator repository:

git clone -b v1.1.0 https://github.com/percona/percona-postgresql-operator
cd percona-postgresql-operator

Note: It is crucial to specify the right branch with -b option while cloning the code on this step. Please be
careful.

2. The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent context
for further steps:

$ oc create namespace pgo
$ oc config set-context $(kubectl config current-context) --namespace=pgo

Note: To use different namespace, you should edit all occurrences of the namespace: pgo line in both
deploy/cr.yaml and deploy/operator.yaml configuration files.

3. Deploy the operator with the following command:

$ oc apply -f deploy/operator.yaml

4. After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following
command:

$ oc apply -f deploy/cr.yaml

Creation process will take some time. The process is over when both operator and replica set pod have reached
their Running status:

$ oc get pods
NAME READY STATUS RESTARTS AGE
backrest-backup-cluster1-j275w 0/1 Completed 0 10m

(continues on next page)

10

https://access.redhat.com/documentation/en-us/openshift_container_platform

Percona Distribution for PostgreSQL Operator, Release 1.1.0

(continued from previous page)

cluster1-85486d645f-gpxzb 1/1 Running 0 10m
cluster1-backrest-shared-repo-6495464548-c8wvl 1/1 Running 0 10m
cluster1-pgbouncer-fc45869f7-s86rf 1/1 Running 0 10m
pgo-deploy-rhv6k 0/1 Completed 0 5m
postgres-operator-8646c68b57-z8m62 4/4 Running 1 5m

5. During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use oc get secrets command to see the list of Secrets objects (by default Secrets object you are interested in
has cluster1-pguser-secret name). Then kubectl get secret cluster1-pguser-secret -o yaml
will return the YAML file with generated secrets, including the password which should look as follows:

...
data:
...
password: cGd1c2VyX3Bhc3N3b3JkCg==

Here the actual password is base64-encoded, and echo 'cGd1c2VyX3Bhc3N3b3JkCg==' | base64
--decode will bring it back to a human-readable form (in this example it will be a pguser_password string).

6. Check connectivity to newly created cluster

$ oc run -i --rm --tty pg-client --image=perconalab/percona-distribution-
→˓postgresql:13.2 --restart=Never -- bash -il
[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer -p␣
→˓5432 -U pguser pgdb

This command will connect you to the PostgreSQL interactive terminal.

psql (13.2)
Type "help" for help.
pgdb=>

11

https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER

FIVE

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL ON
MINIKUBE

Installing the Percona Distribution for PostgreSQL Operator on minikube is the easiest way to try it locally without a
cloud provider. Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervi-
sor, such as VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test the Kubernetes
application locally prior to deploying it on a cloud.

The following steps are needed to run Percona Distribution for PostgreSQL Operator on minikube:

1. Install minikube, using a way recommended for your system. This includes the installation of the following three
components:

1. kubectl tool,

2. a hypervisor, if it is not already installed,

3. actual minikube package

After the installation, run minikube start command. Being executed, this command will download needed
virtualized images, then initialize and run the cluster. After minikube is successfully started, you can option-
ally run the Kubernetes dashboard, which visually represents the state of your cluster. Executing minikube
dashboard will start the dashboard and open it in your default web browser.

2. Clone the percona-postgresql-operator repository:

$ git clone -b v1.1.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

Note: It is crucial to specify the right branch with -b option while cloning the code on this step. Please be
careful.

3. The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent context
for further steps:

$ kubectl create namespace pgo
$ kubectl config set-context $(kubectl config current-context) --namespace=pgo

Note: To use different namespace, you should edit all occurrences of the namespace: pgo line in both
deploy/cr.yaml and deploy/operator.yaml configuration files.

If you use Kubernetes dashboard, choose your newly created namespace to be shown instead of the default one:

12

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/

Percona Distribution for PostgreSQL Operator, Release 1.1.0

 Searchpgo

Workloads N

Cron Jobs

Daemon Sets

Deployments

Workloads

pgo

NAMESPACES

All namespaces

pgo

4. Deploy the operator with the following command:

$ kubectl apply -f deploy/operator.yaml

5. Because minikube runs locally, the default deploy/cr.yaml file should be edited to adapt the Operator for the
the local installation with limited resources. Comment all occurrences of the resources.requests.memory
and resources.requests.cpu keys to fit the Operator in minikube default limitations.

6. Now apply the deploy/cr.yaml file with the following command:

$ kubectl apply -f deploy/cr.yaml

Creation process will take some time. The process is over when both operator and replica set pod have reached
their Running status:

$ kubectl get pods
NAME READY STATUS RESTARTS ␣
→˓AGE
backrest-backup-cluster1--1-f29n8 0/1 Completed 0 ␣
→˓46s
cluster1-79bcc648c5-l4mp6 1/1 Running 0 ␣
→˓2m13s
cluster1-backrest-shared-repo-76b888ff97-85bd9 1/1 Running 0 ␣
→˓2m39s
cluster1-pgbouncer-74867b55f5-cxx74 1/1 Running 0 ␣
→˓73s
cluster1-repl1-d4599d9fd-64cwb 1/1 Running 0 ␣
→˓32s
cluster1-repl2-67d75d4664-nnpzs 1/1 Running 0 ␣
→˓32s
pgo-deploy--1-2rxxt 0/1 Completed 0 ␣
→˓12m
postgres-operator-7df6999fbd-hfp9g 4/4 Running 1 (11m ago) ␣
→˓11m

You can also track the progress via the Kubernetes dashboard:

13

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Workload Status

Running: 6

Deployments

Succeeded: 2

Jobs

Running: 6

Succeeded: 2

Pods

Running: 6

Replica Sets

Deployments Items: 6

Jobs Items: 2

Pods

Images Labels Node Status Restarts CPU Usage (cores)
Memory Usage
(bytes)

cluster1-repl1-
d4599d9fd-64cwb

Show all

minikube Running 0 - - 17 minutes ago

cluster1-repl2-67d75d4664-
nnpzs

minikube Running 0 - - 17 minutes ago

Name Created

perconalab/percona-postgre
sql-operator:main-ppg13-po
stgres-ha

crunchy-pgha-scope: cluster
1

deployment-name: cluster1-r
epl1

name: cluster1-replica

perconalab/percona-postgre
sql-operator:main-ppg13-po
stgres-ha

crunchy-pgha-scope: cluster
1

deployment-name: cluster1-r
epl2

name: cluster1 replica

Workloads

7. During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use kubectl get secrets command to see the list of Secrets objects(by default Secrets object you are in-
terested in has cluster1-pguser-secret name). Then kubectl get secret cluster1-pguser-secret
-o yamlwill return the YAML file with generated secrets, including the password which should look as follows:

...
data:
...
password: cGd1c2VyX3Bhc3N3b3JkCg==

Here the actual password is base64-encoded, and echo 'cGd1c2VyX3Bhc3N3b3JkCg==' | base64
--decode will bring it back to a human-readable form (in this example it will be a pguser_password string).

8. Check connectivity to a newly created cluster.

Run new Pod to use it as a client and connect its console output to your terminal (running it may require some
time to deploy). When you see the command line prompt of the newly created Pod, run run psql tool using the
password obtained from the secret:

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
→˓postgresql:13.2 --restart=Never -- bash -il
[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer -p␣
→˓5432 -U pguser pgdb

This command will connect you to the PostgreSQL interactive terminal.

psql (13.2)
Type "help" for help.
pgdb=>

14

https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER

SIX

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL ON
GOOGLE KUBERNETES ENGINE (GKE)

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL with
the Google Kubernetes Engine. The document assumes some experience with Google Kubernetes Engine (GKE). For
more information on the GKE, see the Kubernetes Engine Quickstart.

6.1 Prerequisites

All commands from this quickstart can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

1. gcloud. This tool is part of the Google Cloud SDK. To install it, select your operating system on the official
Google Cloud SDK documentation page and then follow the instructions.

2. kubectl. It is the Kubernetes command-line tool you will use to manage and deploy applications. To install the
tool, run the following command:

$ gcloud auth login
$ gcloud components install kubectl

6.2 Configuring default settings for the cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local shell
(if you have installed Google Cloud SDK locally on the previous step). The following command will create a cluster
named my-cluster-1:

$ gcloud container clusters create cluster-1 --project <project name> --zone us-central1-
→˓a --cluster-version {{{gkerecommended}}} --machine-type n1-standard-4 --num-nodes=3

Note: You must edit the following command and other command-line statements to replace the <project name>
placeholder with your project name. You may also be required to edit the zone location, which is set to us-central1
in the above example. Other parameters specify that we are creating a cluster with 3 nodes and with machine type of 4
vCPUs and 45 GB memory.

You may wait a few minutes for the cluster to be generated, and then you will see it listed in the Google Cloud console
(select Kubernetes Engine → Clusters in the left menu panel):

15

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart

Percona Distribution for PostgreSQL Operator, Release 1.1.0

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

Now you should configure the command-line access to your newly created cluster to make kubectl be able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You will see
the connect statement configures command-line access. After you have edited the statement, you may run the command
in your local shell:

$ gcloud container clusters get-credentials cluster-1 --zone us-central1-a --project
→˓<project name>

6.3 Installing the Operator

1. First of all, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster. The
following command will give you the ability to create Roles and RoleBindings:

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-
→˓admin --user $(gcloud config get-value core/account)

The return statement confirms the creation:

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

2. Use the following git clone command to download the correct branch of the percona-postgresql-operator
repository:

git clone -b v1.1.0 https://github.com/percona/percona-postgresql-operator
cd percona-postgresql-operator

3. The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent context
for further steps:

$ kubectl create namespace pgo
$ kubectl config set-context $(kubectl config current-context) --namespace=pgo

Note: To use different namespace, you should edit all occurrences of the namespace: pgo line in both
deploy/cr.yaml and deploy/operator.yaml configuration files.

4. Deploy the operator with the following command:

$ kubectl apply -f deploy/operator.yaml

5. After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following
commands:

$ kubectl apply -f deploy/cr.yaml

Creation process will take some time. The process is over when the Operator and PostgreSQL Pods have reached
their Running status:

6.3. Installing the Operator 16

https://cloud.google.com/iam

Percona Distribution for PostgreSQL Operator, Release 1.1.0

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
backrest-backup-cluster1-4nq2x 0/1 Completed 0 10m
cluster1-6c9d4f9678-qdfx2 1/1 Running 0 10m
cluster1-backrest-shared-repo-7cb4dd8f8f-sh5gg 1/1 Running 0 10m
cluster1-pgbouncer-6cd69d8966-vlxdt 1/1 Running 0 10m
pgo-deploy-bp2ts 0/1 Completed 0 5m
postgres-operator-67f58bcb8c-9p4tl 4/4 Running 1 5m

Also, you can see the same information when browsing Pods of your cluster in Google Cloud console via the
Object Browser:

Name Status Type Namespace Cluster Location

core API Group

Pod Kind

backrest-backup-cluster1-t6s42 Succeeded Pod pgo cluster1 europe-west3-b

cluster1-6c9d4f9678-qdfx2 Running Pod pgo cluster1 europe-west3-b

cluster1-backrest-shared-repo-7cb4dd8f8f-sh5gg Running Pod pgo cluster1 europe-west3-b

cluster1-pgbouncer-6cd69d8966-vlxdt Running Pod pgo cluster1 europe-west3-b

pgo-deploy-bp2ts Succeeded Pod pgo cluster1 europe-west3-b

postgres-operator-67f58bcb8c-9p4tl Running Pod pgo cluster1 europe-west3-b

6. During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use kubectl get secrets command to see the list of Secrets objects (by default Secrets object you are in-
terested in has cluster1-pguser-secret name). Then kubectl get secret cluster1-pguser-secret
-o yamlwill return the YAML file with generated secrets, including the password which should look as follows:

...
data:
...
password: cGd1c2VyX3Bhc3N3b3JkCg==

Here the actual password is base64-encoded, and echo 'cGd1c2VyX3Bhc3N3b3JkCg==' | base64
--decode will bring it back to a human-readable form (in this example it will be a pguser_password string).

7. Check connectivity to newly created cluster

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
→˓postgresql:13.2 --restart=Never -- bash -il
[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer -p␣
→˓5432 -U pguser pgdb

This command will connect you to the PostgreSQL interactive terminal.

psql (13.2)
Type "help" for help.
pgdb=>

6.3. Installing the Operator 17

https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER

SEVEN

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL USING
HELM

Helm is the package manager for Kubernetes. Percona Helm charts can be found in percona/percona-helm-charts
repository in Github.

7.1 Pre-requisites

Install Helm following its official installation instructions.

Note: Helm v3 is needed to run the following steps.

7.2 Installation

1. Add the Percona’s Helm charts repository and make your Helm client up to date with it:

$ helm repo add percona https://percona.github.io/percona-helm-charts/
$ helm repo update

2. Install the Percona Distribution for PostgreSQL Operator:

$ helm install my-operator percona/pg-operator --version 1.1.0

The my-operator parameter in the above example is the name of a new release object which is created for the
Operator when you install its Helm chart (use any name you like).

Note: If nothing explicitly specified, helm install command will work with default namespace. To use
different namespace, provide it with the following additional parameter: --namespace my-namespace.

3. Install PostgreSQL:

$ helm install my-db percona/pg-db --version 1.1.0 --namespace my-namespace

The my-db parameter in the above example is the name of a new release object which is created for the Percona
Distribution for PostgreSQL when you install its Helm chart (use any name you like).

18

https://github.com/helm/helm
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

Percona Distribution for PostgreSQL Operator, Release 1.1.0

7.3 Installing Percona Distribution for PostgreSQL with customized
parameters

The command above installs Percona Distribution for PostgreSQL with default parameters. Custom options can be
passed to a helm install command as a --set key=value[,key=value] argument. The options passed with a
chart can be any of the Operator’s Custom Resource options.

The following example will deploy a Percona Distribution for PostgreSQL Cluster in the pgdb namespace, with enabled
Percona Monitoring and Management (PMM) and 20 Gi storage for a Primary PostgreSQL node:

$ helm install my-db percona/pg-db --namespace pgdb \
--set pgPrimary.volumeSpec.size=20Gi \
--set pmm.enabled=true

7.3. Installing Percona Distribution for PostgreSQL with customized parameters 19

https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html

Part III

Configuration and Management

20

CHAPTER

EIGHT

USERS

User accounts within the Cluster can be divided into two different groups:

• application-level users: the unprivileged user accounts,

• system-level users: the accounts needed to automate the cluster deployment and management tasks.

8.1 System Users

Credentials for system users are stored as a Kubernetes Secrets object. The Operator requires to be deployed before
PostgreSQL Cluster is started. The name of the required secrets (cluster1-users by default) should be set in the
spec.secretsName option of the deploy/cr.yaml configuration file.

The following table shows system users’ names and purposes.

Warning: These users should not be used to run an application.

The default PostgreSQL instance installation via the Percona Distribution for PostgreSQL Operator comes with the
following users:

Role name Attributes
postgres Superuser, Create role, Create DB, Replication, Bypass RLS
primaryuser Replication
pguser Non-privileged user
pgbouncer Administrative user for the pgBouncer connection pooler

The postgres user will be the admin user for the database instance. The primaryuser is used for replication between
primary and replicas. The pguser is the default non-privileged user (you can configure different name of this user in
the spec.user Custom Resource option).

21

https://kubernetes.io/docs/concepts/configuration/secret/
http://pgbouncer.github.io/

Percona Distribution for PostgreSQL Operator, Release 1.1.0

8.1.1 YAML Object Format

The default name of the Secrets object for these users is cluster1-users and can be set in the CR for your cluster in
spec.secretName to something different. When you create the object yourself, it should match the following simple
format:

apiVersion: v1
kind: Secret
metadata:
name: cluster1-users

type: Opaque
stringData:
pgbouncer: pgbouncer_password
postgres: postgres_password
primaryuser: primaryuser_password
pguser: pguser_password

The example above matches what is shipped in the deploy/secrets.yaml file.

As you can see, we use the stringData type when creating the Secrets object, so all values for each key/value pair are
stated in plain text format convenient from the user’s point of view. But the resulting Secrets object contains passwords
stored as data - i.e., base64-encoded strings. If you want to update any field, you’ll need to encode the value into
base64 format. To do this, you can run echo -n "password" | base64 in your local shell to get valid values. For
example, setting the PMM Server user’s password to new_password in the cluster1-users object can be done with
the following command:

kubectl patch secret/cluster1-users -p '{"data":{"pguser": '$(echo -n new_password |␣
→˓base64)'}}'

8.1. System Users 22

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/users-secret.yaml

CHAPTER

NINE

PROVIDING BACKUPS

The Operator allows doing backups in two ways. Scheduled backups are configured in the deploy/cr.yaml file to be
executed automatically in proper time. On-demand backups can be done manually at any moment.

• Configuring the S3-compatible backup storage

• Use Google Cloud Storage for backups

• Scheduling backups

• Making on-demand backup

• List existing backups

• Restore the cluster from a previously saved backup

• Delete a previously saved backup

The Operator uses the open source pgBackRest backup and restore utility. A special pgBackRest repository is created
by the Operator along with creating a new PostgreSQL cluster to facilitate the usage of the pgBackRest features in it.

The Operator can store PostgreSQL backups on Amazon S3, any S3-compatible storage and Google Cloud Storage out-
side the Kubernetes cluster. Storing backups on Persistent Volume attached to the pgBackRest Pod is also possible. At
PostgreSQL cluster creation time, you can specify a specific Storage Class for the pgBackRest repository. Additionally,
you can also specify the type of the pgBackRest repository that can be used for backups:

• local: Uses the storage that is provided by the Kubernetes cluster’s Storage Class that you select,

• s3: Use Amazon S3 or an object storage system that uses the S3 protocol,

• local,s3: Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select AND
Amazon S3 (or equivalent object storage system that uses the S3 protocol).

• gcs: Use Google Cloud Storage,

• local,gcs: Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select AND
Google Cloud Storage.

The pgBackRest repository consists of the following Kubernetes objects:

• A Deployment,

• A Secret that contains information that is specific to the PostgreSQL cluster that it is deployed with (e.g. SSH
keys, AWS S3 keys, etc.),

• A Pod with a number of supporting scripts,

• A Service.

23

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Percona Distribution for PostgreSQL Operator, Release 1.1.0

The PostgreSQL primary is automatically configured to use the pgbackrest archive-push and push the write-ahead
log (WAL) archives to the correct repository.

The PostgreSQL Operator supports three types of pgBackRest backups:

• Full (full): A full backup of all the contents of the PostgreSQL cluster,

• Differential (diff): A backup of only the files that have changed since the last full backup,

• Incremental (incr): A backup of only the files that have changed since the last full or differential backup.
Incremental backup is the default choice.

The Operator also supports setting pgBackRest retention policies for backups. Backup retention can be controlled by
the following pgBackRest options:

• --repo1-retention-full the number of full backups to retain,

• --repo1-retention-diff the number of differential backups to retain,

• --repo1-retention-archive how many sets of write-ahead log archives to retain alongside the full and dif-
ferential backups that are retained.

You can set both backups type and retention policy when Making on-demand backup.

Also you should first configure the backup storage in the deploy/cr.yaml configuration file to have backups enabled.

9.1 Configuring the S3-compatible backup storage

In order to use S3-compatible storage for backups you need to provide some S3-related information, such as proper S3
bucket name, endpoint, etc. This information can be passed to pgBackRest via the following deploy/cr.yaml options
in the backup.storages subsection:

• bucket specifies the AWS S3 bucket that should be utilized, for example my-postgresql-backups-example,

• endpointUrl specifies the S3 endpoint that should be utilized, for example s3.amazonaws.com,

• region specifies the AWS S3 region that should be utilized, for example us-east-1,

• uriStyle specifies whether host or path style URIs should be utilized,

• verifyTLS should be set to true to enable TLS verification or set to false to disable it,

• type should be set to s3.

You also need to supply pgBackRest with base64-encoded AWS S3 key and AWS S3 key secret stored along with
other sensitive information in Kubernetes Secrets (e.g. encoding needed data with the echo "string-to-encode"
| base64 command). Edit the deploy/backup/cluster1-backrest-repo-config-secret.yaml configuration
file: set there proper cluster name, AWS S3 key, and key secret:

apiVersion: v1
kind: Secret
metadata:
name: <cluster-name>-backrest-repo-config

type: Opaque
data:
aws-s3-key: <base64-encoded-AWS-S3-key>
aws-s3-key-secret: <base64-encoded-AWS-S3-key-secret>

When done, create the secret as follows:

9.1. Configuring the S3-compatible backup storage 24

https://kubernetes.io/docs/concepts/configuration/secret/

Percona Distribution for PostgreSQL Operator, Release 1.1.0

$ kubectl apply -f deploy/backup/cluster1-backrest-repo-config-secret.yaml

Finally, create or update the cluster:

$ kubectl apply -f deploy/cr.yaml

9.2 Use Google Cloud Storage for backups

You can configure Google Cloud Storage as an object store for backups similarly to S3 storage.

In order to use Google Cloud Storage (GCS) for backups you need to provide some GCS-related information, such as
a proper GCS bucket name. This information can be passed to pgBackRest via the following options in the backup.
storages subsection of the deploy/cr.yaml configuration file:

• bucket should contain the proper bucket name,

• type should be set to gcs.

The Operator will also need your service account key to access storage.

1. Create your service account key following the official Google Cloud instructions.

2. Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin → Service Accounts in the left menu
panel, then click your account and open the KEYS tab):

my-service-account

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.

Learn more about setting organization policies for service accounts

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the

Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

ADD KEY

DETAILS PERMISSIONS KEYS METRICS LOGS

Click the ADD KEY button, chose Create new key and chose JSON as a key type. These actions will result in
downloading a file in JSON format with your new private key and related information.

3. Now you should use a base64-encoded version of this file and to create the Kubernetes Secret. You can encode
the file with the base64 <filename> command. When done, create the following yaml file with your cluster
name and base64-encoded file contents:

apiVersion: v1
kind: Secret
metadata:
name: <cluster-name>-backrest-repo-config

type: Opaque
data:
gcs-key: <base64-encoded-json-file-contents>

When done, create the secret as follows:

9.2. Use Google Cloud Storage for backups 25

https://cloud.google.com/storage
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://kubernetes.io/docs/concepts/configuration/secret/

Percona Distribution for PostgreSQL Operator, Release 1.1.0

$ kubectl apply -f ./my-gcs-account-secret.yaml

4. Finally, create or update the cluster:

$ kubectl apply -f deploy/cr.yaml

9.3 Scheduling backups

Backups schedule is defined in the backup section of the deploy/cr.yaml file. This section contains following subsec-
tions:

• storages subsection contains data needed to access the S3-compatible cloud to store backups.

• schedule subsection allows to actually schedule backups (the schedule is specified in crontab format).

Here is an example of deploy/cr.yaml which uses Amazon S3 storage for backups:

...
backup:

...
schedule:
- name: "sat-night-backup"
schedule: "0 0 * * 6"
keep: 3
type: full
storage: s3

...

The schedule is specified in crontab format as explained in Custom Resource options.

9.4 Making on-demand backup

To make an on-demand backup, the user should use a backup configuration file. The example of the backup configu-
ration file is deploy/backup/backup.yaml.

The following keys are most important in the parameters section of this file:

• parameters.backrest-opts is the string with command line options which will be passed to pgBackRest, for
example --type=full --repo1-retention-full=5,

• parameters.pg-cluster is the name of the PostgreSQL cluster to back up, for example cluster1.

When the backup options are configured, execute the actual backup command:

$ kubectl apply -f deploy/backup/backup.yaml

9.3. Scheduling backups 26

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup/backup.yaml

Percona Distribution for PostgreSQL Operator, Release 1.1.0

9.5 List existing backups

To get list of all existing backups in the pgBackrest repo, use the following command:

$ kubectl exec <name-of-backrest-shared-repo-pod> -it -- pgbackrest info

9.6 Restore the cluster from a previously saved backup

The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery.
There are two types of ways to restore a cluster:

• restore to a new cluster using the pgDataSource.restoreFrom option (and possibly, pgDataSource.restoreOpts
for custom pgBackRest options),

• restore in-place, to an existing cluster (note that this is destructive).

Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL cluster that can run
alongside an existing one. There are several scenarios where using this technique is helpful:

• Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is
creating a clone.

• Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To restore the previously saved backup the user should use a backup restore configuration file. The example of the
backup configuration file is deploy/backup/restore.yaml.

The following keys are the most important in the parameters section of this file:

• parameters.backrest-restore-from-cluster specifies the name of a PostgreSQL cluster which will be
restored. This includes stopping the database and recreating a new primary with the restored data (for example,
cluster1),

• parameters.backrest-restore-opts specifies additional options for pgBackRest (for example,
--type=time --target="2021-04-16 15:13:32" to perform a point-in-time-recovery),

• parameters.backrest-storage-type the type of the pgBackRest repository, (for example, local).

The actual restoration process can be started as follows:

$ kubectl apply -f deploy/backup/restore.yaml

To create a new PostgreSQL cluster from either the active one, or a former cluster whose pgBackRest repository still
exists, use the pgDataSource.restoreFrom option.

The following example will create a new cluster named cluster2 from an existing one named``cluster1``.

1. First, create the cluster2-config-secrets.yaml configuration file with the following content:

apiVersion: v1
data:
password: <base64-encoded-password-for-pguser->
username: <base64-encoded-pguser-user-name>

kind: Secret
metadata:
labels:
pg-cluster: cluster2

(continues on next page)

9.5. List existing backups 27

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup/restore.yaml

Percona Distribution for PostgreSQL Operator, Release 1.1.0

(continued from previous page)

vendor: crunchydata
name: cluster2-pguser-secret

type: Opaque

apiVersion: v1
data:
password: <base64-encoded-password-for-primaryuser>
username: <base64-encoded-primaryuser-user-name>

kind: Secret
metadata:
labels:
pg-cluster: cluster2
vendor: crunchydata

name: cluster2-primaryuser-secret
type: Opaque

apiVersion: v1
data:
password: <base64-encoded-password-for-postgres-user>
username: <base64-encoded-pguser-postgres-name>

kind: Secret
metadata:
labels:
pg-cluster: cluster2
vendor: crunchydata

name: cluster2-postgres-secret
type: Opaque

2. When done, create the secrets as follows:

$ kubectl apply -f ./cluster2-config-secrets.yaml

3. Edit the deploy/cr.yaml configuration file:

• set a new cluster name (cluster2),

• set the option pgDataSource.restoreFrom to cluster1.

Create the cluster as follows:

$ kubectl apply -f deploy/cr.yaml

9.7 Delete a previously saved backup

The maximum amount of stored backups is controlled by the backup.schedule.keep option (only successful backups
are counted). Older backups are automatically deleted, so that amount of stored backups do not exceed this number.

If you want to delete some backup manually, you need to delete both the pgtask object and the corresponding job itself.
Deletion of the backup object can be done using the same YAML file which was used for the on-demand backup:

$ kubectl delete -f deploy/backup/backup.yaml

9.7. Delete a previously saved backup 28

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Deletion of the job which corresponds to the backup can be done using kubectl delete jobs command with the
backup name:

$ kubectl delete jobs cluster1-backrest-full-backup

9.7. Delete a previously saved backup 29

CHAPTER

TEN

CHANGING POSTGRESQL OPTIONS

You may require a configuration change for your application. PostgreSQL allows customizing the database with con-
figuration files. You can use a ConfigMap to provide the PostgreSQL configuration options specific to the following
configuration files:

• PostgreSQL main configuration, postgresql.conf,

• client authentication configuration, pg_hba.conf,

• user name configuration, pg_ident.conf.

Configuration options may be applied in two ways:

• globally to all database servers in the cluster via Patroni Distributed Configuration Store (DCS),

• locally to each database server (Primary and Replica) within the cluster.

Note: PostgreSQL cluster is managed by the Operator, and so there is no need to set custom configuration options in
common usage scenarios. Also, changing certain options may cause PostgreSQL cluster malfunction. Do not customize
configuration unless you know what you are doing!

Use the kubectl command to create the ConfigMap from external resources, for more information, see Configure a
Pod to use a ConfigMap.

You can either create a PostgreSQL Cluster With Custom Configuration, or use ConfigMap to set options for the already
existing cluster.

To create a cluster with custom options, you should first place these options in a postgres-ha.yaml file under specific
bootstrap section, then use kubectl create configmap command with this file to create a ConfigMap, and finally
put the ConfigMap name to pgPrimary.customconfig key in the deploy/cr.yaml configuration file.

To change options for an existing cluster, you can do the same but put options in a postgres-ha.yaml file directly,
without the bootstrap section.

In both cases, the postgres-ha.yaml file doesn’t fully overwrite PostgreSQL configuration files: options present in
postgres-ha.yaml will be overwritten, while non-present options will be left intact.

30

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://www.postgresql.org/docs/current/config-setting.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/auth-username-maps.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

Percona Distribution for PostgreSQL Operator, Release 1.1.0

10.1 Creating a cluster with custom options

For example, you can create a cluster with a custom max_connections option in a postgresql.conf configuration
file using the following postgres-ha.yaml contents:

bootstrap:
dcs:
postgresql:
parameters:
max_connections: 30

..note:: dsc.postgresql subsection means that option will be applied globally to postgresql.conf of all
database servers.

You can create a ConfigMap from this file. The syntax for kubectl create configmap command is:

kubectl -n <namespace> create configmap <configmap-name> --from-file=postgres-ha.yaml

ConfigMap name should include your cluster name and a dash as a prefix (cluster1- by default).

The following example defines cluster1-custom-config as the ConfigMap name:

$ kubectl create -n pgo configmap cluster1-custom-config --from-file=postgres-ha.yaml

To view the created ConfigMap, use the following command:

$ kubectl describe configmaps cluster1-custom-config

Don’t forget to put the name of your ConfigMap to the deploy/cr.yaml configuration file:

spec:
...
pgPrimary:
...
customconfig: "cluster1-custom-config"

Now you can create the cluster following the regular installation instructions.

10.2 Modifying options for the existing cluster

For example, you can change max_connections option in a postgresql.conf configuration file with the following
postgres-ha.yaml contents:

dcs:
postgresql:
parameters:
max_connections: 50

..note:: dsc.postgresql subsection means that option will be applied globally to postgresql.conf of all
database servers.

You can create a ConfigMap from this file. The syntax for kubectl create configmap command is:

10.1. Creating a cluster with custom options 31

Percona Distribution for PostgreSQL Operator, Release 1.1.0

kubectl -n <namespace> create configmap <configmap-name> --from-file=postgres-ha.yaml

ConfigMap name should include your cluster name and a dash as a prefix (cluster1- by default).

The following example defines cluster1-custom-config as the ConfigMap name:

$ kubectl create -n pgo configmap cluster1-custom-config --from-file=postgres-ha.yaml

To view the created ConfigMap, use the following command:

$ kubectl describe configmaps cluster1-custom-config

You can also use a similar kubectl edit configmap command to change the already existing ConfigMap with your
default text editor:

$ kubectl edit -n pgo configmap cluster1-custom-config

Don’t forget to put the name of your ConfigMap to the deploy/cr.yaml configuration file if it isn’t already there:

spec:
...
pgPrimary:
...
customconfig: "cluster1-custom-config"

Now you should restart the cluster to ensure the update took effect.

10.2. Modifying options for the existing cluster 32

CHAPTER

ELEVEN

PAUSE/RESUME POSTGRESQL CLUSTER

There may be external situations when it is needed to shutdown your PostgreSQL Cluster for a while and then start it
back up (some works related to the maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.shutdown key for this. Setting it to true gracefully stops the
cluster:

spec:
.......
shutdown: true

To start the cluster after it was shut down just revert the spec.shutdown key to false.

There is an option also to put the cluster into a read-only mode instead of completely shutting it down. This is done
by a special spec.standby key, which should be set to true for read-only state or should be set to false for normal
cluster operation:

spec:
.......
standby: false

33

CHAPTER

TWELVE

UPDATE PERCONA DISTRIBUTION FOR POSTGRESQL OPERATOR

Percona Distribution for PostgreSQL Operator allows upgrades to newer versions. This includes upgrades of the Op-
erator itself, and upgrades of the Percona Distribution for PostgreSQL.

• Upgrading the Operator

• Upgrading Percona Distribution for PostgreSQL

– Automatic upgrade

– Semi-automatic upgrade

12.1 Upgrading the Operator

Note: Only the incremental update to a nearest minor version of the Operator is supported. To update to a newer
version, which differs from the current version by more than one, make several incremental updates sequentially.

The following steps will allow you to update the Operator to current version (use the name of your cluster instead of
the <cluster-name> placeholder).

1. Pause the cluster in order to stop all possible activities:

$ kubectl patch perconapgcluster/<cluster-name> --type json -p '[{"op": "replace",
→˓"path": "/spec/pause", "value": true},{"op":"replace","path":"/spec/pgBouncer/size
→˓","value":0}]'

2. If you upgrade the Operator from a version earlier than 1.1.0, the following additional step is needed for the
1.0.0 → 1.1.0 upgrade.

$ export CLUSTER=<cluster-name>
$ for user in postgres primaryuser $(kubectl get perconapgcluster/${CLUSTER} -o␣
→˓yaml | yq r - 'spec.user'); do args+="--from-literal=$user=$(kubectl get secret/$
→˓{CLUSTER}-${user}-o yaml | yq r - 'data.password' | base64 -d) "; done; eval␣
→˓kubectl create secret generic ${CLUSTER}-users "${args}"

This command creates users’ secrets with existing passwords. Otherwise, new secrets with autogenerated pass-
words will be created automatically, so existing passwords will be overwritten.

Note: The pgbouncer user password is stored in encrypted form, and therefore it is not included in the
above command. If you know this password and/or would like to update it, please add it as pgbouncer:

34

Percona Distribution for PostgreSQL Operator, Release 1.1.0

base64encodednewpassword to the resulted Secret manually. Otherwise, this password needs no actions and
will be overwritten by the Operator during upgrade.

3. Remove the old Operator and start the new Operator version:

$ kubectl delete \
serviceaccounts/pgo-deployer-sa \
clusterroles/pgo-deployer-cr \
configmaps/pgo-deployer-cm \
configmaps/pgo-config \
clusterrolebindings/pgo-deployer-crb \
jobs.batch/pgo-deploy \
deployment/postgres-operator

$ kubectl create -f https://raw.githubusercontent.com/percona/percona-postgresql-
→˓operator/v1.1.0/deploy/operator.yaml
$ kubectl wait --for=condition=Complete job/pgo-deploy --timeout=90s

12.2 Upgrading Percona Distribution for PostgreSQL

12.2.1 Automatic upgrade

Starting from version 1.1.0, the Operator does fully automatic upgrades to the newer versions of Percona PostgreSQL
Cluster within the method named Smart Updates.

The Operator will carry on upgrades according to the following algorithm. It will query a special Version Service server
at scheduled times to obtain fresh information about version numbers and valid image paths needed for the upgrade.
If the current version should be upgraded, the Operator updates the CR to reflect the new image paths and carries on
sequential Pods deletion in a safe order, allowing the cluster Pods to be re-deployed with the new image.

Note: Version Service is in technical preview status and is disabled by default for the Operator version 1.1.0. Disabling
Version Service makes Smart Updates rely on the image keys in the Operator’s Custom Resource.

The upgrade details are set in the upgradeOptions section of the deploy/cr.yaml configuration file. Make the
following edits to configure updates:

1. Set the apply option to one of the following values:

• recommended - automatic upgrades will choose the most recent version of software flagged as recom-
mended,

• latest - automatic upgrades will choose the most recent version of the software available,

• version number - specify the desired version explicitly,

• never or disabled - disable automatic upgrades

Note: When automatic upgrades are disabled by the apply option, Smart Update functionality will con-
tinue working for changes triggered by other events, such as updating a ConfigMap, rotating a password,
or changing resource values.

12.2. Upgrading Percona Distribution for PostgreSQL 35

Percona Distribution for PostgreSQL Operator, Release 1.1.0

2. Make sure the versionServiceEndpoint key is set to a valid Version Server URL (otherwise Smart Updates
will not occur).

A. You can use the URL of the official Percona’s Version Service (default). Set versionServiceEndpoint
to https://check.percona.com.

B. Alternatively, you can run Version Service inside your cluster. This can be done with the kubectl command
as follows:

$ kubectl run version-service --image=perconalab/version-service --env="SERVE_
→˓HTTP=true" --port 11000 --expose

Note: Version Service is never checked if automatic updates are disabled. If automatic updates are enabled, but
Version Service URL can not be reached, upgrades will not occur.

3. Use the schedule option to specify the update checks time in CRON format.

The following example sets the midnight update checks with the official Percona’s Version Service:

spec:
upgradeOptions:
apply: recommended
versionServiceEndpoint: https://check.percona.com
schedule: "0 4 * * *"

...

12.2.2 Semi-automatic upgrade

Semi-automatic update of Percona Distribution for PostgreSQL should be used with the Operator version 1.0.0 or
earlier. For all newer versions, use automatic update instead.

The following steps will allow you to update the Operator to current version (use the name of your cluster instead of
the <cluster-name> placeholder).

1. Pause the cluster in order to stop all possible activities:

$ kubectl patch perconapgcluster/<cluster-name> --type json -p '[{"op": "replace",
→˓"path": "/spec/pause", "value": true},{"op":"replace","path":"/spec/pgBouncer/size
→˓","value":0}]'

2. Now you can switch the cluster to a new version:

$ kubectl patch perconapgcluster/<cluster-name> --type json -p '[{"op": "replace",
→˓"path": "/spec/backup/backrestRepoImage", "value": "percona/percona-postgresql-
→˓operator:1.1.0-ppg13-pgbackrest-repo"},{"op":"replace","path":"/spec/backup/image
→˓","value":"percona/percona-postgresql-operator:1.1.0-ppg13-pgbackrest"},{"op":
→˓"replace","path":"/spec/pgBadger/image","value":"percona/percona-postgresql-
→˓operator:1.1.0-ppg13-pgbadger"},{"op":"replace","path":"/spec/pgBouncer/image",
→˓"value":"percona/percona-postgresql-operator:1.1.0-ppg13-pgbouncer"},{"op":
→˓"replace","path":"/spec/pgPrimary/image","value":"percona/percona-postgresql-
→˓operator:1.1.0-ppg13-postgres-ha"},{"op":"replace","path":"/spec/userLabels/pgo-
→˓version","value":"v1.1.0"},{"op":"replace","path":"/metadata/labels/pgo-version",
→˓"value":"v1.1.0"},{"op": "replace", "path": "/spec/pause", "value": false}]'

12.2. Upgrading Percona Distribution for PostgreSQL 36

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Note: The above example is composed in asumption of using PostgreSQL 13 as a database management system.
For PostgreSQL 12 you should change all occurrences of the ppg13 substring to ppg12.

This will carry on the image update, cluster version update and the pause status switch.

3. Now you can enable the pgbouncer again:

$ kubectl patch perconapgcluster/<cluster-name --type json -p \
'[

{"op":"replace","path":"/spec/pgBouncer/size","value":1}
]'

Wait until the cluster is ready.

12.2. Upgrading Percona Distribution for PostgreSQL 37

CHAPTER

THIRTEEN

SCALE PERCONA DISTRIBUTION FOR POSTGRESQL ON
KUBERNETES AND OPENSHIFT

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an application scaling.
Scaling an application results in adding or removing the Pods and scheduling them to available Kubernetes nodes.

Size of the cluster is dynamically controlled by a pgReplicas.REPLICA-NAME.size key in the Custom Resource options
configuration. That’s why scaling the cluster needs nothing more but changing this option and applying the updated
configuration file. This may be done in a specifically saved config, or on the fly, using the following command:

$ kubectl scale --replicas=5 pgo/cluster1

In this example we have changed the number of PostgreSQL Replicas to 5 instances.

38

CHAPTER

FOURTEEN

TRANSPORT LAYER SECURITY (TLS)

The Percona Distribution for PostgreSQL Operator uses Transport Layer Security (TLS) cryptographic protocol for the
following types of communication:

• Internal - communication between PostgreSQL instances in the cluster

• External - communication between the client application and the cluster

The internal certificate is also used as an authorization method for PostgreSQL Replica instances.

Currently, TLS security needs manual certificates generation.

You can also use pre-generated certificates available in the deploy/ssl-secrets.yaml file for test purposes, but we
strongly recommend avoiding their usage on any production system!

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to tem-
porarily disable it if needed.

• Generate certificates for the Operator

– Check connectivity to the cluster

• Run Percona Distribution for PostgreSQL without TLS

14.1 Generate certificates for the Operator

To generate certificates, follow these steps:

1. Provision a CA (Certificate authority) to generate TLS certificates,

2. Generate a CA key and certificate file with the server details,

3. Create the server TLS certificates using the CA keys, certs, and server details.

The set of commands generates certificates with the following attributes:

• Server-pem - Certificate

• Server-key.pem - the private key

• ca.pem - Certificate Authority

You should generate one set of certificates for external communications, and another set for internal ones.

Supposing that your cluster name is cluster1, you can use the following commands to generate certificates:

39

Percona Distribution for PostgreSQL Operator, Release 1.1.0

$ CLUSTER_NAME=cluster1
$ NAMESPACE=default
$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
{
"CN": "*",
"key": {
"algo": "ecdsa",
"size": 384

}
}
EOF

$ cat <<EOF > ca-config.json
{

"signing": {
"default": {

"expiry": "87600h",
"usages": ["digital signature", "key encipherment", "content commitment"]

}
}

}
EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - |␣
→˓cfssljson -bare server
{

"hosts": [
"localhost",
"${CLUSTER_NAME}",
"${CLUSTER_NAME}.${NAMESPACE}",
"${CLUSTER_NAME}.${NAMESPACE}.svc.cluster.local",
"${CLUSTER_NAME}-pgbouncer",
"${CLUSTER_NAME}-pgbouncer.${NAMESPACE}",
"${CLUSTER_NAME}-pgbouncer.${NAMESPACE}.svc.cluster.local",
"*.${CLUSTER_NAME}",
"*.${CLUSTER_NAME}.${NAMESPACE}",
"*.${CLUSTER_NAME}.${NAMESPACE}.svc.cluster.local",
"*.${CLUSTER_NAME}-pgbouncer",
"*.${CLUSTER_NAME}-pgbouncer.${NAMESPACE}",
"*.${CLUSTER_NAME}-pgbouncer.${NAMESPACE}.svc.cluster.local"

],
"CN": "${CLUSTER_NAME}",
"key": {
"algo": "ecdsa",
"size": 384

}
}
EOF

$ kubectl create secret generic ${CLUSTER_NAME}-ssl-ca --from-file=ca.crt=ca.pem
$ kubectl create secret tls ${CLUSTER_NAME}-ssl-keypair --cert=server.pem --key=server-
→˓key.pem

14.1. Generate certificates for the Operator 40

Percona Distribution for PostgreSQL Operator, Release 1.1.0

If your PostgreSQL cluster includes replica instances (this feature is on by default), generate certificates for them in a
similar way:

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - |␣
→˓cfssljson -bare replicas
{

"CN": "primaryuser",
"key": {

"algo": "ecdsa",
"size": 384

}
}
EOF

$ kubectl create secret tls ${CLUSTER_NAME}-ssl-replicas --cert=replicas.pem --
→˓key=replicas-key.pem

When certificates are generated, set the following keys in the deploy/cr.yaml configuration file:

• spec.sslCA key should contain the name of the secret with TLS CA used for both connection encryption (ex-
ternal traffic), and replication (internal traffic),

• spec.sslSecretName key should contain the name of the secret created to encrypt external communications,

• spec.secrets.sslReplicationSecretName key should contain the name of the secret created to encrypt
internal communications,

• spec.tlsOnly key should be set to true if you want to disable unencrypted communications.

Don’t forget to apply changes as usual:

$ kubectl apply -f deploy/cr.yaml

14.1.1 Check connectivity to the cluster

You can check TLS communication with use of the psql, the standart interactive terminal-based front-end to Post-
greSQL. The following command will spawn a new pg-client container, which includes needed command and can
be used for the check (use your real cluster name instead of the <cluster-name> placeholder):

$ cat <<EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
name: pg-client

spec:
replicas: 1
selector:
matchLabels:
name: pg-client

template:
metadata:
labels:
name: pg-client

spec:
containers:

(continues on next page)

14.1. Generate certificates for the Operator 41

Percona Distribution for PostgreSQL Operator, Release 1.1.0

(continued from previous page)

- name: pg-client
image: perconalab/percona-distribution-postgresql:13.2
imagePullPolicy: Always
command:
- sleep
args:
- "100500"
volumeMounts:
- name: ca
mountPath: "/tmp/tls"

volumes:
- name: ca
secret:
secretName: <cluster_name>-ssl-ca
items:
- key: ca.crt
path: ca.crt
mode: 0777

EOF

Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal to check connec-
tivity over the encrypted channel (please use real cluster-name, PostgreSQL user login and password):

$ kubectl exec -it deployment/pg-client -- bash -il
[postgres@pg-client /]$ PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt psql postgres:/
→˓/<postgresql-user>:<postgresql-password>@<cluster-name>-pgbouncer.<namespace>.svc.
→˓cluster.local

Now you should see the prompt of PostgreSQL interactive terminal:

psql (13.2)
Type "help" for help.
pgdb=>

14.2 Run Percona Distribution for PostgreSQL without TLS

Omitting TLS is also possible, but we recommend that you run your cluster with the TLS protocol enabled.

To disable TLS protocol (e.g. for demonstration purposes) set the spec.tlsOnly key to false`, and and make
sure that there are no certificate secrets configured in the ``deploy/cr.yaml file.

14.2. Run Percona Distribution for PostgreSQL without TLS 42

CHAPTER

FIFTEEN

MONITORING

Percona Monitoring and Management (PMM) provides an excellent solution to monitor Percona Distribution for Post-
greSQL.

Note: Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. PMM Client runs on each node with the database you wish to monitor: it collects
needed metrics and sends gathered data to PMM Server. As a user, you connect to PMM Server to see database metrics
on a number of dashboards.

That’s why PMM Server and PMM Client need to be installed separately.

15.1 Installing the PMM Server

PMM Server runs as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the official PMM
documentation for the installation instructions.

15.2 Installing the PMM Client

The following steps are needed for the PMM client installation in your Kubernetes-based environment:

1. The PMM client installation is initiated by updating the pmm section in the deploy/cr.yaml file.

• set pmm.enabled=true

• set the pmm.serverHost key to your PMM Server hostname,

• check that the serverUser key contains your PMM Server user name (admin by default),

• make sure the pmmserver key in the deploy/pmm-secret.yaml secrets file contains the password specified
for the PMM Server during its installation.

Apply changes with the kubectl apply -f deploy/pmm-secret.yaml command.

Note: You use deploy/pmm-secret.yaml file to create Secrets Object. The file contains all values for
each key/value pair in a convenient plain text format. But the resulting Secrets contain passwords stored as
base64-encoded strings. If you want to update password field, you’ll need to encode the value into base64
format. To do this, you can run echo -n "password" | base64 in your local shell to get valid values.
For example, setting the PMM Server user’s password to new_password` in the cluster1-pmm-secret
object can be done with the following command:

43

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/pmm-secret.yaml

Percona Distribution for PostgreSQL Operator, Release 1.1.0

kubectl patch secret/cluster1-pmm-secret -p '{"data":{"pmmserver": '$(echo -n␣
→˓new_password | base64)'}}'

When done, apply the edited deploy/cr.yaml file:

$ kubectl apply -f deploy/cr.yaml

2. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors
on the previous steps:

$ kubectl get pods
$ kubectl logs cluster1-7b7f7898d5-7f5pz -c pmm-client

3. Now you can access PMM via https in a web browser, with the login/password authentication, and the browser
is configured to show Percona Distribution for PostgreSQL metrics.

15.2. Installing the PMM Client 44

Part IV

Reference

45

CHAPTER

SIXTEEN

CUSTOM RESOURCE OPTIONS

The Cluster is configured via the deploy/cr.yaml file.

The metadata part of this file contains the following keys:

• name (cluster1 by default) sets the name of your Percona Distribution for PostgreSQL Cluster; it should include
only URL-compatible characters, not exceed 22 characters, start with an alphabetic character, and end with an
alphanumeric character;

The spec part of the deploy/cr.yaml file contains the following sections:

Key Value type Default Description
pause boolean false Pause/resume: setting it to true gracefully stops the cluster,

and setting it to false after shut down starts the cluster back.
walStorage subdoc Write-ahead Log Storage Section
pmm subdoc Percona Monitoring and Management section
backup subdoc Section to configure backups and pgBackRest
pgBouncer subdoc The pgBouncer connection pooler section
pgReplicas subdoc Section required to manage the replicas within a PostgreSQL

cluster
pgBadger subdoc The pgBadger PostgreSQL log analyzer section

Key database
Value string
Example pgdb
Description The name of a database that the PostgreSQL user can log into after the PostgreSQL cluster is

created

Key disableAutofail
Value boolean
Example false
Description Turns high availability on or off. By default, every cluster can have high availability if there is at

least one replica

Key tlsOnly
Value boolean
Example false
Description Enforece Operator to use only Transport Layer Security (TLS) for both internal and external com-

munications

continues on next page

46

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/
https://github.com/darold/pgbadger
operator.html#spec-database
operator.html#spec-disableautofail
operator.html#spec-tlsonly

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Table 1 – continued from previous page
Key sslCA
Value string
Example cluster1-ssl-ca
Description The name of the secret with TLS CA used for both connection encryption (external traffic), and

replication (internal traffic)

Key sslSecretName
Value string
Example cluster1-ssl-keypair
Description The name of the secret created to encrypt external communications

Key sslReplicationSecretName
Value string
Example cluster1-ssl-keypair"
Description The name of the secret created to encrypt internal communications

Key keepData
Value boolean
Example true
Description If true, PVCs will be kept after the cluster deletion

Key keepBackups
Value boolean
Example true
Description If true, local backups will be kept after the cluster deletion

Key pgDataSource.restoreFrom
Value string
Example ""
Description The name of a data source PostgreSQL cluster, which is used to restore backup to a a new cluster

Key pgDataSource.restoreOpts
Value string
Example ""
Description Custom pgBackRest options to restore backup to a a new cluster

Key pgPrimary.image
Value string
Example perconalab/percona-postgresql-operator:main-ppg13-postgres-ha
Description The Docker image of the PostgreSQL Primary instance

Key pgPrimary.volumeSpec.size
Value int
Example 1G
Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Primary storage

Key pgPrimary.volumeSpec.accessmode
Value string
Example ReadWriteOnce
Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Primary storage

continues on next page

47

operator.html#spec-sslca
operator.html#spec-sslsecretname
operator.html#spec-sslreplicationsecretname
operator.html#spec-keepdata
operator.html#spec-keepbackups
operator.html#pgdatasource-restorefrom
operator.html#pgdatasource-restoreopts
operator.html#pgprimary-image
operator.html#pgprimary-volumespec-size
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#pgprimary-volumespec-accessmode
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Table 1 – continued from previous page

Key pgPrimary.volumeSpec.storagetype
Value string
Example dynamic
Description Type of the PostgreSQL Primary storage provisioning: create (the default variant; used if storage

is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage provisioner, e.g. via a
StorageClass)

Key pgPrimary.volumeSpec.storageclass
Value string
Example ""
Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Primary storage Persis-

tentVolumeClaim

Key pgPrimary.volumeSpec.matchLabels
Value string
Example ""
Description A PostgreSQL Primary storage label selector

Key pgPrimary.customconfig
Value string
Example ""
Description Name of the Custom configuration options ConfigMap for PostgreSQL cluster

16.1 Write-ahead Log Storage Section

The walStorage section in the deploy/cr.yaml file contains configuration options for PostgreSQL write-ahead logging.

16.1. Write-ahead Log Storage Section 48

operator.html#pgprimary-volumespec-storagetype
operator.html#pgprimary-volumespec-storageclass
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#pgprimary-volumespec-matchlabels
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
operator.html#pgprimary-customconfig
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://www.postgresql.org/docs/current/wal-intro.html

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Key
walStorage.volumeSpec.size

Value int
Example 1G
Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Write-ahead Log storage

Key
walStorage.volumeSpec.accessmode

Value string
Example ReadWriteOnce
Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Write-ahead Log stor-

age

Key
walStorage.volumeSpec.storagetype

Value string
Example dynamic
Description Type of the PostgreSQL Write-ahead Log storage provisioning: create (the default variant; used

if storage is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage provisioner, e.g.
via a StorageClass)

Key
walStorage.volumeSpec.storageclass

Value string
Example ""
Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Write-ahead Log storage

PersistentVolumeClaim

Key
walStorage.volumeSpec.matchLabels

Value string
Example ""
Description A PostgreSQL Write-ahead Log storage label selector

16.2 Backup Section

The backup section in the deploy/cr.yaml file contains the following configuration options for the regular Percona
Distribution for PostgreSQL backups.

Key backup.image
Value string
Example perconalab/percona-postgresql-operator:main-ppg13-pgbackrest
Description The Docker image for pgBackRest

Key backup.backrestRepoImage
Value string
Example perconalab/percona-postgresql-operator:main-ppg13-pgbackrest-repo
Description The Docker image for the BackRest repository

Key backup.resources.requests.memory
continues on next page

16.2. Backup Section 49

operator.html#walstorage-volumespec-size
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#walstorage-volumespec-accessmode
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#walstorage-volumespec-storagetype
operator.html#walstorage-storageclass
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#walstorage-volumespec-matchlabels
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
operator.html#backup-backrestimage
operator.html#backup-backrestrepoimage
operator.html#backup-resources-requests-memory

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Table 2 – continued from previous page
Value int
Example 48Mi
Description The Kubernetes memory requests for a pgBackRest container

Key backup.resources.limits.cpu
Value int
Example 1
Description Kubernetes CPU limits for a pgBackRest container

Key backup.resources.limits.memory
Value int
Example 64Mi
Description The Kubernetes memory limits for a pgBackRest container

Key backup.volumeSpec.size
Value int
Example 1G
Description The Kubernetes PersistentVolumeClaim size for the pgBackRest Storage

Key backup.volumeSpec.accessmode
Value string
Example ReadWriteOnce
Description The Kubernetes PersistentVolumeClaim access modes for the pgBackRest Storage

Key backup.volumeSpec.storagetype
Value string
Example dynamic
Description Type of the pgBackRest storage provisioning: create (the default variant; used if storage is pro-

visioned, e.g. using hostpath) or dynamic (for a dynamic storage provisioner, e.g. via a Storage-
Class)

Key backup.volumeSpec.storageclass
Value string
Example ""
Description Optionally sets the Kubernetes storage class to use with the pgBackRest Storage PersistentVol-

umeClaim

Key backup.volumeSpec.matchLabels
Value string
Example ""
Description A pgBackRest storage label selector

Key backup.storages.<storage-name>.type
Value string
Example s3
Description Type of the storage used for backups

Key backup.storages.<storage-name>.endpointURL
Value string
Example minio-gateway-svc:9000

continues on next page

16.2. Backup Section 50

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#backup-resources-limits-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#backup-resources-limits-memory
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#backup-volumespec-size
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#backup-volumespec-accessmode
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#backup-volumespec-storagetype
operator.html#backup-volumespec-storageclass
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#backup-volumespec-matchlabels
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
operator.html#backup-storages-type
operator.html#backup-storages-endpointurl

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Table 2 – continued from previous page
Description The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original

Amazon S3 cloud)

Key backup.storages.<storage-name>.bucket
Value string
Example ""
Description The Amazon S3 bucket or Google Cloud Storage bucket name used for backups

Key backup.storages.<storage-name>.region
Value boolean
Example us-east-1
Description The AWS region to use for Amazon and all S3-compatible storages

Key backup.storages.<storage-name>.uriStyle
Value string
Example path
Description Optional parameter that specifies if pgBackRest should use the path or host S3 URI style

Key backup.storages.<storage-name>.verifyTLS
Value boolean
Example false
Description Enables or disables TLS verification for pgBackRest

Key backup.storageTypes
Value array
Example ["s3"]
Description The backup storage types for the pgBackRest repository

Key backup.repoPath
Value string
Example ""
Description Custom path for pgBackRest repository backups

Key backup.schedule.name
Value string
Example sat-night-backup
Description The backup name

Key backup.schedule.schedule
Value string
Example 0 0 * * 6
Description Scheduled time to make a backup specified in the crontab format

Key backup.schedule.keep
Value int
Example 3
Description The amount of most recent backups to store. Older backups are automatically deleted. Set keep

to zero or completely remove it to disable automatic deletion of backups

Key backup.schedule.type
continues on next page

16.2. Backup Section 51

operator.html#backup-storages-bucket
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
operator.html#backup-storages-region
https://docs.aws.amazon.com/general/latest/gr/rande.html
operator.html#backup-storages-uristyle
operator.html#backup-storages-verifytls
operator.html#backup-storagetypes
operator.html#backup-repopath
operator.html#backup-schedule-name
operator.html#backup-schedule-schedule
https://en.wikipedia.org/wiki/Cron
operator.html#backup-schedule-keep
operator.html#backup-schedule-type

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Table 2 – continued from previous page
Value string
Example full
Description The type of the pgBackRest backup

Key backup.schedule.storage
Value string
Example local
Description | The type of the pgBackRest repository

16.3 PMM Section

The pmm section in the deploy/cr.yaml file contains configuration options for Percona Monitoring and Management.

Key pmm.enabled
Value boolean
Example false
Description Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM

Key pmm.image
Value string
Example percona/pmm-client:2.24.0
Description Percona Monitoring and Management (PMM) Client Docker image

Key pmm.serverHost
Value string
Example monitoring-service
Description Address of the PMM Server to collect data from the cluster

Key pmm.serverUser
Value string
Example admin
Description The PMM Server User. The PMM Server password should be configured using Secrets

Key pmm.pmmSecret
Value string
Example cluster1-pmm-secret
Description Name of the Kubernetes Secret object for the PMM Server password

Key pmm.resources.requests.memory
Value string
Example 200M
Description The Kubernetes memory requests for a PMM container

Key pmm.resources.requests.cpu
Value string
Example 500m
Description Kubernetes CPU requests for a PMM container

continues on next page

16.3. PMM Section 52

operator.html#backup-schedule-storage
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
operator.html#pmm-enabled
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
operator.html#pmm-image
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
operator.html#pmm-serverhost
operator.html#pmm-serveruser
https://www.percona.com/doc/percona-monitoring-and-management/glossary.option.html
operator.html#pmm-pmmsecret
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
operator.html#pmm-resources-requests-memory
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#pmm-resources-requests-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Table 3 – continued from previous page

Key pmm.resources.limits.cpu
Value string
Example 500m
Description Kubernetes CPU limits for a PMM container

Key pmm.resources.limits.memory
Value string
Example 200M
Description The Kubernetes memory limits for a PMM container

16.4 pgBouncer Section

The pgBouncer section in the deploy/cr.yaml file contains configuration options for the pgBouncer connection pooler
for PostgreSQL.

Key pgBouncer.image
Value string
Example perconalab/percona-postgresql-operator:main-ppg13-pgbouncer
Description Docker image for the pgBouncer connection pooler

Key pgBouncer.size
Value int
Example 1G
Description The number of the pgBouncer Pods to provide connection pooling

Key pgBouncer.resources.requests.cpu
Value int
Example 1
Description Kubernetes CPU requests for a pgBouncer container

Key pgBouncer.resources.requests.memory
Value int
Example 128Mi
Description The Kubernetes memory requests for a pgBouncer container

Key pgBouncer.resources.limits.cpu
Value int
Example 2
Description Kubernetes CPU limits for a pgBouncer container

Key pgBouncer.resources.limits.memory
Value int
Example 512Mi
Description The Kubernetes memory limits for a pgBouncer container

Key pgBouncer.expose.serviceType
Value string

continues on next page

16.4. pgBouncer Section 53

operator.html#pmm-resources-limits-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#pmm-resources-limits-memory
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/
operator.html#pgbouncer-image
http://pgbouncer.github.io/
operator.html#pgbouncer-size
operator.html#pgbouncer-resources-requests-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#pgbouncer-resources-requests-memory
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#pgbouncer-resources-limits-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#pgbouncer-resources-limits-memory
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#pgbouncer-expose-servicetype

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Table 4 – continued from previous page
Example ClusterIP
Description Specifies the type of Kubernetes Service for pgBouncer

Key pgBouncer.expose.loadBalancerSourceRanges
Value string
Example "10.0.0.0/8"
Description The range of client IP addresses from which the load balancer should be reachable (if not set, there

is no limitations)

Key pgBouncer.expose.annotations
Value label
Example pg-cluster-annot: cluster1
Description The Kubernetes annotations metadata for pgBouncer

Key pgBouncer.expose.labels
Value label
Example pg-cluster-label: cluster1
Description Set labels for the pgBouncer Service

16.5 pgReplicas Section

The pgReplicas section in the deploy/cr.yaml file stores information required to manage the replicas within a Post-
greSQL cluster.

Key pgReplicas.<replica-name>.size
Value int
Example 1G
Description The number of the PostgreSQL Replica Pods

Key pgReplicas.<replica-name>.resources.requests.cpu
Value int
Example 1
Description Kubernetes CPU requests for a PostgreSQL Replica container

Key pgReplicas.<replica-name>.resources.requests.memory
Value int
Example 128Mi
Description The Kubernetes memory requests for a PostgreSQL Replica container

Key pgReplicas.<replica-name>.resources.limits.cpu
Value int
Example 2
Description Kubernetes CPU limits for a PostgreSQL Replica container

Key pgReplicas.<replica-name>.resources.limits.memory
Value int
Example 512Mi
Description The Kubernetes memory limits for a PostgreSQL Replica container

continues on next page

16.5. pgReplicas Section 54

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
operator.html#pgbouncer-expose-loadbalancersourceranges
operator.html#pgbouncer-expose-annotations
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
operator.html#pgbouncer-expose-labels
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
operator.html#pgreplicas-size
operator.html#pgreplicas-resources-requests-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#pgreplicas-resources-requests-memory
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#pgreplicas-resources-limits-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
operator.html#pgreplicas-resources-limits-memory
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Table 5 – continued from previous page

Key pgReplicas.<replica-name>.volumeSpec.accessmode
Value string
Example ReadWriteOnce
Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Replica storage

Key pgReplicas.<replica-name>.volumeSpec.size
Value int
Example 1G
Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Replica storage

Key pgReplicas.<replica-name>.volumeSpec.storagetype
Value string
Example dynamic
Description Type of the PostgreSQL Replica storage provisioning: create (the default variant; used if storage

is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage provisioner, e.g. via a
StorageClass)

Key pgReplicas.<replica-name>.volumeSpec.storageclass
Value string
Example standard
Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Replica storage Persis-

tentVolumeClaim

Key pgReplicas.<replica-name>.volumeSpec.matchLabels
Value string
Example ""
Description A PostgreSQL Replica storage label selector

Key pgReplicas.<replica-name>.labels
Value label
Example pg-cluster-label: cluster1
Description Set labels for PostgreSQL Replica Pods

Key pgReplicas.<replica-name>.annotations
Value label
Example pg-cluster-annot: cluster1-1
Description The Kubernetes annotations metadata for PostgreSQL Replica

Key pgReplicas.<replica-name>.expose.serviceType
Value string
Example ClusterIP
Description Specifies the type of Kubernetes Service for for PostgreSQL Replica

Key pgReplicas.<replica-name>.expose.loadBalancerSourceRanges
Value string
Example "10.0.0.0/8"
Description The range of client IP addresses from which the load balancer should be reachable (if not set, there

is no limitations)

continues on next page

16.5. pgReplicas Section 55

operator.html#pgreplicas-volumespec-accessmode
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#pgreplicas-volumespec-size
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#pgreplicas-volumespec-storagetype
operator.html#pgreplicas-volumespec-storageclass
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
operator.html#pgreplicas-volumespec-matchlabels
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
operator.html#pgbouncer-labels
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
operator.html#pgreplicas-annotations
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
operator.html#pgreplicas-expose-servicetype
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
operator.html#pgreplicas-expose-loadbalancersourceranges

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Table 5 – continued from previous page
Key pgReplicas.<replica-name>.expose.annotations
Value label
Example pg-cluster-annot: cluster1
Description The Kubernetes annotations metadata for PostgreSQL Replica

Key pgReplicas.<replica-name>.expose.labels
Value label
Example pg-cluster-label: cluster1
Description Set labels for the PostgreSQL Replica Service

16.6 pgBadger Section

The pgBadger section in the deploy/cr.yaml file contains configuration options for the pgBadger PostgreSQL log
analyzer.

Key
pgBadger.enabled

Value boolean
Example false
Description Enables or disables the pgBadger PostgreSQL log analyzer

Key
pgBadger.image

Value string
Example perconalab/percona-postgresql-operator:main-ppg13-pgbadger
Description pgBadger PostgreSQL log analyzer Docker image

Key
pgBadger.port

Value int
Example 10000
Description The port number for pgBadger

16.6. pgBadger Section 56

operator.html#pgreplicas-expose-annotations
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
operator.html#pgbouncer-expose-labels
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
operator.html#pgbadger-enabled
https://github.com/darold/pgbadger
operator.html#pgbadger-image
https://github.com/darold/pgbadger
operator.html#pgbadger-port

CHAPTER

SEVENTEEN

PERCONA CERTIFIED IMAGES

Following table presents Percona’s certified docker images to be used with the Percona Distribution for PostgreSQL
Operator:

57

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Image Digest
percona/percona-postgresql-
operator:1.1.0-pgo-deployer

sha256:caabb96e98c883e4809b5e21d5733403e67720c812fca81b79ad339341bf3708

percona/percona-postgresql-
operator:1.1.0-postgres-operator

sha256:d7729cc714ec4db04fc9a6c4e29405875b5115b129b49d4f5dee6c85cf0731c6

percona/percona-postgresql-
operator:1.1.0-pgo-scheduler

sha256:90432634f7414cc2f6c7e270e78af3adf92ce31e97d8dee16a2f7babe3e674c7

percona/percona-postgresql-
operator:1.1.0-pgo-rmdata

sha256:ad3c14f6a8b1907b7d7f5fa3cdc8c2a494913c2255ec97a49927e13e5ea9579a

percona/percona-postgresql-
operator:1.1.0-pgo-event

sha256:919d35795e206e6b83f7f624749615a3b07aabd42322d83494f9bf30fe618411

percona/percona-postgresql-
operator:1.1.0-pgo-apiserver

sha256:b13ddb198eb248af14fc02f1170c0026274c1e88ad9dba54030e5089c910d01a

percona/percona-postgresql-
operator:1.1.0-ppg12-pgbadger

sha256:5508ce5316014b498e07801472f23cb64947c0393b07dc7f664f2e246021f066

percona/percona-postgresql-
operator:1.1.0-ppg13-pgbadger

sha256:2044d5e94f7862bc7ec4eceb94bee22d79d0f2f8c84a622790b9f530aba7cd9e

percona/percona-postgresql-
operator:1.1.0-ppg14-pgbadger

sha256:fc6505b5c12b1ab1f948b37a7406f7694759a1b5ff2b695ba0b8f31c11da30af

percona/percona-postgresql-
operator:1.1.0-ppg12-postgres-ha

sha256:f7ca98c2d3c325a87700fd5a3833e6a5e22c93b12b35fa0aef72373e40a2474a

percona/percona-postgresql-
operator:1.1.0-ppg13-postgres-ha

sha256:83985cdd73d4531eebcd2a2bab11848036744caf4e4e31559a0c994ac49d88f0

percona/percona-postgresql-
operator:1.1.0-ppg14-postgres-ha

sha256:9134f670e4fa785c41a12559598fa893107d62e6193af1eb7749ae87beec64e5

percona/percona-postgresql-
operator:1.1.0-ppg12-pgbouncer

sha256:61ebf3623c9a8fad773d54bf3449b2bbf6663bb5e56a3cd02cf6747fa38da7f1

percona/percona-postgresql-
operator:1.1.0-ppg13-pgbouncer

sha256:834af973b183674ae80656f746bd63b6f856038b0a8c28ef1977a0b65c1a5fca

percona/percona-postgresql-
operator:1.1.0-ppg14-pgbouncer

sha256:0ad239b7a94bdad12d7b7cee78d91feda3735cc0c68939aab4901ca2970a4e7f

percona/percona-postgresql-
operator:1.1.0-ppg12-pgbackrest

sha256:d2305c7f4f5c5b3dc32758c80ece9ec9b43871f5a582268613acf947dd0ac37a

percona/percona-postgresql-
operator:1.1.0-ppg13-pgbackrest

sha256:43e34b4a4a58046fd7670771e05777ffd15779d7fd00c18224c6081ab185e9a8

percona/percona-postgresql-
operator:1.1.0-ppg14-pgbackrest

sha256:def581e58384508316b355067fd5837e4b46565c9b917af959e0199b4150cf81

percona/percona-postgresql-
operator:1.1.0-ppg12-pgbackrest-
repo

sha256:8b954f29136ec7ea68143c126e311b6104e94b6524cc4234f87769a86edff8bb

percona/percona-postgresql-
operator:1.1.0-ppg13-pgbackrest-
repo

sha256:5bff3605833ef241281f28a76a877ef20583feed0fc1c95049f0dbc0af403129

percona/percona-postgresql-
operator:1.1.0-ppg14-pgbackrest-
repo

sha256:202d9751977119103b9720b8b78dbd8a5cf03f49fa1c71ac2876a298937f86b1

58

CHAPTER

EIGHTEEN

PERCONA DISTRIBUTION FOR POSTGRESQL OPERATOR 1.1.0
RELEASE NOTES

18.1 Percona Distribution for PostgreSQL Operator 1.1.0

Date December 7, 2021

Installation Installing Percona Distribution for PostgreSQL Operator

18.1.1 Release Highlights

• A Kubernetes-native horizontal scaling capability was added to the Custom Resource to unblock Horizontal Pod
Autoscaler and Kubernetes Event-driven Autoscaling (KEDA) usage

• The Smart Upgrade functionality along with the technical preview of the Version Service allows users to auto-
matically get the latest version of the software compatible with the Operator and apply it safely

• Percona Distribution for PostgreSQL Operator now supports PostgreSQL 14

18.1.2 New Features

• K8SPG-101: Add support for Kubernetes horizontal scaling to set the number of Replicas dynamically via the
kubectl scale command or Horizontal Pod Autoscaler

• K8SPG-77: Add support for PostgreSQL 14 in the Operator

• K8SPG-75: Manage Operator’s system users hrough a single Secret resource even after cluster creation

• K8SPG-71: Add Smart Upgrade functionality to automate Percona Distribution for PostgreSQL upgrades

18.1.3 Improvements

• K8SPG-96: PMM container does not cause the crash of the whole database Pod if pmm-agent is not working
properly

59

https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://jira.percona.com/browse/K8SPG-101
https://jira.percona.com/browse/K8SPG-77
https://jira.percona.com/browse/K8SPG-75
https://jira.percona.com/browse/K8SPG-71
https://jira.percona.com/browse/K8SPG-96

Percona Distribution for PostgreSQL Operator, Release 1.1.0

18.1.4 Bugs Fixed

• K8SPG-120: The Operator default behavior is now to keep backups and PVCs when the cluster is deleted

Supported platforms

The following platforms were tested and are officially supported by the Operator 1.1.0:

• Google Kubernetes Engine (GKE) 1.19 - 1.22

• Amazon Elastic Container Service for Kubernetes (EKS) 1.18 - 1.21

• OpenShift 4.7 - 4.9

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process.
Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

18.2 Percona Distribution for PostgreSQL Operator 1.0.0

Date October 7, 2021

Installation Installing Percona Distribution for PostgreSQL Operator

Percona announces the general availability of Percona Distribution for PostgreSQL Operator 1.0.0.

The Percona Distribution for PostgreSQL Operator automates the lifecycle, simplifies deploying and managing open
source PostgreSQL clusters on Kubernetes.

The Operator follows best practices for configuration and setup of the Percona Distribution for PostgreSQL. The Op-
erator provides a consistent way to package, deploy, manage, and perform a backup and a restore for a Kubernetes
application. Operators deliver automation advantages in cloud-native applications.

The advantages are the following:

• Deploy a Percona Distribution for PostgreSQL with no single point of failure and environment which can span
multiple availability zones

• Modify the Percona Distribution for PostgreSQL size parameter to add or remove PostgreSQL instances

• Use single Custom Resource as a universal entry point to configure the cluster, similar to other Percona Operators

• Carry on semi-automatic upgrades of the Operator and PostgreSQL to newer versions

• Integrate with Percona Monitoring and Management (PMM) to seamlessly monitor your Percona Distribution
for PostgreSQL

• Automate backups or perform on-demand backups as needed with support for performing an automatic restore

• Use cloud storage with S3-compatible APIs or Google Cloud for backups

• Use Transport Layer Security (TLS) for the replication and client traffic

• Support advanced Kubernetes features such as pod disruption budgets, node selector, constraints, tolerations,
priority classes, and affinity/anti-affinity

Percona Distribution for PostgreSQL Operator is based on Postgres Operator developed by Crunchy Data.

18.2. Percona Distribution for PostgreSQL Operator 1.0.0 60

https://jira.percona.com/browse/K8SPG-120
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://www.percona.com/doc/postgresql/LATEST/index.html
https://crunchydata.github.io/postgres-operator/latest/

Percona Distribution for PostgreSQL Operator, Release 1.1.0

18.2.1 Release Highlights

• It is now possible to configure scheduled backups following the declarative approach in the deploy/cr.yaml
file, similar to other Percona Kubernetes Operators

• OpenShift compatibility allows running Percona Distribution for PostgreSQL on Red Hat OpenShift Container
Platform

• For the first time, the main functionality of the Operator is covered by functional tests, which ensure the overall
quality and stability

18.2.2 New Features and Improvements

• K8SPG-96: PMM Client container does not cause the crash of the whole database Pod if pmm-agent is not
working properly

• K8SPG-86: The Operator is now compatible with the OpenShift platform

• K8SPG-62: Configuring scheduled backups through the main Custom Resource is now supported

• K8SPG-99, K8SPG-131: The Operator documentation was substantially improved, and now it covers among
other things the usage of Transport Layer Security (TLS) for internal and external communications, and cluster
upgrades

18.2.3 Supported Platforms

The following platforms were tested and are officially supported by Operator 1.0.0:

• OpenShift 4.6 - 4.8

• Google Kubernetes Engine (GKE) 1.17 - 1.21

• Amazon Elastic Container Service for Kubernetes (EKS) 1.21

This list only includes the platforms that the Operator is specifically tested on as a part of the release process. Other
Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

18.3 Percona Distribution for PostgreSQL Operator 0.2.0

Date August 12, 2021

Installation Installing Percona Distribution for PostgreSQL Operator

Version 0.2.0 of the Percona Distribution for PostgreSQL Operator is a Beta release, and it is not recommended
for production environments.

18.3. Percona Distribution for PostgreSQL Operator 0.2.0 61

https://jira.percona.com/browse/K8SPG-96
https://jira.percona.com/browse/K8SPG-86
https://jira.percona.com/browse/K8SPG-62
https://jira.percona.com/browse/K8SPG-99
https://jira.percona.com/browse/K8SPG-131
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide

Percona Distribution for PostgreSQL Operator, Release 1.1.0

18.3.1 New Features and Improvements

• K8SPG-80: The Custom Resource structure was reworked to provide the same look and feel as in other Percona
Operators. Read more about Custom Resource options in the documentation and review the default deploy/
cr.yaml configuration file on GitHub.

• K8SPG-53: Merged upstream CrunchyData Operator v4.7.0 made it possible to use Google Cloud Storage as an
object store for backups without using third-party tools

• K8SPG-42: There is no need to specify the name of the pgBackrest Pod in the backup manifest anymore as it is
detected automatically by the Operator

• K8SPG-30: Replicas management is now performed through a main Custom Resource manifest instead of cre-
ating separate Kubernetes resources. This also adds the possibility of scaling up/scaling down replicas via the
‘deploy/cr.yaml’ configuration file

• K8SPG-66: Helm chart is now officially provided with the Operator

18.4 Percona Distribution for PostgreSQL Operator 0.1.0

Date May 10, 2021

Installation Installing Percona Distribution for PostgreSQL Operator

The Percona Operator is based on best practices for configuration and setup of a Percona Distribution for PostgreSQL on
Kubernetes. The benefits of the Operator are many, but saving time and delivering a consistent and vetted environment
is key.

Kubernetes provides users with a distributed orchestration system that automates the deployment, management, and
scaling of containerized applications. The Operator extends the Kubernetes API with a new custom resource for de-
ploying, configuring, and managing the application through the whole life cycle. You can compare the Kubernetes
Operator to a System Administrator who deploys the application and watches the Kubernetes events related to it, taking
administrative/operational actions when needed.

Version 0.1.0 of the Percona Distribution for PostgreSQL Operator is a tech preview release and it is not recom-
mended for production environments.

You can install Percona Distribution for PostgreSQL Operator on Kubernetes, Google Kubernetes Engine (GKE), and
Amazon Elastic Kubernetes Service (EKS) clusters. The Operator is based on Postgres Operator developed by Crunchy
Data.

Here are the main differences between v 0.1.0 and the original Operator:

• Percona Distribution for PostgreSQL is now used as the main container image.

• It is possible to specify custom images for all components separately. For example, users can easily build and
use custom images for one or several components (e.g. pgBouncer) while all other images will be the official
ones. Also, users can build and use all custom images.

• All container images are reworked and simplified. They are built on Red Hat Universal Base Image (UBI) 8.

• The Operator has built-in integration with Percona Monitoring and Management v2.

• A build/test infrastructure was created, and we have started adding e2e tests to be sure that all pieces of the cluster
work together as expected.

• We have phased out the pgo CLI tool, and the Custom Resource UX will be completely aligned with other
Percona Operators in the following release.

18.4. Percona Distribution for PostgreSQL Operator 0.1.0 62

https://jira.percona.com/browse/K8SPG-80
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://jira.percona.com/browse/K8SPG-53
https://github.com/CrunchyData/postgres-operator/releases/tag/v4.7.0
https://jira.percona.com/browse/K8SPG-42
https://jira.percona.com/browse/K8SPG-30
https://jira.percona.com/browse/K8SPG-66
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/

Percona Distribution for PostgreSQL Operator, Release 1.1.0

Once Percona Operator is promoted to GA, users would be able to get the full package of services from Percona teams.

While the Operator is in its very first release, instructions on how to install and configure it are already available along
with the source code hosted in our Github repository.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system.

18.4. Percona Distribution for PostgreSQL Operator 0.1.0 63

https://percona.com/doc/kubernetes-operator-for-postgresql
https://github.com/percona/percona-postgresql-operator
https://jira.percona.com/secure/Dashboard.jspa

	I Requirements
	System Requirements
	Officially supported platforms

	Design overview

	II Installation guide
	Install Percona Distribution for PostgreSQL on Kubernetes
	Install Percona Distribution for PostgreSQL on OpenShift
	Install Percona Distribution for PostgreSQL on Minikube
	Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)
	Prerequisites
	Configuring default settings for the cluster
	Installing the Operator

	Install Percona Distribution for PostgreSQL using Helm
	Pre-requisites
	Installation
	Installing Percona Distribution for PostgreSQL with customized parameters

	III Configuration and Management
	Users
	System Users
	YAML Object Format

	Providing Backups
	Configuring the S3-compatible backup storage
	Use Google Cloud Storage for backups
	Scheduling backups
	Making on-demand backup
	List existing backups
	Restore the cluster from a previously saved backup
	Delete a previously saved backup

	Changing PostgreSQL Options
	Creating a cluster with custom options
	Modifying options for the existing cluster

	Pause/resume PostgreSQL Cluster
	Update Percona Distribution for PostgreSQL Operator
	Upgrading the Operator
	Upgrading Percona Distribution for PostgreSQL
	Automatic upgrade
	Semi-automatic upgrade

	Scale Percona Distribution for PostgreSQL on Kubernetes and OpenShift
	Transport Layer Security (TLS)
	Generate certificates for the Operator
	Check connectivity to the cluster

	Run Percona Distribution for PostgreSQL without TLS

	Monitoring
	Installing the PMM Server
	Installing the PMM Client

	IV Reference
	Custom Resource options
	Write-ahead Log Storage Section
	Backup Section
	PMM Section
	pgBouncer Section
	pgReplicas Section
	pgBadger Section

	Percona certified images
	Percona Distribution for PostgreSQL Operator 1.1.0 Release Notes
	Percona Distribution for PostgreSQL Operator 1.1.0
	Release Highlights
	New Features
	Improvements
	Bugs Fixed
	Supported platforms

	Percona Distribution for PostgreSQL Operator 1.0.0
	Release Highlights
	New Features and Improvements
	Supported Platforms

	Percona Distribution for PostgreSQL Operator 0.2.0
	New Features and Improvements

	Percona Distribution for PostgreSQL Operator 0.1.0

