
Page 1

Operator for MySQL based on Percona XtraDB
Cluster

Documentation
1.17.0 (April 14, 2025)

Page 2

Table of Contents

Welcome

Get help from Percona

Features

Design and architecture

Comparison with other solutions

Quickstart guides

Overview

1. Quick install

Install with Helm

Install with kubectl

2. Connect to the database

3. Insert data

4. Make a backup

5. Monitor the database with PMM

What's next?

Installation

System requirements

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE)

Install on Amazon Elastic Kubernetes Service (AWS EKS)

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

Multi-cluster and multi-region deployment

Upgrade

About upgrades

Upgrade CRD and the Operator

Database upgrade overview

Minor upgrade

To a specific version

Automatic minor upgrades

Manual upgrade

Upgrade Percona XtraDB Cluster on OpenShift

Configuration

Application and system users

Exposing the cluster

Changing MySQL Options

Anti-affinity and tolerations

Labels and annotations

Local Storage support

Defining environment variables

Load Balancing with HAProxy

Load Balancing with ProxySQL

Workload transfer and disaster recovery

Overview

Page 3

Set up the primary site

Set up the replica site

Configure replication between the sites

Promote the replica site to a new primary

Restore the previous primary site

Transport Encryption (TLS/SSL)

Data at rest encryption

Telemetry

Management

Backup and restore

About backups

Configure storage for backups

Make scheduled backups

Make on-demand backup

Store binary logs for point-in-time recovery

Enable compression for backups

Restore from a previously saved backup

Copy backup to a local machine

Delete the unneeded backup

Horizontal and vertical scaling

Monitor with Percona Monitoring and Management (PMM)

Add sidecar containers

Restart or pause the cluster

Crash recovery

Clone a cluster with the same data set

Troubleshooting

Initial troubleshooting

Exec into the container

Check the events

Check the logs

Check storage

Special debug images

HOWTOs

Install the database with customized parameters

Provide Percona Operator for MySQL single-namespace and multi-namespace deployment

How to use private registry

How to restore backup to a new Kubernetes-based environment

How to use backups and asynchronous replication to move an external database to Kubernetes

Monitor Kubernetes

Delete the Operator

Reference

Custom Resource options

Percona certified images

Versions compatibility

Operator API

Frequently Asked Questions

Development documentation

How we use artificial intelligence

Copyright and licensing information

Trademark policy

Page 4

Release Notes

Release notes index

Percona Operator for MySQL based on Percona XtraDB Cluster 1.17.0 (2025-04-14)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.16.1 (2024-12-26)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.16.0 (2024-12-19)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.15.1 (2024-10-16)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.14.1 (2024-10-16)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.15.0 (2024-08-20)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.14.0 (2024-03-04)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.13.0 (2023-07-11)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.12.0 (2022-12-07)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.11.0 (2022-06-03)

Percona Distribution for MySQL Operator 1.10.0 (2021-11-24)

Percona Distribution for MySQL Operator 1.9.0 (2021-08-09)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.8.0 (2021-05-26)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.7.0 (2021-02-02)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.6.0 (2020-09-09)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.5.0 (2020-07-21)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0 (2020-04-29)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0 (2020-01-06)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0 (2019-09-20)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0 (2019-07-15)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0 (2019-05-29)

Welcome

Get help from Percona

Features

Design and architecture

Comparison with other solutions

Quickstart guides

Overview

1. Quick install

Install with Helm

Install with kubectl

2. Connect to the database

3. Insert data

4. Make a backup

5. Monitor the database with PMM

What's next?

Installation

System requirements

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE)

Install on Amazon Elastic Kubernetes Service (AWS EKS)

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

Multi-cluster and multi-region deployment

Upgrade

Page 5

About upgrades

Upgrade CRD and the Operator

Database upgrade overview

Minor upgrade

To a specific version

Automatic minor upgrades

Manual upgrade

Upgrade Percona XtraDB Cluster on OpenShift

Configuration

Application and system users

Exposing the cluster

Changing MySQL Options

Anti-affinity and tolerations

Labels and annotations

Local Storage support

Defining environment variables

Load Balancing with HAProxy

Load Balancing with ProxySQL

Workload transfer and disaster recovery

Overview

Set up the primary site

Set up the replica site

Configure replication between the sites

Promote the replica site to a new primary

Restore the previous primary site

Transport Encryption (TLS/SSL)

Data at rest encryption

Telemetry

Management

Backup and restore

About backups

Configure storage for backups

Make scheduled backups

Make on-demand backup

Store binary logs for point-in-time recovery

Enable compression for backups

Restore from a previously saved backup

Copy backup to a local machine

Delete the unneeded backup

Horizontal and vertical scaling

Monitor with Percona Monitoring and Management (PMM)

Add sidecar containers

Restart or pause the cluster

Crash recovery

Clone a cluster with the same data set

Troubleshooting

Initial troubleshooting

Exec into the container

Check the events

Check the logs

Page 6

Check storage

Special debug images

HOWTOs

Install the database with customized parameters

Provide Percona Operator for MySQL single-namespace and multi-namespace deployment

How to use private registry

How to restore backup to a new Kubernetes-based environment

How to use backups and asynchronous replication to move an external database to Kubernetes

Monitor Kubernetes

Delete the Operator

Reference

Custom Resource options

Percona certified images

Versions compatibility

Operator API

Frequently Asked Questions

Development documentation

How we use artificial intelligence

Copyright and licensing information

Trademark policy

Release Notes

Release notes index

Percona Operator for MySQL based on Percona XtraDB Cluster 1.17.0 (2025-04-14)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.16.1 (2024-12-26)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.16.0 (2024-12-19)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.15.1 (2024-10-16)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.14.1 (2024-10-16)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.15.0 (2024-08-20)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.14.0 (2024-03-04)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.13.0 (2023-07-11)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.12.0 (2022-12-07)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.11.0 (2022-06-03)

Percona Distribution for MySQL Operator 1.10.0 (2021-11-24)

Percona Distribution for MySQL Operator 1.9.0 (2021-08-09)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.8.0 (2021-05-26)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.7.0 (2021-02-02)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.6.0 (2020-09-09)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.5.0 (2020-07-21)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0 (2020-04-29)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0 (2020-01-06)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0 (2019-09-20)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0 (2019-07-15)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0 (2019-05-29)

Page 7

Percona Operator for MySQL Based on Percona XtraDB Cluster
The Percona Operator for MySQL is a Kubernetes-native solution designed to simplify the deployment, management, and scaling of MySQL clusters built

on Percona XtraDB Cluster (PXC). The Operator leverages Kubernetes’ orchestration capabilities to automate critical database management tasks, including

cluster provisioning, backups, failover, and scaling.

Percona XtraDB Cluster (PXC) is an open-source, enterprise-grade MySQL solution designed for high availability and data consistency. It uses synchronous

replication to ensure that data is consistent across all nodes in the cluster. PXC provides fault tolerance, automated failover, and scalability, making it ideal for

running highly available MySQL databases in mission-critical environments.

This provides the foundation for the Percona Operator for MySQL, enabling simplified deployment and management of Percona XtraDB Cluster within

Kubernetes environments.

What’s new in version 1.17.0

Key Features and Benefits
1. Automated Deployment and Scaling

Simplifies the creation of MySQL clusters with minimal configuration.

Dynamically scales instances based on workload demands, optimizing resource usage.

2. High Availability

Guarantees zero downtime with automated failover mechanisms.

Utilizes synchronous replication to maintain data consistency across nodes.

3. Self-Healing

Detects and recovers from node failures automatically to maintain cluster health.

Ensures operational continuity with minimal manual intervention.

4. Backup and Restore

Provides consistent, automated backups to cloud storage or local volumes.

Enables quick recovery, ensuring data safety and business continuity.

5. Enhanced Security

Supports encryption for data at rest and in transit.

Integrates with Kubernetes Role-Based Access Control (RBAC) for secure database operations.

6. Operational Simplification

Offers seamless integration with Kubernetes-native tools like kubectl .

Streamlines database monitoring, management, and troubleshooting.

7. Flexibility for Cloud-Native Architectures

Optimized for public, private, and hybrid cloud deployments.

Allows unified management of databases across diverse environments.

Use Case

https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/

Page 8

The Percona Operator for MySQL is ideal for various scenarios such as providing Database as a Service (DBaaS), ensuring high availability for mission-critical

applications, scaling cloud-native applications, and implementing disaster recovery strategies. It is particularly useful for organizations with hybrid or multi-

cloud infrastructures, where it simplifies the deployment and management of MySQL clusters across multiple environments. The Operator also benefits

development and testing teams by enabling quick spin-up of MySQL clusters for testing and development purposes, helping to accelerate product

development cycles and reduce operational overhead.

Being part of the open-source ecosystem, the Percona Operator benefits from community contributions and support, ensuring that it remains stable and

robust over time.

If you’re interested in contributing, feel free to: - Open an issue - Submit a pull request

For support or inquiries, contact Percona .

https://github.com/percona/percona-operator/issues
https://github.com/percona/percona-operator/issues
https://github.com/percona/percona-operator/issues
https://github.com/percona/percona-operator/pulls
https://github.com/percona/percona-operator/pulls
https://github.com/percona/percona-operator/pulls
https://www.percona.com/support
https://www.percona.com/support
https://www.percona.com/support

Page 9

Get help from Percona
Our documentation guides are packed with information, but they can’t cover everything you need to know about Percona Operator for MySQL Based on

Percona XtraDB Cluster. They also won’t cover every scenario you might come across. Don’t be afraid to try things out and ask questions when you get stuck.

Percona’s Community Forum
Be a part of a space where you can tap into a wealth of knowledge from other database enthusiasts and experts who work with Percona’s software every day.

While our service is entirely free, keep in mind that response times can vary depending on the complexity of the question. You are engaging with people who

genuinely love solving database challenges.

We recommend visiting our Community Forum. It’s an excellent place for discussions, technical insights, and support around Percona database software. If

you’re new and feeling a bit unsure, our FAQ and Guide for New Users ease you in.

If you have thoughts, feedback, or ideas, the community team would like to hear from you at Any ideas on how to make the forum better?. We’re always

excited to connect and improve everyone’s experience.

Percona experts
Percona experts bring years of experience in tackling tough database performance issues and design challenges.

We understand your challenges when managing complex database environments. That’s why we offer various services to help you simplify your operations

and achieve your goals.

Service Description

24/7 Expert Support Our dedicated team of database experts is available 24/7 to assist you with any database issues. We provide flexible support plans tailored to

your specific needs.

Hands-On Database

Management

Our managed services team can take over the day-to-day management of your database infrastructure, freeing up your time to focus on other

priorities.

Expert Consulting Our experienced consultants provide guidance on database topics like architecture design, migration planning, performance optimization, and

security best practices.

Comprehensive Training Our training programs help your team develop skills to manage databases effectively, offering virtual and in-person courses.

We’re here to help you every step of the way. Whether you need a quick fix or a long-term partnership, we’re ready to provide your expertise and support.

https://forums.percona.com/t/welcome-to-perconas-community-forum/7
https://forums.percona.com/faq
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522

Page 10

Features

Page 11

Design overview
Percona XtraDB Cluster integrates Percona Server for MySQL running with the XtraDB storage engine, and Percona XtraBackup with the Galera library to enable

synchronous multi-primary replication.

The design of the Operator is highly bound to the Percona XtraDB Cluster high availability implementation, which in its turn can be briefly described with the

following diagram.

PXC Pod 1 PXC Pod 3PXC Pod 2

R
ea

d W
rite

Galera Replication

Client Application

DB Proxy/Router

R
ea

d W
rite R

ea
d W

rite R
ea

d W
rite

Being a regular MySQL Server instance, each node contains the same set of data synchronized accross nodes. The recommended configuration is to have at

least 3 nodes. In a basic setup with this amount of nodes, Percona XtraDB Cluster provides high availability, continuing to function if you take any of the nodes

down. Additionally load balancing can be achieved with the HAProxy router, which accepts incoming traffic from MySQL clients and forwards it to backend

MySQL servers.

Optionally the Operator allows using ProxySQL daemon instead of HAProxy, which provides SQL-aware database workload management and can be more more efficient in

comparison with other load balancers.

To provide high availability operator uses node affinity to run Percona XtraDB Cluster instances on separate worker nodes if possible. If some node fails,

the pod with it is automatically re-created on another node.

Note

https://proxysql.com/compare
https://proxysql.com/compare
https://proxysql.com/compare
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

Page 12

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

CSI

Percona XtraDB Cluster

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC) is used to implement the automatic

storage provisioning to pods. If a failure occurs, the Container Storage Interface (CSI) should be able to re-mount storage on a different node. The PVC

StorageClass must support this feature (Kubernetes and OpenShift support this in versions 1.9 and 3.9 respectively).

The Operator functionality extends the Kubernetes API with PerconaXtraDBCluster object, and it is implemented as a golang application. Each

PerconaXtraDBCluster object maps to one separate Percona XtraDB Cluster setup. The Operator listens to all events on the created objects. When a new

PerconaXtraDBCluster object is created, or an existing one undergoes some changes or deletion, the operator automatically creates/changes/deletes all

needed Kubernetes objects with the appropriate settings to provide a proper Percona XtraDB Cluster operation.

Page 13

Compare various solutions to deploy MySQL in Kubernetes
There are multiple ways to deploy and manage MySQL in Kubernetes. Here we will focus on comparing the following open source solutions:

KubeDB

Bitpoke MySQL Operator (former Presslabs)

Oracle MySQL Operator

Moco by Cybozu

Vitess Operator by PlanetScale

Percona Operator for MySQL

based on Percona XtraDB Cluster

based on Percona Server for MySQL

Generic
The review of generic features, such as supported MySQL versions, open source models and more.

Feature/Product Percona Operator for MySQL

(based on PXC)

Percona Operator for

MySQL (based on PS)

Bitpoke MySQL

Operator

Moco Oracle MySQL

Operator

Vitess

Open source model Apache 2.0 Apache 2.0 Apache 2.0 Apache 2.0 Apache 2.0 Apache 2.0

MySQL versions 5.7, 8.0 8.0 5.7 8.0 8.0 5.7, 8.0

Kubernetes

conformance

Various versions are tested Various versions are tested Not guaranteed Not

guaranteed

Not guaranteed Not

guaranteed

Paid support

Web-based GUI Percona Everest Oracle Enterprise

Manager

MySQL Topologies
Focus on replication capabilities and proxies integrations.

Feature/Product Percona Operator for MySQL

(based on PXC)

Percona Operator for MySQL

(based on PS)

Bitpoke MySQL

Operator

Moco Oracle MySQL

Operator

Vitess

Replication Sync with Galera Async and Group Replication Async Semi-sync Group Replication Async

Proxy HAProxy and ProxySQL HAProxy and MySQL Router None None MySQL Router VTGate

Multi-cluster

deployment

Sharding

Backups
Here are the backup and restore capabilities of each solution.

https://github.com/kubedb
https://github.com/kubedb
https://github.com/kubedb
https://github.com/bitpoke/mysql-operator/
https://github.com/bitpoke/mysql-operator/
https://github.com/bitpoke/mysql-operator/
https://github.com/mysql/mysql-operator
https://github.com/mysql/mysql-operator
https://github.com/mysql/mysql-operator
https://github.com/cybozu-go/moco
https://github.com/cybozu-go/moco
https://github.com/cybozu-go/moco
https://github.com/planetscale/vitess-operator
https://github.com/planetscale/vitess-operator
https://github.com/planetscale/vitess-operator
https://github.com/percona/percona-xtradb-cluster-operator/
https://github.com/percona/percona-xtradb-cluster-operator/
https://github.com/percona/percona-xtradb-cluster-operator/
https://github.com/percona/percona-server-mysql-operator/
https://github.com/percona/percona-server-mysql-operator/
https://github.com/percona/percona-server-mysql-operator/
https://docs.percona.com/everest/index.html
https://www.mysql.com/products/enterprise/em.html
https://www.mysql.com/products/enterprise/em.html

Page 14

Feature/Product Percona Operator for MySQL

(based on PXC)

Percona Operator for MySQL

(based on PS)

Bitpoke MySQL

Operator

Moco Oracle MySQL

Operator

Vitess

Scheduled

backups

Incremental

backups

PITR

PVCs for backups

Monitoring
Monitoring is crucial for any operations team.

Feature/Product Percona Operator for MySQL

(based on PXC)

Percona Operator for MySQL

(based on PS)

Bitpoke MySQL

Operator

Moco Oracle MySQL

Operator

Vitess

Custom

exporters

Through sidecars Through sidecars mysqld_exporter mysqld_exporter

PMM

Miscellaneous
Compare various features that are not a good fit for other categories.

Feature/Product Percona Operator for MySQL

(based on PXC)

Percona Operator for MySQL

(based on PS)

Bitpoke MySQL

Operator

Moco Oracle MySQL

Operator

Vitess

Customize MySQL ConfigMaps and Secrets ConfigMaps and Secrets ConfigMaps ConfigMaps ConfigMaps

Helm

Transport

encryption

Encryption-at-rest

Page 15

Quickstart guides

Page 16

Overview
Ready to get started with the Percona Operator for MySQL? In this section, you will learn some basic operations, such as:

Install and deploy an Operator

Connect to MySQL instance in Percona XtraDB Cluster

Insert sample data to the database

Set up and make a logical backup

Monitor the database health with Percona Monitoring and Management (PMM)

Next steps

Install the Operator

Page 17

1. Quick install

Page 18

Install Percona XtraDB Cluster using Helm
Helm is the package manager for Kubernetes. Percona Helm charts can be found in percona/percona-helm-charts repository on Github.

Pre-requisites

1. The Helm package manager. Install it following the official installation instructions .

Helm v3 is needed to run the following steps.

2. The kubectl tool to manage and deploy applications on Kubernetes. Install it following the official installation instructions .

Installation
Here’s a sequence of steps to follow:

You have successfully installed and deployed the Operator with default parameters.

This deploys default Percona XtraDB Cluster configuration with three HAProxy and three XtraDB Cluster instances.

Note

Add the Percona’s Helm charts repository and make your Helm client up to date with it:1

$ helm repo add percona https://percona.github.io/percona-helm-charts/

$ helm repo update

It is a good practice to isolate workloads in Kubernetes via namespaces. Create a namespace:2

$ kubectl create namespace <namespace>

Install the Percona Operator for MySQL based on Percona XtraDB Cluster:

The namespace is the name of your namespace. The my-op parameter in the above example is the name of a new release object which is created for

the Operator when you install its Helm chart (use any name you like).

3

$ helm install my-op percona/pxc-operator --namespace <namespace>

Install Percona XtraDB Cluster:

The my-db parameter in the above example is the name of a new release object which is created for the Percona XtraDB Cluster when you install its

Helm chart (use any name you like).

4

$ helm install my-db percona/pxc-db --namespace <namespace>

Check the Operator and the Percona XtraDB Cluster Pods status.

The creation process may take some time. When the process is over your cluster obtains the ready status.

5

$ kubectl get pxc -n <namespace>

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.default ready 3 3 33d

https://github.com/helm/helm
https://github.com/helm/helm
https://github.com/helm/helm
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

Page 19

You can find in the documentation for the charts, which Operator and database parameters can be customized during installation. Also you can check

the rest of the Operator’s parameters in the Custom Resource options reference.

Next steps

Connect to Percona XtraDB Cluster

Useful links
Install Percona XtraDB Cluster with customized parameters

https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-db#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-db#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-db#installing-the-chart

Page 20

Install Percona XtraDB Cluster using kubectl
A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The Operator extends the Kubernetes API with custom

resources.

The Percona Operator for MySQL based on XtraDB Cluster is based on best practices for configuration and setup of a Percona Server for MySQL in a

Kubernetes-based environment on-premises or in the cloud.

We recommend installing the Operator with the kubectl command line utility. It is the universal way to interact with Kubernetes. Alternatively, you can install

it using the Helm package manager.

Install with kubectl Install with Helm

Prerequisites
To install Percona XtraDB Cluster, you need the following:

1. The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes distributions. Install not already installed, follow its

official installation instructions .

2. A Kubernetes environment. You can deploy it on Minikube for testing purposes or using any cloud provider of your choice. Check the list of our

officially supported platforms.

Set up Minikube

Create and configure the GKE cluster

Set up Amazon Elastic Kubernetes Service

Create and configure the AKS cluster

Procedure
Here’s a sequence of steps to follow:

See also

Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in Kubernetes by installing the Operator in a custom

namespace. Replace the <namespace> placeholder with your value.

1

$ kubectl create namespace <namespace>

Expected output

namespace/<namespace> was created

Deploy the Operator with the following command:2

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/bundle.yaml -n <namespace>

https://www.percona.com/mysql/software/percona-xtradb-cluster
https://www.percona.com/mysql/software/percona-xtradb-cluster
https://www.percona.com/mysql/software/percona-xtradb-cluster
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://github.com/helm/helm
https://github.com/helm/helm
https://github.com/helm/helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Page 21

You have successfully installed and deployed the Operator with default parameters.

The default Percona XtraDB Cluster configuration includes three HAProxy and three XtraDB Cluster instances.

You can check the rest of the Operator’s parameters in the Custom Resource options reference.

Next steps

Connect to Percona XtraDB Cluster

Useful links
Install Percona XtraDB Cluster with customized parameters

As the result you will have the Operator Pod up and running.

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusters.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusterbackups.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusterrestores.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbbackups.pxc.percona.com created

role.rbac.authorization.k8s.io/percona-xtradb-cluster-operator created

serviceaccount/percona-xtradb-cluster-operator created

rolebinding.rbac.authorization.k8s.io/service-account-percona-xtradb-cluster-operator created

deployment.apps/percona-xtradb-cluster-operator created

Deploy Percona XtraDB Cluster:3

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml -n

<namespace>

Expected output

perconaxtradbcluster.pxc.percona.com/ cluster1 created

Check the Operator and the Percona XtraDB Cluster Pods status.

The creation process may take some time. When the process is over your cluster obtains the ready status.

4

$ kubectl get pxc -n <namespace>

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.default ready 3 3 5m51s

Page 22

2. Connect to Percona XtraDB Cluster
In this tutorial, you will connect to the Percona XtraDB Cluster you deployed previously.

To connect to Percona XtraDB Cluster you will need the password for the root user. Passwords are stored in the Secrets object.

Here’s how to get it:

1. Run a container with mysql tool and connect its console output to your terminal. The following command does this, naming the new Pod percona-

client :

Executing it may require some time to deploy the correspondent Pod.

2. Connect to Percona XtraDB Cluster. To do this, run mysql tool in the percona-client command shell using your cluster name and the password obtained

from the secret. The command will look different depending on whether your cluster provides load balancing with HAProxy (the default choice) or

ProxySQL. If your password contains special characters, they may be interpreted by the shell, and you may get “Permission denied” messages,so put the

password in single quotes (single quotes also avoid variable expansion in scripts):

Congratulations! You have connected to Percona XtraDB Cluster.

Next steps

Insert sample data

List the Secrets objects

The Secrets object we target is named as <cluster_name>-secrets . The <cluster_name> value is the name of your Percona XtraDB Cluster. The

default variant for the Secrets object is:

1

$ kubectl get secrets -n <namespace>

via kubectl

cluster1-secrets

via Helm

cluster1-pxc-db-secrets

Retrieve the password for the root user. Replace the secret-name and namespace with your values in the following commands:2

$ kubectl get secret <secret-name> -n <namespace> --template='{{.data.root | base64decode}}{{"\n"}}'

$ kubectl run -n <namespace> -i --rm --tty percona-client --image=percona:8.0 --restart=Never -- bash -il

with HAProxy (default)

with ProxySQL

$ mysql -h <cluster_name>-haproxy -uroot -p'<root_password>'

$ mysql -h <cluster_name>-proxysql -uroot -p'<root_password>'

Page 23

3. Insert sample data
In this tutorial you will learn to insert sample data to Percona Server for MySQL.

We will enter SQL statements via the same MySQL shell we used to connect to the database .

Let’s create a separate database for our experiments:1

CREATE DATABASE mydb;

use mydb;

Output

Query OK, 1 row affected (0.01 sec)

Database changed

Now let’s create a table which we will later fill with some sample data:2

CREATE TABLE extraordinary_gentlemen (

id int NOT NULL AUTO_INCREMENT,

name varchar(255) NOT NULL,

occupation varchar(255),

PRIMARY KEY (id)

);

Output

Query OK, 0 rows affected (0.04 sec)

Adding data to the newly created table will look as follows:3

INSERT INTO extraordinary_gentlemen (name, occupation)

VALUES

("Allan Quartermain","hunter"),

("Nemo","fish"),

("Dorian Gray", NULL),

("Tom Sawyer", "secret service agent");

Output

Query OK, 4 rows affected (0.01 sec)

Records: 4 Duplicates: 0 Warnings: 0

Query the collection to verify the data insertion4

SELECT *

FROM extraordinary_gentlemen;

Output

+----+-------------------+----------------------+

| id | name | occupation |

+----+-------------------+----------------------+

| 1 | Allan Quartermain | hunter |

| 2 | Nemo | fish |

| 3 | Dorian Gray | NULL |

| 4 | Tom Sawyer | secret service agent |

+----+-------------------+----------------------+

https://github.com/percona/k8spxc-docs/
https://github.com/percona/k8spxc-docs/
https://github.com/percona/k8spxc-docs/

Page 24

Next steps

Make a backup

Updating data in the database would be not much more difficult:5

UPDATE extraordinary_gentlemen

SET occupation = "submariner"

WHERE name = "Nemo";

Output

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Now if you repeat the SQL statement from step 4, you will see the changes take effect:6

SELECT *

FROM extraordinary_gentlemen;

Output

+----+-------------------+----------------------+

| id | name | occupation |

+----+-------------------+----------------------+

| 1 | Allan Quartermain | hunter |

| 2 | Nemo | submariner |

| 3 | Dorian Gray | NULL |

| 4 | Tom Sawyer | secret service agent |

+----+-------------------+----------------------+

Page 25

4. Make a backup
In this tutorial, you will learn how to make a logical backup of your data manually. To learn more about backups, see the Backup and restore section.

Considerations and prerequisites
In this tutorial, we use the AWS S3 as the backup storage. You need the following S3-related information:

the name of the S3 storage

the name of the S3 bucket

the region - the location of the bucket

the S3 credentials to be used to access the storage.

If you don’t have access to AWS, you can use any S3-compatible storage like MinIO . Also check the list of supported storages.

Also, we will use some files from the Operator repository for setting up backups. So, clone the percona-xtradb-cluster-operator repository:

It is important to specify the right branch with -b option while cloning the code on this step. Please be careful.

Configure backup storage

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ cd percona-xtradb-cluster-operator

Note

Encode S3 credentials, substituting AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY with your real values:1

on Linux

on MacOS

$ echo -n 'AWS_ACCESS_KEY_ID' | base64 --wrap=0

$ echo -n 'AWS_SECRET_ACCESS_KEY' | base64 --wrap=0

$ echo -n 'AWS_ACCESS_KEY_ID' | base64

$ echo -n 'AWS_SECRET_ACCESS_KEY' | base64

Edit the deploy/backup-secret-s3.yaml example Secrets configuration file and specify the following:

the metadata.name key is the name which you use to refer your Kubernetes Secret

the base64-encoded S3 credentials

2

→

→

deploy/backup/backup-secret-s3.yaml

apiVersion: v1

kind: Secret

metadata:

name: my-cluster-name-backup-s3

type: Opaque

data:

AWS_ACCESS_KEY_ID: <YOUR_AWS_ACCESS_KEY_ID>

AWS_SECRET_ACCESS_KEY: <YOUR_AWS_SECRET_ACCESS_KEY>

Create the Secrets object from this yaml file. Specify your namespace instead of the <namespace> placeholder:3

$ kubectl apply -f deploy/backup/backup-secret-s3.yaml -n <namespace>

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://min.io/docs/minio/linux/index.html
https://min.io/docs/minio/linux/index.html
https://min.io/docs/minio/linux/index.html
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-s3.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-s3.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-s3.yaml

Page 26

Make a logical backup
Now when your have the configured storage in your Custom Resource, you can make your first backup.

Update your deploy/cr.yaml configuration. Specify the following parameters in the backup section:

set the storages.<NAME>.type to s3 . Substitute the <NAME> part with some arbitrary name that you will later use to refer this storage when

making backups and restores.

set the storages.<NAME>.s3.credentialsSecret to the name you used to refer your Kubernetes Secret (my-cluster-name-backup-s3 in the

previous step).

specify the S3 bucket name for the storages.<NAME>.s3.bucket option

specify the region in the storages.<NAME>.s3.region option. Also you can use the storages.<NAME>.s3.prefix option to specify the path (a

sub-folder) to the backups inside the S3 bucket. If prefix is not set, backups are stored in the root directory.

If you use a different S3-compatible storage instead of AWS S3, add the endpointURL key in the s3 subsection, which should point to the actual cloud used for backups. This

value is specific to the cloud provider. For example, using Google Cloud involves the following endpointUrl :

4

→

→

→

→

...

backup:

...

storages:

s3-us-west:

type: s3

s3:

bucket: "S3-BACKUP-BUCKET-NAME-HERE"

region: "<AWS_S3_REGION>"

credentialsSecret: my-cluster-name-backup-s3

...

endpointUrl: https://storage.googleapis.com

Apply the configuration. Specify your namespace instead of the <namespace> placeholder:5

$ kubectl apply -f deploy/cr.yaml -n <namespace>

To make a backup, you need the configuration file. Edit the sample deploy/backup/backup.yaml configuration file and specify the following:

metadata.name - specify the backup name. You will use this name to restore from this backup

spec.pxcCluster - specify the name of your cluster. This is the name you specified when deploying Percona XtraDB Cluster.

spec.storageName - specify the name of your already configured storage.

1

→

→

→

deploy/backup/backup.yaml

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterBackup

metadata:

finalizers:

- delete-s3-backup

name: backup1

spec:

pxcCluster: cluster1

clusterName: my-cluster-name

storageName: s3-us-west

Apply the configuration. This instructs the Operator to start a backup. Specify your namespace instead of the <namespace> placeholder:2

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup.yaml

Page 27

Troubleshooting
You may face issues with the backup. To identify the issue, you can do the following:

View the information about the backup with the following command:

View the backup-agent logs. Use the previous command to find the name of the pod where the backup was made:

Congratulations! You have made the first backup manually. Want to learn more about backups? See the Backup and restore section for how to configure point-

in-time recovery, and how to automatically make backups according to the schedule.

Next steps

Monitor the database

$ kubectl apply -f deploy/backup/backup.yaml -n <namespace>

Track the backup progress.

When the status changes to Succeeded , backup is made.

3

$ kubectl get pxc-backup -n <namespace>

Output

NAME CLUSTER STORAGE DESTINATION STATUS COMPLETED AGE

backup1 cluster1 s3-us-west s3://pxc-operator-testing/2023-10-10T16:36:46Z Running 43s

$ kubectl get pxc-backup <backup-name> -n <namespace> -o yaml

$ kubectl logs pod/<pod-name> -c xtrabackup -n <namespace>

Page 28

5. Monitor database with Percona Monitoring and Management
(PMM)
We recommend to monitor the database with Percona Monitoring and Management (PMM) integrated within the Operator. You can also use custom

monitoring solutions, but their deployment is not automated by the Operator and requires manual setup).

In this section you will learn how to monitor Percona XtraDB Cluster with PMM.

PMM is a client/server application. It consists of the PMM Server and a number of PMM Clients . PMM Clients run on each node with the database you

wish to monitor. In Kubernetes, this means that PMM Clients run as sidecar containers for the database Pods.

A PMM Client collects needed metrics and sends the gathered data to the PMM Server. As a user, you connect to the PMM Server to see database metrics on

a number of dashboards.

PMM Server and PMM Client are installed separately.

Install PMM Server
You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the official

PMM documentation for the installation instructions.

Install PMM Client
Install PMM Client as a side-car container in your Kubernetes-based environment:

Authorize PMM Client within PMM Server.1

Token-based authorization (recommended)

1. Generate the PMM Server API Key . Specify the Admin role when getting the API Key.

 Warning: The API key is not rotated automatically.

Password-based authorization (deprecated since the Operator 1.11.0)

Edit the deploy/secrets.yaml secrets file and specify the PMM API key for the pmmserverkey option.1

Apply the configuration for the changes to take effect.2

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

Check that the serverUser key in the deploy/cr.yaml file contains your PMM Server user name (admin by default), and make sure the

pmmserver key in the deploy/secrets.yaml secrets file contains the password specified for the PMM Server during its installation

1

Apply the configuration for the changes to take effect.2

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

Update the pmm section in the deploy/cr.yaml file:

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM Server IP address should be resolvable and

reachable from within your cluster.

2

→

→

https://docs.percona.com/percona-monitoring-and-management/3/index.html
https://docs.percona.com/percona-monitoring-and-management/3/index.html
https://docs.percona.com/percona-monitoring-and-management/3/index.html
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml

Page 29

Check the metrics
Let’s see how the collected data is visualized in PMM.

Now you can access PMM via https in a web browser, with the login/password authentication, and the browser is configured to show Percona XtraDB Cluster

metrics.

Next steps

What’s next

pmm:

enabled: true

image: percona/pmm-client:2.44.0

serverHost: monitoring-service

Apply the changes:3

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on the previous steps:4

$ kubectl get pods -n <namespace>

$ kubectl logs <cluster-name>-pxc-0 -c pmm-client -n <namespace>

Page 30

What’s next?
Congratulations! You have completed all the steps in the Get started guide.

You have the following options to move forward with the Operator:

Deepen your monitoring insights by setting up Kubernetes monitoring with PMM

Control Pods assignment on specific Kubernetes Nodes by setting up affinity / anti-affinity

Ready to adopt the Operator for production use and need to delete the testing deployment? Use this guide to do it

You can also try operating the Operator and database clusters via the web interface with Percona Everest - an open-source web-based database

provisioning tool based on Percona Operators. See Get started with Percona Everest on how to start using it

https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html

Page 31

Installation

Page 32

System requirements
The Operator was developed and tested with Percona XtraDB Cluster versions 8.4.3-3.1 (Tech preview), 8.0.41-32.1, and 5.7.44-31.65.

Other options may also work but have not been tested.

Supported platforms
The following platforms were tested and are officially supported by the Operator 1.17.0:

Google Kubernetes Engine (GKE) 1.29 - 1.32

Amazon Elastic Container Service for Kubernetes (EKS) 1.30 - 1.32

Azure Kubernetes Service (AKS) 1.30 - 1.32

OpenShift 4.14 - 4.18

Minikube 1.35.0 based on Kubernetes 1.32.0

Other Kubernetes platforms may also work but have not been tested.

Resource limits
A cluster running an officially supported platform contains at least three Nodes, with the following resources:

2GB of RAM,

2 CPU threads per Node for Pods provisioning,

at least 60GB of available storage for Persistent Volumes provisioning.

Installation guidelines
Choose how you wish to install the Operator:

with Helm

with kubectl

on Minikube

on Google Kubernetes Engine (GKE)

on Amazon Elastic Kubernetes Service (AWS EKS)

on Microsoft Azure Kubernetes Service (AKS)

on Openshift

in a Kubernetes-based environment

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 33

Install Percona XtraDB Cluster on Minikube
Installing the Percona Operator for MySQL based on Percona XtraDB Cluster on minikube is the easiest way to try it locally without a cloud provider.

Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervisor, such as VirtualBox, KVM/QEMU, VMware Fusion or

Hyper-V. Using it is a popular way to test the Kubernetes application locally prior to deploying it on a cloud.

The following steps are needed to run the Operator and Percona XtraDB Cluster on Minikube:

1. Install Minikube , using a way recommended for your system. This includes the installation of the following three components:

a. kubectl tool,

b. a hypervisor, if it is not already installed,

c. actual Minikube package.

After the installation, run minikube start --memory=4096 --cpus=3 (parameters increase the virtual machine limits for the CPU cores and memory, to

ensure stable work of the Operator). Being executed, this command will download needed virtualized images, then initialize and run the cluster.

2. Deploy the operator with the following command:

3. Deploy Percona XtraDB Cluster:

This deploys one Percona XtraDB Cluster node and one HAProxy node. The deploy/cr-minimal.yaml is for minimal non-production deployment. For more configuration

options please see deploy/cr.yaml and Custom Resource Options. You can clone the repository with all manifests and source code by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

Creation process will take some time. When the process is over your cluster will obtain the ready status. You can check it with the following command:

Verifying the cluster operation
It may take ten minutes to get the cluster started. When the kubectl get pxc command output shows you the cluster status as ready , you can try to

connect to the cluster.

To connect to Percona XtraDB Cluster you will need the password for the root user. Passwords are stored in the Secrets object.

Here’s how to get it:

1. List the Secrets objects.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/bundle.yaml

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr-

minimal.yaml

Note

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pxc

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

minimal-cluster minimal-cluster-haproxy.default ready 3 3 5m51s

$ kubectl get secrets

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr-minimal.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr-minimal.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr-minimal.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml

Page 34

The Secrets object you are interested in has the minimal-cluster-secrets name by default.

2. Use the following command to get the password of the root user. Substitute the <namespace> placeholder with your value (and use the different

Secrets object name instead of the minimal-cluster-secrets , if needed):

3. Run a container with mysql tool and connect its console output to your terminal. The following command does this, naming the new Pod percona-

client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run the mysql tool in the percona-client command shell using the password obtained from the Secret instead of the <root_password>

placeholder. The command will look different depending on whether your cluster provides load balancing with HAProxy (the default choice) or ProxySQL:

This command will connect you to the MySQL server.

$ kubectl get secret minimal-cluster-secrets -n <namespace> --template='{{.data.root | base64decode}}{{"\n"}}'

$ kubectl run -n <namespace> -i --rm --tty percona-client --image=percona:8.0 --restart=Never -- bash -il

with HAProxy (default)

with ProxySQL

$ mysql -h minimal-cluster-haproxy -uroot -p'<root_password>'

$ mysql -h minimal-cluster-proxysql -uroot -p'<root_password>'

Page 35

Install Percona XtraDB Cluster using Everest
Percona Everest is an open source cloud-native database platform that helps developers deploy code faster, scale deployments rapidly, and reduce

database administration overhead while regaining control over their data, database configuration, and DBaaS costs.

It automates day-one and day-two database operations for open source databases on Kubernetes clusters. Percona Everest provides API and Web GUI to

launch databases with just a few clicks and scale them, do routine maintenance tasks, such as software updates, patch management, backups, and

monitoring.

You can try it in action by Installing Percona Everest and managing your first cluster .

https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html

Page 36

Install Percona XtraDB Cluster on Google Kubernetes Engine (GKE)
This quickstart shows you how to configure the Percona Operator for MySQL based on Percona XtraDB Cluster with the Google Kubernetes Engine. The

document assumes some experience with Google Kubernetes Engine (GKE). For more information on the GKE, see the Kubernetes Engine Quickstart .

Prerequisites
All commands from this quickstart can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

1. gcloud . This tool is part of the Google Cloud SDK. To install it, select your operating system on the official Google Cloud SDK documentation page

and then follow the instructions.

2. kubectl . It is the Kubernetes command-line tool you will use to manage and deploy applications. To install the tool, run the following command:

Configuring default settings for the cluster
You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local shell (if you have installed Google Cloud SDK

locally on the previous step). The following command will create a cluster named my-cluster-1 :

You must edit the above command and other command-line statements to replace the <project ID> placeholder with your project ID (see available projects with gcloud

projects list command). You may also be required to edit the zone location, which is set to us-central1-a in the above example. Other parameters specify that we are

creating a cluster with 3 nodes and with machine type of 4 vCPUs.

You may wait a few minutes for the cluster to be generated, and then you will see it listed in the Google Cloud console (select Kubernetes Engine → Clusters in

the left menu panel):

Now you should configure the command-line access to your newly created cluster to make kubectl be able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You will see the connect statement configures

command-line access. After you have edited the statement, you may run the command in your local shell:

Installing the Operator

1. First of all, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster. The following command will give you the

ability to create Roles and RoleBindings:

The return statement confirms the creation:

$ gcloud auth login

$ gcloud components install kubectl

$ gcloud container clusters create my-cluster-1 --project <project ID> --zone us-central1-a --cluster-version 1.32 --

machine-type n1-standard-4 --num-nodes=3

Note

$ gcloud container clusters get-credentials my-cluster-1 --zone us-central1-a --project <project name>

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user $(gcloud config get-value

core/account)

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart
https://cloud.google.com/shell/docs/quickstart
https://cloud.google.com/shell/docs/quickstart
https://cloud.google.com/iam
https://cloud.google.com/iam
https://cloud.google.com/iam

Page 37

2. Create a namespace and set the context for the namespace. The resource names must be unique within the namespace and provide a way to divide

cluster resources between users spread across multiple projects.

So, create the namespace and save it in the namespace context for subsequent commands as follows (replace the <namespace name> placeholder with

some descriptive name):

At success, you will see the message that namespace/ was created, and the context (gke_) was modified.

Deploy the Operator using the following command:

3. The operator has been started, and you can deploy Percona XtraDB Cluster:

This deploys default Percona XtraDB Cluster configuration with three HAProxy and three XtraDB Cluster instances. Please see deploy/cr.yaml and Custom Resource Options

for the configuration options. You can clone the repository with all manifests and source code by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can check it with the following

command:

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

$ kubectl create namespace <namespace name>

$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusters.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusterbackups.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusterrestores.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbbackups.pxc.percona.com created

role.rbac.authorization.k8s.io/percona-xtradb-cluster-operator created

serviceaccount/percona-xtradb-cluster-operator created

rolebinding.rbac.authorization.k8s.io/service-account-percona-xtradb-cluster-operator created

deployment.apps/percona-xtradb-cluster-operator created

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml

Expected output

perconaxtradbcluster.pxc.percona.com/ cluster1 created

Note

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pxc

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.default ready 3 3 5m51s

https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml

Page 38

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get pxc command finally shows you the cluster status as ready , you can try to connect to

the cluster.

To connect to Percona XtraDB Cluster you will need the password for the root user. Passwords are stored in the Secrets object.

Here’s how to get it:

1. List the Secrets objects.

The Secrets object you are interested in has the cluster1-secrets name by default.

2. Use the following command to get the password of the root user. Substitute the <namespace> placeholder with your value (and use the different

Secrets object name instead of the cluster1-secrets , if needed):

3. Run a container with mysql tool and connect its console output to your terminal. The following command does this, naming the new Pod percona-

client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run the mysql tool in the percona-client command shell using the password obtained from the Secret instead of the <root_password>

placeholder. The command will look different depending on whether your cluster provides load balancing with HAProxy (the default choice) or ProxySQL:

This command will connect you to the MySQL server.

Troubleshooting
If kubectl get pxc command doesn’t show ready status too long, you can check the creation process with the kubectl get pods command:

Also, you can see the same information when browsing Pods of your cluster in Google Cloud console via the Object Browser:

$ kubectl get secrets

$ kubectl get secret cluster1-secrets -n <namespace> --template='{{.data.root | base64decode}}{{"\n"}}'

$ kubectl run -n <namespace> -i --rm --tty percona-client --image=percona:8.0 --restart=Never -- bash -il

with HAProxy (default)

with ProxySQL

$ mysql -h cluster1-haproxy -uroot -p'<root_password>'

$ mysql -h cluster1-proxysql -uroot -p'<root_password>'

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-haproxy-0 2/2 Running 0 6m17s

cluster1-haproxy-1 2/2 Running 0 4m59s

cluster1-haproxy-2 2/2 Running 0 4m36s

cluster1-pxc-0 3/3 Running 0 6m17s

cluster1-pxc-1 3/3 Running 0 5m3s

cluster1-pxc-2 3/3 Running 0 3m56s

percona-xtradb-cluster-operator-79966668bd-rswbk 1/1 Running 0 9m54s

Page 39

If the command output had shown some errors, you can examine the problematic Pod with the kubectl describe <pod name> command as follows:

Review the detailed information for Warning statements and then correct the configuration. An example of a warning is as follows:

Warning FailedScheduling 68s (x4 over 2m22s) default-scheduler 0/1 nodes are available: 1 node(s) didn’t match pod

affinity/anti-affinity, 1 node(s) didn’t satisfy existing pods anti-affinity rules.

Alternatively, you can examine your Pods via the object browser. Errors will look as follows:

Clicking the problematic Pod will bring you to the details page with the same warning:

Removing the GKE cluster
There are several ways that you can delete the cluster.

You can clean up the cluster with the gcloud container clusters delete <cluster name> --zone <zone location> command. The return statement

requests your confirmation of the deletion. Type y to confirm.

Also, you can delete your cluster via the GKE console. Just click the appropriate trashcan icon in the clusters list:

$ kubectl describe pod cluster1-pxc-2

$ gcloud container clusters delete my-cluster-1 --zone us-central1-a --project <project ID>

Expected output

The following clusters will be deleted.

- [my-cluster-1] in [us-central1-a]

Do you want to continue (Y/n)? y

Deleting cluster my-cluster-1...⠧

Page 40

The cluster deletion may take time.

Page 41

Install Percona XtraDB Cluster on Amazon Elastic Kubernetes Service
(EKS)
This quickstart shows you how to deploy the Operator and Percona XtraDB Cluster on Amazon Elastic Kubernetes Service (EKS). The document assumes

some experience with Amazon EKS. For more information on the EKS, see the Amazon EKS official documentation .

Prerequisites
The following tools are used in this guide and therefore should be preinstalled:

1. AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can install it following the official installation instructions for

your system .

2. eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on GitHub .

3. kubectl to manage and deploy applications on Kubernetes. Install it following the official installation instructions .

Also, you need to configure AWS CLI with your credentials according to the official guide .

Create the EKS cluster

1. To create your cluster, you will need the following data:

name of your EKS cluster,

AWS region in which you wish to deploy your cluster,

the amount of nodes you would like tho have,

the desired ratio between on-demand and spot instances in the total number of nodes.

spot instances are not recommended for production environment, but may be useful e.g. for testing purposes.

After you have settled all the needed details, create your EKS cluster following the official cluster creation instructions .

2. After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver on your cluster. See the official documentation on adding

it as an Amazon EKS add-on.

Install the Operator

1. Create a namespace and set the context for the namespace. The resource names must be unique within the namespace and provide a way to divide

cluster resources between users spread across multiple projects.

So, create the namespace and save it in the namespace context for subsequent commands as follows (replace the <namespace name> placeholder with

some descriptive name):

At success, you will see the message that namespace/ was created, and the context was modified.

Deploy the Operator using the following command:

Note

$ kubectl create namespace <namespace name>

$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/bundle.yaml

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/weaveworks/eksctl#installation
https://github.com/weaveworks/eksctl#installation
https://github.com/weaveworks/eksctl#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html

Page 42

2. The operator has been started, and you can deploy Percona XtraDB Cluster:

This deploys default Percona XtraDB Cluster configuration with three HAProxy and three XtraDB Cluster instances. Please see deploy/cr.yaml and Custom Resource Options

for the configuration options. You can clone the repository with all manifests and source code by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can check it with the following

command:

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get pxc command finally shows you the cluster status as ready , you can try to connect to

the cluster.

To connect to Percona XtraDB Cluster you will need the password for the root user. Passwords are stored in the Secrets object.

Here’s how to get it:

1. List the Secrets objects.

The Secrets object you are interested in has the cluster1-secrets name by default.

2. Use the following command to get the password of the root user. Substitute the <namespace> placeholder with your value (and use the different

Secrets object name instead of the cluster1-secrets , if needed):

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusters.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusterbackups.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusterrestores.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbbackups.pxc.percona.com created

role.rbac.authorization.k8s.io/percona-xtradb-cluster-operator created

serviceaccount/percona-xtradb-cluster-operator created

rolebinding.rbac.authorization.k8s.io/service-account-percona-xtradb-cluster-operator created

deployment.apps/percona-xtradb-cluster-operator created

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml

Expected output

perconaxtradbcluster.pxc.percona.com/ cluster1 created

Note

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pxc

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.default ready 3 3 5m51s

$ kubectl get secrets

$ kubectl get secret cluster1-secrets -n <namespace> --template='{{.data.root | base64decode}}{{"\n"}}'

https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml

Page 43

3. Run a container with mysql tool and connect its console output to your terminal. The following command does this, naming the new Pod percona-

client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run the mysql tool in the percona-client command shell using the password obtained from the Secret instead of the <root_password>

placeholder. The command will look different depending on whether your cluster provides load balancing with HAProxy (the default choice) or ProxySQL:

This command will connect you to the MySQL server.

Troubleshooting
If kubectl get pxc command doesn’t show ready status too long, you can check the creation process with the kubectl get pods command:

If the command output had shown some errors, you can examine the problematic Pod with the kubectl describe <pod name> command as follows:

Review the detailed information for Warning statements and then correct the configuration. An example of a warning is as follows:

Warning FailedScheduling 68s (x4 over 2m22s) default-scheduler 0/1 nodes are available: 1 node(s) didn’t match pod

affinity/anti-affinity, 1 node(s) didn’t satisfy existing pods anti-affinity rules.

$ kubectl run -n <namespace> -i --rm --tty percona-client --image=percona:8.0 --restart=Never -- bash -il

with HAProxy (default)

with ProxySQL

$ mysql -h cluster1-haproxy -uroot -p'<root_password>'

$ mysql -h cluster1-proxysql -uroot -p'<root_password>'

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-haproxy-0 2/2 Running 0 6m17s

cluster1-haproxy-1 2/2 Running 0 4m59s

cluster1-haproxy-2 2/2 Running 0 4m36s

cluster1-pxc-0 3/3 Running 0 6m17s

cluster1-pxc-1 3/3 Running 0 5m3s

cluster1-pxc-2 3/3 Running 0 3m56s

percona-xtradb-cluster-operator-79966668bd-rswbk 1/1 Running 0 9m54s

$ kubectl describe pod cluster1-pxc-2

Page 44

Install Percona XtraDB Cluster on Azure Kubernetes Service (AKS)
This guide shows you how to deploy Percona Operator for MySQL based on Percona XtraDB Cluster on Microsoft Azure Kubernetes Service (AKS). The

document assumes some experience with the platform. For more information on the AKS, see the Microsoft AKS official documentation .

Prerequisites
The following tools are used in this guide and therefore should be preinstalled:

1. Azure Command Line Interface (Azure CLI) for interacting with the different parts of AKS. You can install it following the official installation instructions

for your system .

2. kubectl to manage and deploy applications on Kubernetes. Install it following the official installation instructions .

Also, you need to sign in with Azure CLI using your credentials according to the official guide .

Create and configure the AKS cluster
To create your cluster, you will need the following data:

name of your AKS cluster,

an Azure resource group , in which resources of your cluster will be deployed and managed.

the amount of nodes you would like tho have.

You can create your cluster via command line using az aks create command. The following command will create a 3-node cluster named cluster1 within

some already existing resource group named my-resource-group :

Other parameters in the above example specify that we are creating a cluster with machine type of Standard_B4ms and OS disk size reduced to 30 GiB.

You can see detailed information about cluster creation options in the AKS official documentation .

You may wait a few minutes for the cluster to be generated.

Now you should configure the command-line access to your newly created cluster to make kubectl be able to use it.

Install the Operator and deploy your Percona XtraDB Cluster

1. Deploy the Operator. By default deployment will be done in the default namespace. If that’s not the desired one, you can create a new namespace

and/or set the context for the namespace as follows (replace the <namespace name> placeholder with some descriptive name):

At success, you will see the message that namespace/<namespace name> was created, and the context (<cluster name>) was modified.

Deploy the Operator using the following command:

$ az aks create --resource-group my-resource-group --name cluster1 --enable-managed-identity --node-count 3 --node-vm-size

Standard_B4ms --node-osdisk-size 30 --network-plugin kubenet --generate-ssh-keys --outbound-type loadbalancer

az aks get-credentials --resource-group my-resource-group --name cluster1

$ kubectl create namespace <namespace name>

$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/bundle.yaml

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://azureprice.net/vm/Standard_B4ms
https://azureprice.net/vm/Standard_B4ms
https://azureprice.net/vm/Standard_B4ms
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest

Page 45

2. The operator has been started, and you can deploy Percona XtraDB Cluster:

This deploys default Percona XtraDB Cluster configuration with three HAProxy and three XtraDB Cluster instances. Please see deploy/cr.yaml and Custom Resource Options

for the configuration options. You can clone the repository with all manifests and source code by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can check it with the following

command:

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get pxc command finally shows you the cluster status as ready , you can try to connect to

the cluster.

To connect to Percona XtraDB Cluster you will need the password for the root user. Passwords are stored in the Secrets object.

Here’s how to get it:

1. List the Secrets objects.

The Secrets object you are interested in has the cluster1-secrets name by default.

2. Use the following command to get the password of the root user. Substitute the <namespace> placeholder with your value (and use the different

Secrets object name instead of the cluster1-secrets , if needed):

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusters.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusterbackups.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusterrestores.pxc.percona.com created

customresourcedefinition.apiextensions.k8s.io/perconaxtradbbackups.pxc.percona.com created

role.rbac.authorization.k8s.io/percona-xtradb-cluster-operator created

serviceaccount/percona-xtradb-cluster-operator created

rolebinding.rbac.authorization.k8s.io/service-account-percona-xtradb-cluster-operator created

deployment.apps/percona-xtradb-cluster-operator created

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml

Expected output

perconaxtradbcluster.pxc.percona.com/ cluster1 created

Note

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pxc

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.default ready 3 3 5m51s

$ kubectl get secrets

$ kubectl get secret cluster1-secrets -n <namespace> --template='{{.data.root | base64decode}}{{"\n"}}'

https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml

Page 46

3. Run a container with mysql tool and connect its console output to your terminal. The following command does this, naming the new Pod percona-

client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run the mysql tool in the percona-client command shell using the password obtained from the Secret instead of the <root_password>

placeholder. The command will look different depending on whether your cluster provides load balancing with HAProxy (the default choice) or ProxySQL:

This command will connect you to the MySQL server.

Troubleshooting
If kubectl get pxc command doesn’t show ready status too long, you can check the creation process with the kubectl get pods command:

If the command output had shown some errors, you can examine the problematic Pod with the kubectl describe <pod name> command as follows:

Review the detailed information for Warning statements and then correct the configuration. An example of a warning is as follows:

Warning FailedScheduling 68s (x4 over 2m22s) default-scheduler 0/1 nodes are available: 1 node(s) didn’t match pod

affinity/anti-affinity, 1 node(s) didn’t satisfy existing pods anti-affinity rules.

Removing the AKS cluster
To delete your cluster, you will need the following data:

name of your AKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the az aks delete command as follows (with real names instead of <resource group> and <cluster name>

placeholders):

It may take ten minutes to get the cluster actually deleted after executing this command.

$ kubectl run -n <namespace> -i --rm --tty percona-client --image=percona:8.0 --restart=Never -- bash -il

with HAProxy (default)

with ProxySQL

$ mysql -h cluster1-haproxy -uroot -p'<root_password>'

$ mysql -h cluster1-proxysql -uroot -p'<root_password>'

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-haproxy-0 2/2 Running 0 6m17s

cluster1-haproxy-1 2/2 Running 0 4m59s

cluster1-haproxy-2 2/2 Running 0 4m36s

cluster1-pxc-0 3/3 Running 0 6m17s

cluster1-pxc-1 3/3 Running 0 5m3s

cluster1-pxc-2 3/3 Running 0 3m56s

percona-xtradb-cluster-operator-79966668bd-rswbk 1/1 Running 0 9m54s

$ kubectl describe pod cluster1-pxc-2

$ az aks delete --name <cluster name> --resource-group <resource group> --yes --no-wait

Page 47

After deleting the cluster, all data stored in it will be lost!

Warning

Page 48

Install Percona XtraDB Cluster on OpenShift
Percona Operator for Percona XtrabDB Cluster is a Red Hat Certified Operator . This means that Percona Operator is portable across hybrid clouds and fully

supports the Red Hat OpenShift lifecycle.

Installing Percona XtraDB Cluster on OpenShift includes two steps:

Installing the Percona Operator for MySQL,

Install Percona XtraDB Cluster using the Operator.

Install the Operator
You can install Percona Operator for MySQL on OpenShift using the web interface (the Operator Lifecycle Manager), or using the command line interface.

Install the Operator via the Operator Lifecycle Manager (OLM)

Operator Lifecycle Manager (OLM) is a part of the Operator Framework that allows you to install, update, and manage the Operators lifecycle on the

OpenShift platform.

Following steps will allow you to deploy the Operator and Percona XtraDB Cluster on your OLM installation:

1. Login to the OLM and click the needed Operator on the OperatorHub page:

OperatorHub
Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through Red Hat Marketplace . You can
developers. After installat ion, the Operator capabilit ies will appear in the Developer Catalog providing a self-service experience.

All Items

�

All Items

AI/ Machine Learning

Application Runtime

Big Data

Cloud Provider

Database

Developer Tools

Development Tools

Drivers and plugins

Integration & Delivery

Logging & Tracing

Modernization & Migration

Monitoring

Networking

percona operator for mysql

Communit y

Percona Operator for MySQL
based on Percona XtraDB
Cluster
provided by Percona

Percona Operator for MySQL
based on Percona XtraDB Cluster
manages the lifecycle of Percon…

Marketplace

Percona Operator for MySQL
based on Percona XtraDB
Cluster
provided by Percona

Percona Operator for MySQL
based on Percona XtraDB Cluster
manages the lifecycle of Percon…

Cert if ied

Percona Operator for MySQL
based on Percona XtraDB
Cluster
provided by Percona

Percona Operator for MySQL
based on Percona XtraDB Cluster
manages the lifecycle of Percon…

You are logged in as a temporary administrat ive user. Update the cluster OAuth configurat ion to allo

Project : All Projects
Administrator

Home

Operators

OperatorHub

Installed Operators

Workloads

Networking

Storage

Builds

Compute

User Management

Administrat ion

Then click “Contiune”, and “Install”.

2. A new page will allow you to choose the Operator version and the Namespace / OpenShift project you would like to install the Operator into.

https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework

Page 49

OperatorHub Operator Installation

Install Operator
Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

Update channel *

Version *

Installat ion mode *

stable

All namespaces on the cluster (default)
Operator will be available in all Namespaces.

A specif ic namespace on the cluster
Operator will be available in a single Namespace only.

provided by Percona

Provide d APIs

PXDB PerconaXtraDBCluste r

Instance of a Percona XtraDB Cluste r

Create Project

An OpenShif t project is an alternat ive representat ion of a Kubernetes namespace.

Learn more about working with projects

Name *

pxc

Display name

Descript ion

�

Cancel Create

1.15.00

To install the Operator in multi-namespace (cluster-wide) mode, use the one from the certified catalog. It has the Certified label. Choose values with -cw suffix for the update

channel and version, and select the “All namespaces on the cluster” radio button for the installation mode instead of chosing a specific Namespace:

OperatorHub Operator Installation

Install Operator
Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

Update channel *

Version *

Installation mode *

stable-cw

All namespaces on the cluster(default)
Operator will be available in all Namespaces.

A specific namespace on the cluster
Operator will be available in a single Namespace only.

6.0-cw

Click “Install” to install the Operator.

3. When the installation finishes, you can deploy Percona XtraDB Cluster. In the “Operator Details” you will see Provided APIs (Custom Resources, available

for installation). Click “Create instance” for the PerconaXtraDBCluster Custom Resource.

Note

Page 50

Installed Operators Operator details

Percona Operator for MySQL based on Percona XtraDB Cluster
1.15.0 provided by Percona

Details YAML Subscript ion Events All instances PerconaXtraDBCluster PerconaXtraDBClusterBackup

Provided APIs

PXDB PerconaXtraDBCluster

Instance of a Percona XtraDB Cluster

Create instance

PXDB PerconaXtraDBClusterBackup

Instance of a Percona XtraDB Cluster
Backup

Create instance

PXDB PerconaXtraDBClusterRestor
e

Instance of a Percona XtraDB Cluster
Restore

Create instance

You will be able to edit manifest to set needed Custom Resource options, and then click “Create” button to deploy your database cluster.

Install the Operator via the command-line interface

1. Clone the percona-xtradb-cluster-operator repository:

It is crucial to specify the right branch with the -b option while cloning the code on this step. Please be careful.

1. Now Custom Resource Definition for Percona XtraDB Cluster should be created from the deploy/crd.yaml file. Custom Resource Definition extends the

standard set of resources which Kubernetes “knows” about with the new items (in our case ones which are the core of the operator).

This step should be done only once; it does not need to be repeated with the next Operator deployments, etc.

Setting Custom Resource Definition requires your user to have cluster-admin role privileges.

If you want to manage your Percona XtraDB Cluster with a non-privileged user, necessary permissions can be granted by applying the next clusterrole:

If you have a cert-manager installed, then you have to execute two more commands to be able to manage certificates with a non-privileged user:

2. The next thing to do is to create a new pxc project:

3. Now RBAC (role-based access control) for Percona XtraDB Cluster should be set up from the deploy/rbac.yaml file. Briefly speaking, role-based access

is based on specifically defined roles and actions corresponding to them, allowed to be done on specific Kubernetes resources (details about users and

roles can be found in OpenShift documentation).

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ cd percona-xtradb-cluster-operator

Note

$ oc apply --server-side -f deploy/crd.yaml

Note

$ oc create clusterrole pxc-admin --verb="*" --

resource=perconaxtradbclusters.pxc.percona.com,perconaxtradbclusters.pxc.percona.com/status,perconaxtradbclusterbackups.p

xc.percona.com,perconaxtradbclusterbackups.pxc.percona.com/status,perconaxtradbclusterrestores.pxc.percona.com,perconaxtr

adbclusterrestores.pxc.percona.com/status

$ oc adm policy add-cluster-role-to-user pxc-admin <some-user>

$ oc create clusterrole cert-admin --verb="*" --resource=issuers.certmanager.k8s.io,certificates.certmanager.k8s.io

$ oc adm policy add-cluster-role-to-user cert-admin <some-user>

$ oc new-project pxc

https://docs.cert-manager.io/en/release-0.8/getting-started/install/openshift.html
https://docs.cert-manager.io/en/release-0.8/getting-started/install/openshift.html
https://docs.cert-manager.io/en/release-0.8/getting-started/install/openshift.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html

Page 51

Finally, it’s time to start the operator within OpenShift:

You can simplify the Operator installation by applying a single deploy/bundle.yaml file instead of running commands from the steps 2 and 4:

This will automatically create Custom Resource Definition, set up role-based access control and install the Operator as one single action.

Install Percona XtraDB Cluster

1. Now that’s time to add the Percona XtraDB Cluster users Secrets with logins and passwords to Kubernetes. By default, the Operator generates users

Secrets automatically, and no actions are required at this step.

Still, you can generate and apply your Secrets by your own. In this case, place logins and plaintext passwords for the user accounts in the data section of

the deploy/secrets.yaml file; after editing is finished, create users Secrets with the following command:

More details about secrets can be found in Users.

2. Now certificates should be generated. By default, the Operator generates certificates automatically, and no actions are required at this step. Still, you can

generate and apply your own certificates as secrets according to the TLS instructions.

3. After the operator is started and user secrets are added, Percona XtraDB Cluster can be created at any time with the following command:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can check it with the following

command:

Verify the cluster operation
It may take ten minutes to get the cluster started. When the oc get pxc command output shows you the cluster status as ready , you can try to connect to

the cluster.

To connect to Percona XtraDB Cluster you will need the password for the root user. Passwords are stored in the Secrets object.

Here’s how to get it:

1. List the Secrets objects.

The Secrets object you are interested in has the cluster1-secrets name by default.

$ oc apply -f deploy/rbac.yaml

$ oc apply -f deploy/operator.yaml

Note

$ oc apply --server-side -f deploy/bundle.yaml

$ oc create -f deploy/secrets.yaml

$ oc apply -f deploy/cr.yaml

$ oc get pxc

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.default ready 3 3 5m51s

$ oc get secrets

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 52

2. Use the following command to get the password of the root user. Substitute the <namespace> placeholder with your value (and use the different

Secrets object name instead of the cluster1-secrets , if needed):

3. Run a container with mysql tool and connect its console output to your terminal. The following command does this, naming the new Pod percona-

client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run the mysql tool in the percona-client command shell using the password obtained from the Secret instead of the <root_password>

placeholder. The command will look different depending on whether your cluster provides load balancing with HAProxy (the default choice) or ProxySQL:

This command will connect you to the MySQL server.

$ oc get secret cluster1-secrets -n <namespace> --template='{{.data.root | base64decode}}{{"\n"}}'

$ oc run -n <namespace> -i --rm --tty percona-client --image=percona:8.0 --restart=Never -- bash -il

with HAProxy (default)

with ProxySQL

$ mysql -h cluster1-haproxy -uroot -p'<root_password>'

$ mysql -h cluster1-proxysql -uroot -p'<root_password>'

Page 53

Install Percona XtraDB Cluster on Kubernetes

1. First of all, clone the percona-xtradb-cluster-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

1. Now Custom Resource Definition for Percona XtraDB Cluster should be created from the deploy/crd.yaml file. Custom Resource Definition extends the

standard set of resources which Kubernetes “knows” about with the new items (in our case ones which are the core of the operator).

This step should be done only once; it does not need to be repeated with the next Operator deployments, etc.

2. The next thing to do is to add the pxc namespace to Kubernetes, not forgetting to set the correspondent context for further steps:

3. Now RBAC (role-based access control) for Percona XtraDB Cluster should be set up from the deploy/rbac.yaml file. Briefly speaking, role-based access

is based on specifically defined roles and actions corresponding to them, allowed to be done on specific Kubernetes resources (details about users and

roles can be found in Kubernetes documentation).

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google Kubernetes Engine can grant user needed privileges with the following

command:

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value core/account)

Finally it’s time to start the operator within Kubernetes:

You can simplify the Operator installation by applying a single deploy/bundle.yaml file instead of running commands from the steps 2 and 4:

This will automatically create Custom Resource Definition, set up role-based access control and install the Operator as one single action.

4. Now that’s time to add the Percona XtraDB Cluster users Secrets with logins and passwords to Kubernetes. By default, the Operator generates users

Secrets automatically, and no actions are required at this step.

Still, you can generate and apply your Secrets on your own. In this case, place logins and plaintext passwords for the user accounts in the data section of

the deploy/secrets.yaml file; after editing is finished, create users Secrets with the following command:

More details about secrets can be found in Users.

5. Now certificates should be generated. By default, the Operator generates certificates automatically, and no actions are required at this step. Still, you can

generate and apply your own certificates as secrets according to the TLS instructions.

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ cd percona-xtradb-cluster-operator

Note

$ kubectl apply --server-side -f deploy/crd.yaml

$ kubectl create namespace pxc

$ kubectl config set-context $(kubectl config current-context) --namespace=pxc

$ kubectl apply -f deploy/rbac.yaml

Note

$ kubectl apply -f deploy/operator.yaml

Note

$ kubectl apply --server-side -f deploy/bundle.yaml

$ kubectl create -f deploy/secrets.yaml

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 54

6. After the operator is started and user secrets are added, Percona XtraDB Cluster can be created at any time with the following command:

Creation process will take some time. When the process is over your cluster will obtain the ready status. You can check it with the following command:

Verify the cluster operation
It may take ten minutes to get the cluster started. When kubectl get pxc command finally shows you the cluster status as ready , you can try to connect to

the cluster.

To connect to Percona XtraDB Cluster you will need the password for the root user. Passwords are stored in the Secrets object.

Here’s how to get it:

1. List the Secrets objects.

The Secrets object you are interested in has the cluster1-secrets name by default.

2. Use the following command to get the password of the root user. Substitute the <namespace> placeholder with your value (and use the different

Secrets object name instead of the cluster1-secrets , if needed):

3. Run a container with mysql tool and connect its console output to your terminal. The following command does this, naming the new Pod percona-

client :

Executing it may require some time to deploy the corresponding Pod.

4. Now run the mysql tool in the percona-client command shell using the password obtained from the Secret instead of the <root_password>

placeholder. The command will look different depending on whether your cluster provides load balancing with HAProxy (the default choice) or ProxySQL:

This command will connect you to the MySQL server.

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pxc

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.default ready 3 3 5m51s

$ kubectl get secrets

$ kubectl get secret cluster1-secrets -n <namespace> --template='{{.data.root | base64decode}}{{"\n"}}'

$ kubectl run -n <namespace> -i --rm --tty percona-client --image=percona:8.0 --restart=Never -- bash -il

with HAProxy (default)

with ProxySQL

$ mysql -h cluster1-haproxy -uroot -p'<root_password>'

$ mysql -h cluster1-proxysql -uroot -p'<root_password>'

Page 55

Set up Percona XtraDB Cluster cross-site replication
The cross-site replication involves configuring one Percona XtraDB Cluster as Source, and another Percona XtraDB Cluster as Replica to allow an

asynchronous replication between them:

DB Pod N
policy

(pgpolicies)Percona XtraDB
Cluster

instances

policy
(pgpolicies)Percona XtraDB

Cluster
instances

asynchronous
replication

Source cluster Replica cluster

The Operator automates configuration of Source and Replica Percona XtraDB Clusters, but the feature itself is not bound to Kubernetes. Either Source or

Replica can run outside of Kubernetes, be regular MySQL and be out of the Operators’ control.

This feature can be useful in several cases: for example, it can simplify migration from on-premises to the cloud with replication, and it can be really helpful in

case of the disaster recovery too.

Cross-site replication is based on Automatic Asynchronous Replication Connection Failover . Therefore it requires MySQL 8.0.22+ (Percona XtraDB Cluster 8.0.22+) to work.

Setting up MySQL for asynchronous replication without the Operator is out of the scope for this document, but it is described here and is also covered by

this HowTo.

Configuring the cross-site replication for the cluster controlled by the Operator is explained in the following subsections.

Creating a Replica cluster
Cross-site replication can be configured on two sibling Percona XtraDB Clusters. That’s why you should first make a fully operational clone of your main

database cluster. After that your original cluster will be configured as Source, and a new one (the clone) will be configured as Replica.

The easiest way to achieve this is to use backups. You make a full backup of your main database cluster, and restore it to a new Kubernetes-based

environment, following this HowTo.

Configuring cross-site replication on Source instances
You can configure Source instances for cross-site replication with spec.pxc.replicationChannels subsection in the deploy/cr.yaml configuration file. It

is an array of channels, and you should provide the following keys for the channel in your Source Percona XtraDB Cluster:

pxc.replicationChannels.[].name key is the name of the channel,

pxc.replicationChannels.[].isSource key should be set to true .

Here is an example:

Note

spec:

pxc:

replicationChannels:

- name: pxc1_to_pxc2

isSource: true

https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://www.percona.com/blog/2021/04/14/what-you-can-do-with-auto-failover-and-percona-distribution-for-mysql-8-0-x/
https://www.percona.com/blog/2021/04/14/what-you-can-do-with-auto-failover-and-percona-distribution-for-mysql-8-0-x/
https://www.percona.com/blog/2021/04/14/what-you-can-do-with-auto-failover-and-percona-distribution-for-mysql-8-0-x/

Page 56

You will also need to expose every Percona XtraDB Cluster Pod of the Source cluster to make it possible for the Replica cluster to connect. This is done

through the pxc.expose section in the deploy/cr.yaml configuration file as follows.

This will create a LoadBalancer per each Percona XtraDB Cluster Pod. In most cases, for cross-region replication to work this Load Balancer should be internet-facing.

The cluster will be ready for asynchronous replication when you apply changes as usual:

To list the endpoints assigned to PXC Pods list the Kubernetes Service objects by executing kubectl get services -l

"app.kubernetes.io/instance=cluster1" command (don’t forget to substitute cluster1 with the real name of your cluster, if you don’t use the default

name).

Configuring cross-site replication on Replica instances
You can configure Replica instances for cross-site replication with spec.pxc.replicationChannels subsection in the deploy/cr.yaml configuration file. It

is an array of channels, and you should provide the following keys for the channel in your Replica Percona XtraDB Cluster:

pxc.replicationChannels.[].name key is the name of the channel,

pxc.replicationChannels.[].isSource key should be set to false ,

pxc.replicationChannels.[].sourcesList is the list of Source cluster names from which Replica should get the data,

pxc.replicationChannels.[].sourcesList.[].host is the host name or IP address of the Source,

pxc.replicationChannels.[].sourcesList.[].port is the port of the source (3306 port will be used if nothing specified),

pxc.replicationChannels.[].sourcesList.[].weight is the weight of the source (in the event of a connection failure, a new source is selected from

the list based on a weighted priority).

Here is the example:

The cluster will be ready for asynchronous replication when you apply changes as usual:

spec:

pxc:

expose:

enabled: true

type: LoadBalancer

Note

$ kubectl apply -f deploy/cr.yaml

spec:

pxc:

replicationChannels:

- name: uspxc1_to_pxc2

isSource: false

sourcesList:

- host: pxc1.source.percona.com

port: 3306

weight: 100

- host: pxc2.source.percona.com

weight: 100

- host: pxc3.source.percona.com

weight: 100

- name: eu_to_pxc2

isSource: false

sourcesList:

- host: pxc1.source.percona.com

port: 3306

weight: 100

- host: pxc2.source.percona.com

weight: 100

- host: pxc3.source.percona.com

weight: 100

Page 57

You can also configure SSL channel for replication . Following options allow you using replication over an encrypted channel. Set the

replicationChannels.configuration.ssl key to true, optionally enable host name identity verification with the replicationChannels.configuration.sslSkipVerify key,

and set replicationChannels.configuration.ca key to the path name of the Certificate Authority (CA) certificate file:

SSL certificates on both sides should be signed by the same certificate authority for encrypted replication channels to work.

System user for replication
Replication channel demands a special system user with same credentials on both Source and Replica.

The Operator creates a system-level Percona XtraDB Cluster user named replication for this purpose, with credentials stored in a Secret object along with

other system users.

If the Replica cluster is not a clone of the original one (for example, it’s outside of Kubernetes and is not under the Operator’s control) the appropriate user with necessary

permissions should be created manually.

If you need you can change a password for this user as follows:

If you have changed the replication user’s password on the Source cluster, and you use the Operator version 1.9.0, you can have a replication is not running

error message in log, similar to the following one:

Fixing this involves the following steps.

1. Find the Replica Pod which was chosen by the Operator for replication, using the following command:

2. Get the shell access to this Pod and login to the MySQL monitor as a root user:

3. Execute the following three SQL commands to propagate the replication user password from the Source cluster to Replica:

$ kubectl apply -f deploy/cr.yaml

Note

replicationChannels:

- isSource: false

name: uspxc1_to_pxc2

configuration:

ssl: true

sslSkipVerify: true

ca: '/etc/mysql/ssl/ca.crt'

...

Note

in Linux

in macOS

$ kubectl patch secret/cluster1-secrets -p '{"data":{"replication": "'$(echo -n new_password | base64 --wrap=0)'"}}'

$ kubectl patch secret/cluster1-secrets -p '{"data":{"replication": "'$(echo -n new_password | base64)'"}}'

{"level":"info","ts":1629715578.2569592,"caller":"zapr/zapr.go 69","msg":"Replication for channel is not running. Please,

check the replication status","channel":"pxc2_to_pxc1"}

$ kubectl get pods --selector percona.com/replicationPod=true

$ kubectl exec -c pxc --stdin --tty <pod_name> -- /bin/bash

bash-4.4$ mysql -uroot -proot_password

https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html

Page 58

STOP REPLICA IO_THREAD FOR CHANNEL '$REPLICATION_CHANNEL_NAME';

CHANGE MASTER TO MASTER_PASSWORD='$NEW_REPLICATION_PASSWORD' FOR CHANNEL '$REPLICATION_CHANNEL_NAME';

START REPLICA IO_THREAD FOR CHANNEL '$REPLICATION_CHANNEL_NAME';

Page 59

Upgrade

Page 60

Update Percona Operator for MySQL based on Percona XtraDB Cluster
You can upgrade Percona Operator for MySQL based on Percona XtraDB Cluster to newer versions

The upgrade process consists of these steps:

Upgrade the Operator

Upgrade the database (Percona XtraDB Cluster).

Update scenarios
You can either upgrade both the Operator and the database, or you can upgrade only the database. To decide which scenario to choose, read on.

Full upgrade (CRD, Operator, and the database)

When to use this scenario:

The new Operator version has changes that are required for new features of the database to work

The Operator has new features or fixes that enhance automation and management.

Compatibility improvements between the Operator and the database require synchronized updates.

When going on with this scenario, make sure to test it in a staging or testing environment first. Upgrading the Operator may cause performance degradation.

Upgrade only the database

When to use this scenario:

The new version of the database has new features or fixes that are not related to the Operator or other components of your infrastructure

You have updated the Operator earlier and now want to proceed with the database update.

When choosing this scenario, consider the following:

Check that the current Operator version supports the new database version.

Some features may require an Operator upgrade later for full functionality.

Update strategies
You can chose how you want to update your database cluster when you run an upgrade:

Smart Update is the automated way to update the database cluster. The Operator controls how objects are updated. It restarts Pods in a specific order, with

the primary instance updated last to avoid connection issues until the whole cluster is updated to the new settings.

This update method applies during database upgrades and when making changes like updating a ConfigMap, rotating passwords, or changing resource

values. It is the default and recommended way to update.

Rolling Update is initiated manually and controlled by Kubernetes . The StatefulSet controller in Kubernetes deletes a Pod, updates it, waits till it reports

the Ready status and proceeds to the next Pod. The order for Pod update is the same as for Pod termination. However, this order may not be optimal from

the Percona Server for MongoDB point of view.

On Delete strategy requires a user to manually delete a Pod to make Kubernetes StatefulSet controller recreate it with the updated configuration .

To select an update strategy, set the updateStrategy key in the Custom Resource manifest to one of the following:

SmartUpdate

RollingUpdate

OnDelete

For a manual update of your database cluster using the RollingUpdate or OnDelete strategies, refer to the low-level Kubernetes way of database upgrades

guide.

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies

Page 61

Update on OpenShift
If you run the Operator on Red Hat Marketplace or you run Red Hat certified Operators on OpenShift , you need to do additional steps during the upgrade.

See this HOWTO for details.

https://marketplace.redhat.com/
https://marketplace.redhat.com/
https://marketplace.redhat.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift

Page 62

Upgrade CRD and the Operator

Upgrade the Operator and CRD
To update the Operator, you need to update the Custom Resource Definition (CRD) and the Operator deployment. Also we recommend to update the

Kubernetes database cluster configuration by updating the Custom Resource and the database components to the latest version. This step ensures that all

new features that come with the Operator release work in your environment.

The database cluster upgrade process is similar for all installation methods, including Helm and OLM.

Considerations

1. The Operator version has three digits separated by a dot (.) in the format major.minor.patch . Here’s how you can understand the version 1.16.1 :

1 is the major version

16 is the minor version

1 is the patch version.

You can only upgrade the Operator to the nearest major.minor version (for example, from 1.15.1 to 1.16.1).

If the your current Operator version and the version you want to upgrade to differ by more than one minor version, you need to upgrade step by step. For

example, if your current version is 1.14.x and you want to move to 1.16.x , first upgrade to 1.15.x , then to 1.16.x .

Patch versions don’t influence the upgrade, so you can safely move from 1.15.1 to 1.16.1 .

Check the Release notes index for the list of the Operator versions.

2. CRD supports the last 3 minor versions of the Operator. This means it is compatible with the newest Operator version and the two older minor versions. If

the Operator is older than the CRD by no more than two versions, you should be able to continue using the old Operator version. But updating the CRD and

Operator is the recommended path.

3. Starting with version 1.12.0, the Operator no longer has a separate API version for each release in CRD. Instead, the CRD has the API version v1 .

Therefore, if you installed the CRD when the Operator version was older than 1.12.0, you must update the API version in the CRD manually to run the

upgrade. To check your CRD version, use the following command:

If the CRD version is other than v1 or has multiple entries, run the manual update.

4. The Operator versions 1.14.0 and 1.15.0 should be excluded from the incremental upgrades sequence in favor of 1.14.1 and 1.15.1 releases.

The upgrade path from the version 1.14.1 should be 1.14.1 -> 1.15.1.

Direct upgrades from 1.13.0 to 1.14.1 and from 1.14.0 to 1.15.1 are supported.

5. To upgrade multiple single-namespace Operator deployments in one Kubernetes cluster, where each Operator controls a database cluster in its own

namespace, do the following:

upgrade the CRD (not 3 minor versions far from the oldest Operator installation in the Kubernetes cluster) first

upgrade the Operators in each namespace incrementally to the latest minor version (e.g. from 1.15.1 to 1.16.1, then to 1.17.0)

Upgrade manually
The upgrade includes the following steps.

1. For Operators older than v1.12.0: Update the API version in the Custom Resource Definition :

$ kubectl get crd perconaxtradbclusters.pxc.percona.com -o yaml | yq .status.storedVersions

Sample output

- v1-11-0

- v1

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Page 63

2. Update the Custom Resource Definition for the Operator and the Role-based access control. Take the latest versions from the official repository on GitHub

with the following commands:

3. Next, update the Percona Server for MySQL Operator Deployment in Kubernetes by changing the container image of the Operator Pod to the latest version.

Find the image name for the current Operator release in the list of certified images. Then apply a patch to the Operator Deployment and specify the

image name and version. Use the following command to update the Operator to the 1.17.0 version:

For previous releases, please refer to the old releases documentation archive

4. The deployment rollout will be automatically triggered by the applied patch. The update process is successfully finished when all Pods have been

restarted.

Labels set on the Operator Pod will not be updated during upgrade.

5. Update the Custom Resource, the database, backup, proxy and PMM Client image names with a newer version tag. This step ensures all new features and

improvements of the latest release work well within your environment.

Find the image names in the list of certified images.

Check your custom HAProxy configuration before the upgrade to be compatible with the one available with the Operator version you’re upgrading to. Find

the haproxy-global.cfg for the Operator version 1.17.0 here . Adjust your configuration, if needed.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven’t done it yet, exclude PMM Client from the list of images to

update.

Manually

Via kubectl patch

$ kubectl proxy & \

$ curl \

--header "Content-Type: application/json-patch+json" \

--request PATCH \

--data '[{"op": "replace", "path": "/status/storedVersions", "value":["v1"]}]' \

--url

"http://localhost:8001/apis/apiextensions.k8s.io/v1/customresourcedefinitions/perconaxtradbclusters.pxc.percona.com/status"

Expected output

{

{...},

"status": {

"storedVersions": [

"v1"

]

}

}

$ kubectl patch customresourcedefinitions perconaxtradbclusters.pxc.percona.com --subresource='status' --type='merge' -p

'{"status":{"storedVersions":["v1"]}}'

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaxtradbclusters.pxc.percona.com patched

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/crd.yaml

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/rbac.yaml

$ kubectl patch deployment percona-xtradb-cluster-operator \

-p'{"spec":{"template":{"spec":{"containers":[{"name":"percona-xtradb-cluster-operator","image":"percona/percona-

xtradb-cluster-operator:1.17.0"}]}}}}'

Note

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg

Page 64

Since this is a working cluster, the way to update the Custom Resource is to apply a patch with the kubectl patch pxc command.

Upgrade via Helm
If you have installed the Operator using Helm, you can upgrade the Operator with the helm upgrade command.

1. Update the Custom Resource Definition for the Operator, taking it from the official repository on Github, and do the same for the Role-based access

control:

With PMM Client

==== “For Percona XtraDB Cluster 5.7”

Without PMM Client

For Percona XtraDB Cluster 8.0

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:8.0.41-32.1" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35-32" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm": { "image": "percona/pmm-client:2.44.0" }

}}'

```{.bash data-prompt="$"}

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.44-31.65" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy":  { "image": "percona/haproxy:2.8.14" },

"backup":   { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm":      { "image": "percona/pmm-client:2.44.0" }

}}'

```

For Percona XtraDB Cluster 8.0

For Percona XtraDB Cluster 5.7

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:8.0.41-32.1" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35-32" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.44-31.65" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Page 65

2. Next, update the Operator deployment.

The my-op parameter in the above example is the name of a release object which which you have chosen for the Operator when installing its Helm

chart.

Upgrade via Operator Lifecycle Manager (OLM)
If you have installed the Operator on the OpenShift platform using OLM, you can upgrade the Operator within it.

1. List installed Operators for your Namespace to see if there are upgradable items.

Installed Operators

Installed Operators are represented by ClusterServiceVersions within this Namespace.

Name Search by name...

Name Status

Succeeded

/

Upgrade available
Percona Operator for MySQL
based on Percona Xt raDB
Cluster

provided by Percona1.14.0

2. Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and finally “Approve” to upgrade the Operator.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/crd.yaml

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/rbac.yaml

With default parameters

If you installed the Operator with default parameters, the upgrade can be done as follows:

With customized parameters

If you installed the Operator with some customized parameters , you should list these options in the upgrade command.

You can get the list of the used options in YAML format with the helm get values my-op -a > my-values.yaml command. Then pass this file directly

to the upgrade command as follows:

$ helm upgrade my-op percona/pxc-operator --version 1.17.0

$ helm upgrade my-op percona/pxc-operator --version 1.17.0 -f my-values.yaml

https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-operator#installing-the-chart

Page 66

Upgrade Percona XtraDB cluster
You can decide how to run the database upgrades:

Automatically - the Operator periodically checks for new versions of the database images and for valid image paths and automatically updates your

deployment with the latest, recommended or a specific version of the database and other components included. To do so, the Operator queries a special

Version Service server at scheduled times. If the current version should be upgraded, the Operator updates the Custom Resource to reflect the new image

paths and sequentially deletes Pods, allowing StatefulSet to redeploy the cluster Pods with the new image.

Manually - you manually update the Custom Resource and specify the desired version of the database. Then, depending on the configured update strategy,

either the Operator automatically updates the deployment to this version. Or you manually trigger the upgrade by deleting Pods.

The way to instruct the Operator how it should run the database upgrades is to set the upgradeOptions.apply Custom Resource option to one of the

following:

Never - the Operator never makes automatic upgrades. You must upgrade the Custom Resource and images manually.

Disabled - the Operator doesn’t not carry on upgrades automatically. You must upgrade the Custom Resource and images manually.

Recommended - the Operator automatically updates the database and components to the version flagged as Recommended.

Latest - the Operator automatically updates the database and components to the most recent available version

version - specify the specific database version that you want to update to in the format 8.0.41-32.1 , 5.7.44-31.65 , etc.. The Operator updates the

database to it automatically. Find available versions in the list of certified images.

For previous versions, refer to the old releases documentation archive).

https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/

Page 67

Minor upgrade

Page 68

To a specific version

Upgrading Percona XtraDB Cluster to a specific version

Assumptions
For the procedures in this tutorial, we assume that you have set up the Smart Update strategy to update the objects in your database cluster.

Read more about the Smart Update strategy and other available ones in the Upgrade strategies section.

Before you start

1. We recommend to update PMM Server before upgrading PMM Client.

2. If you are using custom configuration for HAProxy, check the HAProxy configuration file provided by the Operator before the upgrade. Find the haproxy-

global.cfg for the Operator version {{ release }} here).

Make sure that your custom config is still compatible with the new variant, and make necessary additions, if needed.

Procedure
To update Percona XtraDB Cluster to a specific version, do the following:

Check the version of the Operator you have in your Kubernetes environment. If you need to update it, refer to the Operator upgrade guide.1

Check the Custom Resource manifest configuration to be the following:

spec.updateStrategy option is set to SmartUpdate

spec.upgradeOptions.apply option is set to Disabled or Never .

2

→

→

...

spec:

updateStrategy: SmartUpdate

upgradeOptions:

apply: Disabled

...

Check the current version of the Custom Resource and what versions of the database and cluster components are compatible with it. Use the following

command:

You can also find this information in the Versions compatibility matrix.

3

$ curl https://check.percona.com/versions/v1/pxc-operator/1.17.0 |jq -r ‘.versions[].matrix’

Update the Custom Resource, the database, backup, proxy and PMM Client image names with a newer version tag. Find the image names in the list of

certified images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven’t done it yet, exclude PMM Client from the list of images to

update.

Since this is a working cluster, the way to update the Custom Resource is to apply a patch with the kubectl patch pxc command.

4

https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://github.com/percona/percona-docker/blob/pxc-operator-%7B%7B%20release%20%7D%7D/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-%7B%7B%20release%20%7D%7D/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-%7B%7B%20release%20%7D%7D/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

Page 69

With PMM Client

Without PMM Client

For Percona XtraDB Cluster 8.0

For Percona XtraDB Cluster 5.7

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:8.0.41-32.1" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35-32" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm": { "image": "percona/pmm-client:2.44.0" }

}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.44-31.65" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm": { "image": "percona/pmm-client:2.44.0" }

}}'

For Percona XtraDB Cluster 8.0

For Percona XtraDB Cluster 5.7

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:8.0.41-32.1" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35-32" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.44-31.65" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process in real time with the kubectl rollout

status command with the name of your cluster:

5

$ kubectl rollout status sts cluster1-pxc

Page 70

Automated minor upgrade to the latest / recommended version

Assumptions
For the procedures in this tutorial, we assume that you have set up the Smart Update strategy to update the objects in your database cluster.

Read more about the Smart Update strategy and other available ones in the Upgrade strategies section.

Before you start

1. We recommend to update PMM Server before upgrading PMM Client.

2. If you are using custom configuration for HAProxy, check the HAProxy configuration file provided by the Operator before the upgrade. Find the haproxy-

global.cfg for the Operator version {{ release }} here).

Make sure that your custom config is still compatible with the new variant, and make necessary additions, if needed.

Procedure
You can configure the Operator to automatically upgrade Percona Server for MongoDB to the latest available, the recommended or to a specific version of

your choice.

Learn more about automatic upgrades

The steps are the following:

Check the version of the Operator you have in your Kubernetes environment. If you need to update it, refer to the Operator upgrade guide.1

Make sure that spec.updateStrategy option is set to SmartUpdate .2

Change the upgradeOptions.apply option from Disabled to one of the following values:

Recommended - automatic upgrade will choose the most recent version of software flagged as “Recommended”. For newly created clusters, the

Operator will always select Percona XtraDB Cluster 8.0 instead of Percona XtraDB Cluster 5.7, regardless of of the image path. For already existing

clusters the Operator respects your choice of Percona XtraDB Cluster version (5.7 vs 8.0) and updates the selected version.

8.0-recommended , 5.7-recommended - same as above, but preserves specific major Percona XtraDB Cluster version for newly provisioned clusters

(e.g. 8.0 will not be automatically used instead of 5.7),

Latest - automatic upgrades will choose the most recent version of the software available

8.0-latest , 5.7-latest - same as above, but preserves specific major Percona XtraDB Cluster version for newly provisioned clusters (e.g. 8.0 will

not be automatically used instead of 5.7),

version number - specify the desired version explicitly (version numbers are specified as 8.0.41-32.1 , 5.7.44-31.65 , etc.). Actual versions can be

found in the list of certified images. For older releases, please refer to the old releases documentation archive .

3

→

→

→

→

→

Make sure to set the valid Version Server URL for the versionServiceEndpoint key. The Operator checks the new software versions in the Version

Server. If the Operator can’t reach the Version Server, the upgrades won’t happen.

4

https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://github.com/percona/percona-docker/blob/pxc-operator-%7B%7B%20release%20%7D%7D/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-%7B%7B%20release%20%7D%7D/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-%7B%7B%20release%20%7D%7D/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/

Page 71

Percona’s Version Service (default)

You can use the URL of the official Percona’s Version Service (default). Set upgradeOptions.versionServiceEndpoint to

https://check.percona.com .

Version Service inside your cluster

Alternatively, you can run Version Service inside your cluster. This can be done with the kubectl command as follows:

$ kubectl run version-service --image=perconalab/version-service --env="SERVE_HTTP=true" --port 11000 --expose

Specify the schedule to check for the new versions in in CRON format for the upgradeOptions.schedule option.

The following example sets the midnight update checks with the official Percona’s Version Service:

You can force an immediate upgrade by changing the schedule to * * * * * (continuously check and upgrade) and changing it back to another more conservative schedule

when the upgrade is complete.

5

spec:

updateStrategy: SmartUpdate

upgradeOptions:

apply: Recommended

versionServiceEndpoint: https://check.percona.com

schedule: "0 0 * * *"

...

Note

Apply your changes to the Custom Resource:6

$ kubectl apply -f deploy/cr.yaml

Page 72

How to carry on low-level manual upgrades of Percona XtraDB Cluster
The default and recommended way to upgrade the database cluster is using the Smart Update strategy. The Operator controls how objects are updated and

restarts the Pods in a proper order during the database upgrade or for other events that require the cluster update. To these events belong ConfigMap

updates, password rotation or changing resource values.

In some cases running an automatic upgrade of Percona XtraDB Cluster is not an option. For example, if the database upgrade impacts your application, you

may want to have a full control over the upgrade process.

Running a manual database upgrade allows you to do just that. You can use one of the following upgrade strategies:

Rolling Update, initiated manually and controlled by Kubernetes . Note that the order of Pods restart may not be optimal from the Percona Server for

MongoDB point of view.

On Delete, done by Kubernetes on per-Pod basis when Pods are manually deleted.

Before you start

1. We recommend to update PMM Server before upgrading PMM Client.

2. If you are using custom configuration for HAProxy, check the HAProxy configuration file provided by the Operator before the upgrade. Find the haproxy-

global.cfg for the Operator version 1.17.0 here).

Make sure that your custom config is still compatible with the new variant, and make necessary additions, if needed.

Rolling Update strategy and semi-automatic updates
To run a semi-automatic update of Percona XtraDB Cluster, do the following:

Check the version of the Operator you have in your Kubernetes environment. If you need to update it, refer to the Operator upgrade guide.1

Edit the deploy/cr.yaml file and set the updateStrategy key to RollingUpdate .2

Check the current version of the Custom Resource and what versions of the database and cluster components are compatible with it. Use the following

command:

You can also find this information in the Versions compatibility matrix.

3

$ curl https://check.percona.com/versions/v1/pxc-operator/1.17.0 |jq -r ‘.versions[].matrix’

Update the Custom Resource, the database, backup, proxy and PMM Client image names with a newer version tag. Find the image names in the list of

certified images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven’t done it yet, exclude PMM Client from the list of images to

update.

Since this is a working cluster, the way to update the Custom Resource is to apply a patch with the kubectl patch pxc command.

4

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

Page 73

Manual upgrade (the On Delete strategy)
To update Percona XtraDB Cluster manually, do the following:

With PMM Client

Without PMM Client

For Percona XtraDB Cluster 8.0

For Percona XtraDB Cluster 5.7

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:8.0.41-32.1" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35-32" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm": { "image": "percona/pmm-client:2.44.0" }

}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.44-31.65" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm": { "image": "percona/pmm-client:2.44.0" }

}}'

For Percona XtraDB Cluster 8.0

For Percona XtraDB Cluster 5.7

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:8.0.41-32.1" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35-32" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.44-31.65" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

After you applied the patch, the deployment rollout will be triggered automatically. You can track the rollout process in real time using the kubectl

rollout status command with the name of your cluster:

5

$ kubectl rollout status sts cluster1-pxc

Check the version of the Operator you have in your Kubernetes environment. If you need to update it, refer to the Operator upgrade guide.1

Page 74

Edit the deploy/cr.yaml file and set the updateStrategy key to OnDelete .2

Check the current version of the Custom Resource and what versions of the database and cluster components are compatible with it. Use the following

command:

You can also find this information in the Versions compatibility matrix.

3

$ curl https://check.percona.com/versions/v1/pxc-operator/1.17.0 |jq -r ‘.versions[].matrix’

Update the Custom Resource, the database, backup, proxy and PMM Client image names with a newer version tag. Find the image names in the list of

certified images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven’t done it yet, exclude PMM Client from the list of images to

update.

Since this is a working cluster, the way to update the Custom Resource is to apply a patch with the kubectl patch pxc command.

4

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

Page 75

With PMM Client

Without PMM Client

For Percona XtraDB Cluster 8.0

For Percona XtraDB Cluster 5.7

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:8.0.41-32.1" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35-32" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm": { "image": "percona/pmm-client:2.44.0" }

}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.44-31.65" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm": { "image": "percona/pmm-client:2.44.0" }

}}'

For Percona XtraDB Cluster 8.0

For Percona XtraDB Cluster 5.7

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:8.0.41-32.1" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35-32" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.44-31.65" },

"proxysql": { "image": "percona/proxysql2:2.7.1-1" },

"haproxy": { "image": "percona/haproxy:2.8.14" },

"backup": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

The Pod with the newer Percona XtraDB Cluster image will start after you delete it. Delete targeted Pods manually one by one to make them restart in

desired order:

5

Delete the Pod using its name with the command like the following one:1

$ kubectl delete pod cluster1-pxc-2

Wait until Pod becomes ready:

The output should be like this:

2

$ kubectl get pod cluster1-pxc-2

Page 76

The update process is successfully finished when all Pods have been restarted.

NAME READY STATUS RESTARTS AGE

cluster1-pxc-2 1/1 Running 0 3m33s

Page 77

Upgrade Database and Operator on OpenShift
Upgrading database and Operator on Red Hat Marketplace or to upgrade Red Hat certified Operators on OpenShift generally follows the standard

upgrade scenario, but includes a number of special steps specific for these platforms.

Upgrading the Operator and CRD

https://marketplace.redhat.com/
https://marketplace.redhat.com/
https://marketplace.redhat.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift

Page 78

Operator 1.13.0 and older

1. First of all you need to manually update initImage Custom Resource option with the value of an alternative initial Operator installation image. You need

doing this for all database clusters managed by the Operator. Without this step the cluster will go into error state after the Operator upgrade.

a. Find the initial Operator installation image with kubectl get deploy command:

b. Apply a patch to update the initImage option of your cluster Custom Resource with this value. Supposing that your cluster name is cluster1 ,

the command should look as follows:

2. Now you can actually update the Operator via the Operator Lifecycle Manager (OLM) web interface.

Login to your OLM installation and list installed Operators for your Namespace to see if there are upgradable items:

Installed Operators

Installed Operators are represented by ClusterServiceVersions within this Namespace.

Name Search by name...

Name Status

Succeeded

/

Upgrade available
Percona Operator for MySQL
based on Percona Xt raDB
Cluster

provided by Percona1.14.0

Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and finally “Approve” to upgrade the Operator.

Operator 1.14.0

1. First of all you need to manually update initContainer.image Custom Resource option with the value of an alternative initial Operator installation

image. You need doing this for all database clusters managed by the Operator. Without this step the cluster will go into error state after the Operator

upgrade.

a. Find the initial Operator installation image with kubectl get deploy command:

$ kubectl get deploy percona-xtradb-cluster-operator -o yaml

Expected output

...

"initContainer" : {

"image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-

operator@sha256:4edb5a53230e023bbe54c8e9e1154579668423fc3466415d5b04b8304a8e01d7"

},

...

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"initImage":"registry.connect.redhat.com/percona/percona-xtradb-cluster-

operator@sha256:4edb5a53230e023bbe54c8e9e1154579668423fc3466415d5b04b8304a8e01d7"

}}'

$ kubectl get deploy percona-xtradb-cluster-operator -o yaml

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm

Page 79

Upgrading Percona XtraDB Cluster

1. Make sure that spec.updateStrategy option in the Custom Resource is set to SmartUpdate , spec.upgradeOptions.apply option is set to Never or

Disabled (this means that the Operator will not carry on upgrades automatically).

b. Apply a patch to update the initContainer.image option of your cluster Custom Resource with this value. Supposing that your cluster name is

cluster1 , the command should look as follows:

2. Now you can actually update the Operator via the Operator Lifecycle Manager (OLM) web interface.

Login to your OLM installation and list installed Operators for your Namespace to see if there are upgradable items:

Installed Operators

Installed Operators are represented by ClusterServiceVersions within this Namespace.

Name Search by name...

Name Status

Succeeded

/

Upgrade available
Percona Operator for MySQL
based on Percona Xt raDB
Cluster

provided by Percona1.14.0

Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and finally “Approve” to upgrade the Operator.

Operator 1.15.0 and newer

You can actually update the Operator via the Operator Lifecycle Manager (OLM) web interface.

Login to your OLM installation and list installed Operators for your Namespace to see if there are upgradable items:

Installed Operators

Installed Operators are represented by ClusterServiceVersions within this Namespace.

Name Search by name...

Name Status

Succeeded

/

Upgrade available
Percona Operator for MySQL
based on Percona Xt raDB
Cluster

provided by Percona1.14.0

Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and finally “Approve” to upgrade the Operator.

Expected output

...

"initContainer" : {

"image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-

operator@sha256:4edb5a53230e023bbe54c8e9e1154579668423fc3466415d5b04b8304a8e01d7"

},

...

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"initContainer": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-

operator@sha256:4edb5a53230e023bbe54c8e9e1154579668423fc3466415d5b04b8304a8e01d7" }

}}'

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm

Page 80

2. Find the new initial Operator installation image name (it had changed during the Operator upgrade) and other image names for the components of your

cluster with the kubectl get deploy command:

3. Apply a patch to set the necessary crVersion value (equal to the Operator version) and update images in your cluster Custom Resource. Supposing

that your cluster name is cluster1 , the command should look as follows:

...

spec:

updateStrategy: SmartUpdate

upgradeOptions:

apply: Disabled

...

$ kubectl get deploy percona-xtradb-cluster-operator -o yaml

Expected output

...

"initContainer" : {

"image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-

operator@sha256:e8c0237ace948653d8f3e297ec67276f23f4f7fb4f8018f97f246b65604d49e6"

},

...

"pxc": {

"size": 3,

"image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:b526b83865ca26808aa1ef96f64319f65deba94b76c5b5b6aa181981ebd4282f",

...

"haproxy": {

"enabled": true,

"size": 3,

"image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:cbd4f1791941765eb6732f2dc88bad29bf23469898bd30f02d22a95c0f2aab9b",

...

"proxysql": {

"enabled": false,

"size": 3,

"image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:24f6d959efcf2083addf42f3b816220654133dc8a5a8a989ffd4caffe122e19c",

...

"logcollector": {

"enabled": true,

"image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:cb6ccda7839b3205ffaf5cb8016d1f91ed3be4438334d2122beb38791a32c015",

...

"pmm": {

"enabled": false,

"image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:165f97cdae2b6def546b0df7f50d88d83c150578bdb9c992953ed866615016f1",

...

"backup": {

"image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:483acaa57378ee5529479dbcabb3b8002751c1c43edd5553b52f001f323d4723",

...

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

Page 81

Operator 1.13.0 or older

Operator 1.14.0 or newer

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.13.0",

"initImage": "registry.connect.redhat.com/percona/percona-xtradb-cluster-

operator@sha256:e8c0237ace948653d8f3e297ec67276f23f4f7fb4f8018f97f246b65604d49e6",

"pxc":{ "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:b526b83865ca26808aa1ef96f64319f65deba94b76c5b5b6aa181981ebd4282f" },

"proxysql": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:24f6d959efcf2083addf42f3b816220654133dc8a5a8a989ffd4caffe122e19c" },

"haproxy": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:cbd4f1791941765eb6732f2dc88bad29bf23469898bd30f02d22a95c0f2aab9b" },

"backup": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:483acaa57378ee5529479dbcabb3b8002751c1c43edd5553b52f001f323d4723" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:165f97cdae2b6def546b0df7f50d88d83c150578bdb9c992953ed866615016f1" }

}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"initContainer": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-

operator@sha256:e8c0237ace948653d8f3e297ec67276f23f4f7fb4f8018f97f246b65604d49e6" },

"pxc":{ "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:b526b83865ca26808aa1ef96f64319f65deba94b76c5b5b6aa181981ebd4282f" },

"proxysql": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:24f6d959efcf2083addf42f3b816220654133dc8a5a8a989ffd4caffe122e19c" },

"haproxy": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:cbd4f1791941765eb6732f2dc88bad29bf23469898bd30f02d22a95c0f2aab9b" },

"backup": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:483acaa57378ee5529479dbcabb3b8002751c1c43edd5553b52f001f323d4723" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" },

"pmm": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:165f97cdae2b6def546b0df7f50d88d83c150578bdb9c992953ed866615016f1" }

}}'

Page 82

The above command upgrades various components of the cluster including PMM Client. If you didn’t follow the official recommendation to upgrade PMM Server before

upgrading PMM Client, you can avoid PMM Client upgrade by removing it from the list of images as follows:

4. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process in real time with the kubectl rollout

status command with the name of your cluster:

Warning

Operator 1.13.0 or older

Operator 1.14.0 or newer

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.13.0",

"initImage": "registry.connect.redhat.com/percona/percona-xtradb-cluster-

operator@sha256:e8c0237ace948653d8f3e297ec67276f23f4f7fb4f8018f97f246b65604d49e6",

"pxc":{ "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:b526b83865ca26808aa1ef96f64319f65deba94b76c5b5b6aa181981ebd4282f" },

"proxysql": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:24f6d959efcf2083addf42f3b816220654133dc8a5a8a989ffd4caffe122e19c" },

"haproxy": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:cbd4f1791941765eb6732f2dc88bad29bf23469898bd30f02d22a95c0f2aab9b" },

"backup": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:483acaa57378ee5529479dbcabb3b8002751c1c43edd5553b52f001f323d4723" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"crVersion":"1.17.0",

"initContainer": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-

operator@sha256:e8c0237ace948653d8f3e297ec67276f23f4f7fb4f8018f97f246b65604d49e6" },

"pxc":{ "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:b526b83865ca26808aa1ef96f64319f65deba94b76c5b5b6aa181981ebd4282f" },

"proxysql": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:24f6d959efcf2083addf42f3b816220654133dc8a5a8a989ffd4caffe122e19c" },

"haproxy": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:cbd4f1791941765eb6732f2dc88bad29bf23469898bd30f02d22a95c0f2aab9b" },

"backup": { "image": "registry.connect.redhat.com/percona/percona-xtradb-cluster-operator-

containers@sha256:483acaa57378ee5529479dbcabb3b8002751c1c43edd5553b52f001f323d4723" },

"logcollector": { "image": "percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0" }

}}'

$ kubectl rollout status sts cluster1-pxc

https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html

Page 83

Configuration

Page 84

Users
MySQL user accounts within the Cluster can be divided into two different groups:

application-level users: the unprivileged user accounts,

system-level users: the accounts needed to automate the cluster deployment and management tasks, such as Percona XtraDB Cluster Health checks or

ProxySQL integration.

As these two groups of user accounts serve different purposes, they are considered separately in the following sections.

Unprivileged users
The Operator does not create unprivileged (general purpose) user accounts by default. There are two ways to create general purpose users:

manual creation of custom MySQL users,

automated users creation via Custom Resource (Operator versions 1.16.0 and newer).

Create users in the Custom Resource

Starting from the Operator version 1.16.0 declarative creation of custom MySQL users is supported via the users subsection in the Custom Resource.

Declarative user management has technical preview status and is not yet recommended for production environments.

You can change users section in the deploy/cr.yaml configuration file at the cluster creation time, and adjust it over time. You can specify a new user in

deploy/cr.yaml configuration file, setting the user’s login name, hosts this user is allowed to connect from, accessible databases, a reference to a key in

some Secret resource that contains user’s password, as well as MySQL privilege grants for this user. You can find detailed description of the corresponding

options in the Custom Resource reference, and here is a self-explanatory example:

The Secret mentioned in the users.passwordSecretRef.name option should look as follows:

The Operator tracks password changes in the Secret object, and updates the user password in the database, when needed. The following specifics should be

taken into account:

When a user sets an invalid grant or sets an administrative (global) grant with some value present in spec.user.dbs , the Operator logs error and creates

the user with the default grants (GRANT USAGE).

Warning

...

users:

- name: my-user

dbs:

- db1

- db2

hosts:

- localhost

grants:

- SELECT

- DELETE

- INSERT

withGrantOption: true

passwordSecretRef:

name: my-user-pwd

key: my-user-pwd-key

...

apiVersion: v1

kind: Secret

metadata:

name: my-user-pwd

type: Opaque

stringData:

password: my-user-pwd-key

Page 85

The Operator doesn’t delete users if they are removed from Custom Resource, to avoid affecting any pre-existing users.

Not deleting users can bring a number of consequences. For example, when the host is updated in the users.hosts array (for example, host1 changed

to host2), a new user user@host2 is created in addition to already existing user@host1 . Moreover, if the password was updated in the secret for

user@host2 , and later the host in the Custom Resource was changed back to host1 , the user@host1 user will continue using the old password different

from what the Custom Resource contains.

The Operator updates grants specified for the user in additive manner: it adds new grants but doesn’t revoke existing ones.

It is not possible to add two entries for the same user (e.g. with different grants for different databases), but sequential updates of the Custom Resource

can achieve the same effect.

The only necessary field to create new user is users.name , everything else can be generated by the Operator. For example, if the Secret object was not

specified, user password will be generated and stored in a generated secret named <cluster-name>-<custom-user-name>-secret . Similarly, omitting

grants and/or dbs will result in default grants provided by MySQL.

Create users manually

You can create unprivileged users manually. Supposing your cluster name is cluster1 , the command should look as follows (don’t forget to substitute

root_password with the real root password):

MySQL password for the user you create should not exceed 32 characters due to the replication-specific limit introduced in MySQL 5.7.5 .

Verify that the user was created successfully. If successful, the following command will let you successfully login to MySQL shell via ProxySQL:

You may also try executing any simple SQL statement to ensure the permissions have been successfully granted.

System Users
To automate the deployment and management of the cluster components, the Operator requires system-level Percona XtraDB Cluster users.

Credentials for these users are stored as a Kubernetes Secrets object. The Operator requires Kubernetes Secrets before Percona XtraDB Cluster is started.

It will either use existing Secrets or create a new Secrets object with randomly generated passwords if it didn’t exist. The name of the required Secret

(cluster1-secrets by default) should be set in the spec.secretsName option of the deploy/cr.yaml configuration file.

In addition to cluster1-secrets , the Operator will also create an internal Secrets object named internal-cluster1 , which exists for technical purposes and should not be

edited by end users.

The following table shows system users’ names and purposes.

These users should not be used to run an application.

User Purpose Username Password

Secret Key

Description

Admin root root Database administrative user, can be used by the application if needed

$ kubectl run -it --rm percona-client --image=percona:8.0 --restart=Never -- mysql -hcluster1-pxc -uroot -proot_password

mysql> GRANT ALL PRIVILEGES ON database1.* TO 'user1'@'%' IDENTIFIED BY 'password1';

Note

$ kubectl run -it --rm percona-client --image=percona:8.0 --restart=Never -- bash -il

percona-client:/$ mysql -h cluster1-proxysql -uuser1 -ppassword1

mysql> SELECT * FROM database1.table1 LIMIT 1;

Note

Warning

https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-5.html
https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-5.html
https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-5.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 86

User Purpose Username Password

Secret Key

Description

ProxySQLAdmin proxyadmin proxyadmin ProxySQL administrative user, can be used to add general-purpose ProxySQL users

Backup xtrabackup xtrabackup The user to run backups , granted all privileges for the point-in-time recovery needs

Monitoring monitor monitor User for internal monitoring purposes like liveness/readiness checks and PMM agent

PMM Server

Password

should be set through the

operator options

pmmserver Password used to access PMM Server . Password-based authorization method is deprecated

since the Operator 1.11.0. Use token-based authorization instead

Operator Admin operator operator Database administrative user, should be used only by the Operator

Replication replication replication Administrative user needed for cross-site Percona XtraDB Cluster

The administrative database user operator is created in MySQL as operator@'% . Configurations with operator@'something' user having the host part different from % are not

supported, and such users should not exist in the database.

YAML Object Format

The default name of the Secrets object for these users is cluster1-secrets and can be set in the CR for your cluster in spec.secretName to something

different. When you create the object yourself, it should match the following simple format:

The example above matches what is shipped in deploy/secrets.yaml which contains default passwords. You should NOT use these in production, but they are

present to assist in automated testing or simple use in a development environment.

As you can see, because we use the stringData type when creating the Secrets object, all values for each key/value pair are stated in plain text format

convenient from the user’s point of view. But the resulting Secrets object contains passwords stored as data - i.e., base64-encoded strings. If you want to

update any field, you’ll need to encode the value into base64 format. To do this, you can run echo -n "password" | base64 --wrap=0 (or just echo -n

"password" | base64 in case of Apple macOS) in your local shell to get valid values. For example, setting the Admin user’s password to new_password in

the cluster1-secrets object can be done with the following command:

Password Rotation Policies and Timing

When there is a change in user secrets, the Operator creates the necessary transaction to change passwords. This rotation happens almost instantly (the

delay can be up to a few seconds), and it’s not needed to take any action beyond changing the password.

Note

apiVersion: v1

kind: Secret

metadata:

name: cluster1-secrets

type: Opaque

stringData:

root: root_password

xtrabackup: backup_password

monitor: monitory

proxyadmin: admin_password

operator: operatoradmin

replication: repl_password

in Linux

in macOS

$ kubectl patch secret/cluster1-secrets -p '{"data":{"root": "'$(echo -n new_password | base64 --wrap=0)'"}}'

$ kubectl patch secret/cluster1-secrets -p '{"data":{"root": "'$(echo -n new_password | base64)'"}}'

https://github.com/sysown/proxysql/wiki/Users-configuration
https://github.com/sysown/proxysql/wiki/Users-configuration
https://github.com/sysown/proxysql/wiki/Users-configuration
https://www.percona.com/doc/percona-xtrabackup/2.4/using_xtrabackup/privileges.html
https://www.percona.com/doc/percona-xtrabackup/2.4/using_xtrabackup/privileges.html
https://www.percona.com/doc/percona-xtrabackup/2.4/using_xtrabackup/privileges.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html

Page 87

Please don’t change secretName option in CR, make changes inside the secrets object itself.

Starting from the Operator version 1.13.0 system users are created with the PASSWORD EXPIRE NEVER policy. Also, same policy is automatically applied to

system users on existing clusters when the Operator is upgraded to 1.13.0.

Marking System Users In MySQL

Starting with MySQL 8.0.16, a new feature called Account Categories has been implemented, which allows us to mark our system users as such. See the

official documentation on this feature for more details.

Development Mode
To make development and testing easier, deploy/secrets.yaml secrets file contains default passwords for Percona XtraDB Cluster system users.

These development mode credentials from deploy/secrets.yaml are:

Secret Key Secret Value

root root_password

xtrabackup backup_password

monitor monitory

proxyadmin admin_password

operator operatoradmin

replication repl_password

Do not use the default Percona XtraDB Cluster user passwords in production!

Note

Warning

https://dev.mysql.com/doc/refman/8.0/en/account-categories.html
https://dev.mysql.com/doc/refman/8.0/en/account-categories.html
https://dev.mysql.com/doc/refman/8.0/en/account-categories.html
https://dev.mysql.com/doc/refman/8.0/en/account-categories.html

Page 88

Exposing cluster
Percona Operator for MySQL based on Percona XtraDB Cluster provides entry points for accessing the database by client applications in several scenarios. In

either way the cluster is exposed with regular Kubernetes Service objects , configured by the Operator.

This document describes the usage of Custom Resource manifest options to expose the clusters deployed with the Operator.

Exposing cluster with HAProxy or ProxySQL

The Operator provides a choice of two cluster components to provide load balancing and proxy service: you can use either HAProxy or ProxySQL .

PXC Pod 1 PXC Pod 3PXC Pod 2

R
ea

d W
rite

Galera Replication

Client Application

DB Proxy/Router

R
ea

d W
rite R

ea
d W

rite R
ea

d W
rite

Load balancing and proxy service with HAProxy is the default choice.

See how you can enable and use HAProxy and what are the limitations.

See how you can enable and use ProxySQL and what are the limitations.

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://haproxy.org/
https://haproxy.org/
https://haproxy.org/
https://proxysql.com/
https://proxysql.com/
https://proxysql.com/
https://haproxy.org/
https://haproxy.org/
https://haproxy.org/

Page 89

Service per Pod
Still, sometimes it is required to expose all Percona XtraDB Cluster instances, where each of them gets its own IP address (e.g. in case of load balancing

implemented on the application level).

HAProxy

The default HAProxy based setup will contain the cluster1-haproxy Service listening on ports 3306 (MySQL primary) and 3309 (the proxy protocol

useful for operations such as asynchronous calls), and also cluster1-haproxy-replicas Service for MySQL replicas, listening on port 3306 (this Service

should not be used for write requests).

You can find the endpoint (the public IP address of the load balancer in our example) by getting the Service object with the kubectl get service command.

The output will be as follows:

You can control creation of these two Services with the following Custom Resource options:

haproxy.exposePrimary.enabled enables or disables cluster1-haproxy Service,

haproxy.exposeReplicas.enabled enables or disables haproxy-replicas Service.

By default haproxy-replica Service directs connections to all Pods of the database cluster in a round-robin manner, but

haproxy.exposeReplicas.onlyReaders Custom Resource option allows to modify this behavior: setting it to true excludes current MySQL primary

instance (writer) from the list, leaving only the reader instances. By default the option is set to false , which means that haproxy-replicas sends traffic to

all Pods, including the active writer. The feature can be useful to simplify the application logic by splitting read and write MySQL traffic on the Kubernetes level.

Also, it should be noted that changing haproxy.exposeReplicas.onlyReaders value will cause HAProxy Pods to restart.

ProxySQL

If you configured your cluster with ProxySQL based setup, you will have cluster1-proxysql Service. You can find the endpoint (the public IP address of the

load balancer in our example) by getting the Service object with the kubectl get service command. The output will be as follows:

As you could notice, this command also shows mapped ports the application can use to communicate with MySQL primary instance (3306 for the classic

MySQL protocol).

You can enable or disable this Service with the proxysql.expose.enabled Custom Resource option.

$ kubectl get service cluster1-haproxy

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

cluster1-haproxy LoadBalancer 10.12.23.173 <pending>

3306:32548/TCP,3309:30787/TCP,33062:32347/TCP,33060:31867/TCP 14s

cluster1-haproxy-replicas LoadBalancer 10.12.25.208 <pending> 3306:32166/TCP

14s

$ kubectl get service cluster1-proxysql

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

cluster1-proxysql LoadBalancer 10.0.238.36 35.192.172.85 3306:30408/TCP,33062:30217/TCP 115s

https://www.haproxy.com/blog/haproxy/proxy-protocol/
https://www.haproxy.com/blog/haproxy/proxy-protocol/
https://www.haproxy.com/blog/haproxy/proxy-protocol/

Page 90

PXC Pod 1 PXC Pod 3PXC Pod 2

Galera Replication

Client Application

R
ea

d W
rite R

ea
d W

rite R
ea

d W
rite

This is possible by setting the following options in spec.pxc section.

pxc.expose.enabled enables or disables exposure of Percona XtraDB Cluster instances,

pxc.expose.type defines the Kubernetes Service object type.

The following example creates a dedicated LoadBalancer Service for each node of the MySQL cluster:

When the cluster instances are exposed in this way, you can find the corresponding Services with the kubectl get services command:

As you could notice, this command also shows mapped ports the application can use to communicate with MySQL instances (e.g. 3306 for the classic

MySQL protocol, or 33060 for MySQL X Protocol useful for operations such as asynchronous calls).

pxc:

expose:

enabled: true

type: LoadBalancer

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

...

cluster1-pxc-0 LoadBalancer 10.120.15.23 34.132.93.114 3306:30771/TCP

111s

cluster1-pxc-1 LoadBalancer 10.120.8.132 35.188.39.15 3306:30832/TCP

111s

cluster1-pxc-2 LoadBalancer 10.120.14.65 34.16.25.126 3306:32018/TCP

111s

https://dev.mysql.com/doc/dev/mysql-server/latest/page_mysqlx_protocol.html
https://dev.mysql.com/doc/dev/mysql-server/latest/page_mysqlx_protocol.html
https://dev.mysql.com/doc/dev/mysql-server/latest/page_mysqlx_protocol.html

Page 91

Changing MySQL Options
You may require a configuration change for your application. MySQL allows the option to configure the database with a configuration file. You can pass

options from the my.cnf configuration file to be included in the MySQL configuration in one of the following ways:

edit the deploy/cr.yaml file,

use a ConfigMap,

use a Secret object.

Often there’s no need to add custom options, as the Operator takes care of providing MySQL with reasonable defaults. Also, some MySQL options can not be

changed: you shouldn’t change require_secure_transport option to ON , as it would break the behavior of the Operator.

If you still need something equal to require_secure_transport=ON to force encrypted connections between client and server, the most convenient workaround would be creating

MySQL users with REQUIRE SSL option.

If you provide custom configuration to the Operator with several different ways at once, it will choose only one. First, it looks for a Secret object. If no matching

Secrets are found, it looks for a custom configuration specified in the Custom Resource (the one provided via the deploy/cr.yaml file). If it wasn’t found

either, the Operator searches for a ConfigMap.

Edit the deploy/cr.yaml file
You can add options from the my.cnf configuration file by editing the configuration section of the deploy/cr.yaml . Here is an example:

See the Custom Resource options, PXC section for more details.

Use a ConfigMap
You can use a configmap and the cluster restart to reset configuration options. A configmap allows Kubernetes to pass or update configuration data inside a

containerized application.

Use the kubectl command to create the configmap from external resources, for more information see Configure a Pod to use a ConfigMap .

For example, let’s suppose that your application requires more connections. To increase your max_connections setting in MySQL, you define a my.cnf

configuration file with the following setting:

You can create a configmap from the my.cnf file with the kubectl create configmap command.

You should use the combination of the cluster name with the -pxc suffix as the naming convention for the configmap. To find the cluster name, you can use

the following command:

The syntax for kubectl create configmap command is:

Note

spec:

secretsName: cluster1-secrets

pxc:

...

configuration: |

[mysqld]

wsrep_debug=CLIENT

[sst]

wsrep_debug=CLIENT

[mysqld]

...

max_connections=250

$ kubectl get pxc

https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

Page 92

The following example defines cluster1-pxc as the configmap name and the my.cnf file as the data source:

To view the created configmap, use the following command:

Use a Secret Object
The Operator can also store configuration options in Kubernetes Secrets . This can be useful if you need additional protection for some sensitive data.

You should create a Secret object with a specific name, composed of your cluster name and the pxc suffix.

To find the cluster name, you can use the following command:

Configuration options should be put inside a specific key inside of the data section. The name of this key is my.cnf for Percona XtraDB Cluster Pods.

Actual options should be encoded with Base64 .

For example, let’s define a my.cnf configuration file and put there a pair of MySQL options we used in the previous example:

You can get a Base64 encoded string from your options via the command line as follows:

Similarly, you can read the list of options from a Base64 encoded string:

Finally, use a yaml file to create the Secret object. For example, you can create a deploy/my-pxc-secret.yaml file with the following contents:

When ready, apply it with the following command:

$ kubectl create configmap <cluster-name>-pxc <resource-type=resource-name>

$ kubectl create configmap cluster1-pxc --from-file=my.cnf

$ kubectl describe configmaps cluster1-pxc

Note

$ kubectl get pxc

[mysqld]

wsrep_debug=CLIENT

[sst]

wsrep_debug=CLIENT

in Linux

in macOS

$ cat my.cnf | base64 --wrap=0

$ cat my.cnf | base64

Note

$ echo "W215c3FsZF0Kd3NyZXBfZGVidWc9T04KW3NzdF0Kd3NyZXBfZGVidWc9T04K" | base64 --decode

apiVersion: v1

kind: Secret

metadata:

name: cluster1-pxc

data:

my.cnf: "W215c3FsZF0Kd3NyZXBfZGVidWc9T04KW3NzdF0Kd3NyZXBfZGVidWc9T04K"

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64

Page 93

Do not forget to restart Percona XtraDB Cluster to ensure the cluster has updated the configuration.

Make changed options visible to Percona XtraDB Cluster
Do not forget to restart Percona XtraDB Cluster to ensure the cluster has updated the configuration (see details on how to connect in the Install Percona

XtraDB Cluster on Kubernetes page).

Auto-tuning MySQL options
Few configuration options for MySQL can be calculated and set by the Operator automatically based on the available Pod resource limits (memory and CPU) if

constant values for these options are not specified by user (either in CR.yaml or in ConfigMap).

Options which can be set automatically are the following ones:

innodb_buffer_pool_size

max_connections

If Percona XtraDB Cluster Pod limits are defined, then limits values are used to calculate these options. If Percona XtraDB Cluster Pod limits are not defined,

auto-tuning is not done.

Also, starting from the Operator 1.12.0, there is another way of auto-tuning. You can use "{{ containerMemoryLimit }}" as a value in

spec.pxc.configuration as follows:

$ kubectl create -f deploy/my-pxc-secret.yaml

Note

pxc:

configuration: |

[mysqld]

innodb_buffer_pool_size={{containerMemoryLimit * 3 / 4}}

...

Page 94

Binding Percona XtraDB Cluster components to Specific
Kubernetes/OpenShift Nodes
The operator does good job automatically assigning new Pods to nodes with sufficient to achieve balanced distribution across the cluster. Still there are

situations when it worth to ensure that pods will land on specific nodes: for example, to get speed advantages of the SSD equipped machine, or to reduce

costs choosing nodes in a same availability zone.

Appropriate sections of the deploy/cr.yaml file (such as pxc , haproxy , and proxysql) contain keys which can be used to do this, depending on what is

the best for a particular situation.

Node selector
nodeSelector contains one or more key-value pairs. If the node is not labeled with each key-value pair from the Pod’s nodeSelector , the Pod will not be

able to land on it.

The following example binds the Pod to any node having a self-explanatory disktype: ssd label:

Affinity and anti-affinity
Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which already has Pods with specific labels. Particularly this

approach is good to to reduce costs making sure several Pods with intensive data exchange will occupy the same availability zone or even the same node - or,

on the contrary, to make them land on different nodes or even different availability zones for the high availability and balancing purposes.

Percona Operator for MySQL provides two approaches for doing this:

simple way to set anti-affinity for Pods, built-in into the Operator,

more advanced approach based on using standard Kubernetes constraints.

Simple approach - use topologyKey of the Percona Operator for MySQL

Percona Operator for MySQL provides a topologyKey option, which may have one of the following values:

kubernetes.io/hostname - Pods will avoid residing within the same host,

topology.kubernetes.io/zone - Pods will avoid residing within the same zone,

topology.kubernetes.io/region - Pods will avoid residing within the same region,

none - no constraints are applied.

The following example forces Percona XtraDB Cluster Pods to avoid occupying the same node:

Advanced approach - use standard Kubernetes constraints

Previous way can be used with no special knowledge of the Kubernetes way of assigning Pods to specific nodes. Still in some cases more complex tuning

may be needed. In this case advanced option placed in the deploy/cr.yaml file turns off the effect of the topologyKey and allows to use standard

Kubernetes affinity constraints of any complexity:

nodeSelector:

disktype: ssd

affinity:

topologyKey: "kubernetes.io/hostname"

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml

Page 95

See explanation of the advanced affinity options in Kubernetes documentation .

Tolerations
Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is expressed as a key with and operator , which is either

exists or equal (the latter variant also requires a value the key is equal to). Moreover, toleration should have a specified effect , which may be a self-

explanatory NoSchedule , less strict PreferNoSchedule , or NoExecute . The last variant means that if a taint with NoExecute is assigned to node, then any

Pod not tolerating this taint will be removed from the node, immediately or after the tolerationSeconds interval, like in the following example:

The Kubernetes Taints and Toleratins contains more examples on this topic.

Priority Classes
Pods may belong to some priority classes. This allows scheduler to distinguish more and less important Pods to resolve the situation when some higher

priority Pod cannot be scheduled without evicting a lower priority one. This can be done adding one or more PriorityClasses in your Kubernetes cluster, and

specifying the PriorityClassName in the deploy/cr.yaml file:

See the Kubernetes Pods Priority and Preemption documentation to find out how to define and use priority classes in your cluster.

affinity:

advanced:

podAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

- labelSelector:

matchExpressions:

- key: security

operator: In

values:

- S1

topologyKey: topology.kubernetes.io/zone

podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- weight: 100

podAffinityTerm:

labelSelector:

matchExpressions:

- key: security

operator: In

values:

- S2

topologyKey: kubernetes.io/hostname

nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:

- matchExpressions:

- key: kubernetes.io/e2e-az-name

operator: In

values:

- e2e-az1

- e2e-az2

preferredDuringSchedulingIgnoredDuringExecution:

- weight: 1

preference:

matchExpressions:

- key: another-node-label-key

operator: In

values:

- another-node-label-value

tolerations:

- key: "node.alpha.kubernetes.io/unreachable"

operator: "Exists"

effect: "NoExecute"

tolerationSeconds: 6000

priorityClassName: high-priority

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption

Page 96

Pod Disruption Budgets
Creating the Pod Disruption Budget is the Kubernetes style to limits the number of Pods of an application that can go down simultaneously due to such

voluntary disruptions as cluster administrator’s actions during the update of deployments or nodes, etc. By such a way Distribution Budgets allow large

applications to retain their high availability while maintenance and other administrative activities.

We recommend to apply Pod Disruption Budgets manually to avoid situation when Kubernetes stopped all your database Pods. See the official Kubernetes

documentation for details.

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/

Page 97

Labels and annotations
Labels and annotations are used to attach additional metadata information to Kubernetes resources.

Labels and annotations are rather similar. The difference between them is that labels are used by Kubernetes to identify and select objects, while annotations

are assigning additional non-identifying information to resources. Therefore, typical role of Annotations is facilitating integration with some external tools.

Setting labels and annotations in the Custom Resource
You can set labels and/or annotations as key/value string pairs in the Custom Resource metadata section of the deploy/cr.yaml as follows:

Setting percona.com/issue-vault-token: "true" annotation is just an example, but this exact annotation has a special meaning. If you add this annotation present and have

HashiCorp Vault installed (for example, it is used for data at rest encryption), the Operator will not start a cluster but will be printing a wait for token issuing log message in

a loop until the annotation is deleted (for example, this can be combined with a user’s automation script making some Vault-related preparations).

The easiest way to check which labels are attached to a specific object with is using the additional --show-labels option of the kubectl get command.

Checking the annotations is not much more difficult: it can be done as in the following example:

Specifying labels and annotations ignored by the Operator
Sometimes various Kubernetes flavors can add their own annotations to the objects managed by the Operator.

The Operator keeps track of all changes to its objects and can remove annotations that appeared without its participation.

If there are no annotations or labels in the Custom Resource, the Operator does nothing if new label or annotation added to the object.

If there is an annotation or a label specified in the Custom Resource, the Operator starts to manage annotations and labels. In this case it removes unknown

annotations and labels.

Still, it is possible to specify which annotations and labels should be ignored by the Operator by listing them in the spec.ignoreAnnotations or

spec.ignoreLabels keys of the deploy/cr.yaml , as follows:

The Operator will ignore any Service annotation or label, key of which starts with the mentioned above examples. For example, the following annotations and

labels will be ignored after applying the above cr.yaml fragment:

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBCluster

metadata:

name: cluster1

annotations:

percona.com/issue-vault-token: "true"

labels:

...

Note

$ kubectl get pod cluster1-pxc-0 -o jsonpath='{.metadata.annotations}'

spec:

ignoreAnnotations:

- some.custom.cloud.annotation/smth

ignoreLabels:

- some.custom.cloud.label/smth

...

annotations:

some.custom.cloud.annotation/smth: somethinghere

labels:

some.custom.cloud.label/smth: somethinghere

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.vaultproject.io/

Page 98

Local Storage support for the Percona Operator for MySQL
Among the wide rage of volume types, available in Kubernetes, there are some which allow Pod containers to access part of the local filesystem on the node.

Two such options provided by Kubernetes itself are emptyDir and hostPath volumes. More comprehensive setups require additional components, such as

OpenEBS Container Attached Storage solution

emptyDir
The name of this option is self-explanatory. When Pod having an emptyDir volume is assigned to a Node, a directory with the specified name is created on

this node and exists until this Pod is removed from the node. When the Pod have been deleted, the directory is deleted too with all its content. All containers in

the Pod which have mounted this volume will gain read and write access to the correspondent directory.

The emptyDir options in the deploy/cr.yaml file can be used to turn the emptyDir volume on by setting the directory name.

hostPath
A hostPath volume mounts some existing file or directory from the node’s filesystem into the Pod.

The volumeSpec.hostPath subsection in the deploy/cr.yaml file may include path and type keys to set the node’s filesystem object path and to specify

whether it is a file, a directory, or something else (e.g. a socket):

Please note, that hostPath directory is not created automatically! It should be created manually on the node’s filesystem. Also, it should have the attributives

(access permissions, ownership, SELinux security context) which would allow Pod to access the correspondent filesystem objects according to

pxc.containerSecurityContext and pxc.podSecurityContext.

hostPath is useful when you are able to perform manual actions during the first run and have strong need in improved disk performance. Also, please

consider using tolerations to avoid cluster migration to different hardware in case of a reboot or a hardware failure.

More details can be found in the official hostPath Kubernetes documentation .

OpenEBS Local Persistent Volume Hostpath
Both emptyDir and hostPath volumes do not support Dynamic Volume Provisioning . Options that allow combining Dynamic Volume Provisioning with Local

Persistent Volumes are provided by OpenEBS . Particularly, OpenEBS Local PV Hostpath allows creating Kubernetes Local Persistent Volumes using a

directory (Hostpath) on the node. Such volume can be further accessed by applications via Storage Class and PersistentVolumeClaim .

Using it involves the following steps.

1. Install OpenEBS on your system along with the official installation guide .

2. Define a new Kubernetes Storage Class with OpenEBS with the YAML file (e. g. local-hostpath.yaml) as follows:

volumeSpec:

hostPath:

path: /data

type: Directory

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: localpv

annotations:

openebs.io/cas-type: local

cas.openebs.io/config: |

- name: StorageType

value: hostpath

- name: BasePath

value: /var/local-hostpath

provisioner: openebs.io/local

reclaimPolicy: Delete

volumeBindingMode: WaitForFirstConsumer

https://openebs.io/
https://openebs.io/
https://openebs.io/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://openebs.io/
https://openebs.io/
https://openebs.io/
https://openebs.io/docs/user-guides/localpv-hostpath
https://openebs.io/docs/user-guides/localpv-hostpath
https://openebs.io/docs/user-guides/localpv-hostpath
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://openebs.io/docs/user-guides/installation
https://openebs.io/docs/user-guides/installation
https://openebs.io/docs/user-guides/installation
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Page 99

Two things to edit in this example are the metadata.name key (you will use it as a storage class name) and the value option under the

cas.openebs.io/config (it should point to an already existing directory on the local filesystem of your node).

When ready, apply the file with the kubectl apply -f local-hostpath.yaml command.

3. Now you can deploy the Operator and Percona XtraDB Cluster using this StorageClass in deploy/cr.yaml :

There are other storage options provided by the OpenEBS, which may be helpful within your cluster setup. Look at the OpenEBS for the Management of Kubernetes Storage Volumes

 blog post for more examples. Also, consider looking at the Measuring OpenEBS Local Volume Performance Overhead in Kubernetes post.

...

volumeSpec:

persistentVolumeClaim:

storageClassName: localpv

accessModes: ["ReadWriteOnce"]

resources:

requests:

storage: 200Gi

Note

https://www.percona.com/blog/2020/11/09/openebs-for-the-management-of-kubernetes-storage-volumes/
https://www.percona.com/blog/2020/11/09/openebs-for-the-management-of-kubernetes-storage-volumes/
https://www.percona.com/blog/2020/11/09/openebs-for-the-management-of-kubernetes-storage-volumes/
https://www.percona.com/blog/2020/11/09/openebs-for-the-management-of-kubernetes-storage-volumes/
https://www.percona.com/blog/2020/11/12/measuring-openebs-local-volume-performance-overhead-in-kubernetes/
https://www.percona.com/blog/2020/11/12/measuring-openebs-local-volume-performance-overhead-in-kubernetes/
https://www.percona.com/blog/2020/11/12/measuring-openebs-local-volume-performance-overhead-in-kubernetes/

Page 100

Define environment variables
Sometimes you need to define new environment variables to provide additional configuration for the components of your cluster. For example, you can use it

to customize the configuration of HAProxy, or to add additional options for PMM Client.

The Operator can store environment variables in Kubernetes Secrets . Here is an example with several options related to HAProxy:

Variables used in this example have the following effect:

HA_CONNECTION_TIMEOUT allows to set custom timeout for health checks done by HAProxy (it repeatedly executes a simple status query on XtraDB Cluster instances). The

default 10 seconds timeout is good for most workloads, but increase should be helpful in case of unstable Kubernetes network or soft lockups happening on Kubernetes nodes.

OK_IF_DONOR allows application connections to XtraDB Cluster donors. The backup is running on the donor node, and SQL queries combined with it could run slower than usual.

Enable the option to grant application access when there is only one XtraDB Cluster node alive, and a second XtraDB Cluster node is joining the cluster via SST.

HA_SERVER_OPTIONS allows to set the custom options for the server in the HAProxy configuration file. You can start with the default check inter 30000 rise 1 fall 5

weight 1 set, and add required options referenced in the upstream documentation .

As you can see, environment variables are stored as data - i.e., base64-encoded strings, so you’ll need to encode the value of each variable. For example, To

have HA_CONNECTION_TIMEOUT variable equal to 1000 , you can run echo -n "1000" | base64 --wrap=0 (or just echo -n "1000" | base64 in case of

Apple macOS) in your local shell and get MTAwMA== .

Similarly, you can read the list of options from a Base64-encoded string:

When ready, apply the YAML file with the following command:

Put the name of this Secret to the envVarsSecret key either in pxc , haproxy or proxysql section of the deploy/cr.yaml` configuration file:

Now apply the deploy/cr.yaml file with the following command:

Another example shows how to pass LD_PRELOAD environment variable with the alternative memory allocator library name to mysqld. It’s often a

recommended practice to try using an alternative allocator library for mysqld in case the memory usage is suspected to be higher than expected, and you can

use jemalloc allocator already present in Percona XtraDB Cluster Pods with the following environment variable:

Create a new YAML file with the contents similar to the previous example, but with LD_PRELOAD variable, stored as base64-encoded strings:

apiVersion: v1

kind: Secret

metadata:

name: my-env-var-secrets

type: Opaque

data:

HA_CONNECTION_TIMEOUT: MTAwMA==

OK_IF_DONOR: MQ==

HA_SERVER_OPTIONS: Y2hlY2sgaW50ZXIgMzAwMDAgcmlzZSAxIGZhbGwgNSB3ZWlnaHQgMQ==

Note

Note

$ echo "MTAwMA==" | base64 --decode

$ kubectl create -f deploy/my-env-secret.yaml

haproxy:

....

envVarsSecret: my-env-var-secrets

....

$ kubectl apply -f deploy/cr.yaml

LD_PRELOAD=/usr/lib64/libjemalloc.so.1

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.haproxy.org/2.6/configuration.html#5
https://docs.haproxy.org/2.6/configuration.html#5
https://docs.haproxy.org/2.6/configuration.html#5
https://docs.haproxy.org/2.6/configuration.html#5.2
https://docs.haproxy.org/2.6/configuration.html#5.2
https://docs.haproxy.org/2.6/configuration.html#5.2

Page 101

If this YAML file was named deploy/my-new-env-var-secret , the command to apply it will be the following one:

Now put the name of this new Secret to the envVarsSecret key in pxc section of the deploy/cr.yaml` configuration file:

Don’t forget to apply the deploy/cr.yaml file, as usual:

apiVersion: v1

kind: Secret

metadata:

name: my-new-env-var-secrets

type: Opaque

data:

LD_PRELOAD: L3Vzci9saWI2NC9saWJqZW1hbGxvYy5zby4x

$ kubectl create -f deploy/my-new-env-secret.yaml

pxc:

....

envVarsSecret: my-new-env-var-secrets

....

$ kubectl apply -f deploy/cr.yaml

Page 102

Configuring Load Balancing with HAProxy
You can use either HAProxy or ProxySQL for load balancing and proxy services.

You can control which one to use, if any, by enabling or disabling via the haproxy.enabled and proxysql.enabled options in the deploy/cr.yaml

configuration file.

Use the following command to enable HAProxy:

Switching from ProxySQL to HAProxy will cause Percona XtraDB Cluster Pods restart. Switching from HAProxy to ProxySQL is not possible, and if you need ProxySQL, this should be

configured at cluster creation time.

HAProxy services
The Operator creates two services for HAProxy:

cluster1-haproxy service

The cluster1-haproxy service listens on the following ports:

3306 is the default MySQL port. It is used by the mysql client, MySQL Connectors, and utilities such as mysqldump and mysqlpump

3309 is the proxy protocol port. Proxy protocol is used to store the client’s IP address

33062 is the port to connect to the MySQL Administrative Interface

33060 is the port for the MySQLX protocol . It is supported by clients such as MySQL Shell, MySQL Connectors and MySQL Router

8404 is the port to connect to the HAProxy statistics page

The haproxy.enabled Custom Resource option enables or disables cluster1-haproxy service.

By default, the cluster1-haproxy service points to the number zero Percona XtraDB Cluster member (cluster1-pxc-0), when this member is available. If

a zero member is not available, members are selected in descending order of their numbers: cluster1-pxc-2 , then cluster1-pxc-1 . This service can be

used for both read and write load, or it can also be used just for write load (single writer mode) in setups with split write and read loads.

The haproxy.exposePrimary.enabled Custom Resource option enables or disables the cluster1-haproxy service.

cluster1-haproxy-replicas service

The cluster1-haproxy-replicas service listens on port 3306 (MySQL).

This service selects Percona XtraDB Cluster members to serve queries following the Round Robin load balancing algorithm.

Don’t use it for write requests.

The haproxy.exposeReplicas.enabled Custom Resource option enables or disables cluster1-haproxy-replicas service (on by default).

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"haproxy": {

"enabled": true,

"size": 3,

"image": "percona/percona-xtradb-cluster-operator:1.17.0-haproxy" },

"proxysql": { "enabled": false }

}}'

Warning

https://haproxy.org/
https://haproxy.org/
https://haproxy.org/
https://proxysql.com/
https://proxysql.com/
https://proxysql.com/
https://www.haproxy.com/blog/haproxy/proxy-protocol/
https://www.haproxy.com/blog/haproxy/proxy-protocol/
https://www.haproxy.com/blog/haproxy/proxy-protocol/
https://dev.mysql.com/doc/dev/mysql-server/8.4.3/PAGE_PROTOCOL.html
https://dev.mysql.com/doc/dev/mysql-server/8.4.3/PAGE_PROTOCOL.html
https://dev.mysql.com/doc/dev/mysql-server/8.4.3/PAGE_PROTOCOL.html
https://www.haproxy.com/blog/exploring-the-haproxy-stats-page
https://www.haproxy.com/blog/exploring-the-haproxy-stats-page
https://www.haproxy.com/blog/exploring-the-haproxy-stats-page

Page 103

If you need to configure cluster1-haproxy and cluster1-haproxy-replicas as a headless Service (e.g. to use on the tenant network), add the following annotation in the

Custom Resource metadata section of the deploy/cr.yaml :

yaml

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBCluster

metadata:

name: cluster1

annotations:

percona.com/headless-service: true

...

This annotation works only at service creation time and can’t be added later.

When the cluster with HAProxy is upgraded, the following steps take place. First, reader members are upgraded one by one: the Operator waits until the

upgraded Percona XtraDB Cluster member becomes synced, and then proceeds to upgrade the next member. When the upgrade is finished for all the readers,

then the writer Percona XtraDB Cluster member is finally upgraded.

Exposing HAProxy
You can expose HAProxy, so that clients can connect to your database cluster from the outside. To do so, you need to set the service type LoadBalancer for

the haproxy-primary service.

By default, the HAProxy is available for all clients. If you need to restrict the client IP addresses from which the load balancer should be reachable, list these IP

addresses in the loadBalancerSourceRanges option.

Edit the deploy/cr.yaml Custom Resource manifest and specify the following configuration:

Note that the haproxy-replica service inherits this setup. You can override it for the haproxy-replica service by setting the IP ranges to access the

cluster for read requests. The configuration for the haproxy-replica service will be as follows:

Passing custom configuration options to HAProxy
You can pass custom configuration to HAProxy in one of the following ways:

edit the deploy/cr.yaml file,

use a ConfigMap,

use a Secret object.

If you specify a custom HAProxy configuration in this way, the Operator doesn’t provide its own HAProxy configuration file except several hardcoded options (which therefore

can’t be overwritten). That’s why you should specify either a full set of configuration options or nothing. Additionally, when upgrading Percona XtraDB Cluster it would be wise to

check the HAProxy configuration file provided by the Operator and make sure that your custom config is still compatible with the new variant.

Note

spec:

haproxy:

exposePrimary:

type: LoadBalancer

loadBalancerSourceRanges:

- 10.0.0.0/8

spec:

haproxy:

enabled: true

exposeReplicas:

enabled: true

type: LoadBalancer

Note

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg
https://github.com/percona/percona-docker/blob/pxc-operator-1.17.0/haproxy/dockerdir/etc/haproxy/haproxy-global.cfg

Page 104

Edit the deploy/cr.yaml file

You can add options from the haproxy.cfg configuration file by editing haproxy.configuration key in the deploy/cr.yaml file. Here is an example:

Use a ConfigMap

You can use a configmap and the cluster restart to reset configuration options. A configmap allows Kubernetes to pass or update configuration data inside a

containerized application.

Use the kubectl command to create the configmap from external resources, for more information see Configure a Pod to use a ConfigMap .

For example, you define a haproxy.cfg configuration file with the following setting:

...

haproxy:

enabled: true

size: 3

image: percona/percona-xtradb-cluster-operator:1.17.0-haproxy

configuration: |

global

maxconn 2048

external-check

stats socket /var/run/haproxy.sock mode 600 expose-fd listeners level user

defaults

log global

mode tcp

retries 10

timeout client 10000

timeout connect 100500

timeout server 10000

frontend galera-in

bind *:3309 accept-proxy

bind *:3306

mode tcp

option clitcpka

default_backend galera-nodes

frontend galera-admin-in

bind *:33062

mode tcp

option clitcpka

default_backend galera-admin-nodes

frontend galera-replica-in

bind *:3307

mode tcp

option clitcpka

default_backend galera-replica-nodes

frontend galera-mysqlx-in

bind *:33060

mode tcp

option clitcpka

default_backend galera-mysqlx-nodes

frontend stats

bind *:8404

mode http

http-request use-service prometheus-exporter if { path /metrics }

https://www.haproxy.com/blog/the-four-essential-sections-of-an-haproxy-configuration/
https://www.haproxy.com/blog/the-four-essential-sections-of-an-haproxy-configuration/
https://www.haproxy.com/blog/the-four-essential-sections-of-an-haproxy-configuration/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

Page 105

You can create a configmap from the haproxy.cfg file with the kubectl create configmap command.

You should use the combination of the cluster name with the -haproxy suffix as the naming convention for the configmap. To find the cluster name, you can

use the following command:

The syntax for kubectl create configmap command is:

The following example defines cluster1-haproxy as the configmap name and the haproxy.cfg file as the data source:

To view the created configmap, use the following command:

Use a Secret Object

The Operator can also store configuration options in Kubernetes Secrets . This can be useful if you need additional protection for some sensitive data.

You should create a Secret object with a specific name, composed of your cluster name and the haproxy suffix.

global

maxconn 2048

external-check

stats socket /var/run/haproxy.sock mode 600 expose-fd listeners level user

defaults

log global

mode tcp

retries 10

timeout client 10000

timeout connect 100500

timeout server 10000

frontend galera-in

bind *:3309 accept-proxy

bind *:3306

mode tcp

option clitcpka

default_backend galera-nodes

frontend galera-admin-in

bind *:33062

mode tcp

option clitcpka

default_backend galera-admin-nodes

frontend galera-replica-in

bind *:3307

mode tcp

option clitcpka

default_backend galera-replica-nodes

frontend galera-mysqlx-in

bind *:33060

mode tcp

option clitcpka

default_backend galera-mysqlx-nodes

frontend stats

bind *:8404

mode http

http-request use-service prometheus-exporter if { path /metrics }

$ kubectl get pxc

kubectl create configmap <cluster-name>-haproxy <resource-type=resource-name>

$ kubectl create configmap cluster1-haproxy --from-file=haproxy.cfg

$ kubectl describe configmaps cluster1-haproxy

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 106

To find the cluster name, you can use the following command:

Configuration options should be put inside a specific key inside of the data section. The name of this key is haproxy.cfg for ProxySQL Pods.

Actual options should be encoded with Base64 .

For example, let’s define a haproxy.cfg configuration file and put there options we used in the previous example:

You can get a Base64 encoded string from your options via the command line as follows:

Note

$ kubectl get pxc

global

maxconn 2048

external-check

stats socket /var/run/haproxy.sock mode 600 expose-fd listeners level user

defaults

log global

mode tcp

retries 10

timeout client 10000

timeout connect 100500

timeout server 10000

frontend galera-in

bind *:3309 accept-proxy

bind *:3306

mode tcp

option clitcpka

default_backend galera-nodes

frontend galera-admin-in

bind *:33062

mode tcp

option clitcpka

default_backend galera-admin-nodes

frontend galera-replica-in

bind *:3307

mode tcp

option clitcpka

default_backend galera-replica-nodes

frontend galera-mysqlx-in

bind *:33060

mode tcp

option clitcpka

default_backend galera-mysqlx-nodes

frontend stats

bind *:8404

mode http

http-request use-service prometheus-exporter if { path /metrics }

in Linux

in macOS

$ cat haproxy.cfg | base64 --wrap=0

$ cat haproxy.cfg | base64

https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64

Page 107

Similarly, you can read the list of options from a Base64 encoded string:

Finally, use a yaml file to create the Secret object. For example, you can create a deploy/my-haproxy-secret.yaml file with the following contents:

When ready, apply it with the following command:

Do not forget to restart Percona XtraDB Cluster to ensure the cluster has updated the configuration.

Enabling the Proxy protocol
The Proxy protocol allows HAProxy to provide a real client address to Percona XtraDB Cluster.

To use this feature, you should have a Percona XtraDB Cluster image version 8.0.21 or newer.

Normally Proxy protocol is disabled, and Percona XtraDB Cluster sees the IP address of the proxying server (HAProxy) instead of the real client address. But

there are scenarios when making real client IP-address visible for Percona XtraDB Cluster is important: e.g. it allows to have privilege grants based on

client/application address, and significantly enhance auditing.

You can enable Proxy protocol on Percona XtraDB Cluster by adding proxy_protocol_networks option to pxc.configuration key in the deploy/cr.yaml

configuration file.

Depending on the load balancer of your cloud provider, you may also need setting haproxy.externaltrafficpolicy option in deploy/cr.yaml .

More information about Proxy protocol can be found in the official HAProxy documentation .

Note

$ echo "IGdsb2JhbAogICBtYXhjb25uIDIwNDgKICAgZXh0ZXJuYWwtY2hlY2sKICAgc3RhdHMgc29ja2V0\

IC92YXIvcnVuL2hhcHJveHkuc29jayBtb2RlIDYwMCBleHBvc2UtZmQgbGlzdGVuZXJzIGxldmVs\

IHVzZXIKIGRlZmF1bHRzCiAgIGxvZyBnbG9iYWwKICAgbW9kZSB0Y3AKICAgcmV0cmllcyAxMAog\

ICB0aW1lb3V0IGNsaWVudCAxMDAwMAogICB0aW1lb3V0IGNvbm5lY3QgMTAwNTAwCiAgIHRpbWVv\

dXQgc2VydmVyIDEwMDAwCiBmcm9udGVuZCBnYWxlcmEtaW4KICAgYmluZCAqOjMzMDkgYWNjZXB0\

LXByb3h5CiAgIGJpbmQgKjozMzA2CiAgIG1vZGUgdGNwCiAgIG9wdGlvbiBjbGl0Y3BrYQogICBk\

ZWZhdWx0X2JhY2tlbmQgZ2FsZXJhLW5vZGVzCiBmcm9udGVuZCBnYWxlcmEtcmVwbGljYS1pbgog\

ICBiaW5kICo6MzMwOSBhY2NlcHQtcHJveHkKICAgYmluZCAqOjMzMDcKICAgbW9kZSB0Y3AKICAg\

b3B0aW9uIGNsaXRjcGthCiAgIGRlZmF1bHRfYmFja2VuZCBnYWxlcmEtcmVwbGljYS1ub2Rlcwo=" | base64 --decode

apiVersion: v1

kind: Secret

metadata:

name: cluster1-haproxy

data:

haproxy.cfg: "IGdsb2JhbAogICBtYXhjb25uIDIwNDgKICAgZXh0ZXJuYWwtY2hlY2sKICAgc3RhdHMgc29ja2V0\

IC92YXIvcnVuL2hhcHJveHkuc29jayBtb2RlIDYwMCBleHBvc2UtZmQgbGlzdGVuZXJzIGxldmVs\

IHVzZXIKIGRlZmF1bHRzCiAgIGxvZyBnbG9iYWwKICAgbW9kZSB0Y3AKICAgcmV0cmllcyAxMAog\

ICB0aW1lb3V0IGNsaWVudCAxMDAwMAogICB0aW1lb3V0IGNvbm5lY3QgMTAwNTAwCiAgIHRpbWVv\

dXQgc2VydmVyIDEwMDAwCiBmcm9udGVuZCBnYWxlcmEtaW4KICAgYmluZCAqOjMzMDkgYWNjZXB0\

LXByb3h5CiAgIGJpbmQgKjozMzA2CiAgIG1vZGUgdGNwCiAgIG9wdGlvbiBjbGl0Y3BrYQogICBk\

ZWZhdWx0X2JhY2tlbmQgZ2FsZXJhLW5vZGVzCiBmcm9udGVuZCBnYWxlcmEtcmVwbGljYS1pbgog\

ICBiaW5kICo6MzMwOSBhY2NlcHQtcHJveHkKICAgYmluZCAqOjMzMDcKICAgbW9kZSB0Y3AKICAg\

b3B0aW9uIGNsaXRjcGthCiAgIGRlZmF1bHRfYmFja2VuZCBnYWxlcmEtcmVwbGljYS1ub2Rlcwo="

$ kubectl create -f deploy/my-haproxy-secret.yaml

Note

Note

Note

https://docs.percona.com/percona-server/innovation-release/proxy-protocol-support.html
https://docs.percona.com/percona-server/innovation-release/proxy-protocol-support.html
https://docs.percona.com/percona-server/innovation-release/proxy-protocol-support.html
https://docs.percona.com/percona-server/innovation-release/proxy-protocol-support.html#proxy_protocol_networks
https://docs.percona.com/percona-server/innovation-release/proxy-protocol-support.html#proxy_protocol_networks
https://docs.percona.com/percona-server/innovation-release/proxy-protocol-support.html#proxy_protocol_networks
https://www.haproxy.com/blog/using-haproxy-with-the-proxy-protocol-to-better-secure-your-database/
https://www.haproxy.com/blog/using-haproxy-with-the-proxy-protocol-to-better-secure-your-database/
https://www.haproxy.com/blog/using-haproxy-with-the-proxy-protocol-to-better-secure-your-database/

Page 108

Configuring Load Balancing with ProxySQL
You can use either HAProxy or ProxySQL for load balancing and proxy services.

You can control which one to use: enable or disable the haproxy.enabled and proxysql.enabled options in the deploy/cr.yaml configuration file.

You can enable ProxySQL only when you create a cluster. For a running cluster you can enable only HAProxy. Also note, if you have already enabled HAProxy, the switch from it to

ProxySQL is not possible.

cluster1-proxysql service
The cluster1-proxysql service listens on the following ports:

3306 is the default MySQL port. It is used by the mysql client, MySQL Connectors, and utilities such as mysqldump and mysqlpump

33062 is the port to connect to the MySQL Administrative Interface

6070 is the port to connect to the built-in Prometheus exporter to gather ProxySQL statistics and manage the ProxySQL observability stack

The cluster1-proxysql service uses the number zero Percona XtraDB Cluster member (cluster1-pxc-0 by default) as the writer.

proxysql.expose.enabled Custom Resource option enables or disables the cluster1-proxysql service.

If you need to configure ProxySQL service as a headless Service (e.g. to use on the tenant network), add the following annotation in the Custom Resource metadata section of

the deploy/cr.yaml :

This annotation works only at service creation time and can’t be added later.

When a cluster with ProxySQL is upgraded, the following steps take place. First, reader members are upgraded one by one: the Operator waits until the

upgraded member shows up in ProxySQL with online status, and then proceeds to upgrade the next member. When the upgrade is finished for all the readers,

then the writer Percona XtraDB Cluster member is finally upgraded.

when both ProxySQL and Percona XtraDB Cluster are upgraded, they are upgraded in parallel.

Passing custom configuration options to ProxySQL
You can pass custom configuration to ProxySQL

edit the deploy/cr.yaml file,

use a ConfigMap,

use a Secret object.

If you specify a custom ProxySQL configuration in this way, ProxySQL will try to merge the passed parameters with the previously set configuration parameters, if any. If ProxySQL

fails to merge some option, you will see a warning in its log.

Warning

Note

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBCluster

metadata:

name: cluster1

annotations:

percona.com/headless-service: true

...

Note

Note

https://haproxy.org/
https://haproxy.org/
https://haproxy.org/
https://proxysql.com/
https://proxysql.com/
https://proxysql.com/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

Page 109

Edit the deploy/cr.yaml file

You can add options from the proxysql.cnf configuration file by editing the proxysql.configuration key in the deploy/cr.yaml file. Here is an

example:

Use a ConfigMap

You can use a configmap and the cluster restart to reset configuration options. A configmap allows Kubernetes to pass or update configuration data inside a

containerized application.

Use the kubectl command to create the configmap from external resources, for more information see Configure a Pod to use a ConfigMap .

For example, you define a proxysql.cnf configuration file with the following setting:

...

proxysql:

enabled: true

size: 3

image: percona/percona-xtradb-cluster-operator:1.17.0-proxysql

configuration: |

datadir="/var/lib/proxysql"

admin_variables =

{

admin_credentials="proxyadmin:admin_password"

mysql_ifaces="0.0.0.0:6032"

refresh_interval=2000

restapi_enabled=true

restapi_port=6070

cluster_username="proxyadmin"

cluster_password="admin_password"

cluster_check_interval_ms=200

cluster_check_status_frequency=100

cluster_mysql_query_rules_save_to_disk=true

cluster_mysql_servers_save_to_disk=true

cluster_mysql_users_save_to_disk=true

cluster_proxysql_servers_save_to_disk=true

cluster_mysql_query_rules_diffs_before_sync=1

cluster_mysql_servers_diffs_before_sync=1

cluster_mysql_users_diffs_before_sync=1

cluster_proxysql_servers_diffs_before_sync=1

}

mysql_variables=

{

monitor_password="monitor"

monitor_galera_healthcheck_interval=1000

threads=2

max_connections=2048

default_query_delay=0

default_query_timeout=10000

poll_timeout=2000

interfaces="0.0.0.0:3306"

default_schema="information_schema"

stacksize=1048576

connect_timeout_server=10000

monitor_history=60000

monitor_connect_interval=20000

monitor_ping_interval=10000

ping_timeout_server=200

commands_stats=true

sessions_sort=true

have_ssl=true

ssl_p2s_ca="/etc/proxysql/ssl-internal/ca.crt"

ssl_p2s_cert="/etc/proxysql/ssl-internal/tls.crt"

ssl_p2s_key="/etc/proxysql/ssl-internal/tls.key"

ssl_p2s_cipher="ECDHE-RSA-AES128-GCM-SHA256"

}

https://proxysql.com/documentation/configuring-proxysql/
https://proxysql.com/documentation/configuring-proxysql/
https://proxysql.com/documentation/configuring-proxysql/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

Page 110

You can create a configmap from the proxysql.cnf file with the kubectl create configmap command.

You should use the combination of the cluster name with the -proxysql suffix as the naming convention for the configmap. To find the cluster name, you

can use the following command:

The syntax for kubectl create configmap command is:

The following example defines cluster1-proxysql as the configmap name and the proxysql.cnf file as the data source:

To view the created configmap, use the following command:

datadir="/var/lib/proxysql"

admin_variables =

{

admin_credentials="proxyadmin:admin_password"

mysql_ifaces="0.0.0.0:6032"

refresh_interval=2000

restapi_enabled=true

restapi_port=6070

cluster_username="proxyadmin"

cluster_password="admin_password"

cluster_check_interval_ms=200

cluster_check_status_frequency=100

cluster_mysql_query_rules_save_to_disk=true

cluster_mysql_servers_save_to_disk=true

cluster_mysql_users_save_to_disk=true

cluster_proxysql_servers_save_to_disk=true

cluster_mysql_query_rules_diffs_before_sync=1

cluster_mysql_servers_diffs_before_sync=1

cluster_mysql_users_diffs_before_sync=1

cluster_proxysql_servers_diffs_before_sync=1

}

mysql_variables=

{

monitor_password="monitor"

monitor_galera_healthcheck_interval=1000

threads=2

max_connections=2048

default_query_delay=0

default_query_timeout=10000

poll_timeout=2000

interfaces="0.0.0.0:3306"

default_schema="information_schema"

stacksize=1048576

connect_timeout_server=10000

monitor_history=60000

monitor_connect_interval=20000

monitor_ping_interval=10000

ping_timeout_server=200

commands_stats=true

sessions_sort=true

have_ssl=true

ssl_p2s_ca="/etc/proxysql/ssl-internal/ca.crt"

ssl_p2s_cert="/etc/proxysql/ssl-internal/tls.crt"

ssl_p2s_key="/etc/proxysql/ssl-internal/tls.key"

ssl_p2s_cipher="ECDHE-RSA-AES128-GCM-SHA256"

}

$ kubectl get pxc

$ kubectl create configmap <cluster-name>-proxysql <resource-type=resource-name>

$ kubectl create configmap cluster1-proxysql --from-file=proxysql.cnf

$ kubectl describe configmaps cluster1-proxysql

Page 111

Use a Secret Object

The Operator can also store configuration options in Kubernetes Secrets . This can be useful if you need additional protection for some sensitive data.

You should create a Secret object with a specific name, composed of your cluster name and the proxysql suffix.

To find the cluster name, you can use the following command:

Configuration options should be put inside a specific key inside of the data section. The name of this key is proxysql.cnf for ProxySQL Pods.

Actual options should be encoded with Base64 .

For example, let’s define a proxysql.cnf configuration file and put there options we used in the previous example:

You can get a Base64 encoded string from your options via the command line as follows:

Note

$ kubectl get pxc

datadir="/var/lib/proxysql"

admin_variables =

{

admin_credentials="proxyadmin:admin_password"

mysql_ifaces="0.0.0.0:6032"

refresh_interval=2000

restapi_enabled=true

restapi_port=6070

cluster_username="proxyadmin"

cluster_password="admin_password"

cluster_check_interval_ms=200

cluster_check_status_frequency=100

cluster_mysql_query_rules_save_to_disk=true

cluster_mysql_servers_save_to_disk=true

cluster_mysql_users_save_to_disk=true

cluster_proxysql_servers_save_to_disk=true

cluster_mysql_query_rules_diffs_before_sync=1

cluster_mysql_servers_diffs_before_sync=1

cluster_mysql_users_diffs_before_sync=1

cluster_proxysql_servers_diffs_before_sync=1

}

mysql_variables=

{

monitor_password="monitor"

monitor_galera_healthcheck_interval=1000

threads=2

max_connections=2048

default_query_delay=0

default_query_timeout=10000

poll_timeout=2000

interfaces="0.0.0.0:3306"

default_schema="information_schema"

stacksize=1048576

connect_timeout_server=10000

monitor_history=60000

monitor_connect_interval=20000

monitor_ping_interval=10000

ping_timeout_server=200

commands_stats=true

sessions_sort=true

have_ssl=true

ssl_p2s_ca="/etc/proxysql/ssl-internal/ca.crt"

ssl_p2s_cert="/etc/proxysql/ssl-internal/tls.crt"

ssl_p2s_key="/etc/proxysql/ssl-internal/tls.key"

ssl_p2s_cipher="ECDHE-RSA-AES128-GCM-SHA256"

}

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64

Page 112

Similarly, you can read the list of options from a Base64 encoded string:

Finally, use a yaml file to create the Secret object. For example, you can create a deploy/my-proxysql-secret.yaml file with the following contents:

When ready, apply it with the following command:

in Linux

in macOS

$ cat proxysql.cnf | base64 --wrap=0

$ cat proxysql.cnf | base64

Note

$ echo "ZGF0YWRpcj0iL3Zhci9saWIvcHJveHlzcWwiCgphZG1pbl92YXJpYWJsZXMgPQp7CiBhZG1pbl9j\

cmVkZW50aWFscz0icHJveHlhZG1pbjphZG1pbl9wYXNzd29yZCIKIG15c3FsX2lmYWNlcz0iMC4w\

LjAuMDo2MDMyIgogcmVmcmVzaF9pbnRlcnZhbD0yMDAwCgogY2x1c3Rlcl91c2VybmFtZT0icHJv\

eHlhZG1pbiIKIGNsdXN0ZXJfcGFzc3dvcmQ9ImFkbWluX3Bhc3N3b3JkIgogY2x1c3Rlcl9jaGVj\

a19pbnRlcnZhbF9tcz0yMDAKIGNsdXN0ZXJfY2hlY2tfc3RhdHVzX2ZyZXF1ZW5jeT0xMDAKIGNs\

dXN0ZXJfbXlzcWxfcXVlcnlfcnVsZXNfc2F2ZV90b19kaXNrPXRydWUKIGNsdXN0ZXJfbXlzcWxf\

c2VydmVyc19zYXZlX3RvX2Rpc2s9dHJ1ZQogY2x1c3Rlcl9teXNxbF91c2Vyc19zYXZlX3RvX2Rp\

c2s9dHJ1ZQogY2x1c3Rlcl9wcm94eXNxbF9zZXJ2ZXJzX3NhdmVfdG9fZGlzaz10cnVlCiBjbHVz\

dGVyX215c3FsX3F1ZXJ5X3J1bGVzX2RpZmZzX2JlZm9yZV9zeW5jPTEKIGNsdXN0ZXJfbXlzcWxf\

c2VydmVyc19kaWZmc19iZWZvcmVfc3luYz0xCiBjbHVzdGVyX215c3FsX3VzZXJzX2RpZmZzX2Jl\

Zm9yZV9zeW5jPTEKIGNsdXN0ZXJfcHJveHlzcWxfc2VydmVyc19kaWZmc19iZWZvcmVfc3luYz0x\

Cn0KCm15c3FsX3ZhcmlhYmxlcz0KewogbW9uaXRvcl9wYXNzd29yZD0ibW9uaXRvciIKIG1vbml0\

b3JfZ2FsZXJhX2hlYWx0aGNoZWNrX2ludGVydmFsPTEwMDAKIHRocmVhZHM9MgogbWF4X2Nvbm5l\

Y3Rpb25zPTIwNDgKIGRlZmF1bHRfcXVlcnlfZGVsYXk9MAogZGVmYXVsdF9xdWVyeV90aW1lb3V0\

PTEwMDAwCiBwb2xsX3RpbWVvdXQ9MjAwMAogaW50ZXJmYWNlcz0iMC4wLjAuMDozMzA2IgogZGVm\

YXVsdF9zY2hlbWE9ImluZm9ybWF0aW9uX3NjaGVtYSIKIHN0YWNrc2l6ZT0xMDQ4NTc2CiBjb25u\

ZWN0X3RpbWVvdXRfc2VydmVyPTEwMDAwCiBtb25pdG9yX2hpc3Rvcnk9NjAwMDAKIG1vbml0b3Jf\

Y29ubmVjdF9pbnRlcnZhbD0yMDAwMAogbW9uaXRvcl9waW5nX2ludGVydmFsPTEwMDAwCiBwaW5n\

X3RpbWVvdXRfc2VydmVyPTIwMAogY29tbWFuZHNfc3RhdHM9dHJ1ZQogc2Vzc2lvbnNfc29ydD10\

cnVlCiBoYXZlX3NzbD10cnVlCiBzc2xfcDJzX2NhPSIvZXRjL3Byb3h5c3FsL3NzbC1pbnRlcm5h\

bC9jYS5jcnQiCiBzc2xfcDJzX2NlcnQ9Ii9ldGMvcHJveHlzcWwvc3NsLWludGVybmFsL3Rscy5j\

cnQiCiBzc2xfcDJzX2tleT0iL2V0Yy9wcm94eXNxbC9zc2wtaW50ZXJuYWwvdGxzLmtleSIKIHNz\

bF9wMnNfY2lwaGVyPSJFQ0RIRS1SU0EtQUVTMTI4LUdDTS1TSEEyNTYiCn0K" | base64 --decode

apiVersion: v1

kind: Secret

metadata:

name: cluster1-proxysql

data:

proxysql.cnf: "ZGF0YWRpcj0iL3Zhci9saWIvcHJveHlzcWwiCgphZG1pbl92YXJpYWJsZXMgPQp7CiBhZG1pbl9j\

cmVkZW50aWFscz0icHJveHlhZG1pbjphZG1pbl9wYXNzd29yZCIKIG15c3FsX2lmYWNlcz0iMC4w\

LjAuMDo2MDMyIgogcmVmcmVzaF9pbnRlcnZhbD0yMDAwCgogY2x1c3Rlcl91c2VybmFtZT0icHJv\

eHlhZG1pbiIKIGNsdXN0ZXJfcGFzc3dvcmQ9ImFkbWluX3Bhc3N3b3JkIgogY2x1c3Rlcl9jaGVj\

a19pbnRlcnZhbF9tcz0yMDAKIGNsdXN0ZXJfY2hlY2tfc3RhdHVzX2ZyZXF1ZW5jeT0xMDAKIGNs\

dXN0ZXJfbXlzcWxfcXVlcnlfcnVsZXNfc2F2ZV90b19kaXNrPXRydWUKIGNsdXN0ZXJfbXlzcWxf\

c2VydmVyc19zYXZlX3RvX2Rpc2s9dHJ1ZQogY2x1c3Rlcl9teXNxbF91c2Vyc19zYXZlX3RvX2Rp\

c2s9dHJ1ZQogY2x1c3Rlcl9wcm94eXNxbF9zZXJ2ZXJzX3NhdmVfdG9fZGlzaz10cnVlCiBjbHVz\

dGVyX215c3FsX3F1ZXJ5X3J1bGVzX2RpZmZzX2JlZm9yZV9zeW5jPTEKIGNsdXN0ZXJfbXlzcWxf\

c2VydmVyc19kaWZmc19iZWZvcmVfc3luYz0xCiBjbHVzdGVyX215c3FsX3VzZXJzX2RpZmZzX2Jl\

Zm9yZV9zeW5jPTEKIGNsdXN0ZXJfcHJveHlzcWxfc2VydmVyc19kaWZmc19iZWZvcmVfc3luYz0x\

Cn0KCm15c3FsX3ZhcmlhYmxlcz0KewogbW9uaXRvcl9wYXNzd29yZD0ibW9uaXRvciIKIG1vbml0\

b3JfZ2FsZXJhX2hlYWx0aGNoZWNrX2ludGVydmFsPTEwMDAKIHRocmVhZHM9MgogbWF4X2Nvbm5l\

Y3Rpb25zPTIwNDgKIGRlZmF1bHRfcXVlcnlfZGVsYXk9MAogZGVmYXVsdF9xdWVyeV90aW1lb3V0\

PTEwMDAwCiBwb2xsX3RpbWVvdXQ9MjAwMAogaW50ZXJmYWNlcz0iMC4wLjAuMDozMzA2IgogZGVm\

YXVsdF9zY2hlbWE9ImluZm9ybWF0aW9uX3NjaGVtYSIKIHN0YWNrc2l6ZT0xMDQ4NTc2CiBjb25u\

ZWN0X3RpbWVvdXRfc2VydmVyPTEwMDAwCiBtb25pdG9yX2hpc3Rvcnk9NjAwMDAKIG1vbml0b3Jf\

Y29ubmVjdF9pbnRlcnZhbD0yMDAwMAogbW9uaXRvcl9waW5nX2ludGVydmFsPTEwMDAwCiBwaW5n\

X3RpbWVvdXRfc2VydmVyPTIwMAogY29tbWFuZHNfc3RhdHM9dHJ1ZQogc2Vzc2lvbnNfc29ydD10\

cnVlCiBoYXZlX3NzbD10cnVlCiBzc2xfcDJzX2NhPSIvZXRjL3Byb3h5c3FsL3NzbC1pbnRlcm5h\

bC9jYS5jcnQiCiBzc2xfcDJzX2NlcnQ9Ii9ldGMvcHJveHlzcWwvc3NsLWludGVybmFsL3Rscy5j\

cnQiCiBzc2xfcDJzX2tleT0iL2V0Yy9wcm94eXNxbC9zc2wtaW50ZXJuYWwvdGxzLmtleSIKIHNz\

bF9wMnNfY2lwaGVyPSJFQ0RIRS1SU0EtQUVTMTI4LUdDTS1TSEEyNTYiCn0K"

$ kubectl create -f deploy/my-proxysql-secret.yaml

Page 113

Do not forget to restart Percona XtraDB Cluster to ensure the cluster has updated the configuration.

Accessing the ProxySQL Admin Interface
You can use ProxySQL admin interface to configure its settings.

Configuring ProxySQL in this way means connecting to it using the MySQL protocol, and two things are needed to do it:

the ProxySQL Pod name

the ProxySQL admin password

You can find out ProxySQL Pod name with the kubectl get pods command, which will have the following output:

The next command will print you the needed admin password:

When both Pod name and admin password are known, connect to the ProxySQL as follows, substituting cluster1-proxysql-0 with the actual Pod name

and admin_password with the actual password:

Note

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

cluster1-pxc-node-0 1/1 Running 0 5m

cluster1-pxc-node-1 1/1 Running 0 4m

cluster1-pxc-node-2 1/1 Running 0 2m

cluster1-proxysql-0 1/1 Running 0 5m

percona-xtradb-cluster-operator-dc67778fd-qtspz 1/1 Running 0 6m

$ kubectl get secrets $(kubectl get pxc -o jsonpath='{.items[].spec.secretsName}') -o template='{{ .data.proxyadmin |

base64decode }}'

$ kubectl exec -it cluster1-proxysql-0 -- mysql -h127.0.0.1 -P6032 -uproxyadmin -padmin_password

https://www.percona.com/blog/2017/06/07/proxysql-admin-interface-not-typical-mysql-server/
https://www.percona.com/blog/2017/06/07/proxysql-admin-interface-not-typical-mysql-server/
https://www.percona.com/blog/2017/06/07/proxysql-admin-interface-not-typical-mysql-server/

Page 114

Workload transfer and disaster recovery

Page 115

Multi-data center setup for disaster recovery
Disaster can happen at any moment. To keep your services running smoothly, you can set up two Percona XtraDB Clusters in different locations (called

“sites”). You then configure multi-site replication between them. You then configure them to replicate data between each other. This makes sure both clusters

have the same data and stay in sync. One site works as the primary site, and the other is a replica. It is usually in a standby mode.

If the primary site goes down, you need a way to move the workload to the backup site so that users won’t notice anything.

Once the primary site is fixed, you can move the services back to it.

This guide explains how to set up a disaster recovery system and transfer workloads between sites when something goes wrong.

Assumptions

This guide is about two Percona XtraDB Clusters (PXC) set up with the Operator in Kubernetes. The clusters are in two separate sites which represent

different Kubernetes environments.

To differentiate the clusters, let’s name them:

cluster1 is the PXC on the primary site

cluster2 is the PXC on the replica site

The primary and replica sites must be identical. The easiest way to achieve this is to make a backup on the primary site and restore it on the replica.

We assume your applications are already set up to automatically switch to the replica site B if the primary site goes down. Setting this up is not covered in

this guide.

Page 116

Set up the primary site

Before you start
Clone the repository with all manifests and source code. You’ll need it to edit configuration files for the database clusters, Secrets, backups and restores. Run

the following command:

Make sure to clone the correct branch. The branch name is the same as the Operator release version.

Install the Operator and PXC

1. Create a namespace.

2. Use the Quickstart guide to install the Operator and Percona XtraDB Cluster.

You now have the cluster1 database cluster up and running.

Export the database secrets
While on the primary site, export the Secrets object with the user credentials. Both the primary and the replica sites must have the same user credentials. This

enables the Operator to restore the backup from the primary on the replica site.

1. List the Secrets objects.

The file we are interested in is called cluster1-secrets where cluster1 is the name of your cluster.

2. Export the database cluster’s Secret file. You’ll need it later to set up the replica site. The replica must have the same users as the primary site to replicate

data from it. The following command exports the cluster1-secrets Secret to a pxcsecret.yaml file. Feel free to use your name and namespace:

3. Edit the exported pxcsecret.yaml file: remove the annotations , creationTimestamp , resourceVersion , selfLink , and uid metadata fields.

Create a backup from the primary site
We will use this backup to deploy the replica site.

1. Configure the backup storage. Use either the Amazon S3 / S3-compatible storage, or the Azure Blob Storage. Persistent Volumes are specific to a

namespace, meaning only Pods in the same namespace can access them.

Use the Configure storage for backups tutorial for the steps.

2. Make an on-demand backup on the primary site.

3. View the information about a backup:

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ kubectl create namespace <namespace>

$ kubectl get secrets -n <namespace>

Expected output

cluster1-secrets Opaque 6 5m43s

cluster1-ssl kubernetes.io/tls 3 5m42s

cluster1-ssl-internal kubernetes.io/tls 3 5m40s

internal-cluster1 Opaque 6 5m43s

$ kubectl get secret cluster1-secrets -n <namespace> -o yaml > pxcsecret.yaml

Page 117

$ kubectl get pxc-backup -n <namespace>

Expected output

NAME CLUSTER STORAGE DESTINATION STATUS COMPLETED AGE

backup1 cluster1 s3-us-west s3://mybucket/cluster1-2025-03-18-10:55:43-full Succeeded 3m25s 4m4s

Page 118

Set up the replica site
The replica site must be the exact copy of the primary site and must have the same system user credentials. The easiest way to achieve this is to make a

backup on the primary site and restore it on the replica.

Before you start
Clone the repository with all manifests and source code. You’ll need it to edit configuration files for the database clusters, Secrets, backups and restores. Run

the following command:

Make sure to clone the correct branch. The branch name is the same as the Operator release version.

Procedure
Let’s create cluster2 on the replica site.

1. Create a namespace.

2. Create the Secrets object with the user credentials for the replica site. The Operator uses this Secret object when installing Percona XtraDB Cluster. As a

result, the users in both sites have the same credentials. This is required to restore the backup from the main site on the replica.

Edit the pxcsecret.yaml file that you exported from the primary site, if you haven’t done it before. Remove the annotations , creationTimestamp ,

resourceVersion , selfLink , and uid metadata fields.

You can create the replica site with the same name as the primary. In our setup we differentiate the clusters and must change the name in the Secret.

The resulting Secret file must resemble the following:

3. Create the Secret with the following command. Replace the <namespace> placeholder with your name:

4. Install Percona XtraDB Cluster. Edit the deploy/cr.yaml file and specify the following configuration:

metadata.name - The name of the cluster if you want to change it. It must match the name you defined for the user Secret on step 2.

5. Run the following command to install Percona XtraDB Cluster:

It may take some time to install and initialize the cluster.

6. Check the status of the cluster:

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ kubectl create namespace <namespace>

apiVersion: v1

kind: Secret

metadata:

name: cluster2-secrets # Change the name if needed

type: Opaque

stringData:

monitor: <monitor-password> # Decoded passwords here

operator: <operator-password>

proxyadmin: <proxyadmin-password>

replication: <replication-password>

root: <root-password>

xtrabackup: <xtrabackup-password>

$ kubectl apply -f path/to/pxcsecret.yaml -n <namespace>

metadata:

name: cluster2 # The name of your cluster if you want to change it

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Page 119

Restore the backup on the replica site

1. Create the Secret object with the credentials from the cloud storage where you made the backup to. The Operator uses the same Secret for backups and

restores. For example, if you named the Secret deploy/backup/backup-s3-secret.yaml , run the following command to create the Secrets object on

the replica site. Replace the <namespace> placeholder with your namespace.

2. To restore from a backup, create a special restore configuration file. Edit the sample deploy/backup/restore.yaml file.

Specify the following information:

spec.pxcCluster - the name of the cluster on the replica site.

spec.backupSource.destination - the location of the backup on the backup storage. Run the kubectl get pxc-backup -n <namespace> on the

main site to check the destination.

Specify the storage information specific to the storage you used for the backup. For S3 storage, this will be the following:

spec.backupSource.s3.bucket - the name of the bucket where the backup is stored

spec.backupSource.s3.credentialsSecret - the name of the Secrets object with the credentials from the backup storage that you created in step

1.

spec.backupSource.s3.region - the region where the bucket is located. It must match the region that you defined in the deploy/cr.yaml file on

when you made a backup.

3. Run the following command to start a restore:

4. Check the cluster status to see if the restore was successful:

$ kubectl get pxc -n <namespace>

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster2 cluster2-haproxy.<namespace> ready 3 3 36m

$ kubectl apply -f deploy/backup/backup-s3-secret.yaml -n <namespace>

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterRestore

metadata:

name: restore1

spec:

pxcCluster: cluster2

backupSource:

destination: s3://mybucket/cluster1-2025-03-18-10:55:43-full

s3:

bucket: mybucket

credentialsSecret: my-cluster-name-backup-s3

region: us-west-2

$ kubectl apply -f deploy/backup/restore.yaml -n <namespace>

$ kubectl get pxc -n <namespace>

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster2 cluster2-haproxy.<namespace> ready 3 3 36m

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml

Page 120

Configure replication between the sites
The sites must have the same copy of data. To do so, configure the replication between them so that sites are always in sync. The replication is defined via a

replication channel where you specify which site is the source of data and which site receives it.

Prepare the primary site
Your replica site needs to connect to your primary site to replicate data from it. For this, each database Pod on the primary site must have an external IP

addresses to be reached directly. This is done by exposing the database cluster Pods using the LoadBalancer service type. Read more about exposing a

cluster.

1. Since the primary site is already running, we will patch its configuration with the following command. Replace the <namespace> placeholder with your

namespace:

2. Configure the replication channel on the primary site. Specify the following Custom Resource options in the spec.pxc.replicationChannels

subsection in the deploy/cr.yaml file:

pxc.replicationChannels.[].name is the name of the channel,

pxc.replicationChannels.[].isSource defines what cluster the data is replicated from. Set the value to true .

Run the following command to add this configuration:

3. Check that the Pods are exposed by listing the services:

Store the public IP addresses of your Pods. You will need them during the replica site setup.

Prepare the replica site
Configure the replication channel on the replica site. Specify the following Custom Resource options in the spec.pxc.replicationChannels subsection in

the deploy/cr.yaml file:

spec.pxc.replicationChannels - The replication channel configuration. The name of the channel must match the name on the primary site.

$ kubectl patch pxc cluster1 -n <namespace> --type=merge --patch '{

"spec": {

"pxc": {

"expose": {

"enabled": true,

"type": "LoadBalancer"

}

}}}'

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {

"pxc": {

"replicationChannels": [

{

"name": "pxc1_to_pxc2",

"isSource": true

}

]

}

}}'

$ kubectl get services -n <namespace>

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

cluster1-pxc-0 LoadBalancer 34.118.227.242 104.197.82.173 3306:32522/TCP 7m5s

cluster1-pxc-1 LoadBalancer 34.118.236.108 34.44.97.95 3306:32361/TCP 7m5s

cluster1-pxc-2 LoadBalancer 34.118.236.170 35.222.208.249 3306:31607/TCP

Page 121

spec.pxc.replicationChannels[].isSource - Set the value to false to indicate that the replica site is not the source of the data.

spec.pxc.replicationChannels[].sourcesList - The list of sources. Specify the external IP addresses of the database Pods from the primary site.

Run the following command to apply a patch to the replica site’s configuration with the required information. Don’t forget to replace the <placeholders> with

your values:

Verify the replication
To verify that the replication is working, do the following:

1. Connect to Percona XtraDB Cluster on the primary site.

2. Create a database and a table.

3. Insert some data into the database:

4. Connect to Percona XtraDB Cluster on the replica site.

5. Retrieve the data from the database:

$ kubectl patch pxc cluster1 -n <namespace> --type=merge --patch '{

"spec": {

"pxc": {

"replicationChannels": [

{

"name": "pxc1_to_pxc2",

"isSource": false,

"sourcesList": [

{ "host": "34.118.227.242", "port": 3306, "weight": 100 },

{ "host": "34.118.227.242", "port": 3306, "weight": 100 },

{ "host": "34.118.227.242", "port": 3306, "weight": 100 }

]

}

]

}

}}'

mysql> CREATE DATABASE demo;

Expected output

Query OK, 1 row affected (0.02 sec)

mysql> CREATE TABLE demo.users(user_id INT PRIMARY KEY, user_name VARCHAR(30));

Expected output

Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO demo.users VALUES (1, 'percona');

mysql> SELECT * FROM demo.users;

Page 122

Expected output

+---------+-----------+

| user_id | user_name |

+---------+-----------+

| 1 | percona |

+---------+-----------+

1 row in set (0.00 sec)

Page 123

Promote the replica site to a new primary
Let’s say the primary site with cluster1 is down. The client applications have automatically switched to the replica site. Now you need to reconfigure your

setup to make cluster2 on the replica site a new primary and have it handle the load.

Here’s how to do it:

1. Modify the replication channel for cluster2 within the deploy/cr.yaml file:

Set the isSource value to true to make the replica site the source of the data.

Remove the sourcesList configuration.

Run the following command to apply a patch configuration to cluster2 .

Now cluster2 acts as the primary site.

2. While the old primary site is unavailable, cluster1 no longer has up-to-date data. So you can delete it. Refer to the Delete the database cluster tutorial for

the steps how to do it.

$ kubectl patch pxc cluster2 -n <namespace> --type=merge --patch '{

"spec": {

"pxc": {

"replicationChannels": [

{

"name": "pxc1_to_pxc2",

"isSource": true

}

]

}

}}'

Page 124

Restore the previous primary site
Let’s say the root of the outage is no longer present. You can now install a new database cluster on this site. Let’s use the previous name cluster1 for it.

Install a new database cluster on the previous primary site
The new cluster1 must be the exact copy of the current primary cluster2 . We will use the same approach as we did when creating cluster2 : make a

backup from cluster2 and restore it on cluster1 .

The steps are the following:

1. Create the namespace

2. If you deleted the Operator, install it. Use the Quickstart for the steps.

3. Prepare the Secrets file with the user credentials for cluster1 . The users on both sites must have the same credentials.

You can reuse the pxcsecret.yaml secrets file or create a new one. Make sure that the passwords in this file match the passwords from the cluster2-

secrets Secrets object. Check the Export the database secrets section to refresh your memory how to find the required Secrets object.

Edit the pxcsecret.yaml file and change the name of the cluster to cluster1 .

4. Create the Secrets object:

5. Install Percona XtraDB Cluster with the cluster1 name and the default parameters:

6. Check the status of the cluster:

Make a backup on the current primary site

1. Make a backup on the current primary cluster2 . See the Create a backup from the primary site section for the steps.

apiVersion: v1

kind: Secret

metadata:

name: cluster1-secrets # The name of the cluster to-be-installed

type: Opaque

stringData:

monitor: <monitor-password> # Decoded passwords here

operator: <operator-password>

proxyadmin: <proxyadmin-password>

replication: <replication-password>

root: <root-password>

xtrabackup: <xtrabackup-password>

$ kubectl apply -f path/to/pxcsecret.yaml -n <namespace>

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml -n

<namespace>

$ kubectl get pxc -n <namespace>

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.<namespace> ready 3 3 3m

Page 125

Restore the backup on a new database cluster

1. Restore the backup from cluster2 on cluster1 . Change the deploy/backup/restore.yaml file as follows:

Change the pxcCluster name to cluster1 . This is where you make the restore.

Change the backupSource.destination to the location of the backup on the backup storage. Run the kubectl get pxc-backup -n <namespace>

on cluster2 (the current primary) to check the destination.

2. Start the restore with the following command:

3. Check the status of the cluster:

The cluster should report the Ready status.

Promote the new database cluster as the primary
The newly deployed site with cluster1 is now the working copy of the current primary cluster2 . It’s time to configure it back as the primary site.

To do this, configure the replication channels on both sites. Refer to the Configure replication between the sites section for the steps.

Expected output

NAME CLUSTER STORAGE DESTINATION STATUS COMPLETED AGE

backup1 cluster2 s3-us-west s3://mybucket/cluster2-2025-03-21-12:05:37-full Succeeded 2m55s 6m6s

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterRestore

metadata:

name: restore1

spec:

pxcCluster: cluster1

backupSource:

destination: s3://mybucket/cluster2-2025-03-21-12:05:37-full

s3:

bucket: mybucket

credentialsSecret: my-cluster-name-backup-s3

region: us-west-2

$ kubectl apply -f deploy/backup/restore.yaml -n <namespace>

$ kubectl get pxc -n <namespace>

Page 126

Transport Layer Security (TLS)
The Percona Operator for MySQL uses Transport Layer Security (TLS) cryptographic protocol for the following types of communication:

Internal - communication between Percona XtraDB Cluster instances,

External - communication between the client application and ProxySQL.

The internal certificate is also used as an authorization method.

TLS security can be configured in several ways:

The Operator generates long-term certificates automatically if there are no certificate secrets available (default option, and requires you renew them

manually),

The Operator can use a specifically installed cert-manager, which will automatically generate and renew short-term TLS certificates,

Certificates can be generated manually.

You can also use pre-generated certificates available in the deploy/ssl-secrets.yaml file for test purposes, but we strongly recommend avoiding their

usage on any production system!

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to temporarily disable it if needed.

Install and use the cert-manager

About the cert-manager

A cert-manager is a Kubernetes certificate management controller which is widely used to automate the management and issuance of TLS certificates. It

is community-driven, and open source.

When you have already installed cert-manager and deploy the operator, the operator requests a certificate from the cert-manager. The cert-manager acts as a

self-signed issuer and generates certificates. The Percona Operator self-signed issuer is local to the operator namespace. This self-signed issuer is created

because Percona XtraDB Cluster requires all certificates issued by the same .

Self-signed issuer allows you to deploy and use the Percona Operator without creating a clusterissuer separately.

Installation of the cert-manager

The steps to install the cert-manager are the following:

Create a namespace,

Disable resource validations on the cert-manager namespace,

Install the cert-manager.

The following commands perform all the needed actions:

After the installation, you can verify the cert-manager by running the following command:

The result should display the cert-manager and webhook active and running.

Generate certificates manually
To generate certificates manually, follow these steps:

$ kubectl create namespace cert-manager

$ kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

$ kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.17.1/cert-manager.yaml

$ kubectl get pods -n cert-manager

https://cert-manager.io/docs/
https://cert-manager.io/docs/
https://cert-manager.io/docs/

Page 127

1. Provision a Certificate Authority (CA) to generate TLS certificates

2. Generate a CA key and certificate file with the server details

3. Create the server TLS certificates using the CA keys, certs, and server details

The set of commands generate certificates with the following attributes:

Server-pem - Certificate

Server-key.pem - the private key

ca.pem - Certificate Authority

You should generate certificates twice: one set is for external communications, and another set is for internal ones. A secret created for the external use must

be added to cr.yaml/spec/sslSecretName . A certificate generated for internal communications must be added to the

cr.yaml/spec/sslInternalSecretName .

Update certificates
If a cert-manager is used, it should take care of updating the certificates. If you generate certificates manually, you should take care of updating them in

proper time.

TLS certificates issued by cert-manager are short-term ones. Starting from the Operator version 1.9.0 cert-manager issues TLS certificates for 3 months, while

root certificate is valid for 3 years. This allows to reissue TLS certificates automatically on schedule and without downtime.

$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca

{

"CN": "Root CA",

"key": {

"algo": "rsa",

"size": 2048

}

}

EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem - | cfssljson -bare server

{

"hosts": [

"${CLUSTER_NAME}-proxysql",

"*.${CLUSTER_NAME}-proxysql-unready",

"*.${CLUSTER_NAME}-pxc"

],

"CN": "${CLUSTER_NAME}-pxc",

"key": {

"algo": "rsa",

"size": 2048

}

}

EOF

$ kubectl create secret generic cluster1-ssl --from-file=tls.crt=server.pem --

from-file=tls.key=server-key.pem --from-file=ca.crt=ca.pem --

type=kubernetes.io/tls

Page 128

DB Pod N

cluster1-pxc-issuer
(root certificate)

TLS
certificates

TLS
certificates

cert-manager

cluster1-ssl
Secret

cluster1-ssl-internal
Secret

Versions of the Operator prior 1.9.0 have used 3 month root certificate, which caused issues with the automatic TLS certificates update. If that’s your case,

you can make the Operator update along with the official instruction.

If you use the cert-manager version earlier than 1.9.0, and you would like to avoid downtime while updating the certificates after the Operator update to 1.9.0 or newer version, force

the certificates regeneration by a cert-manager.

Check your certificates for expiration

1. First, check the necessary secrets names (cluster1-ssl and cluster1-ssl-internal by default):

You will have the following response:

2. Optionally you can also check that the certificates issuer is up and running:

Note

$ kubectl get certificate

NAME READY SECRET AGE

cluster1-ca-cert True cluster1-ca-cert 49m

cluster1-ssl True cluster1-ssl 49m

cluster1-ssl-internal True cluster1-ssl-internal 49m

Page 129

The response should be as follows:

3. Now use the following command to find out the certificates validity dates, substituting Secrets names if necessary:

The resulting output will be self-explanatory:

Update certificates without downtime

If you don’t use cert-manager and have created certificates manually, you can follow the next steps to perform a no-downtime update of these certificates if

they are still valid.

For already expired certificates, follow the alternative way.

Having non-expired certificates, you can roll out new certificates (both CA and TLS) with the Operator as follows.

1. Generate a new CA certificate (ca.pem). Optionally you can also generate a new TLS certificate and a key for it, but those can be generated later on step

6.

2. Get the current CA (ca.pem.old) and TLS (tls.pem.old) certificates and the TLS certificate key (tls.key.old):

3. Combine new and current ca.pem into a ca.pem.combined file:

4. Create a new Secrets object with old TLS certificate (tls.pem.old) and key (tls.key.old), but a new combined ca.pem (ca.pem.combined):

5. The cluster will go through a rolling reconciliation, but it will do it without problems, as every node has old TLS certificate/key, and both new and old CA

certificates.

6. If new TLS certificate and key weren’t generated on step 1, do that now.

7. Create a new Secrets object for the second time: use new TLS certificate (server.pem in the example) and its key (server-key.pem), and again the

combined CA certificate (ca.pem.combined):

$ kubectl get issuer

NAME READY AGE

cluster1-pxc-ca-issuer True 49m

cluster1-pxc-issuer True 49m

$ {

kubectl get secret/cluster1-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64 --decode | openssl x509 -inform pem -

noout -text | grep "Not After"

kubectl get secret/cluster1-ssl -o jsonpath='{.data.ca\.crt}' | base64 --decode | openssl x509 -inform pem -noout -

text | grep "Not After"

}

Not After : Sep 15 11:04:53 2021 GMT

Not After : Sep 15 11:04:53 2021 GMT

Note

$ kubectl get secret/cluster1-ssl-internal -o jsonpath='{.data.ca\.crt}' | base64 --decode > ca.pem.old

$ kubectl get secret/cluster1-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64 --decode > tls.pem.old

$ kubectl get secret/cluster1-ssl-internal -o jsonpath='{.data.tls\.key}' | base64 --decode > tls.key.old

$ cat ca.pem ca.pem.old >> ca.pem.combined

$ kubectl delete secret/cluster1-ssl-internal

$ kubectl create secret generic cluster1-ssl-internal --from-file=tls.crt=tls.pem.old --from-file=tls.key=tls.key.old --

from-file=ca.crt=ca.pem.combined --type=kubernetes.io/tls

$ kubectl delete secret/cluster1-ssl-internal

$ kubectl create secret generic cluster1-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-key.pem

--from-file=ca.crt=ca.pem.combined --type=kubernetes.io/tls

Page 130

8. The cluster will go through a rolling reconciliation, but it will do it without problems, as every node already has a new CA certificate (as a part of the

combined CA certificate), and can successfully allow joiners with new TLS certificate to join. Joiner node also has a combined CA certificate, so it can

authenticate against older TLS certificate.

9. Create a final Secrets object: use new TLS certificate (server.pmm) and its key (server-key.pem), and just the new CA certificate (ca.pem):

10. The cluster will go through a rolling reconciliation, but it will do it without problems: the old CA certificate is removed, and every node is already using new

TLS certificate and no nodes rely on the old CA certificate any more.

Update certificates with downtime

If your certificates have been already expired (or if you continue to use the Operator version prior to 1.9.0), you should move through the pause - update Secrets

- unpause route as follows.

1. Pause the cluster in a standard way, and make sure it has reached its paused state.

2. If cert-manager is used, delete issuer and TLS certificates:

3. Delete Secrets to force the SSL reconciliation:

4. Check certificates to make sure reconciliation have succeeded.

5. Unpause the cluster in a standard way, and make sure it has reached its running state.

Keep certificates after deleting the cluster

In case of cluster deletion, objects, created for SSL (Secret, certificate, and issuer) are not deleted by default.

If the user wants the cleanup of objects created for SSL, there is a finalizers.delete-ssl option in deploy/cr.yaml : if this finalizer is set, the Operator will

delete Secret, certificate and issuer after the cluster deletion event.

Run Percona XtraDB Cluster without TLS
Omitting TLS is also possible, but we recommend that you run your cluster with the TLS protocol enabled.

To have TLS protocol disabled (e.g. for demonstration purposes) set the unsafeFlags.tls key to true and set the tls.enabled key to false in the

deploy/cr.yaml file:

Enabling or disabling TLS on a running cluster

You can set tls.enabled Custom Resource option to true or false to enable or disable TLS. However, doing this on a running cluster results in downtime

and has the following side effects.

$ kubectl delete secret/cluster1-ssl-internal

$ kubectl create secret generic cluster1-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-key.pem

--from-file=ca.crt=ca.pem --type=kubernetes.io/tls

$ {

kubectl delete issuer/cluster1-pxc-ca

kubectl delete certificate/cluster1-ssl certificate/cluster1-ssl-internal

}

$ kubectl delete secret/cluster1-ssl secret/cluster1-ssl-internal

...

spec:

...

unsafeFlags

tls: true

...

tls:

enabled: false

Page 131

When the cluster is already running and the user switches tls.enabled to false , the Operator pauses the cluster, waits until all Pods are deleted, sets

unsafeFlags.tls Custom Resource option to true , deletes TLS secrets, and unpauses the cluster.

Similarly, when the user switches tls.enabled to true , the Operator pauses the cluster, waits until all Pods are deleted, sets unsafeFlags.tls Custom

Resource option to false , and unpauses the cluster.

Don’t change tls.enabled Custom Resource option when the cluster is in the process of enabling or disabling TLS: changing its value will immediately unpause the cluster even

though the process has not yet completed.

Warning

Page 132

Data at Rest Encryption
Full data at rest encryption in Percona XtraDB Cluster is supported by the Operator since version 1.4.0.

Data at rest means inactive data stored as files, database records, etc.

To implement these features, the Operator uses keyring_vault plugin, which ships with Percona XtraDB Cluster, and utilizes HashiCorp Vault storage for

encryption keys.

Installing Vault
The following steps will deploy Vault on Kubernetes with the Helm 3 package manager . Other Vault installation methods should also work, so the

instruction placed here is not obligatory and is for illustration purposes. Read more about installation in Vault’s documentation .

1. Add helm repo and install:

2. After the installation, Vault should be first initialized and then unsealed. Initializing Vault is done with the following commands:

To unseal Vault, execute the following command for each Pod of Vault running:

Configuring Vault

1. First, you should enable secrets within Vault. For this you will need a Vault token . Percona XtraDB Cluster can use any regular token which allows all

operations inside the secrets mount point. In the following example we are using the root token to be sure the permissions requirement is met, but

actually there is no need in root permissions. We don’t recommend using the root token on the production system.

The output will be like follows:

Now login to Vault with this token and enable the “pxc-secret” secrets path:

You can also enable audit, which is not mandatory, but useful:

2. To enable Vault secret within Kubernetes, create and apply the YAML file, as described further.

Note

$ helm repo add hashicorp https://helm.releases.hashicorp.com

"hashicorp" has been added to your repositories

$ helm install vault hashicorp/vault

$ kubectl exec -it pod/vault-0 -- vault operator init -key-shares=1 -key-threshold=1 -format=json > /tmp/vault-init

$ unsealKey=$(jq -r ".unseal_keys_b64[]" < /tmp/vault-init)

$ kubectl exec -it pod/vault-0 -- vault operator unseal "$unsealKey"

$ cat /tmp/vault-init | jq -r ".root_token"

s.VgQvaXl8xGFO1RUxAPbPbsfN

$ kubectl exec -it vault-0 -- /bin/sh

$ vault login s.VgQvaXl8xGFO1RUxAPbPbsfN

$ vault secrets enable --version=1 -path=pxc-secret kv

Note

$ vault audit enable file file_path=/vault/vault-audit.log

https://docs.percona.com/percona-xtradb-cluster/LATEST/data-at-rest-encryption.html
https://docs.percona.com/percona-xtradb-cluster/LATEST/data-at-rest-encryption.html
https://docs.percona.com/percona-xtradb-cluster/LATEST/data-at-rest-encryption.html
https://en.wikipedia.org/wiki/Data_at_rest
https://en.wikipedia.org/wiki/Data_at_rest
https://en.wikipedia.org/wiki/Data_at_rest
https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.vaultproject.io/
https://helm.sh/
https://helm.sh/
https://helm.sh/
https://www.vaultproject.io/docs/platform/k8s
https://www.vaultproject.io/docs/platform/k8s
https://www.vaultproject.io/docs/platform/k8s
https://www.vaultproject.io/docs/concepts/tokens
https://www.vaultproject.io/docs/concepts/tokens
https://www.vaultproject.io/docs/concepts/tokens

Page 133

a. To access the Vault server via HTTP, follow the next YAML file example:

the name key in the above file should be equal to the spec.vaultSecretName key from the deploy/cr.yaml configuration file.

b. To turn on TLS and access the Vault server via HTTPS, you should do two more things:

add one more item to the secret: the contents of the ca.cert file with your certificate,

store the path to this file in the vault_ca key.

the name key in the above file should be equal to the spec.vaultSecretName key from the deploy/cr.yaml configuration file.

For techincal reasons the vault_ca key should either exist or not exist in the YAML file; commented option like #vault_ca = ... is not acceptable.

More details on how to install and configure Vault can be found in the official documentation .

Using the encryption
If using Percona XtraDB Cluster 5.7, you should turn encryption on explicitly when you create a table or a tablespace. This can be done by adding the

ENCRYPTION='Y' part to your SQL statement, like in the following example:

See more details on encryption in Percona XtraDB Cluster 5.7 here .

apiVersion: v1

kind: Secret

metadata:

name: some-name-vault

type: Opaque

stringData:

keyring_vault.conf: |-

token = s.VgQvaXl8xGFO1RUxAPbPbsfN

vault_url = http://vault-service.vault-service.svc.cluster.local:8200

secret_mount_point = pxc-secret

Note

apiVersion: v1

kind: Secret

metadata:

name: some-name-vault

type: Opaque

stringData:

keyring_vault.conf: |-

token = = s.VgQvaXl8xGFO1RUxAPbPbsfN

vault_url = https://vault-service.vault-service.svc.cluster.local:8200

secret_mount_point = pxc-secret

vault_ca = /etc/mysql/vault-keyring-secret/ca.cert

ca.cert: |-

-----BEGIN CERTIFICATE-----

MIIEczCCA1ugAwIBAgIBADANBgkqhkiG9w0BAQQFAD..AkGA1UEBhMCR0Ix

EzARBgNVBAgTClNvbWUtU3RhdGUxFDASBgNVBAoTC0..0EgTHRkMTcwNQYD

7vQMfXdGsRrXNGRGnX+vWDZ3/zWI0joDtCkNnqEpVn..HoX

-----END CERTIFICATE-----

Note

Note

CREATE TABLE t1 (c1 INT, PRIMARY KEY pk(c1)) ENCRYPTION='Y';

CREATE TABLESPACE foo ADD DATAFILE 'foo.ibd' ENCRYPTION='Y';

Note

https://learn.hashicorp.com/vault?track=getting-started-k8s#getting-started-k8s
https://learn.hashicorp.com/vault?track=getting-started-k8s#getting-started-k8s
https://learn.hashicorp.com/vault?track=getting-started-k8s#getting-started-k8s
https://www.percona.com/doc/percona-xtradb-cluster/5.7/management/data_at_rest_encryption.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/management/data_at_rest_encryption.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/management/data_at_rest_encryption.html

Page 134

If using Percona XtraDB Cluster 8.0, the encryption is turned on by default (in case if Vault is configured).

The following table presents the default values of the correspondent my.cnf configuration options :

Option Default value

early-plugin-load keyring_vault.so

keyring_vault_config /etc/mysql/vault-keyring-secret/keyring_vault.conf

default_table_encryption ON

table_encryption_privilege_check ON

innodb_undo_log_encrypt ON

innodb_redo_log_encrypt ON

binlog_encryption ON

binlog_rotate_encryption_master_key_at_startup ON

innodb_temp_tablespace_encrypt ON

innodb_parallel_dblwr_encrypt ON

innodb_encrypt_online_alter_logs ON

encrypt_tmp_files ON

https://www.percona.com/doc/percona-server/LATEST/security/data-at-rest-encryption.html
https://www.percona.com/doc/percona-server/LATEST/security/data-at-rest-encryption.html
https://www.percona.com/doc/percona-server/LATEST/security/data-at-rest-encryption.html

Page 135

Telemetry
The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona, which helps us to determine where to focus the

development and what is the uptake for each release of Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid field)

Kubernetes version

Platform (is it Kubernetes or Openshift)

PMM Version

Operator version

Percona XtraDB Cluster version

HAProxy version

ProxySQL version

Percona XtraBackup version

Is Operator deployed in a cluster-wide mode

We do not gather anything that identify a system, but the following thing should be mentioned: Custom Resource ID is a unique ID generated by Kubernetes for

each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it at scheduled times to obtain fresh information

about version numbers and valid image paths needed for the upgrade.

The landing page for this service, check.percona.com , explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

if you don’t use helm for installation, you have to edit the operator.yaml before applying it with the kubectl apply -f deploy/operator.yaml

command. Open the operator.yaml file with your text editor, find the value of the DISABLE_TELEMETRY environment variable and set it to true :

$ helm install my-db percona/pxc-db --version 1.17.0 --namespace my-namespace --set disable_telemetry="true"

env:

...

- name: DISABLE_TELEMETRY

value: "true"

...

https://check.percona.com/
https://check.percona.com/
https://check.percona.com/

Page 136

Management

Page 137

Backup and restore

Page 138

Providing Backups
It’s important to back up your database to keep your data safe. Backups help protect your system against data loss and corruption and ensure business

stability. They are also a quick way to recover the database if something happens with it.

A backup starts after you create a Backup object. You can create a Backup object in two ways:

manually at any moment. This way you start an on-demand backup.

instruct the Operator to create it automatically according to a schedule that you define for it. This is a scheduled backup.

The Operator does physical backups using the Percona XtraBackup tool and the SST method.

Backup storage
You can store backups outside of Kubernetes cluster in one of the supported cloud storages:

Amazon S3 or S3-compatible storage ,

Azure Blob Storage :

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

Backup Pod

CSI

Cloud storagePercona XtraDB Cluster Namespace

If you’re running a Kubernetes cluster on premises, you can store backups inside it using a Persistent Volume . For example, if you don’t use a remote

backup storage or if storage costs are high for you.

https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://galeracluster.com/library/documentation/sst.html
https://galeracluster.com/library/documentation/sst.html
https://galeracluster.com/library/documentation/sst.html
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Page 139

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

Backup Pod

CSI

Percona XtraDB Cluster Namespace

Workflow
After you create a Backup object, the Operator sets up a backup Pod that runs Percona XtraBackup inside. It also creates a path in the storage to save the

backup data.

The backup Pod starts copying the data files from the Percona XtraDB Cluster to the backup storage. The Percona XtraDB Cluster Pod that serves the data

enters the Donor state and stops receiving all requests.

The backup task is resource-consuming and can affect performance. That’s why the Operator uses one of the secondary Percona XtraDB Cluster Pods for

backups. The exception is a one-pod deployment, where the same Pod is used for all tasks.

After the data files are copied, the Operator marks the backup Pod as ‘Completed’ and deletes it. The Operator also updates the status of the Backup object.

Multiple backups
You can run several backups. For example, schedule weekly backups on one storage and daily backups on another one. You can also run an on-demand

backup to be on the safe side before you do some maintenance work.

Several backups run in parallel by default if they happen at the same time. If they overload your cluster, you can turn off parallel backups with the

backup.allowParallel configuration option in the cr.yaml file. Then, the Operator queues the backups and runs them sequentially.

The Operator ensures the sequence by creating a lock for a running backup. It releases the lock after the backup either succeeds or fails and starts the next

one from the queue. The lock is also released if you delete a running backup.

You can fine-tune the queue by assigning a waiting time for a backup to start. Use the spec.startingDeadlineSeconds option in the deploy/cr.yaml file

to set this time for all backups. You can also override it for a specific on-demand backup by defining the startingDeadlineSeconds option within the

backup configuration. This setting has a higher priority.

If the backup doesn’t start within the defined time, the Operator automatically marks it as “failed”.

Page 140

Backup suspension for an unhealthy database cluster
Your database cluster can become unhealthy. For example, when one of the Pods crashes and restarts. The Operator monitors the database cluster state

while a backup is running and suspends it for an unhealthy cluster to reduce the load on the cluster.

To offload the database cluster even more, you can define how long a backup remains suspended. Use the spec.backup.suspendedDeadlineSeconds

option in the cr.yaml file for all backups. Or set it in the backup.yaml configuration files for a specific backup. The setting in the backup.yaml file has a

higher priority.

After this duration expires, the Operator automatically marks this backup as “failed”.

Otherwise, after the cluster is recovered and reports the Ready status, the Operator resumes the backup and tries to finish it.

Note that if some files were already saved on the storage when a backup was suspended, the Operator deletes them and reruns the backup.

If you want to run backups in an unhealthy cluster, set the spec.unsafeFlags.backupIfUnhealthy option in the deply/cr.yaml file to true . Use this

option with caution because it can affect the cluster performance.

Page 141

Configure storage for backups
You can configure storage for backups in the backup.storages subsection of the Custom Resource, using the deploy/cr.yaml configuration file.

You should also create the Kubernetes Secret object with credentials needed to access the storage.

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 142

Amazon S3 or S3-compatible storage

1. To store backups on the Amazon S3, you need to create a Secret with the following values:

the metadata.name key is the name which you will further use to refer your Kubernetes Secret,

the data.AWS_ACCESS_KEY_ID and data.AWS_SECRET_ACCESS_KEY keys are base64-encoded credentials used to access the storage (obviously

these keys should contain proper values to make the access possible).

Create the Secrets file with these base64-encoded keys following the deploy/backup/backup-secret-s3.yaml example:

You can use the following command to get a base64-encoded string from a plain text one:

Once the editing is over, create the Kubernetes Secret object as follows:

In case the previous backup attempt fails (because of a temporary networking problem, etc.) the backup job tries to delete the unsuccessful backup leftovers first, and then

makes a retry. Therefore there will be no backup retry without DELETE permissions to the objects in the bucket . Also, setting Google Cloud Storage Retention Period can

cause a similar problem.

2. Put the data needed to access the S3-compatible cloud into the backup.storages subsection of the Custom Resource.

storages.<NAME>.type should be set to s3 (substitute the part with some arbitrary name you will later use to refer this storage when making

backups and restores).

storages.<NAME>.s3.credentialsSecret key should be set to the name used to refer your Kubernetes Secret (my-cluster-name-backup-s3 in

the last example).

storages.<NAME>.s3.bucket and storages.<NAME>.s3.region should contain the S3 bucket and region.

if you use some S3-compatible storage instead of the original Amazon S3, add the endpointURL key in the s3 subsection, which should point to the

actual cloud used for backups. This value is specific to the cloud provider. For example, using Google Cloud involves the following endpointUrl:

The options within the storages.<NAME>.s3 subsection are further explained in the Operator Custom Resource options.

Here is an example of the deploy/cr.yaml configuration file which configures Amazon S3 storage for backups:

apiVersion: v1

kind: Secret

metadata:

name: my-cluster-name-backup-s3

type: Opaque

data:

AWS_ACCESS_KEY_ID: UkVQTEFDRS1XSVRILUFXUy1BQ0NFU1MtS0VZ

AWS_SECRET_ACCESS_KEY: UkVQTEFDRS1XSVRILUFXUy1TRUNSRVQtS0VZ

Note

in Linux

in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f deploy/backup/backup-secret-s3.yaml

Note

endpointUrl: https://storage.googleapis.com

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-s3.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-s3.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-s3.yaml
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-with-s3-actions.html
https://cloud.google.com/storage/docs/bucket-lock
https://cloud.google.com/storage/docs/bucket-lock
https://cloud.google.com/storage/docs/bucket-lock
https://docs.min.io/docs/aws-cli-with-minio.html
https://docs.min.io/docs/aws-cli-with-minio.html
https://docs.min.io/docs/aws-cli-with-minio.html
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://storage.googleapis.com/
https://storage.googleapis.com/
https://storage.googleapis.com/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml

Page 143

Microsoft Azure Blob storage

1. To store backups on the Azure Blob storage, you need to create a Secret with the following values:

the metadata.name key is the name which you wll further use to refer your Kubernetes Secret,

the data.AZURE_STORAGE_ACCOUNT_NAME and data.AZURE_STORAGE_ACCOUNT_KEY keys are base64-encoded credentials used to access the storage

(obviously these keys should contain proper values to make the access possible).

Create the Secrets file with these base64-encoded keys following the deploy/backup/backup-secret-azure.yaml example:

You can use the following command to get a base64-encoded string from a plain text one:

Once the editing is over, create the Kubernetes Secret object as follows:

2. Put the data needed to access the Azure Blob storage into the backup.storages subsection of the Custom Resource.

storages.<NAME>.type should be set to azure (substitute the <NAME> part with some arbitrary name you will later use to refer this storage when

making backups and restores).

storages.<NAME>.azure.credentialsSecret key should be set to the name used to refer your Kubernetes Secret (azure-secret in the last

example).

storages.<NAME>.azure.container option should contain the name of the Azure container .

The options within the storages.<NAME>.azure subsection are further explained in the Operator Custom Resource options.

Here is an example of the deploy/cr.yaml configuration file which configures Azure Blob storage for backups:

...

backup:

...

storages:

s3-us-west:

type: s3

s3:

bucket: S3-BACKUP-BUCKET-NAME-HERE

region: us-west-2

credentialsSecret: my-cluster-name-backup-s3

...

apiVersion: v1

kind: Secret

metadata:

name: azure-secret

type: Opaque

data:

AZURE_STORAGE_ACCOUNT_NAME: UkVQTEFDRS1XSVRILUFXUy1BQ0NFU1MtS0VZ

AZURE_STORAGE_ACCOUNT_KEY: UkVQTEFDRS1XSVRILUFXUy1TRUNSRVQtS0VZ

Note

in Linux

in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f deploy/backup/backup-secret-azure.yaml

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-azure.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-azure.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-azure.yaml
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

Page 144

Typically, Percona XtraBackup tools used by the Operator to perform the backup/restore process does not require any additional configuration beyond the standard parameters

mentioned above. However, if access to a non-standard cloud requires some fine-tuning, you can pass additional options to the binary XtraBackup utilities using the following

Custom Resource options: backup.storages.STORAGE_NAME.containerOptions.args.xtrabackup, backup.storages.STORAGE_NAME.containerOptions.args.xbcloud, and

backup.storages.STORAGE_NAME.containerOptions.args.xbstream. Also, you can set environment variables for the XtraBackup container with

backup.storages.STORAGE_NAME.containerOptions.env.

Persistent Volume

Here is an example of the deploy/cr.yaml backup section fragment, which configures a private volume for filesystem-type storage:

Please take into account that 6Gi storage size specified in this example may be insufficient for the real-life setups; consider using tens or hundreds of gigabytes. Also, you can edit

this option later, and changes will take effect after applying the updated deploy/cr.yaml file with kubectl .

...

backup:

...

storages:

azure-blob:

type: azure

azure:

container: <your-container-name>

credentialsSecret: azure-secret

...

...

backup:

...

storages:

fs-pvc:

type: filesystem

volume:

persistentVolumeClaim:

accessModes: ["ReadWriteOnce"]

resources:

requests:

storage: 6G

...

Note

Note

Page 145

Making scheduled backups
Backups schedule is defined in the backup section of the Custom Resource and can be configured via the deploy/cr.yaml file.

1. The backup.storages subsection should contain at least one configured storage.

2. The backup.schedule subsection allows to actually schedule backups:

set the backup.schedule.name key to some arbitray backup name (this name will be needed later to restore the bakup).

specify the backup.schedule.schedule option with the desired backup schedule in crontab format .

set the backup.schedule.storageName key to the name of your already configured storage.

you can optionally set the backup.schedule.keep key to the number of backups which should be kept in the storage.

Here is an example of the deploy/cr.yaml with a scheduled Saturday night backup kept on the Amazon S3 storage:

Before the Operator version 1.10 scheduled backups were based on Kubernetes CronJobs , while newer Operator versions take care about scheduled backups itself. Clusters

upgraded from the Operator version 1.9 may need manual deletion of scheduled backups CronJobs, if any existed prior to the upgrade (otherwise backups will run twice).

You can check if there are any CronJobs in the namespace of your cluster related to scheduled backups as follows:

Deleting CronJob is straightforward:

...

backup:

storages:

s3-us-west:

type: s3

s3:

bucket: S3-BACKUP-BUCKET-NAME-HERE

region: us-west-2

credentialsSecret: my-cluster-name-backup-s3

schedule:

- name: "sat-night-backup"

schedule: "0 0 * * 6"

keep: 3

storageName: s3-us-west

...

Note

$ kubectl get cronjobs -n <namespace>

Expected output

NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE

sat-night-backup 0 0 * * 6 False 0 <none> 4m36s

$ kubectl delete cronjob sat-night-backup -n <namespace>

Expected output

cronjob.batch "sat-night-backup" deleted

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

Page 146

Make on-demand backup

1. To make an on-demand backup, you should first check your Custom Resource for the necessary options and make changes, if needed, using the

deploy/cr.yaml configuration file. The backup.storages subsection should contain at least one configured storage.

You can apply changes in the deploy/cr.yaml file with the usual kubectl apply -f deploy/cr.yaml command.

2. Now use a special backup configuration YAML file with the following keys:

metadata.name key should be set to the backup name (this name will be needed later to restore the backup),

spec.pxcCluster key should be set to the name of your cluster,

spec.storageName key should be set to the name of your already configured storage.

optionally you can set the metadata.finalizers.delete-s3-backup key (it triggers the actual deletion of backup files from the S3 bucket or azure

container when there is a manual or scheduled removal of the corresponding backup object).

You can find the example of such file in deploy/backup/backup.yaml :

3. Run the actual backup command using this file:

4. Track the backup process by checking the status of the Backup object:

The -w flag instructs the Operator to provide real-time updates about the backup progress. The Succeeded status indicates that a backup is completed.

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterBackup

metadata:

finalizers:

- delete-s3-backup

name: backup1

spec:

pxcCluster: cluster1

storageName: fs-pvc

$ kubectl apply -f deploy/backup/backup.yaml

$ kubectl get pxc-backup -w

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup.yaml

Page 147

Store binary logs for point-in-time recovery
Point-in-time recovery allows users to roll back the cluster to a specific transaction or time. You can even skip a transaction if you don’t need it anymore. To

make a point-in-time recovery, the Operator needs a backup and binary logs (binlogs) of the server to.

A binary log records all changes made to the database, such as updates, inserts, and deletes. It is used to synchronize data across servers for and point-in-

time recovery.

Point-in-time recovery is off by default and is supported by the Operator with Percona XtraDB Cluster versions starting from 8.0.21-12.1.

After you enable point-in-time recovery, the Operator spins up a separate point-in-time recovery Pod, which starts saving binary log updates to the backup

storage.

Considerations

1. You must use either s3-compatible or Azure-compatible storage for both binlog and full backup to make the point-in-time recovery work

2. The Operator saves binlogs without any cluster-based filtering. Therefore, either use a separate folder per cluster on the same bucket or use different

buckets for binlogs.

Also,we recommend to have an empty bucket or a folder on a bucket for binlogs when you enable point-in-time recovery. This bucket/folder should not

contain no binlogs nor files from previous attempts or other clusters.

3. Don’t purge binlogs before they are transferred to the backup storage. Doing so breaks point-in-time recovery.

4. Disable the retention policy as it is incompatible with the point-in-time recovery. To clean up the storage, configure the Bucket lifecycle on the storage

Enable point-in-time recovery
To use point-in-time recovery, set the following keys in the pitr subsection under the backup section of the deploy/cr.yaml manifest:

backup.pitr.enabled - set it to true

backup.pitr.storageName - specify the same storage name that you have defined in the storages subsection

timeBetweenUploads - specify the number of seconds between running the binlog uploader

The following example shows how the pitr subsection looks like if you use the S3 storage:

For how to restore a database to a specific point in time, see Restore the cluster with point-in-time recovery.

Binary logs statistics
The point-in-time recovery Pod has statistics metrics for binlogs. They provide insights into the success and failure rates of binlog operations, timeliness of

processing and uploads and potential gaps or inconsistencies in binlog data.

The available metrics are:

pxc_binlog_collector_success_total - The total number of successful binlog collection cycles. It helps monitor how often the binlog collector

successfully processes and uploads binary logs.

pxc_binlog_collector_gap_detected_total - Tracks the total number of gaps detected in the binlog sequence during collection. Highlights potential

issues with missing or skipped binlogs, which could impact replication or recovery.

pxc_binlog_collector_last_processing_timestamp - Records the timestamp of the last successful binlog collection operation.

pxc_binlog_collector_last_upload_timestamp - Records the timestamp of the last successful binlog upload to the storage

pxc_binlog_collector_uploaded_total - The total number of successfully uploaded binlogs

backup:

...

pitr:

enabled: true

storageName: s3-us-west

timeBetweenUploads: 60

https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-set-lifecycle-configuration-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-set-lifecycle-configuration-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-set-lifecycle-configuration-intro.html
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml

Page 148

Gather metrics data

You can connect to the point-in-time recovery Pod using the <pitr-pod-service>:8080/metrics endpoint to gather these metrics and further analyze

them.

List services to get the point-in-time-recovery service name:

Access locally via port forwarding

Use this method to access the metrics from your local machine.

1. Forward the Kubernetes service’s port:

2. Open your browser and visit <http://localhost:8080/metrics>

$ kubectl get services | grep 'pitr'

Expected output

cluster1-pitr ClusterIP 34.118.225.138 <none> 8080/TCP

$ kubectl port-forward svc/cluster1-pitr 8080:8080

Page 149

Expected output

Page 150

HELP go_gc_duration_seconds A summary of the wall-time pause (stop-the-world) duration in garbage collection cycles.

TYPE go_gc_duration_seconds summary

go_gc_duration_seconds{quantile="0"} 0.000109735

go_gc_duration_seconds{quantile="0.25"} 0.000147529

go_gc_duration_seconds{quantile="0.5"} 0.000176199

go_gc_duration_seconds{quantile="0.75"} 0.000196962

go_gc_duration_seconds{quantile="1"} 0.000570426

go_gc_duration_seconds_sum 0.002970858

go_gc_duration_seconds_count 14

HELP go_gc_gogc_percent Heap size target percentage configured by the user, otherwise 100. This value is set by the GOGC environment

variable, and the runtime/debug.SetGCPercent function. Sourced from /gc/gogc:percent.

TYPE go_gc_gogc_percent gauge

go_gc_gogc_percent 100

HELP go_gc_gomemlimit_bytes Go runtime memory limit configured by the user, otherwise math.MaxInt64. This value is set by the GOMEMLIMIT

environment variable, and the runtime/debug.SetMemoryLimit function. Sourced from /gc/gomemlimit:bytes.

TYPE go_gc_gomemlimit_bytes gauge

go_gc_gomemlimit_bytes 9.223372036854776e+18

HELP go_goroutines Number of goroutines that currently exist.

TYPE go_goroutines gauge

go_goroutines 31

HELP go_info Information about the Go environment.

TYPE go_info gauge

go_info{version="go1.24.3"} 1

HELP go_memstats_alloc_bytes Number of bytes allocated in heap and currently in use. Equals to /memory/classes/heap/objects:bytes.

TYPE go_memstats_alloc_bytes gauge

go_memstats_alloc_bytes 2.83268e+06

HELP go_memstats_alloc_bytes_total Total number of bytes allocated in heap until now, even if released already. Equals to

/gc/heap/allocs:bytes.

TYPE go_memstats_alloc_bytes_total counter

go_memstats_alloc_bytes_total 5.80031448e+08

HELP go_memstats_buck_hash_sys_bytes Number of bytes used by the profiling bucket hash table. Equals to

/memory/classes/profiling/buckets:bytes.

TYPE go_memstats_buck_hash_sys_bytes gauge

go_memstats_buck_hash_sys_bytes 5696

HELP go_memstats_frees_total Total number of heap objects frees. Equals to /gc/heap/frees:objects + /gc/heap/tiny/allocs:objects.

TYPE go_memstats_frees_total counter

go_memstats_frees_total 112652

HELP go_memstats_gc_sys_bytes Number of bytes used for garbage collection system metadata. Equals to

/memory/classes/metadata/other:bytes.

TYPE go_memstats_gc_sys_bytes gauge

go_memstats_gc_sys_bytes 3.83684e+06

HELP go_memstats_heap_alloc_bytes Number of heap bytes allocated and currently in use, same as go_memstats_alloc_bytes. Equals to

/memory/classes/heap/objects:bytes.

TYPE go_memstats_heap_alloc_bytes gauge

go_memstats_heap_alloc_bytes 2.83268e+06

HELP go_memstats_heap_idle_bytes Number of heap bytes waiting to be used. Equals to /memory/classes/heap/released:bytes +

/memory/classes/heap/free:bytes.

TYPE go_memstats_heap_idle_bytes gauge

go_memstats_heap_idle_bytes 5.681152e+08

HELP go_memstats_heap_inuse_bytes Number of heap bytes that are in use. Equals to /memory/classes/heap/objects:bytes +

/memory/classes/heap/unused:bytes

TYPE go_memstats_heap_inuse_bytes gauge

go_memstats_heap_inuse_bytes 5.423104e+06

HELP go_memstats_heap_objects Number of currently allocated objects. Equals to /gc/heap/objects:objects.

TYPE go_memstats_heap_objects gauge

go_memstats_heap_objects 11876

HELP go_memstats_heap_released_bytes Number of heap bytes released to OS. Equals to /memory/classes/heap/released:bytes.

TYPE go_memstats_heap_released_bytes gauge

go_memstats_heap_released_bytes 5.66616064e+08

HELP go_memstats_heap_sys_bytes Number of heap bytes obtained from system. Equals to /memory/classes/heap/objects:bytes +

/memory/classes/heap/unused:bytes + /memory/classes/heap/released:bytes + /memory/classes/heap/free:bytes.

TYPE go_memstats_heap_sys_bytes gauge

go_memstats_heap_sys_bytes 5.73538304e+08

HELP go_memstats_last_gc_time_seconds Number of seconds since 1970 of last garbage collection.

TYPE go_memstats_last_gc_time_seconds gauge

go_memstats_last_gc_time_seconds 1.7492150571437228e+09

HELP go_memstats_mallocs_total Total number of heap objects allocated, both live and gc-ed. Semantically a counter version for

go_memstats_heap_objects gauge. Equals to /gc/heap/allocs:objects + /gc/heap/tiny/allocs:objects.

TYPE go_memstats_mallocs_total counter

go_memstats_mallocs_total 124528

HELP go_memstats_mcache_inuse_bytes Number of bytes in use by mcache structures. Equals to

/memory/classes/metadata/mcache/inuse:bytes.

TYPE go_memstats_mcache_inuse_bytes gauge

go_memstats_mcache_inuse_bytes 4832

HELP go_memstats_mcache_sys_bytes Number of bytes used for mcache structures obtained from system. Equals to

/memory/classes/metadata/mcache/inuse:bytes + /memory/classes/metadata/mcache/free:bytes.

TYPE go_memstats_mcache_sys_bytes gauge

go_memstats_mcache_sys_bytes 15704

HELP go_memstats_mspan_inuse_bytes Number of bytes in use by mspan structures. Equals to /memory/classes/metadata/mspan/inuse:bytes.

TYPE go_memstats_mspan_inuse_bytes gauge

go_memstats_mspan_inuse_bytes 125920

HELP go_memstats_mspan_sys_bytes Number of bytes used for mspan structures obtained from system. Equals to

/memory/classes/metadata/mspan/inuse:bytes + /memory/classes/metadata/mspan/free:bytes.

TYPE go_memstats_mspan_sys_bytes gauge

go_memstats_mspan_sys_bytes 146880

HELP go_memstats_next_gc_bytes Number of heap bytes when next garbage collection will take place. Equals to /gc/heap/goal:bytes.

Page 151

Access directly from a Pod

You can gather the metrics from inside a database cluster.

1. Connect to the cluster as follows, replacing the <namespace> placeholder with your value:

TYPE go_memstats_next_gc_bytes gauge

go_memstats_next_gc_bytes 6.04629e+06

HELP go_memstats_other_sys_bytes Number of bytes used for other system allocations. Equals to /memory/classes/other:bytes.

TYPE go_memstats_other_sys_bytes gauge

go_memstats_other_sys_bytes 764832

HELP go_memstats_stack_inuse_bytes Number of bytes obtained from system for stack allocator in non-CGO environments. Equals to

/memory/classes/heap/stacks:bytes.

TYPE go_memstats_stack_inuse_bytes gauge

go_memstats_stack_inuse_bytes 1.081344e+06

HELP go_memstats_stack_sys_bytes Number of bytes obtained from system for stack allocator. Equals to /memory/classes/heap/stacks:bytes +

/memory/classes/os-stacks:bytes.

TYPE go_memstats_stack_sys_bytes gauge

go_memstats_stack_sys_bytes 1.081344e+06

HELP go_memstats_sys_bytes Number of bytes obtained from system. Equals to /memory/classes/total:byte.

TYPE go_memstats_sys_bytes gauge

go_memstats_sys_bytes 5.793896e+08

HELP go_sched_gomaxprocs_threads The current runtime.GOMAXPROCS setting, or the number of operating system threads that can execute

user-level Go code simultaneously. Sourced from /sched/gomaxprocs:threads.

TYPE go_sched_gomaxprocs_threads gauge

go_sched_gomaxprocs_threads 4

HELP go_threads Number of OS threads created.

TYPE go_threads gauge

go_threads 10

HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.

TYPE process_cpu_seconds_total counter

process_cpu_seconds_total 0.55

HELP process_max_fds Maximum number of open file descriptors.

TYPE process_max_fds gauge

process_max_fds 1.048576e+06

HELP process_network_receive_bytes_total Number of bytes received by the process over the network.

TYPE process_network_receive_bytes_total counter

process_network_receive_bytes_total 1.172862e+06

HELP process_network_transmit_bytes_total Number of bytes sent by the process over the network.

TYPE process_network_transmit_bytes_total counter

process_network_transmit_bytes_total 632432

HELP process_open_fds Number of open file descriptors.

TYPE process_open_fds gauge

process_open_fds 9

HELP process_resident_memory_bytes Resident memory size in bytes.

TYPE process_resident_memory_bytes gauge

process_resident_memory_bytes 3.9350272e+07

HELP process_start_time_seconds Start time of the process since unix epoch in seconds.

TYPE process_start_time_seconds gauge

process_start_time_seconds 1.74921402754e+09

HELP process_virtual_memory_bytes Virtual memory size in bytes.

TYPE process_virtual_memory_bytes gauge

process_virtual_memory_bytes 1.901723648e+09

HELP process_virtual_memory_max_bytes Maximum amount of virtual memory available in bytes.

TYPE process_virtual_memory_max_bytes gauge

process_virtual_memory_max_bytes 1.8446744073709552e+19

HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.

TYPE promhttp_metric_handler_requests_in_flight gauge

promhttp_metric_handler_requests_in_flight 1

HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status code.

TYPE promhttp_metric_handler_requests_total counter

promhttp_metric_handler_requests_total{code="200"} 3

promhttp_metric_handler_requests_total{code="500"} 0

promhttp_metric_handler_requests_total{code="503"} 0

HELP pxc_binlog_collector_failure_total Total number of failed binlog collection cycles

TYPE pxc_binlog_collector_failure_total counter

pxc_binlog_collector_failure_total 0

HELP pxc_binlog_collector_gap_detected_total Total number of times the gap was detected in binlog

TYPE pxc_binlog_collector_gap_detected_total counter

pxc_binlog_collector_gap_detected_total 0

HELP pxc_binlog_collector_last_processing_timestamp Timestamp of the last successful binlog processing

TYPE pxc_binlog_collector_last_processing_timestamp gauge

pxc_binlog_collector_last_processing_timestamp 1.7492150471803956e+09

HELP pxc_binlog_collector_last_upload_timestamp Timestamp of the last successful binlog upload

TYPE pxc_binlog_collector_last_upload_timestamp gauge

pxc_binlog_collector_last_upload_timestamp 1.749214031447092e+09

HELP pxc_binlog_collector_success_total Total number of successful binlog collection cycles

TYPE pxc_binlog_collector_success_total counter

pxc_binlog_collector_success_total 19

HELP pxc_binlog_collector_uploaded_total Total number of successfully uploaded binlogs

TYPE pxc_binlog_collector_uploaded_total counter

pxc_binlog_collector_uploaded_total 1

Page 152

2. Connect to the point-in-time recovery port using curl :

$ kubectl run -n <namespace> -i --rm --tty percona-client --image=percona:8.0 --restart=Never -- bash -il

$ curl cluster1-pitr:8080/metrics

Page 153

Expected output

Page 154

HELP go_gc_duration_seconds A summary of the wall-time pause (stop-the-world) duration in garbage collection cycles.

TYPE go_gc_duration_seconds summary

go_gc_duration_seconds{quantile="0"} 0.000109735

go_gc_duration_seconds{quantile="0.25"} 0.000147529

go_gc_duration_seconds{quantile="0.5"} 0.000176199

go_gc_duration_seconds{quantile="0.75"} 0.000196962

go_gc_duration_seconds{quantile="1"} 0.000570426

go_gc_duration_seconds_sum 0.002970858

go_gc_duration_seconds_count 14

HELP go_gc_gogc_percent Heap size target percentage configured by the user, otherwise 100. This value is set by the GOGC environment

variable, and the runtime/debug.SetGCPercent function. Sourced from /gc/gogc:percent.

TYPE go_gc_gogc_percent gauge

go_gc_gogc_percent 100

HELP go_gc_gomemlimit_bytes Go runtime memory limit configured by the user, otherwise math.MaxInt64. This value is set by the GOMEMLIMIT

environment variable, and the runtime/debug.SetMemoryLimit function. Sourced from /gc/gomemlimit:bytes.

TYPE go_gc_gomemlimit_bytes gauge

go_gc_gomemlimit_bytes 9.223372036854776e+18

HELP go_goroutines Number of goroutines that currently exist.

TYPE go_goroutines gauge

go_goroutines 31

HELP go_info Information about the Go environment.

TYPE go_info gauge

go_info{version="go1.24.3"} 1

HELP go_memstats_alloc_bytes Number of bytes allocated in heap and currently in use. Equals to /memory/classes/heap/objects:bytes.

TYPE go_memstats_alloc_bytes gauge

go_memstats_alloc_bytes 2.83268e+06

HELP go_memstats_alloc_bytes_total Total number of bytes allocated in heap until now, even if released already. Equals to

/gc/heap/allocs:bytes.

TYPE go_memstats_alloc_bytes_total counter

go_memstats_alloc_bytes_total 5.80031448e+08

HELP go_memstats_buck_hash_sys_bytes Number of bytes used by the profiling bucket hash table. Equals to

/memory/classes/profiling/buckets:bytes.

TYPE go_memstats_buck_hash_sys_bytes gauge

go_memstats_buck_hash_sys_bytes 5696

HELP go_memstats_frees_total Total number of heap objects frees. Equals to /gc/heap/frees:objects + /gc/heap/tiny/allocs:objects.

TYPE go_memstats_frees_total counter

go_memstats_frees_total 112652

HELP go_memstats_gc_sys_bytes Number of bytes used for garbage collection system metadata. Equals to

/memory/classes/metadata/other:bytes.

TYPE go_memstats_gc_sys_bytes gauge

go_memstats_gc_sys_bytes 3.83684e+06

HELP go_memstats_heap_alloc_bytes Number of heap bytes allocated and currently in use, same as go_memstats_alloc_bytes. Equals to

/memory/classes/heap/objects:bytes.

TYPE go_memstats_heap_alloc_bytes gauge

go_memstats_heap_alloc_bytes 2.83268e+06

HELP go_memstats_heap_idle_bytes Number of heap bytes waiting to be used. Equals to /memory/classes/heap/released:bytes +

/memory/classes/heap/free:bytes.

TYPE go_memstats_heap_idle_bytes gauge

go_memstats_heap_idle_bytes 5.681152e+08

HELP go_memstats_heap_inuse_bytes Number of heap bytes that are in use. Equals to /memory/classes/heap/objects:bytes +

/memory/classes/heap/unused:bytes

TYPE go_memstats_heap_inuse_bytes gauge

go_memstats_heap_inuse_bytes 5.423104e+06

HELP go_memstats_heap_objects Number of currently allocated objects. Equals to /gc/heap/objects:objects.

TYPE go_memstats_heap_objects gauge

go_memstats_heap_objects 11876

HELP go_memstats_heap_released_bytes Number of heap bytes released to OS. Equals to /memory/classes/heap/released:bytes.

TYPE go_memstats_heap_released_bytes gauge

go_memstats_heap_released_bytes 5.66616064e+08

HELP go_memstats_heap_sys_bytes Number of heap bytes obtained from system. Equals to /memory/classes/heap/objects:bytes +

/memory/classes/heap/unused:bytes + /memory/classes/heap/released:bytes + /memory/classes/heap/free:bytes.

TYPE go_memstats_heap_sys_bytes gauge

go_memstats_heap_sys_bytes 5.73538304e+08

HELP go_memstats_last_gc_time_seconds Number of seconds since 1970 of last garbage collection.

TYPE go_memstats_last_gc_time_seconds gauge

go_memstats_last_gc_time_seconds 1.7492150571437228e+09

HELP go_memstats_mallocs_total Total number of heap objects allocated, both live and gc-ed. Semantically a counter version for

go_memstats_heap_objects gauge. Equals to /gc/heap/allocs:objects + /gc/heap/tiny/allocs:objects.

TYPE go_memstats_mallocs_total counter

go_memstats_mallocs_total 124528

HELP go_memstats_mcache_inuse_bytes Number of bytes in use by mcache structures. Equals to

/memory/classes/metadata/mcache/inuse:bytes.

TYPE go_memstats_mcache_inuse_bytes gauge

go_memstats_mcache_inuse_bytes 4832

HELP go_memstats_mcache_sys_bytes Number of bytes used for mcache structures obtained from system. Equals to

/memory/classes/metadata/mcache/inuse:bytes + /memory/classes/metadata/mcache/free:bytes.

TYPE go_memstats_mcache_sys_bytes gauge

go_memstats_mcache_sys_bytes 15704

HELP go_memstats_mspan_inuse_bytes Number of bytes in use by mspan structures. Equals to /memory/classes/metadata/mspan/inuse:bytes.

TYPE go_memstats_mspan_inuse_bytes gauge

go_memstats_mspan_inuse_bytes 125920

HELP go_memstats_mspan_sys_bytes Number of bytes used for mspan structures obtained from system. Equals to

/memory/classes/metadata/mspan/inuse:bytes + /memory/classes/metadata/mspan/free:bytes.

TYPE go_memstats_mspan_sys_bytes gauge

go_memstats_mspan_sys_bytes 146880

HELP go_memstats_next_gc_bytes Number of heap bytes when next garbage collection will take place. Equals to /gc/heap/goal:bytes.

Page 155

Note that the statistics data is not kept when the point-in-time recovery Pod restarts. This means that the counters like

pxc_binlog_collector_success_total are reset.

TYPE go_memstats_next_gc_bytes gauge

go_memstats_next_gc_bytes 6.04629e+06

HELP go_memstats_other_sys_bytes Number of bytes used for other system allocations. Equals to /memory/classes/other:bytes.

TYPE go_memstats_other_sys_bytes gauge

go_memstats_other_sys_bytes 764832

HELP go_memstats_stack_inuse_bytes Number of bytes obtained from system for stack allocator in non-CGO environments. Equals to

/memory/classes/heap/stacks:bytes.

TYPE go_memstats_stack_inuse_bytes gauge

go_memstats_stack_inuse_bytes 1.081344e+06

HELP go_memstats_stack_sys_bytes Number of bytes obtained from system for stack allocator. Equals to /memory/classes/heap/stacks:bytes +

/memory/classes/os-stacks:bytes.

TYPE go_memstats_stack_sys_bytes gauge

go_memstats_stack_sys_bytes 1.081344e+06

HELP go_memstats_sys_bytes Number of bytes obtained from system. Equals to /memory/classes/total:byte.

TYPE go_memstats_sys_bytes gauge

go_memstats_sys_bytes 5.793896e+08

HELP go_sched_gomaxprocs_threads The current runtime.GOMAXPROCS setting, or the number of operating system threads that can execute

user-level Go code simultaneously. Sourced from /sched/gomaxprocs:threads.

TYPE go_sched_gomaxprocs_threads gauge

go_sched_gomaxprocs_threads 4

HELP go_threads Number of OS threads created.

TYPE go_threads gauge

go_threads 10

HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.

TYPE process_cpu_seconds_total counter

process_cpu_seconds_total 0.55

HELP process_max_fds Maximum number of open file descriptors.

TYPE process_max_fds gauge

process_max_fds 1.048576e+06

HELP process_network_receive_bytes_total Number of bytes received by the process over the network.

TYPE process_network_receive_bytes_total counter

process_network_receive_bytes_total 1.172862e+06

HELP process_network_transmit_bytes_total Number of bytes sent by the process over the network.

TYPE process_network_transmit_bytes_total counter

process_network_transmit_bytes_total 632432

HELP process_open_fds Number of open file descriptors.

TYPE process_open_fds gauge

process_open_fds 9

HELP process_resident_memory_bytes Resident memory size in bytes.

TYPE process_resident_memory_bytes gauge

process_resident_memory_bytes 3.9350272e+07

HELP process_start_time_seconds Start time of the process since unix epoch in seconds.

TYPE process_start_time_seconds gauge

process_start_time_seconds 1.74921402754e+09

HELP process_virtual_memory_bytes Virtual memory size in bytes.

TYPE process_virtual_memory_bytes gauge

process_virtual_memory_bytes 1.901723648e+09

HELP process_virtual_memory_max_bytes Maximum amount of virtual memory available in bytes.

TYPE process_virtual_memory_max_bytes gauge

process_virtual_memory_max_bytes 1.8446744073709552e+19

HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.

TYPE promhttp_metric_handler_requests_in_flight gauge

promhttp_metric_handler_requests_in_flight 1

HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status code.

TYPE promhttp_metric_handler_requests_total counter

promhttp_metric_handler_requests_total{code="200"} 3

promhttp_metric_handler_requests_total{code="500"} 0

promhttp_metric_handler_requests_total{code="503"} 0

HELP pxc_binlog_collector_failure_total Total number of failed binlog collection cycles

TYPE pxc_binlog_collector_failure_total counter

pxc_binlog_collector_failure_total 0

HELP pxc_binlog_collector_gap_detected_total Total number of times the gap was detected in binlog

TYPE pxc_binlog_collector_gap_detected_total counter

pxc_binlog_collector_gap_detected_total 0

HELP pxc_binlog_collector_last_processing_timestamp Timestamp of the last successful binlog processing

TYPE pxc_binlog_collector_last_processing_timestamp gauge

pxc_binlog_collector_last_processing_timestamp 1.7492150471803956e+09

HELP pxc_binlog_collector_last_upload_timestamp Timestamp of the last successful binlog upload

TYPE pxc_binlog_collector_last_upload_timestamp gauge

pxc_binlog_collector_last_upload_timestamp 1.749214031447092e+09

HELP pxc_binlog_collector_success_total Total number of successful binlog collection cycles

TYPE pxc_binlog_collector_success_total counter

pxc_binlog_collector_success_total 19

HELP pxc_binlog_collector_uploaded_total Total number of successfully uploaded binlogs

TYPE pxc_binlog_collector_uploaded_total counter

pxc_binlog_collector_uploaded_total 1

Page 156

Enable compression for backups
You can enable LZ4 compression for backups if you run Percona XtraDB Cluster 8.0 and higher.

To enable compression, use the pxc.configuration key in the deploy/cr.yaml configuration file. Specify the following options from the my.cnf configuration

file in the [sst] and [xtrabackup] sections:

When enabled, compression will be used for both backups and SST .

pxc:

image: percona/percona-xtradb-cluster:8.0.19-10.1

configuration: |

...

[sst]

xbstream-opts=--decompress

[xtrabackup]

compress=lz4

...

https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://docs.percona.com/percona-xtradb-cluster/8.0/state-snapshot-transfer.html
https://docs.percona.com/percona-xtradb-cluster/8.0/state-snapshot-transfer.html
https://docs.percona.com/percona-xtradb-cluster/8.0/state-snapshot-transfer.html

Page 157

Restore the cluster from a previously saved backup
The backup is normally restored on the Kubernetes cluster where it was made, but restoring it on a different Kubernetes-based environment with the installed

Operator is also possible.

Backups cannot be restored to emptyDir and hostPath volumes, but it is possible to make a backup from such storage (i. e., from emptyDir/hostPath to S3),

and later restore it to a Persistent Volume .

To restore a backup, you will use the special restore configuration file. The example of such file is deploy/backup/restore.yaml . The list of options that can

be used in it can be found in the restore options reference.

Following things are needed to restore a previously saved backup:

Make sure that the cluster is running.

Find out correct names for the backup and the cluster. Available backups can be listed with the following command:

And the following command will list available clusters:

If you have configured storing binlogs for point-in-time recovery, you will have possibility to roll back the cluster to a specific transaction, time (or even skip a transaction in some

cases). Otherwise, restoring backups without point-in-time recovery is the only option.

When the correct names for the backup and the cluster are known, backup restoration can be done in the following way.

Restore the cluster without point-in-time recovery

1. Set appropriate keys in the deploy/backup/restore.yaml file.

set spec.pxcCluster key to the name of the target cluster to restore the backup on,

set spec.backupName key to the name of your backup,

you can also use a storageName key to specify the exact name of the storage (the actual storage should be already defined in the backup.storages

subsection of the deploy/cr.yaml file):

2. After that, the actual restoration process can be started as follows:

$ kubectl get pxc-backup

$ kubectl get pxc

Note

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterRestore

metadata:

name: restore1

spec:

pxcCluster: cluster1

backupName: backup1

storageName: s3-us-west

$ kubectl apply -f deploy/backup/restore.yaml

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml

Page 158

Storing backup settings in a separate file can be replaced by passing its content to the kubectl apply command as follows:

Restore the cluster with point-in-time recovery

Disable the point-in-time functionality on the existing cluster before restoring a backup on it, regardless of whether the backup was made with point-in-time recovery or without it.

1. Set appropriate keys in the deploy/backup/restore.yaml file.

set spec.pxcCluster key to the name of the target cluster to restore the backup on,

set spec.backupName key to the name of your backup,

put additional restoration parameters to the pitr section:

type key can be equal to one of the following options,

date - roll back to specific date,

transaction - roll back to a specific transaction (available since Operator 1.8.0),

latest - recover to the latest possible transaction,

skip - skip a specific transaction (available since Operator 1.7.0).

date key is used with type=date option and contains value in datetime format,

gtid key (available since the Operator 1.8.0) is used with type=transaction option and contains exact GTID of a transaction which follows the

last transaction included into the recovery

use backupSource.storageName key to specify the exact name of the storage (the actual storage should be already defined in the backup.storages

subsection of the deploy/cr.yaml file).

The resulting restore.yaml file may look as follows:

Full backup objects available with the kubectl get pxc-backup command have a “Latest restorable time” information field handy when selecting a backup to restore. You

can easily query the backup for this information as follows:

2. Run the actual restoration process:

Note

$ cat <<EOF | kubectl apply -f-

apiVersion: "pxc.percona.com/v1"

kind: "PerconaXtraDBClusterRestore"

metadata:

name: "restore1"

spec:

pxcCluster: "cluster1"

backupName: "backup1"

EOF

Note

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterRestore

metadata:

name: restore1

spec:

pxcCluster: cluster1

backupName: backup1

pitr:

type: date

date: "2020-12-31 09:37:13"

backupSource:

storageName: "s3-us-west"

Note

$ kubectl get pxc-backup <backup_name> -o jsonpath='{.status.latestRestorableTime}'

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml

Page 159

Storing backup settings in a separate file can be replaced by passing its content to the kubectl apply command as follows:

Take into account, that Operator monitors the binlog gaps detected by binlog collector, if any. If backup contains such gaps, the Operator will mark the status

of the latest successful backup with a new condition field that indicates backup can’t guarantee consistent point-in-time recovery. This condition looks as

follows:

Trying to restore from such backup (with the condition value “False”) with point-in-time recovery will result in the following error:

You can disable this check and force the restore by annotating it with pxc.percona.com/unsafe-pitr as follows:

Restore the cluster when backup has different passwords
If the cluster is restored to a backup which has different user passwords, the Operator will be unable connect to database using the passwords in Secrets, and

so will fail to reconcile the cluster.

$ kubectl apply -f deploy/backup/restore.yaml

Note

$ cat <<EOF | kubectl apply -f-

apiVersion: "pxc.percona.com/v1"

kind: "PerconaXtraDBClusterRestore"

metadata:

name: "restore1"

spec:

pxcCluster: "cluster1"

backupName: "backup1"

pitr:

type: date

date: "2020-12-31 09:37:13"

backupSource:

storageName: "s3-us-west"

EOF

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterBackup

metadata:

name: backup1

spec:

pxcCluster: pitr

storageName: minio

status:

completed: "2022-11-25T15:57:29Z"

conditions:

- lastTransitionTime: "2022-11-25T15:57:48Z"

message: Binlog with GTID set e41eb219-6cd8-11ed-94c8-9ebf697d3d20:21-22 not found

reason: BinlogGapDetected

status: "False"

type: PITRReady

state: Succeeded

Backup doesn't guarantee consistent recovery with PITR. Annotate PerconaXtraDBClusterRestore with percona.com/unsafe-pitr to

force it.

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterRestore

metadata:

annotations:

percona.com/unsafe-pitr: "true"

name: restore2

spec:

pxcCluster: pitr

backupName: backup1

pitr:

type: latest

backupSource:

storageName: "minio-binlogs"

Page 160

Let’s consider an example with four backups, first two of which were done before the password rotation and therefore have different passwords:

In this case you will need some manual operations same as the Operator does to propagate password changes in Secrets to the database before restoring a

backup.

When the user updates a password in the Secret, the Operator creates a temporary Secret called <clusterName>-mysql-init and puts (or appends) the

required ALTER USER statement into it. Then MySQL Pods are mounting this init Secret if exist and running corresponding statements on startup. When a new

backup is created and successfully finished, the Operator deletes the init Secret.

In the above example passwords are changed after backup2 was finished, and then three new backups were created, so the init Secret does not exist. If you

want to restore to backup2, you need to create the init secret by your own with the latest passwords as follows.

1. Make a base64-encoded string with needed SQL statements (substitute each <latestPass> with the password of the appropriate user):

2. After you obtained the needed base64-encoded string, create the appropriate Secret:

3. Now you can restore the needed backup as usual.

NAME CLUSTER STORAGE DESTINATION STATUS COMPLETED AGE

backup1 cluster1 fs-pvc pvc/xb-backup1 Succeeded 23m 24m

backup2 cluster1 fs-pvc pvc/xb-backup2 Succeeded 18m 19m

backup3 cluster1 fs-pvc pvc/xb-backup3 Succeeded 13m 14m

backup3 cluster1 fs-pvc pvc/xb-backup4 Succeeded 8m53s 9m29s

backup4 cluster1 fs-pvc pvc/xb-backup5 Succeeded 3m11s 4m29s

in Linux

in macOS

$ cat <<EOF | base64 --wrap=0

ALTER USER 'root'@'%' IDENTIFIED BY '<latestPass>';

ALTER USER 'root'@'localhost' IDENTIFIED BY '<latestPass>';

ALTER USER 'operator'@'%' IDENTIFIED BY '<latestPass>';

ALTER USER 'monitor'@'%' IDENTIFIED BY '<latestPass>';

ALTER USER 'clustercheck'@'localhost' IDENTIFIED BY '<latestPass>';

ALTER USER 'xtrabackup'@'%' IDENTIFIED BY '<latestPass>';

ALTER USER 'xtrabackup'@'localhost' IDENTIFIED BY '<latestPass>';

ALTER USER 'replication'@'%' IDENTIFIED BY '<latestPass>';

EOF

$ cat <<EOF | base64

ALTER USER 'root'@'%' IDENTIFIED BY '<latestPass>';

ALTER USER 'root'@'localhost' IDENTIFIED BY '<latestPass>';

ALTER USER 'operator'@'%' IDENTIFIED BY '<latestPass>';

ALTER USER 'monitor'@'%' IDENTIFIED BY '<latestPass>';

ALTER USER 'clustercheck'@'localhost' IDENTIFIED BY '<latestPass>';

ALTER USER 'xtrabackup'@'%' IDENTIFIED BY '<latestPass>';

ALTER USER 'xtrabackup'@'localhost' IDENTIFIED BY '<latestPass>';

ALTER USER 'replication'@'%' IDENTIFIED BY '<latestPass>';

EOF

$ kubectl apply -f - <<EOF

apiVersion: v1

kind: Secret

type: Opaque

metadata:

name: cluster1-mysql-init

data:

init.sql: <base64encodedstring>

EOF

Page 161

Copy backup to a local machine
Make a local copy of a previously saved backup requires not more than the backup name. This name can be taken from the list of available backups returned

by the following command:

When the name is known, backup can be downloaded to the local machine as follows:

For example, this downloaded backup can be restored to the local installation of Percona Server:

If needed, you can also restore the backup to a Kubernetes cluster following the instructions in this howto.

$ kubectl get pxc-backup

$./deploy/backup/copy-backup.sh <backup-name> path/to/dir

$ service mysqld stop

$ rm -rf /var/lib/mysql/*

$ cat xtrabackup.stream | xbstream -x -C /var/lib/mysql

$ xtrabackup --prepare --target-dir=/var/lib/mysql

$ chown -R mysql:mysql /var/lib/mysql

$ service mysqld start

Page 162

Delete the unneeded backup
The maximum amount of stored backups is controlled by the backup.schedule.keep option (only successful backups are counted). Older backups are

automatically deleted, so that amount of stored backups do not exceed this number. Setting keep=0 or removing this option from deploy/cr.yaml disables

automatic deletion of backups.

Manual deleting of a previously saved backup requires not more than the backup name. This name can be taken from the list of available backups returned by

the following command:

When the name is known, backup can be deleted as follows:

$ kubectl get pxc-backup

$ kubectl delete pxc-backup/<backup-name>

Page 163

Scale MySQL on Kubernetes and OpenShift
One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an application scaling. Scaling an application results in adding

resources or Pods and scheduling them to available Kubernetes nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to MySQL nodes; horizontal scaling is about adding more

nodes to the cluster.

Vertical scaling

Scale compute

There are multiple components that Operator deploys and manages: Percona XtraDB Cluster (PXC), HAProxy or ProxySQL, etc. To add or reduce CPU or

Memory you need to edit corresponding sections in the Custom Resource. We follow the structure for requests and limits that Kubernetes provides .

To add more resources to your MySQL nodes in PXC edit the following section in the Custom Resource:

Use our reference documentation for the Custom Resource options for more details about other components.

Scale storage

Kubernetes manages storage with a PersistentVolume (PV), a segment of storage supplied by the administrator, and a PersistentVolumeClaim (PVC), a

request for storage from a user. In Kubernetes v1.11 the feature was added to allow a user to increase the size of an existing PVC object (considered stable

since Kubernetes v1.24). The user cannot shrink the size of an existing PVC object.

Starting from the version 1.14.0, the Operator allows to scale Percona XtraDB Cluster storage automatically by changing the appropriate Custom Resource

option, if the volume type supports PVCs expansion.

Automated scaling with Volume Expansion capability

Certain volume types support PVCs expansion (exact details about PVCs and the supported volume types can be found in Kubernetes documentation).

You can run the following command to check if your storage supports the expansion capability:

You can enable automated scaling with the enableVolumeExpansion Custom Resource option (turned off by default). When enabled, the Operator will

automatically expand such storage for you when you change the pxc.volumeSpec.persistentVolumeClaim.resources.requests.storage option in the

Custom Resource:

spec:

...

pxc:

...

resources:

requests:

memory: 4G

cpu: 2

limits:

memory: 4G

cpu: 2

$ kubectl describe sc <storage class name> | grep AllowVolumeExpansion

Expected output

AllowVolumeExpansion: true

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims

Page 164

If the new storage size can’t be reached because there is a resource quota in place and the PVC storage limits are reached, this will be detected, there will be no scaling attempts,

and the Operator will revert the value in the Custom Resource option back. If resize isn’t successful (for example, no quota is set, but the new storage size turns out to be just too

large), the Operator will detect Kubernetes failure on scaling, and revert the Custom Resource option. Still, Kubernetes will continue attempts to fulfill the scaling request until the

problem is fixed manually by the Kubernetes administrator.

For example, you can do it by editing and applying the deploy/cr.yaml file:

Apply changes as usual:

Manual scaling without Volume Expansion capability

Manual scaling is the way to go if you version of the Operator is older than 1.14.0, your volumes have type which does not support Volume Expansion, or you

just do not rely on automated scaling.

You will need to delete Pods one by one and their persistent volumes to resync the data to the new volumes. This can also be used to shrink the storage.

1. Update the Custom Resource with the new storage size by editing and applying the deploy/cr.yaml file:

Apply the Custom Resource update in a usual way:

2. Delete the StatefulSet with the orphan option

The Pods will not go down and the Operator is going to recreate the StatefulSet:

spec:

...

enableVolumeExpansion: true

...

pxc:

...

volumeSpec:

...

persistentVolumeClaim:

resources:

requests:

storage: <NEW STORAGE SIZE>

Warning

spec:

...

pxc:

...

volumeSpec:

persistentVolumeClaim:

resources:

requests:

storage: <NEW STORAGE SIZE>

$ kubectl apply -f cr.yaml

spec:

...

pxc:

...

volumeSpec:

persistentVolumeClaim:

resources:

requests:

storage: <NEW STORAGE SIZE>

$ kubectl apply -f deploy/cr.yaml

$ kubectl delete sts <statefulset-name> --cascade=orphan

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#recovering-from-failure-when-expanding-volumes

Page 165

3. Scale up the cluster (Optional)

Changing the storage size would require us to terminate the Pods, which decreases the computational power of the cluster and might cause performance

issues. To improve performance during the operation we are going to change the size of the cluster from 3 to 5 nodes:

Apply the change:

New Pods will already have new storage:

4. Delete PVCs and Pods with old storage size one by one. Wait for data to sync before you proceeding to the next node.

The new PVC is going to be created along with the Pod.

Horizontal scaling
Size of the cluster is controlled by a size key in the Custom Resource options configuration. That’s why scaling the cluster needs nothing more but changing

this option and applying the updated configuration file. This may be done in a specifically saved config:

Apply the change:

Alternatively, you cana do it on the fly, using the following command:

$ kubectl get sts <statefulset-name>

Expected output

cluster1-pxc 3/3 39s

...

spec:

...

pxc:

...

size: 5

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pvc

Expected output

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

datadir-cluster1-pxc-0 Bound pvc-90f0633b-0938-4b66-a695-556bb8a9e943 10Gi RWO standard 110m

datadir-cluster1-pxc-1 Bound pvc-7409ea83-15b6-448f-a6a0-12a139e2f5cc 10Gi RWO standard 109m

datadir-cluster1-pxc-2 Bound pvc-90f0b2f8-9bba-4262-904c-1740fdd5511b 10Gi RWO standard 108m

datadir-cluster1-pxc-3 Bound pvc-439bee13-3b57-4582-b342-98281aca50ba 19Gi RWO standard 49m

datadir-cluster1-pxc-4 Bound pvc-2d4f3a60-4ec4-48a0-96cd-5243e2f05234 19Gi RWO standard 47m

$ kubectl delete pvc <PVC NAME>

$ kubectl delete pod <POD NAME>

spec:

...

pxc:

...

size: 5

$ kubectl apply -f deploy/cr.yaml

$ kubectl scale --replicas=5 pxc/<CLUSTER NAME>

Page 166

In this example we have changed the size of the Percona XtraDB Cluster to 5 instances.

Automated scaling
To automate horizontal scaling it is possible to use Horizontal Pod Autoscaler (HPA) . It will scale the Custom Resource itself, letting Operator to deal with

everything else.

It is also possible to use Kuvernetes Event-driven Autoscaling (KEDA) , where you can apply more sophisticated logic for decision making on scaling.

For now it is not possible to use Vertical Pod Autoscaler (VPA) with the Operator due to the limitations it introduces for objects with owner references.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://keda.sh/
https://keda.sh/
https://keda.sh/

Page 167

Monitor database with Percona Monitoring and Management (PMM)
We recommend to monitor the database with Percona Monitoring and Management (PMM) integrated within the Operator. You can also use custom

monitoring solutions, but their deployment is not automated by the Operator and requires manual setup).

In this section you will learn how to monitor Percona XtraDB Cluster with PMM.

PMM is a client/server application. It consists of the PMM Server and a number of PMM Clients . PMM Clients run on each node with the database you

wish to monitor. In Kubernetes, this means that PMM Clients run as sidecar containers for the database Pods.

A PMM Client collects needed metrics and sends the gathered data to the PMM Server. As a user, you connect to the PMM Server to see database metrics on

a number of dashboards.

PMM Server and PMM Client are installed separately.

Install PMM Server
You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the official

PMM documentation for the installation instructions.

Install PMM Client
Install PMM Client as a side-car container in your Kubernetes-based environment:

Authorize PMM Client within PMM Server.1

Token-based authorization (recommended)

1. Generate the PMM Server API Key . Specify the Admin role when getting the API Key.

 Warning: The API key is not rotated automatically.

Password-based authorization (deprecated since the Operator 1.11.0)

Edit the deploy/secrets.yaml secrets file and specify the PMM API key for the pmmserverkey option.1

Apply the configuration for the changes to take effect.2

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

Check that the serverUser key in the deploy/cr.yaml file contains your PMM Server user name (admin by default), and make sure the

pmmserver key in the deploy/secrets.yaml secrets file contains the password specified for the PMM Server during its installation

1

Apply the configuration for the changes to take effect.2

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

Update the pmm section in the deploy/cr.yaml file:

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM Server IP address should be resolvable and

reachable from within your cluster.

2

→

→

pmm:

enabled: true

image: percona/pmm-client:2.44.0

serverHost: monitoring-service

https://docs.percona.com/percona-monitoring-and-management/3/index.html
https://docs.percona.com/percona-monitoring-and-management/3/index.html
https://docs.percona.com/percona-monitoring-and-management/3/index.html
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml

Page 168

Check the metrics
Let’s see how the collected data is visualized in PMM.

Now you can access PMM via https in a web browser, with the login/password authentication, and the browser is configured to show Percona XtraDB Cluster

metrics.

Specify additional PMM parameters
You can specify additional parameters for pmm-admin add mysql and pmm-admin add proxysql commands, if needed. Use the pmm.pxcParams and

pmm.proxysqlParams Custom Resource options for that.

The Operator automatically manages common Percona XtraDB Cluster Service Monitoring parameters mentioned in the official PMM documentation, such as

username, password, service-name, host, etc. Assigning values to these parameters is not recommended and can negatively affect the functionality of the

PMM setup carried out by the Operator.

Update the secrets file
The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text format. But the resulting Secrets Objects contains

passwords stored as base64-encoded strings. If you want to update the password field, you need to encode the new password into the base64 format and

pass it to the Secrets Object.

To encode a password or any other parameter, run the following command:

For example, to set the new PMM API key to new_key in the cluster1-secrets object, do the following:

Check PMM Client health and status
A probe is a diagnostic mechanism in Kubernetes which helps determine whether a container is functioning correctly and whether it should continue to run,

accept traffic, or be restarted.

PMM Client has the following probes:

Apply the changes:3

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on the previous steps:4

$ kubectl get pods -n <namespace>

$ kubectl logs <cluster-name>-pxc-0 -c pmm-client -n <namespace>

on Linux

on macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

in Linux

on macOS

$ kubectl patch secret/cluster1-secrets -p '{"data":{"pmmserverkey": "'$(echo -n new_key | base64 --wrap=0)'"}}'

$ kubectl patch secret/cluster1-secrets -p '{"data":{"pmmserverkey": "'$(echo -n new_key | base64)'"}}'

https://docs.percona.com/percona-monitoring-and-management/3/details/commands/pmm-admin.html#mysql
https://docs.percona.com/percona-monitoring-and-management/3/details/commands/pmm-admin.html#mysql
https://docs.percona.com/percona-monitoring-and-management/3/details/commands/pmm-admin.html#mysql
https://docs.percona.com/percona-monitoring-and-management/3/details/commands/pmm-admin.html#proxysql
https://docs.percona.com/percona-monitoring-and-management/3/details/commands/pmm-admin.html#proxysql
https://docs.percona.com/percona-monitoring-and-management/3/details/commands/pmm-admin.html#proxysql

Page 169

Readiness probe determines when a PMM Client is available and ready to accept traffic

Liveness probe determines when to restart a PMM Client

To configure probes, use the spec.pmm.readinessProbes and spec.pmm.livenessProbes Custom Resource options.

Add custom PMM prefix to the cluster name
When user has several clusters with the same namespace, cluster and Pod names, and a single PMM Server, it is possible to add only one of them to the PMM

Server instance because of this names coincidence.

For such cases it is possible to specify a custom prefix to the cluster name, which will be visible within PMM, and so names will become unique.

You can do it by setting the PMM_PREFIX environment variable via the Secret, specified in the pxc.envVarsSecret Custom Resource option.

Here is an example of the YAML file used to create the Secret with the my-unique-prefix- prefix encoded in base64 format:

Follow the instruction on all details needed to create a Secret for environment variables and adding them to the Custom Resource.

Implement custom monitoring solution without PMM
You can deploy your own monitoring solution instead of PMM, but since the Operator will know nothing about it, it will not gain the same level of deployment

automation from the Operator side, and there will be no configuration via the Custom Resource. The apporach to this is to deploy your monitoring agent as a

sidecar container in Percona XtraDB Cluster Pods. See sidecar containers documentation for details.

You can use the monitor system user for monitoring purposes as PMM Client does. The Operator tracks the monitor user password update in the Secrets object (technical

secrets used by the Operator, and restarts Percona XtraDB Cluster Pods in cases when PMM is enabled or when the sidecar container references the internal Secrets object

internal-<clustername> (technical users secrets used by Operator, internal-cluster1 by default) as follows:

apiVersion: v1

kind: Secret

metadata:

name: my-env-var-secrets

type: Opaque

data:

PMM_PREFIX: bXktdW5pcXVlLXByZWZpeC0=

Note

pxc:

sidecars:

- name: metrics

image: my_repo/my_custom_monitoring_solution:1.0

env:

- name: MYSQLD_EXPORTER_PASSWORD

valueFrom:

secretKeyRef:

name: internal-cluster1

key: monitor

...

Page 170

Using sidecar containers
The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this feature to run debugging tools, some specific

monitoring solutions, etc.

Custom sidecar containers can easily access other components of your cluster .

Therefore they should be used carefully and by experienced users only.

Adding a sidecar container
You can add sidecar containers to Percona XtraDB Cluster, HAProxy, and ProxySQL Pods. Just use sidecars subsection ing the pxc , haproxy , or proxysql

section of the deploy/cr.yaml configuration file. In this subsection, you should specify the name and image of your container and possibly a command to

run:

Apply your modifications as usual:

Running kubectl describe command for the appropriate Pod can bring you the information about the newly created container:

Getting shell access to a sidecar container
You can login to your sidecar container as follows:

Note

spec:

pxc:

....

sidecars:

- image: busybox

command: ["/bin/sh"]

args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]

name: my-sidecar-1

....

$ kubectl apply -f deploy/cr.yaml

$ kubectl describe pod cluster1-pxc-0

Expected output

....

Containers:

....

my-sidecar-1:

Container ID: docker://f0c3437295d0ec819753c581aae174a0b8d062337f80897144eb8148249ba742

Image: busybox

Image ID: docker-pullable://busybox@sha256:139abcf41943b8bcd4bc5c42ee71ddc9402c7ad69ad9e177b0a9bc4541f14924

Port: <none>

Host Port: <none>

Command:

/bin/sh

Args:

-c

while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done

State: Running

Started: Thu, 11 Nov 2021 10:38:15 +0300

Ready: True

Restart Count: 0

Environment: <none>

Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fbrbn (ro)

....

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

Page 171

Mount volumes into sidecar containers
It is possible to mount volumes into sidecar containers.

Following subsections describe different volume types , which were tested with sidecar containers and are known to work.

Persistent Volume

You can use Persistent volumes when you need dynamically provisioned storage which doesn’t depend on the Pod lifecycle. To use such volume, you

should claim durable storage with persistentVolumeClaim without specifying any non-important details.

The following example requests 1G storage with sidecar-volume-claim PersistentVolumeClaim, and mounts the correspondent Persistent Volume to the

my-sidecar-1 container’s filesystem under the /volume1 directory:

Secret

You can use a secret volume to pass the information which needs additional protection (e.g. passwords), to the container. Secrets are stored with the

Kubernetes API and mounted to the container as RAM-stored files.

You can mount a secret volume as follows:

The above example creates a sidecar-secret volume (based on already existing mysecret Secret object) and mounts it to the my-sidecar-1

container’s filesystem under the /secret directory.

$ kubectl exec -it cluster1-pxc-0 -c my-sidecar-1 -- sh

/ #

...

sidecars:

- image: busybox

command: ["/bin/sh"]

args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]

name: my-sidecar-1

volumeMounts:

- mountPath: /volume1

name: sidecar-volume-claim

sidecarPVCs:

- apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: sidecar-volume-claim

spec:

resources:

requests:

storage: 1Gi

volumeMode: Filesystem

accessModes:

- ReadWriteOnce

...

sidecars:

- image: busybox

command: ["/bin/sh"]

args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]

name: my-sidecar-1

volumeMounts:

- mountPath: /secret

name: sidecar-secret

sidecarVolumes:

- name: sidecar-secret

secret:

secretName: mysecret

https://kubernetes.io/docs/concepts/storage/volumes/#volume-types
https://kubernetes.io/docs/concepts/storage/volumes/#volume-types
https://kubernetes.io/docs/concepts/storage/volumes/#volume-types
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 172

Don’t forget you need to create a Secret Object before you can use it.

configMap

You can use a configMap volume to pass some configuration data to the container. Secrets are stored with the Kubernetes API and mounted to the

container as RAM-stored files.

You can mount a configMap volume as follows:

The above example creates a sidecar-config volume (based on already existing myconfigmap configMap object) and mounts it to the my-sidecar-1

container’s filesystem under the /config directory.

Don’t forget you need to create a configMap Object before you can use it.

Note

...

sidecars:

- image: busybox

command: ["/bin/sh"]

args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]

name: my-sidecar-1

volumeMounts:

- mountPath: /config

name: sidecar-config

sidecarVolumes:

- name: sidecar-config

configMap:

name: myconfigmap

Note

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

Page 173

Pause/resume Percona XtraDB Cluster
There may be external situations when it is needed to shutdown the Percona XtraDB Cluster for a while and then start it back up (some works related to the

maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully stops the cluster:

Pausing the cluster may take some time, and when the process is over, you will see only the Operator Pod running:

To start the cluster after it was shut down just revert the spec.pause key to false .

Starting the cluster will take time. The process is over when all Pods have reached their Running status:

spec:

.......

pause: true

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

percona-xtradb-cluster-operator-79966668bd-rswbk 1/1 Running 0 12m

NAME READY STATUS RESTARTS AGE

cluster1-haproxy-0 2/2 Running 0 6m17s

cluster1-haproxy-1 2/2 Running 0 4m59s

cluster1-haproxy-2 2/2 Running 0 4m36s

cluster1-pxc-0 3/3 Running 0 6m17s

cluster1-pxc-1 3/3 Running 0 5m3s

cluster1-pxc-2 3/3 Running 0 3m56s

percona-xtradb-cluster-operator-79966668bd-rswbk 1/1 Running 0 9m54s

Page 174

Crash Recovery

What does the full cluster crash mean?
A full cluster crash is a situation when all database instances where shut down in random order. Being rebooted after such situation, Pod is continuously

restarting, and generates the following errors in the log:

To avoid this, shutdown your cluster correctly as it is written in Pause/resume Percona XtraDB Cluster.

The Percona Operator for MySQL based on Percona XtraDB Cluster provides two ways of recovery after a full cluster crash.

The Operator is providing automatic crash recovery (by default) and semi-automatic recovery starting from the version 1.7 . For the previous Operator

versions, crash recovery can be done manually.

Automatic Crash Recovery
Crash recovery can be done automatically. This behavior is controlled by the pxc.autoRecovery option in the deploy/cr.yaml configuration file.

The default value for this option is true , which means that automatic recovery is turned on.

If this option is set to false , automatic crash recovery is not done, but semi-automatic recovery is still possible.

In this case you need to get the log from pxc container from all Pods using the following command:

The output of this command should be similar to the following one:

Now find the Pod with the largest seqno (it is cluster1-pxc-2 in the above example).

Now execute the following commands to start this instance:

Manual Crash Recovery

This method includes a lot of operations, and therefore, it is intended for advanced users only!

This method involves the following steps:

swap the original Percona XtraDB Cluster image with the debug image, which does not reboot after the crash, and force all Pods to run it,

find the Pod with the most recent Percona XtraDB Cluster data, run recovery on it, start mysqld , and allow the cluster to be restarted,

It may not be safe to bootstrap the cluster from this node. It was not the last one to leave the cluster and may not contain

all the updates.

To force cluster bootstrap with this node, edit the grastate.dat file manually and set safe_to_bootstrap to 1

Note

$ for i in $(seq 0 $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.size}')-1))); do echo "###############cluster1-

pxc-$i##############"; kubectl logs cluster1-pxc-$i -c pxc | grep '(seqno):' ; done

###############cluster1-pxc-0##############

It is cluster1-pxc-0.cluster1-pxc.default.svc.cluster.local node with sequence number (seqno): 18

###############cluster1-pxc-1##############

It is cluster1-pxc-1.cluster1-pxc.default.svc.cluster.local node with sequence number (seqno): 18

###############cluster1-pxc-2##############

It is cluster1-pxc-2.cluster1-pxc.default.svc.cluster.local node with sequence number (seqno): 19

$ kubectl exec cluster1-pxc-2 -c pxc -- sh -c 'kill -s USR1 1'

Warning

Page 175

revert all temporary substitutions.

Let’s assume that a full crash did occur for the cluster named cluster1 , which is based on three Percona XtraDB Cluster Pods.

The following commands are written for Percona XtraDB Cluster 8.0. The same steps are also for Percona XtraDB Cluster 5.7 unless specifically indicated otherwise.

1. Check the current Update Strategy with the following command to make sure Smart Updates are turned off during the recovery:

If the returned value is SmartUpdate , please change it to onDelete with the following command:

2. Change the normal PXC image inside the cluster object to the debug image:

Please make sure the Percona XtraDB Cluster version for the debug image matches the version currently in use in the cluster. You can run the following command to find out

which Percona XtraDB Cluster image is in use:

For Percona XtraDB Cluster 5.7 this command should be as follows:

1. Restart all Pods:

2. Wait until the Pod 0 is ready, and execute the following code (it is required for the Pod liveness check):

3. Wait for all Percona XtraDB Cluster Pods to start, and execute the following code to make sure no mysqld processes are running:

4. Wait for all Percona XtraDB Cluster Pods to start, then find the Percona XtraDB Cluster instance with the most recent data - i.e. the one with the highest

sequence number (seqno) :

The output of this command should be similar to the following one:

Note

$ kubectl get pxc cluster1 -o jsonpath='{.spec.updateStrategy}'

$ kubectl patch pxc cluster1 --type=merge --patch '{"spec": {"updateStrategy": "OnDelete" }}'

Note

$ kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.image}'

$ kubectl patch pxc cluster1 --type="merge" -p '{"spec":{"pxc":{"image":"percona/percona-xtradb-cluster:8.0.41-32.1-

debug"}}}'

Note

$ kubectl patch pxc cluster1 --type="merge" -p '{"spec":{"pxc":{"image":"percona/percona-xtradb-cluster:5.7.44-31.65-debug"}}}'

$ for i in $(seq 0 $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.size}')-1))); do kubectl delete pod cluster1-

pxc-$i --force --grace-period=0; done

$ for i in $(seq 0 $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.size}')-1))); do until [[$(kubectl get pod

cluster1-pxc-$i -o jsonpath='{.status.phase}') == 'Running']]; do sleep 10; done; kubectl exec cluster1-pxc-$i -- touch

/var/lib/mysql/sst_in_progress; done

$ for i in $(seq $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.size}')-1))); do pid=$(kubectl exec cluster1-

pxc-$i -- ps -C mysqld-ps -o pid=); if [[-n "$pid"]]; then kubectl exec cluster1-pxc-$i -- kill -9 $pid; fi; done

$ for i in $(seq 0 $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.size}')-1))); do echo "###############cluster1-

pxc-$i##############"; kubectl exec cluster1-pxc-$i -- cat /var/lib/mysql/grastate.dat; done

https://www.percona.com/blog/2017/12/14/sequence-numbers-seqno-percona-xtradb-cluster/
https://www.percona.com/blog/2017/12/14/sequence-numbers-seqno-percona-xtradb-cluster/
https://www.percona.com/blog/2017/12/14/sequence-numbers-seqno-percona-xtradb-cluster/

Page 176

Now find the Pod with the largest seqno (it is cluster1-pxc-2 in the above example).

5. Now execute the following commands in a separate shell to start this instance:

The mysqld process will initialize the database once again, and it will be available for the incoming connections.

6. Go back to the previous shell and return the original Percona XtraDB Cluster image because the debug image is no longer needed:

Please make sure the Percona XtraDB Cluster version for the debug image matches the version currently in use in the cluster.

For Percona XtraDB Cluster 5.7 this command should be as follows:

1. Restart all Pods besides the cluster1-pxc-2 Pod (the recovery donor).

2. Wait for the successful startup of the Pods which were deleted during the previous step, and finally remove the cluster1-pxc-2 Pod:

3. After the Pod startup, the cluster is fully recovered.

If you have changed the update strategy on the 1st step, don’t forget to revert it back to SmartUpdate with the following command:

###############cluster1-pxc-0##############

GALERA saved state

version: 2.1

uuid: 7e037079-6517-11ea-a558-8e77af893c93

seqno: 18

safe_to_bootstrap: 0

###############cluster1-pxc-1##############

GALERA saved state

version: 2.1

uuid: 7e037079-6517-11ea-a558-8e77af893c93

seqno: 18

safe_to_bootstrap: 0

###############cluster1-pxc-2##############

GALERA saved state

version: 2.1

uuid: 7e037079-6517-11ea-a558-8e77af893c93

seqno: 19

safe_to_bootstrap: 0

$ kubectl exec cluster1-pxc-2 -- mysqld --wsrep_recover

$ kubectl exec cluster1-pxc-2 -- sed -i 's/safe_to_bootstrap: 0/safe_to_bootstrap: 1/g' /var/lib/mysql/grastate.dat

$ kubectl exec cluster1-pxc-2 -- sed -i 's/wsrep_cluster_address=.*/wsrep_cluster_address=gcomm:\/\//g'

/etc/mysql/node.cnf

$ kubectl exec cluster1-pxc-2 -- mysqld

Note

$ kubectl patch pxc cluster1 --type="merge" -p '{"spec":{"pxc":{"image":"percona/percona-xtradb-cluster:8.0.41-32.1"}}}'

Note

$ kubectl patch pxc cluster1 --type="merge" -p '{"spec":{"pxc":{"image":"percona/percona-xtradb-cluster:5.7.44-31.65"}}}'

$ for i in $(seq 0 $(($(kubectl get pxc cluster1 -o jsonpath='{.spec.pxc.size}')-1))); do until [[$(kubectl get pod

cluster1-pxc-$i -o jsonpath='{.status.phase}') == 'Running']]; do sleep 10; done; kubectl exec cluster1-pxc-$i -- rm

/var/lib/mysql/sst_in_progress; done

$ kubectl delete pods --force --grace-period=0 cluster1-pxc-0 cluster1-pxc-1

$ kubectl delete pods --force --grace-period=0 cluster1-pxc-2

Note

$ kubectl patch pxc cluster1 --type=merge --patch '{"spec": {"updateStrategy": "SmartUpdate" }}'

Page 177

Clone a cluster with the same data set
A good practice is to test a new functionality or an upgraded version of the database in a testing / staging environment. As a developer, you would want the

data in the staging database cluster, so that your applications can start immediately.

The dataSource functionality allows doing just that. Instead of creating a new PVC for a new cluster, you can clone the existing one. This enables you to

spin up a new cluster with the data in it almost in no time which is especially beneficial if you use CI/CD for that.

For example, you have the production Percona XtraDB Cluster cluster1 . To test a new feature in your app, you need a staging cluster cluster2 with the

data set from cluster1 .

To create it, create the cluster2-cr.yaml Custom Resource manifest. You can use the existing deploy/cr.yaml for convenience. Specify the PVC from

cluster1 as the dataSource for it:

This configuration instructs the Operator to create a direct clone of the PVC from cluster1 . If you have a snapshot of the PVC, you can use that as a data

source for your staging cluster. Here’s how you define it:

To create a database cluster, apply the cluster2-cr.yaml .

pxc:

volumeSpec:

persistentVolumeClaim:

dataSource:

name: cluster1-pvc

kind: PersistentVolumeClaim

persistentVolumeClaim:

dataSource:

name: cluster1-pvc-snapshot1

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#volume-cloning
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#volume-cloning
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#volume-cloning
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/1.17.0/deploy/cr.yaml

Page 178

Troubleshooting

Page 179

Initial troubleshooting
Percona Operator for MySQL uses Custom Resources to manage options for the various components of the cluster.

PerconaXtraDBCluster Custom Resource with Percona XtraDB Cluster options (it has handy pxc shortname also),

PerconaXtraDBClusterBackup and PerconaXtraDBClusterRestore Custom Resources contain options for Percona XtraBackup used to backup

Percona XtraDB Cluster and to restore it from backups (pxc-backup and pxc-restore shortnames are available for them).

The first thing you can check for the Custom Resource is to query it with kubectl get command:

The Custom Resource should have Ready status.

You can check which Percona’s Custom Resources are present and get some information about them as follows:

Check the Pods
If Custom Resource is not getting Ready status, it makes sense to check individual Pods. You can do it as follows:

The above command provides the following insights:

READY indicates how many containers in the Pod are ready to serve the traffic. In the above example, cluster1-haproxy-0 Pod has all two containers

ready (2/2). For an application to work properly, all containers of the Pod should be ready.

STATUS indicates the current status of the Pod. The Pod should be in a Running state to confirm that the application is working as expected. You can find

out other possible states in the official Kubernetes documentation .

RESTARTS indicates how many times containers of Pod were restarted. This is impacted by the Container Restart Policy . In an ideal world, the restart

count would be zero, meaning no issues from the beginning. If the restart count exceeds zero, it may be reasonable to check why it happens.

$ kubectl get pxc

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.default ready 3 3 33d

Note

$ kubectl api-resources | grep -i percona

Expected output

perconaxtradbclusterbackups pxc-backup,pxc-backups pxc.percona.com/v1 true

PerconaXtraDBClusterBackup

perconaxtradbclusterrestores pxc-restore,pxc-restores pxc.percona.com/v1 true

PerconaXtraDBClusterRestore

perconaxtradbclusters pxc,pxcs pxc.percona.com/v1 true PerconaXtraDBCluster

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-haproxy-0 2/2 Running 0 6m17s

cluster1-haproxy-1 2/2 Running 0 4m59s

cluster1-haproxy-2 2/2 Running 0 4m36s

cluster1-pxc-0 3/3 Running 0 6m17s

cluster1-pxc-1 3/3 Running 0 5m3s

cluster1-pxc-2 3/3 Running 0 3m56s

percona-xtradb-cluster-operator-79966668bd-rswbk 1/1 Running 0 9m54s

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy

Page 180

AGE : Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

You can find more details about a specific Pod using the kubectl describe pods <pod-name> command.

This gives a lot of information about containers, resources, container status and also events. So, describe output should be checked to see any abnormalities.

$ kubectl describe pods cluster1-pxc-0

Expected output

...

Name: cluster1-pxc-0

Namespace: default

...

Controlled By: StatefulSet/cluster1-pxc

Init Containers:

pxc-init:

...

Containers:

pmm-client:

...

pxc:

...

Restart Count: 0

Limits:

cpu: 1

memory: 2G

Requests:

cpu: 1

memory: 2G

Liveness: exec [/var/lib/mysql/liveness-check.sh] delay=300s timeout=5s period=10s #success=1 #failure=3

Readiness: exec [/var/lib/mysql/readiness-check.sh] delay=15s timeout=15s period=30s #success=1 #failure=5

Environment Variables from:

pxc-env-vars-pxc Secret Optional: true

Environment:

...

Mounts:

...

Volumes:

...

Events: <none>

Page 181

Exec into the containers
If you want to examine the contents of a container “in place” using remote access to it, you can use the kubectl exec command. It allows you to run any

command or just open an interactive shell session in the container. Of course, you can have shell access to the container only if container supports it and has

a “Running” state.

In the following examples we will access the container pxc of the cluster1-pxc-0 Pod.

Run date command:

You will see an error if the command is not present in a container. For example, trying to run the time command, which is not present in the container, by

executing kubectl exec -ti cluster1-pxc-0 -c pxc -- time would show the following result:

Print /var/log/mysqld.log file to a terminal:

Similarly, opening an Interactive terminal, executing a pair of commands in the container, and exiting it may look as follows:

Avoid the restart-on-fail loop for Percona XtraDB Cluster containers
The restart-on-fail loop takes place when the container entry point fails (e.g. mysqld crashes). In such a situation, Pod is continuously restarting. Continuous

restarts prevent to get console access to the container, and so a special approach is needed to make fixes.

You can prevent such infinite boot loop by putting the Percona XtraDB Cluster containers into the infinity loop without starting mysqld. This behavior of the

container entry point is triggered by the presence of the /var/lib/mysql/sleep-forever file.

For example, you can do it for the pxc container of an appropriate Percona XtraDB Cluster instance as follows:

If pxc container can’t start, you can use logs container instead:

The instance will restart automatically and run in its usual way as soon as you remove this file (you can do it with a command similar to the one you have used

to create the file, just substitute touch to rm in it).

$ kubectl exec -ti cluster1-pxc-0 -c pxc -- date

Expected output

Thu Nov 24 10:01:17 UTC 2022

error: Internal error occurred: error executing command in container: failed to exec in container: failed to start exec

"71bdb96a65af89d3672cd0d69a8f2c1068542a97b1938e7f6f17d29a87d76453": OCI runtime exec failed: exec failed: unable to start

container process: exec: "time": executable file not found in $PATH: unknown

$ kubectl exec -ti cluster1-pxc-0 -c pxc -- cat /var/log/mysqld.log

$ kubectl exec -ti cluster1-pxc-0 -c pxc -- bash

bash-4.4$ hostname

cluster1-pxc-0

bash-4.4$ ls /var/log/mysqld.log

/var/log/mysqld.log

bash-4.4$ exit

exit

$

$ kubectl exec -it cluster1-pxc-0 -c pxc -- sh -c 'touch /var/lib/mysql/sleep-forever'

$ kubectl exec -it cluster1-pxc-0 -c logs -- sh -c 'touch /var/lib/mysql/sleep-forever'

Page 182

Check the Events
Kubernetes Events always provide a wealth of information and should always be checked while troubleshooting issues.

Events can be checked by the following command

Events capture many information happening at Kubernetes level and provide valuable information. By default, the ordering of events cannot be guaranteed.

Use the following command to sort the output in a reverse chronological fashion.

When there are too many events and there is a need of filtering output, tools like yq , jq can be used to filter specific items or know the structure of the

events.

Example:

$ kubectl get events

Expected output

LAST SEEN TYPE REASON OBJECT MESSAGE

38m Normal Provisioning persistentvolumeclaim/xb-cron-pxc-pxc-backup-stora-202211231300-3qf7g External provisioner

is provisioning volume for claim "default/xb-cron-pxc-pxc-backup-stora-202211231300-3qf7g"

...

$ kubectl get events --sort-by=".lastTimestamp"

Expected output

LAST SEEN TYPE REASON OBJECT MESSAGE

13m Normal Created pod/xb-cron-pxc-pxc-backup-stora-2022112313300-3qf7g-brxmv Created container

xtrabackup

13m Normal Started pod/xb-cron-pxc-pxc-backup-stora-2022112313300-3qf7g-brxmv Started container

xtrabackup

12m Normal Completed job/xb-cron-pxc-pxc-backup-stora-2022112313300-3qf7g Job completed

...

$ kubectl get events -oyaml | yq .items[0]

Expected output

apiVersion: v1

count: 2

eventTime: null

firstTimestamp: "2022-11-24T05:30:00Z"

involvedObject:

apiVersion: v1

kind: Pod

name: xb-cron-pxc-pxc-backup-stora-202211245300-3qf7g-bpm5s

namespace: default

resourceVersion: "41813970"

uid: c2463e2a-65a0-4fc2-b5c3-86d88bba6b5b

kind: Event

lastTimestamp: "2022-11-24T05:30:03Z"

message: '0/6 nodes are available: 6 pod has unbound immediate PersistentVolumeClaims.'

metadata:

creationTimestamp: "2022-11-24T05:30:00Z"

name: xb-cron-pxc-pxc-backup-stora-202211245300-3qf7g-bpm5s.172a6e3851f6710c

namespace: default

resourceVersion: "94245"

uid: d56ea5b8-3b15-4a22-a6ea-a4f641fcc54e

reason: FailedScheduling

reportingComponent: ""

reportingInstance: ""

source:

component: default-scheduler

type: Warning

https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/event-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/event-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/event-v1/
https://github.com/mikefarah/yq
https://github.com/mikefarah/yq
https://github.com/mikefarah/yq
https://github.com/jqlang/jq
https://github.com/jqlang/jq
https://github.com/jqlang/jq

Page 183

Flag --field-selector can be used to filter out the output as well. For example, the following command provides events of Pod only:

More fields can be added to the field-selector flag for filtering events further. Example: the following command provides events of Pod by name xb-cron-

pxc-pxc-backup-stora-202211245300-3qf7g-bpm5s .

Same way you can query events for other Kubernetes object (StatefulSet, Custom Resource, etc.) to investigate any problems to them:

Alternatively, you can see events for a specific object in the output of kubectl describe command:

Check kubectl get events --help to know about more options.

It is important to note that events are stored in the etcd for only 60 minutes. Ensure that events are checked within 60 minutes of the issue. Kubernetes cluster administrators might

also use event exporters for storing the events.

$ kubectl get events --field-selector involvedObject.kind=Pod

$ kubectl get events --field-selector involvedObject.kind=Pod,involvedObject.name=xb-cron-pxc-pxc-backup-stora-202211245300-

3qf7g-bpm5s

Expected output

LAST SEEN TYPE REASON OBJECT MESSAGE

53m Warning FailedScheduling pod/xb-cron-pxc-pxc-backup-stora-202211245300-3qf7g-bpm5s 0/6 nodes are available: 6 pod has

unbound immediate PersistentVolumeClaims.

53m Normal NotTriggerScaleUp pod/xb-cron-pxc-pxc-backup-stora-202211245300-3qf7g-bpm5s pod didn't trigger scale-up: 3 pod

has unbound immediate PersistentVolumeClaims

$ kubectl get events --field-selector involvedObject.kind=PerconaXtraDBCluster,involvedObject.name=cluster1

Expected output

LAST SEEN TYPE REASON OBJECT MESSAGE

10m Warning AsyncReplicationNotReady perconaservermysql/cluster1 cluster1-mysql-1: [not_replicating]

...

$ kubectl describe ps cluster1

Expected output

Name: cluster1

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Warning AsyncReplicationNotReady 10m (x23 over 13m) ps-controller cluster1-mysql-1: [not_replicating]

...

Note

Page 184

Check the Logs
Logs provide valuable information. It makes sense to check the logs of the database Pods and the Operator Pod. Following flags are helpful for checking the

logs with the kubectl logs command:

Flag Description

--container=

<container-name>

Print log of a specific container in case of multiple containers in a Pod

--follow Follows the logs for a live output

--since=<time> Print logs newer than the specified time, for example: --since="10s"

--timestamps Print timestamp in the logs (timezone is taken from the container)

--previous Print previous instantiation of a container. This is extremely useful in case of container restart, where there is a need to check the logs on why the

container restarted. Logs of previous instantiation might not be available in all the cases.

In the following examples we will access containers of the cluster1-pxc-0 Pod.

Check logs of the pxc container:

Check logs of the pmm-client container:

Filter logs of the pxc container which are not older than 600 seconds:

Check logs of a previous instantiation of the pxc container, if any:

Check logs of the pxc container, parsing the output with jq JSON processor :

Cluster-level logging
Cluster-level logging involves collecting logs from all Percona XtraDB Cluster Pods in the cluster to some persistent storage. This feature gives the logs a

lifecycle independent of nodes, Pods and containers in which they were collected. Particularly, it ensures that Pod logs from previous failures are available for

later review.

Log collector is turned on by the logcollector.enabled key in the deploy/cr.yaml configuration file (true by default).

The Operator collects logs using Fluent Bit Log Processor , which supports many output plugins and has broad forwarding capabilities. If necessary, Fluent

Bit filtering and advanced features can be configured via the logcollector.configuration key in the deploy/cr.yaml configuration file.

Logs are stored for 7 days and then rotated.

Collected logs can be examined using the following command:

$ kubectl logs cluster1-pxc-0 -c pxc

$ kubectl logs cluster1-pxc-0 -c pmm-client

$ kubectl logs cluster1-pxc-0 -c pxc --since=600s

$ kubectl logs cluster1-pxc-0 -c pxc --previous

$ kubectl logs cluster1-pxc-0 -c pxc -f | jq -R 'fromjson?'

$ kubectl logs cluster1-pxc-0 -c logs

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://fluentbit.io/
https://fluentbit.io/
https://fluentbit.io/

Page 185

Technically, logs are stored on the same Persistent Volume, which is used with the corresponding Percona XtraDB Cluster Pod. Therefore collected logs can be found in DATADIR

(var/lib/mysql/). Also, there is an additional Secrets object for Fluent Bit passwords and other similar data, e.g. for output plugins. The name of this Secrets object can be found

in the logCollectorSecretName option of the Custom Resource (it is set to my-log-collector-secrets in the deploy/cr.yaml configuration file by default).

Note

Page 186

Check Storage-related objects
Storage-related objects worth to check in case of problems are the following ones:

Persistent Volume Claims (PVC) and Persistent Volumes (PV) , which are playing a key role in stateful applications.

Storage Class , which automates the creation of Persistent Volumes and the underlying storage.

It is important to remember that PVC is namespace-scoped, but PV and Storage Class are cluster-scoped.

Check the PVC
You can check all the PVC with the following command (use your namespace name instead of the <namespace> placeholder):

The fields in the output of this command provide the following insights:

STATUS: shows the state of the PVC:

For normal working of an application, the status should be Bound .

If the status is not Bound , further investigation is required.

VOLUME: is the name of the Persistent Volume with which PVC is Bound to. Obviously, this field will be occupied only when a PVC is Bound.

CAPACITY: it is the size of the volume claimed.

STORAGECLASS: it indicates the Kubernetes storage class used for dynamic provisioning of Volume.

ACCESS MODES: Access mode indicates how Volume is used with the Pods. Access modes should have write permission if the application needs to

write data, which is obviously true in case of databases.

Now you can check a specific PVC for more details using its name as follows:

$ kubectl get pvc -n <namespace>

Expected output

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

datadir-pxc-pxc-0 Bound pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b 24Gi RWO standard 42d

datadir-pxc-pxc-1 Bound pvc-3ec336a8-69de-4cbc-aff8-700d41696447 24Gi RWO standard 42d

datadir-pxc-pxc-2 Bound pvc-207e8a3e-1c83-4eae-b3f2-cf126f89ba9e 24Gi RWO standard 42d

$ kubectl get pvc datadir-pxc-pxc-0 -n <namespace> -oyaml # output stripped for brevity, name of PVC may vary

Expected output

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

...

name: datadir-pxc-pxc-0

namespace: default

...

spec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 25G

storageClassName: standard

volumeMode: Filesystem

volumeName: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b

status:

accessModes:

- ReadWriteOnce

capacity:

storage: 24Gi

phase: Bound

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

Page 187

Check the PV
It is important to remember that PV is a cluster-scoped Object. If you see any issues with attaching a Volume to a Pod, PV and PVC might be looked upon.

Check all the PV present in the Kubernetes cluster as follows:

Now you can check a specific PV for more details using its name as follows:

Fields to check if there are any issues in binding with PVC, are the claimRef and nodeAffinity .

The claimRef one indicates to which PVC this volume is bound to. This means that if by any chance PVC is deleted (e.g. by the appropriate finalizer), this

section needs to be modified so that it can bind to a new PVC.

The spec.nodeAffinity field may influence the PV availability as well: for example, it can make Volume accessed in one availability zone only.

$ kubectl get pv

Expected output

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM

STORAGECLASS REASON AGE

pvc-207e8a3e-1c83-4eae-b3f2-cf126f89ba9e 24Gi RWO Delete Bound default/datadir-pxc-pxc-2

standard 43d

pvc-3ec336a8-69de-4cbc-aff8-700d41696447 24Gi RWO Delete Bound default/datadir-pxc-pxc-1

standard 43d

pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b 24Gi RWO Delete Bound default/datadir-pxc-pxc-0

standard 43d

$ kubectl get pv pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b -oyaml

Expected output

apiVersion: v1

kind: PersistentVolume

metadata:

...

name: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b

...

spec:

accessModes:

- ReadWriteOnce

capacity:

storage: 24Gi

claimRef:

apiVersion: v1

kind: PersistentVolumeClaim

name: datadir-pxc-pxc-0

namespace: default

resourceVersion: "912868"

uid: f3e7097f-accd-4f5d-9c9d-6f29b54a368b

gcePersistentDisk:

fsType: ext4

pdName: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b

nodeAffinity:

required:

nodeSelectorTerms:

- matchExpressions:

- key: topology.kubernetes.io/zone

operator: In

values:

- us-central1-a

- key: topology.kubernetes.io/region

operator: In

values:

- us-central1

persistentVolumeReclaimPolicy: Delete

storageClassName: standard

volumeMode: Filesystem

status:

phase: Bound

Page 188

Check the StorageClass
StorageClass is also a cluster-scoped object, and it indicates what type of underlying storage is used for the Volumes.

You can set StorageClass in pxc.volumeSpec.persistentVolumeClaim.storageClassName ,

proxysql.volumeSpec.persistentVolumeClaim.storageClassName , and backup.storages.STORAGE-

NAME.persistentVolumeClaim.storageClassName Custom Resource options.

The following command checks all the storage class present in the Kubernetes cluster, and allows to see which storage class is the default one:

If some PVC does not refer any storage class explicitly, it means that the default storage class is used. Ensure there is only one default Storage class.

You can check a specific storage class as follows:

Important things to observe here are the following ones:

Check if the provisioner and parameters are indicating the type of storage you intend to provision.

Check the volumeBindingMode especially if the storage cannot be accessed across availability zones. “WaitForFirstConsumer” volumeBindingMode

ensures volume is provisioned only after a Pod requesting the Volume is created.

If you are going to rely on the Operator storage scaling functionality, ensure the storage class supports PVC expansion (it should have

allowVolumeExpansion: true in the output of the above command).

$ kubectl get sc

Expected output

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

premium-rwo pd.csi.storage.gke.io Delete WaitForFirstConsumer true 44d

standard (default) kubernetes.io/gce-pd Delete Immediate true 44d

standard-rwo pd.csi.storage.gke.io Delete WaitForFirstConsumer true 44d

$ kubectl get sc standard -oyaml

Expected output

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

annotations:

storageclass.kubernetes.io/is-default-class: "true"

creationTimestamp: "2022-10-09T06:28:03Z"

labels:

addonmanager.kubernetes.io/mode: EnsureExists

name: standard

resourceVersion: "906"

uid: 933d37db-990b-4b2d-bf3a-dd091d0b00ae

parameters:

type: pd-standard

provisioner: kubernetes.io/gce-pd

reclaimPolicy: Delete

volumeBindingMode: Immediate

https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode

Page 189

Special debug images
For the cases when Pods are failing for some reason or just show abnormal behavior, the Operator can be used with a special debug images. Percona XtraDB

Cluster debug image has the following specifics:

it avoids restarting on fail,

it contains additional tools useful for debugging (sudo, telnet, gdb, etc.),

it has debug mode enabled for the logs.

There are debug versions for all Percona XtraDB Cluster images: they have same names as normal images with a special -debug suffix in their version tag:

for example, percona-xtradb-cluster:8.0.41-32.1-debug .

To use the debug image instead of the normal one, find the needed image name in the list of certified images and set it for the proper key in the

deploy/cr.yaml configuration file. For example, set the following value of the pxc.image key to use the Percona XtraDB Cluster debug image:

percona/percona-xtradb-cluster:8.0.41-32.1-debug for Percona XtraDB Cluster 8.0,

percona/percona-xtradb-cluster:5.7.44-31.65-debug for Percona XtraDB Cluster 5.7.

The Pod should be restarted to get the new image.

When the Pod is continuously restarting, you may have to delete it to apply image changes.

Note

Page 190

HOWTOs

Page 191

Install Percona XtraDB Cluster with customized parameters
You can customize the configuration of Percona XtraDB Cluster and install it with customized parameters.

To check available configuration options, see deploy/cr.yaml and Custom Resource Options.

kubectl

To customize the configuration, do the following:

1. Clone the repository with all manifests and source code by executing the following command:

2. Edit the required options and apply the modified deploy/cr.yaml file as follows:

Helm

To install Percona XtraDB Cluster with custom parameters, use the following command:

You can pass any of the Operator’s Custom Resource options as a --set key=value[,key=value] argument.

The following example deploys a Percona XtraDB Cluster in the pxc namespace, with disabled backups and 20 Gi storage:

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ kubectl apply -f deploy/cr.yaml

$ helm install --set key=value

Command line

YAML file

You can specify customized options in a YAML file instead of using separate command line parameters. The resulting file similar to the following example

looks as follows:

Apply the resulting YAML file as follows:

$ helm install my-db percona/pxc-db --version 1.17.0 --namespace pxc \

--set pxc.volumeSpec.resources.requests.storage=20Gi \

--set backup.enabled=false

values.yaml

allowUnsafeConfigurations: true

sharding:

enabled: false

pxc:

size: 3

volumeSpec:

pvc:

resources:

requests:

storage: 2Gi

backup:

enabled: false

$ helm install my-db percona/pxc-db --namespace pxc -f values.yaml

https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-xtradb-cluster-operator/v1.17.0/deploy/cr.yaml
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-db#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-db#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pxc-db#installing-the-chart

Page 192

Percona Operator for MySQL based on Percona XtraDB Cluster single-
namespace and multi-namespace deployment
There are two design patterns that you can choose from when deploying Percona Operator for MySQL based on Percona XtraDB Cluster and database

clusters in Kubernetes:

Namespace-scope - one Operator per Kubernetes namespace,

Cluster-wide - one Operator can manage clusters in multiple namespaces.

This how-to explains how to configure Percona Operator for MySQL based on Percona XtraDB Cluster for each scenario.

Namespace-scope
By default, Percona Operator for MySQL functions in a specific Kubernetes namespace. You can create one during the installation (like it is shown in the

installation instructions) or just use the default namespace. This approach allows several Operators to co-exist in one Kubernetes-based environment, being

separated in different namespaces:

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Kubernetes API

OperatorOperator

DB Pod 1 DB Pod N

CSI

Storage
Area

Network

Percona XtraDB Cluster
Namespace (pxcN)

Percona XtraDB Cluster Namespace
(pxc1)

Normally this is a recommended approach, as isolation minimizes impact in case of various failure scenarios. This is the default configuration of our Operator.

Let’s say you will use a Kubernetes Namespace called percona-db-1 .

Page 193

1. Clone percona-xtradb-cluster-operator repository:

2. Create your percona-db-1 Namespace (if it doesn’t yet exist) as follows:

3. Deploy the Operator using the following command:

4. Once Operator is up and running, deploy the database cluster itself:

You can deploy multiple clusters in this namespace.

Add more namespaces

What if there is a need to deploy clusters in another namespace? The solution for namespace-scope deployment is to have more than one Operator. We will

use the percona-db-2 namespace as an example.

1. Create your percona-db-2 namespace (if it doesn’t yet exist) as follows:

2. Deploy the Operator:

3. Once Operator is up and running deploy the database cluster itself:

Cluster names may be the same in different namespaces.

Installing the Operator in cluster-wide mode
Sometimes it is more convenient to have one Operator watching for Percona XtraDB Cluster custom resources in several namespaces.

We recommend running Percona Operator for MySQL in a traditional way, limited to a specific namespace, to limit the blast radius. But it is possible to run it in

so-called cluster-wide mode, one Operator watching several namespaces, if needed:

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ cd percona-xtradb-cluster-operator

$ kubectl create namespace percona-db-1

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-1

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

$ kubectl create namespace percona-db-2

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-2

$ kubectl apply -f deploy/cr.yaml -n percona-db-2

Note

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

Page 194

Kubernetes API

Percona XtraDB Cluster Operator

DB Pod 1 DB Pod 2

CSI

Storage
Area

Network

api

DB Pod DB Pod

Operator Namespace (pxc-operator)

Percona XtraDB Cluster
Namespace (pxc1)

Namespace
pxc2

Namespace
pxcN

Please take into account that if several Operators are configured to watch the same namespace, it is entirely unpredictable which one will get ownership of the Custom Resource in

it, so this situation should be avoided.

To use the Operator in such cluster-wide mode, you should install it with a different set of configuration YAML files, which are available in the deploy folder

and have filenames with a special cw- prefix: e.g. deploy/cw-bundle.yaml .

While using this cluster-wide versions of configuration files, you should set the following information there:

subjects.namespace option should contain the namespace which will host the Operator,

WATCH_NAMESPACE key-value pair in the env section should have value equal to a comma-separated list of the namespaces to be watched by the

Operator (or just a blank string to make the Operator deal with all namespaces in a Kubernetes cluster). Prior to the Operator version 1.12.0 it was

necessary to mention the Operator’s own namespace in the list of watched namespaces, but now this limitation has gone.

Installing the Operator cluster-wide on OpenShift via the the Operator Lifecycle Manager (OLM) requires making different selections in the OLM web-based UI instead of patching

YAML files.

The following simple example shows how to install Operator cluster-wide on Kubernetes.

1. First of all, clone the percona-xtradb-cluster-operator repository:

Note

Note

Page 195

2. Let’s suppose that Operator’s namespace should be the pxc-operator one. Create it as follows:

Namespaces to be watched by the Operator should be created in the same way if not exist. Let’s say the Operator should watch the pxc namespace:

3. Edit the deploy/cw-bundle.yaml configuration file to set proper namespaces:

4. Apply the deploy/cw-bundle.yaml file with the following command:

5. After the Operator is started, Percona XtraDB Cluster can be created at any time by applying the deploy/cr.yaml configuration file, like in the case of

normal installation:

The creation process will take some time. When the process is over your cluster will obtain the ready status. You can check it with the following

command:

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get pxc command finally shows you the cluster status as ready , you can try to connect to

the cluster.

1. You will need the login and password for the admin user to access the cluster. Use kubectl get secrets command to see the list of Secrets objects

(by default the Secrets object you are interested in has cluster1-secrets name). You can use the following command to get the password of the root

user:

2. Run a container with mysql client and connect its console output to your terminal. The following command will do this, naming the new Pod percona-

client :

$ git clone -b v1.17.0 https://github.com/percona/percona-xtradb-cluster-operator

$ cd percona-xtradb-cluster-operator

$ kubectl create namespace pxc-operator

$ kubectl create namespace pxc

...

subjects:

- kind: ServiceAccount

name: percona-xtradb-cluster-operator

namespace: "pxc"

...

env:

- name: WATCH_NAMESPACE

value: "pxc"

...

$ kubectl apply --server-side -f deploy/cw-bundle.yaml -n pxc-operator

$ kubectl apply -f deploy/cr.yaml -n pxc

$ kubectl get pxc

Expected output

NAME ENDPOINT STATUS PXC PROXYSQL HAPROXY AGE

cluster1 cluster1-haproxy.default ready 3 3 5m51s

$ kubectl get secrets --namespace=pxc cluster1-secrets --template='{{.data.root | base64decode}}{{"\n"}}'

$ kubectl run -i --rm --tty percona-client --image=percona:5.7 --restart=Never --env="POD_NAMESPACE=pxc" -- bash -il

Page 196

Executing it may require some time to deploy the correspondent Pod.

Now run mysql tool in the percona-client command shell using the password obtained from the secret instead of the <root_password> placeholder.

The command will look different depending on whether your cluster provides load balancing with HAProxy (the default choice) or ProxySQL:

Some Kubernetes-based environments are specifically configured to have communication across Namespaces is not allowed by default network policies. In this case, you should

specifically allow the Operator communication across the needed Namespaces. Following the above example, you would need to allow ingress traffic for the pxc-operator

Namespace from the pxc Namespace, and also from the default Namespace. You can do it with the NetworkPolicy resource, specified in the YAML file as follows:

Don’t forget to apply the resulting file with the usual kubectl apply command.

You can find more details about Network Policies in the official Kubernetes documentation .

Upgrading the Operator in cluster-wide mode
Cluster-wide Operator is upgraded similarly to a single-namespace one. Both deployment variants provide you with the same three upgradable components:

the Operator;

Custom Resource Definition (CRD),

Database Management System (Percona XtraDB Cluster).

To upgrade the cluster-wide Operator you follow the standard upgrade scenario concerning the Operator’s namespace and a different YAML configuration file:

the one with a special cw- prefix, deploy/cw-rbac.yaml . The resulting steps will look as follows.

1. Update the Custom Resource Definition for the Operator, taking it from the official repository on Github, and do the same for the Role-based access

control:

2. Now you should apply a patch to your deployment, supplying the necessary image name with a newer version tag. You can find the proper image name

for the current Operator release in the list of certified images (for older releases, please refer to the old releases documentation archive). For example,

updating to the 1.17.0 version in the pxc-operator namespace should look as follows.

with HAProxy (default)

with ProxySQL

$ mysql -h cluster1-haproxy -uroot -p'<root_password>'

$ mysql -h cluster1-proxysql -uroot -p'<root_password>'

Note

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

name: percona

namespace: pxc-operator

spec:

ingress:

- from:

- namespaceSelector:

matchLabels:

kubernetes.io/metadata.name: pxc

- namespaceSelector:

matchLabels:

kubernetes.io/metadata.name: default

podSelector: {}

policyTypes:

- Ingress

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/crd.yaml

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-xtradb-cluster-

operator/v1.17.0/deploy/cw-rbac.yaml

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/

Page 197

3. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process in real time with the kubectl rollout

status command with the name of your cluster:

$ kubectl patch deployment percona-xtradb-cluster-operator \

-p'{"spec":{"template":{"spec":{"containers":[{"name":"percona-xtradb-cluster-operator","image":"percona/percona-

xtradb-cluster-operator:1.17.0"}]}}}}' -n pxc-operator

$ kubectl rollout status deployments percona-xtradb-cluster-operator -n pxc-operator

Page 198

Use docker images from a custom registry
Using images from a private Docker registry may be useful in different situations: it may be related to storing images inside of a company, for privacy and

security reasons, etc. In such cases, Percona Distribution for MySQL Operator based on Percona XtraDB Cluster allows to use a custom registry, and the

following instruction illustrates how this can be done by the example of the Operator deployed in the OpenShift environment.

1. First of all login to the OpenShift and create project.

2. There are two things you will need to configure your custom registry access:

the token for your user

your registry IP address.

The token can be find out with the following command:

And the following one tells you the registry IP address:

3. Now you can use the obtained token and address to login to the registry:

4. Pull the needed image by its SHA digest:

You can find correct names and SHA digests in the current list of the Operator-related images officially certified by Percona.

5. The following way is used to push an image to the custom registry (into the OpenShift pxc project):

6. Check the image in the OpenShift registry with the following command:

$ oc login

Authentication required for https://192.168.1.100:8443 (openshift)

Username: admin

Password:

Login successful.

$ oc new-project pxc

Now using project "pxc" on server "https://192.168.1.100:8443".

$ oc whoami -t

ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

$ kubectl get services/docker-registry -n default

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s 172.30.162.173:5000

Login Succeeded

$ docker pull docker.io/perconalab/percona-xtradb-cluster-

operator@sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444

Trying to pull repository docker.io/perconalab/percona-xtradb-cluster-operator ...

sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444: Pulling from docker.io/perconalab/percona-

xtradb-cluster-operator

Digest: sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444

Status: Image is up to date for docker.io/perconalab/percona-xtradb-cluster-

operator@sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444

$ docker tag \

docker.io/perconalab/percona-xtradb-cluster-

operator@sha256:841c07eef30605080bfe80e549f9332ab6b9755fcbc42aacbf86e4ac9ef0e444 \

172.30.162.173:5000/pxc/percona-xtradb-cluster-operator:1.17.0

$ docker push 172.30.162.173:5000/pxc/percona-xtradb-cluster-operator:1.17.0

$ oc get is

NAME DOCKER REPO TAGS

UPDATED

percona-xtradb-cluster-operator docker-registry.default.svc:5000/pxc/percona-xtradb-cluster-operator 1.17.0 2

hours ago

Page 199

7. When the custom registry image is Ok, put a Docker Repo + Tag string (it should look like docker-registry.default.svc:5000/pxc/percona-xtradb-

cluster-operator:1.17.0) into the initImage option in deploy/operator.yaml configuration file.

8. Repeat steps 3-5 for other images, updating the image\ `options in the corresponding sections of the the ``deploy/cr.yaml` file.

Don’t forget to set upgradeoptions.apply option to Disabled . Otherwise Smart Upgrade functionality will try using the image recommended by the Version Service instead of

the custom one.

Please note it is possible to specify imagePullSecrets option for the images, if the registry requires authentication.

9. Now follow the standard Percona Operator for MySQL installation instruction.

Note

Page 200

How to restore backup to a new Kubernetes-based environment
The Operator allows restoring a backup not only on the Kubernetes cluster where it was made, but also on any Kubernetes-based environment with the

installed Operator.

When restoring to a new Kubernetes-based environment, make sure it has a Secrets object with the same user passwords as in the original cluster. More

details about secrets can be found in System Users. The name of the required Secrets object can be found out from the spec.secretsName key in the

deploy/cr.yaml (cluster1-secrets by default).

To restore a backup, you will use the special restore configuration file. The example of such file is deploy/backup/restore.yaml . The list of options that can

be used in it can be found in the restore options reference.

You will need correct names for the backup and the cluster. If you have access to the original cluster, available backups can be listed with the following

command:

And the following command will list available clusters:

If you have configured storing binlogs for point-in-time recovery, you will have possibility to roll back the cluster to a specific transaction, time (or even skip a transaction in some

cases). Otherwise, restoring backups without point-in-time recovery is the only option.

When the correct names for the backup and the cluster are known, backup restoration can be done in the following way.

Restore the cluster without point-in-time recovery

1. Set appropriate keys in the deploy/backup/restore.yaml file.

set spec.pxcCluster key to the name of the target cluster to restore the backup on,

set spec.backupSource subsection to point on the appropriate PVC, or cloud storage:

$ kubectl get pxc-backup

$ kubectl get pxc

Note

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml

Page 201

2. After that, the actual restoration process can be started as follows:

Restore the cluster with point-in-time recovery

Disable the point-in-time functionality on the existing cluster before restoring a backup on it, regardless of whether the backup was made with point-in-time recovery or without it.

1. Set appropriate keys in the deploy/backup/restore.yaml file.

PVC volume

The storageName key should contain the storage name (which should be configured in the main CR), and the destination key should be equal to the

PVC Name:

If you need a headless Service for the restore Pod (i.e. restoring from a Persistent Volume in a tenant network), mention this in the metadata.annotations as follows:

S3-compatible storage

The destination key should have value composed of three parts: the s3:// prefix, the S3 bucket , and the backup name, which you have already

found out using the kubectl get pxc-backup command. Also you should add necessary S3 configuration keys, same as those used to configure S3-

compatible storage for backups in the deploy/cr.yaml file:

Azure Blob storage

The destination key should have value composed of three parts: the azure:// prefix, the Azure Blob container , and the backup name, which you

have already found out using the kubectl get pxc-backup command. Also you should add necessary Azure configuration keys, same as those used

to configure Azure Blob storage for backups in the deploy/cr.yaml file:

...

backupSource:

destination: pvc/PVC_VOLUME_NAME

storageName: pvc

...

Note

annotations:

percona.com/headless-service: "true"

...

...

backupSource:

destination: s3://S3-BUCKET-NAME/BACKUP-NAME

s3:

bucket: S3-BUCKET-NAME

credentialsSecret: my-cluster-name-backup-s3

region: us-west-2

endpointUrl: https://URL-OF-THE-S3-COMPATIBLE-STORAGE

...

...

backupSource:

destination: azure://AZURE-CONTAINER-NAME/BACKUP-NAME

azure:

container: AZURE-CONTAINER-NAME

credentialsSecret: my-cluster-azure-secret

...

$ kubectl apply -f deploy/backup/restore.yaml

Note

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingBucket.html
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers

Page 202

set spec.pxcCluster key to the name of the target cluster to restore the backup on,

put additional restoration parameters to the pitr section:

type key can be equal to one of the following options,

date - roll back to specific date,

transaction - roll back to a specific transaction (available since Operator 1.8.0),

latest - recover to the latest possible transaction,

skip - skip a specific transaction (available since Operator 1.7.0).

date key is used with type=date option and contains value in datetime format,

gtid key (available since the Operator 1.8.0) is used with type=transaction option and contains exact GTID of a transaction which follows the

last transaction included into the recovery,

set spec.backupSource subsection to point on the appropriate S3-compatible storage. This subsection should contain a destination key equal to

the s3 bucket with a special s3:// prefix, followed by necessary S3 configuration keys, same as in deploy/cr.yaml file.

The resulting restore.yaml file may look as follows:

you can also use a storageName key to specify the exact name of the storage (the actual storage should be already defined in the backup.storages

subsection of the deploy/cr.yaml file):

2. Run the actual restoration process:

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterRestore

metadata:

name: restore1

spec:

pxcCluster: cluster1

backupName: backup1

pitr:

type: date

date: "2020-12-31 09:37:13"

backupSource:

destination: s3://S3-BUCKET-NAME/BACKUP-NAME

s3:

bucket: S3-BUCKET-NAME

credentialsSecret: my-cluster-name-backup-s3

region: us-west-2

endpointUrl: https://URL-OF-THE-S3-COMPATIBLE-STORAGE

...

storageName: s3-us-west

backupSource:

destination: s3://S3-BUCKET-NAME/BACKUP-NAME

$ kubectl apply -f deploy/backup/restore.yaml

Page 203

How to use backups and asynchronous replication to move an
external database to Kubernetes
The Operator enables you to restore a database from a backup made outside of Kubernetes environment to the target Kubernetes cluster using Percona

XtraBackup . In such a way you can migrate your external database to Kubernetes. Using asyncronous replication between source and target

environments enables you to reduce downtime and prevent data loss for your application.

This document provides the steps how to migrate Percona Server for MySQL 8.0 deployed on premises to the Kubernetes cluster managed by the Operator

using asyncronous replication . We recommend testing this migration in a non-production environment first, before applying it in production.

Requirements
1. The MySQL version for source and target environments must be 8.0.22 and higher since asyncronous replication is available starting with MySQL version

8.0.22.

2. You must be running Percona XtraBackup as the backup tool on source environment. For how to install Percona XtraBackup, see the installation

instructions

3. The storage used to save the backup should be one of the supported cloud storages: AWS S3 or compatible storage, or Azure Blob Storage.

Configure target environment
1. Deploy Percona Operator for MySQL and use it to create Percona XtraDB Cluster following any of the official installation guides.

2. Create the YAML file with the credentials for accessing the storage, needed to create the Kubernetes Secrets object. As and example here, we will use

Amazon S3 storage. You will need to create a Secret with the following data to store backups on the Amazon S3:

the metadata.name key is the name which you will further use to refer your Kubernetes Secret,

the data.AWS_ACCESS_KEY_ID and data.AWS_SECRET_ACCESS_KEY keys are base64-encoded credentials used to access the storage (obviously

these keys should contain proper values to make the access possible).

Create the Secrets file with these base64-encoded keys following the deploy/backup-s3.yaml example:

You can use the following command to get a base64-encoded string from a plain text one:

3. Once the editing is over, create the Kubernetes Secret object as follows:

4. You will need passwords for the monitor , operator , xtrabackup and replication system users created by the Operator. Use kubectl get

secrets command to see the list of Secrets objects (by default the Secrets object you are interested in has cluster1-secrets name). When you know

the Secrets name, you can get password for a specfic user as follows:

apiVersion: v1

kind: Secret

metadata:

name: my-cluster-name-backup-s3

type: Opaque

data:

AWS_ACCESS_KEY_ID: UkVQTEFDRS1XSVRILUFXUy1BQ0NFU1MtS0VZ

AWS_SECRET_ACCESS_KEY: UkVQTEFDRS1XSVRILUFXUy1TRUNSRVQtS0VZ

Note

in Linux

in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f deploy/backup-s3.yaml

https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://docs.percona.com/percona-xtrabackup/8.0/index.html
https://docs.percona.com/percona-xtrabackup/8.0/installation.html
https://docs.percona.com/percona-xtrabackup/8.0/installation.html
https://docs.percona.com/percona-xtrabackup/8.0/installation.html
https://docs.percona.com/percona-xtrabackup/8.0/installation.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-s3.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-s3.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/backup-secret-s3.yaml

Page 204

Repeat this command 4 times, substituting with monitor , operator , xtrabackup and replication . You will further use these passwords when

preparing the source environment.

Prepare the source environment

1. Use official installation instructions for either Percona Server for MySQL or Percona XtraDB Cluster to have the database up and running in your

source environment (skip this step if one of them is already installed).

2. Use official installation instructions for Percona XtraBackup to have it up and running in your source environment (skip this step if it is already

installed).

3. Configure the replication with Global Transaction Identifiers (GTID). This step is required if you are running Percona Sever for MySQL. If you run Percona

XtraDB cluster, replication is already configured.

Edit the my.cnf configuration file as follows:

4. Create the monitor , operator , xtrabackup , and replication system users which will be needed by the Operator to restore a backup. User

passwords must match the ones you have found out in your target environment.

Use the following commands to create users with the actual passwords instead of the monitor_password , operator_password ,

xtrabackup_password , and replication_password placeholders:

Make a backup in the source environment

1. Export the storage credentials as environment variables. Following the above example, here is a command which shows how to export the AWS S3

credentials:

Don’t forget to replace the XXXX placeholders with your actual Amazon access key ID and secret access key values.

2. Make the backup of your database and upload it to the storage using xbcloud . Replace the values for the --target-dir , --password , --s3-bucket

with your values in the following command:

Restore from a backup in the target environment

$ kubectl get secrets cluster1-secrets --template='{{.data.<user_name> | base64decode}}{{"\n"}}'

[mysqld]

enforce_gtid_consistency=ON

gtid_mode=ON

CREATE USER 'monitor'@'%' IDENTIFIED BY 'monitor_password' WITH MAX_USER_CONNECTIONS 100;

GRANT SELECT, PROCESS, SUPER, REPLICATION CLIENT, RELOAD ON *.* TO 'monitor'@'%';

GRANT SERVICE_CONNECTION_ADMIN ON *.* TO 'monitor'@'%';

CREATE USER 'operator'@'%' IDENTIFIED BY 'operator_password';

GRANT ALL ON *.* TO 'operator'@'%' WITH GRANT OPTION;

CREATE USER 'xtrabackup'@'%' IDENTIFIED BY 'xtrabackup_password';

GRANT ALL ON *.* TO 'xtrabackup'@'%';

CREATE USER 'replication'@'%' IDENTIFIED BY 'replication_password';

GRANT REPLICATION SLAVE ON *.* to 'replication'@'%';

FLUSH PRIVILEGES;

$ export AWS_ACCESS_KEY_ID=XXXXXX

$ export AWS_SECRET_ACCESS_KEY=XXXXXX

$ xtrabackup --backup --stream=xbstream --target-dir=/tmp/backups/ --extra-lsndir=/tmp/backups/ --

password=root_password | xbcloud put --storage=s3 --parallel=10 --md5 --s3-bucket="mysql-testing-bucket" "db-test-1"

https://docs.percona.com/percona-server/8.0/quickstart-overview.html#install-percona-server-for-mysql
https://docs.percona.com/percona-server/8.0/quickstart-overview.html#install-percona-server-for-mysql
https://docs.percona.com/percona-server/8.0/quickstart-overview.html#install-percona-server-for-mysql
https://docs.percona.com/percona-xtradb-cluster/8.0/install/index.html
https://docs.percona.com/percona-xtradb-cluster/8.0/install/index.html
https://docs.percona.com/percona-xtradb-cluster/8.0/install/index.html
https://docs.percona.com/percona-xtrabackup/8.0/installation.html
https://docs.percona.com/percona-xtrabackup/8.0/installation.html
https://docs.percona.com/percona-xtrabackup/8.0/installation.html
https://docs.percona.com/percona-xtrabackup/8.0/xbcloud-binary-overview.html?h=xbcloud
https://docs.percona.com/percona-xtrabackup/8.0/xbcloud-binary-overview.html?h=xbcloud
https://docs.percona.com/percona-xtrabackup/8.0/xbcloud-binary-overview.html?h=xbcloud

Page 205

If your source database didn’t have any data, skip this step and proceed with the asyncronous replication configuration. Otherwise, restore the database in the

target environment.

1. To restore a backup, you will use the special restore configuration file. The example of such file is deploy/backup/restore.yaml . For example. your

restore.yaml file may have the following contents:

Don’t forget to replace the path to the backup and the credentials with your values.

2. Restore from the backup:

You can find more information on restoring backup to a new Kubernetes-based environment and see more examples in a dedicated HowTo.

Configure asyncronous replication in the Kubernetes cluster
This step will allow you to avoid data loss for your application, configuring the asyncronous replication between the source database and the target cluster.

1. Edit the Custom Resource manifest deploy/cr.yaml in your target environment to configure the spec.pxc.replicationChannels section.

Apply the changes for your Custom Resource as usual:

2. Verify the replication by connecting to a Percona XtraDB Cluster node. You can do it with mysql tool, and you will need the root system user password

created by the Operator for this. The password can be obtained in a same way we used for other system users:

When you know the root password, you can use kubectl command as follows (substitute root_password with the actual password you have just

obtained):

restore.yaml

apiVersion: pxc.percona.com/v1

kind: PerconaXtraDBClusterRestore

metadata:

name: restore1

spec:

pxcCluster: cluster1

backupSource:

destination: s3://mysql-testing-bucket/db-test-1

s3:

credentialsSecret: my-cluster-name-backup-s3

region: us-west-2

$ kubectl apply -f restore.yml

cr.yaml

spec:

...

pxc:

...

replicationChannels:

- name: ps_to_pxc1

isSource: false

sourcesList:

- host: <source_ip>

port: 3306

weight: 100

$ kubectl apply -f deploy/cr.yaml

$ kubectl get secrets cluster1-secrets -o yaml -o jsonpath='{.data.root}' | base64 --decode | tr '\n' ' ' && echo " "

$ kubectl exec -it cluster1-pxc-0 -c pxc -- mysql -uroot -proot_password -e "show replica status \G"

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml

Page 206

Promote the Kubernetes cluster as primary
After you reconfigured your application to work with the new Percona XtraDB Cluster in Kubernetes, you can promote this cluster as primary.

1. Stop the replication. Edit the deploy/cr.yaml manifest and comment the replicationChannels subsection:

Expected output

*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event

Master_Host: <ip-of-source-db>

Master_User: replication

Master_Port: 3306

Connect_Retry: 60

Master_Log_File: binlog.000004

Read_Master_Log_Pos: 529

Relay_Log_File: cluster1-pxc-0-relay-bin-ps_to_pxc1.000002

Relay_Log_Pos: 738

Relay_Master_Log_File: binlog.000004

Slave_IO_Running: Yes

Slave_SQL_Running: Yes

Replicate_Do_DB:

Replicate_Ignore_DB:

Replicate_Do_Table:

Replicate_Ignore_Table:

Replicate_Wild_Do_Table:

Replicate_Wild_Ignore_Table:

Last_Errno: 0

Last_Error:

Skip_Counter: 0

Exec_Master_Log_Pos: 529

Relay_Log_Space: 969

Until_Condition: None

Until_Log_File:

Until_Log_Pos: 0

Master_SSL_Allowed: No

Master_SSL_CA_File:

Master_SSL_CA_Path:

Master_SSL_Cert:

Master_SSL_Cipher:

Master_SSL_Key:

Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

Last_IO_Errno: 0

Last_IO_Error:

Last_SQL_Errno: 0

Last_SQL_Error:

Replicate_Ignore_Server_Ids:

Master_Server_Id: 1

Master_UUID: 9741945e-148d-11ec-89e9-5ee1a3cf433f

Master_Info_File: mysql.slave_master_info

SQL_Delay: 0

SQL_Remaining_Delay: NULL

Slave_SQL_Running_State: Slave has read all relay log; waiting for more updates

Master_Retry_Count: 3

Master_Bind:

Last_IO_Error_Timestamp:

Last_SQL_Error_Timestamp:

Master_SSL_Crl:

Master_SSL_Crlpath:

Retrieved_Gtid_Set: 9741945e-148d-11ec-89e9-5ee1a3cf433f:1-2

Executed_Gtid_Set: 93f1e7bf-1495-11ec-80b2-06e6016a7c3d:1,

9647dc03-1495-11ec-a385-7e3b2511dacb:1-7,

9741945e-148d-11ec-89e9-5ee1a3cf433f:1-2

Auto_Position: 1

Replicate_Rewrite_DB:

Channel_Name: ps_to_pxc1

Master_TLS_Version:

Master_public_key_path:

Get_master_public_key: 0

Network_Namespace:

cr.yaml

Page 207

2. Stop the mysqld service in your source environment to make sure no new data is written:

3. Apply the changes to the Kubernetes cluster in your target environment:

As a result, replication is stopped and the read-only mode is disabled for the Percona XtraDB Cluster.

This document is based on the blog post Migration of a MySQL Database to a Kubernetes Cluster Using Asynchronous Replication by Slava Sarzhan.

...

spec:

...

pxc:

...

#replicationChannels:

#- name: ps_to_pxc1

isSource: false

sourcesList:

- host: <source_ip>

port: 3306

weight: 100

$ sudo systemctl stop mysqld

$ kubectl apply -f deploy/cr.yaml

https://www.percona.com/blog/migration-of-a-mysql-database-to-a-kubernetes-cluster-using-asynchronous-replication/
https://www.percona.com/blog/migration-of-a-mysql-database-to-a-kubernetes-cluster-using-asynchronous-replication/
https://www.percona.com/blog/migration-of-a-mysql-database-to-a-kubernetes-cluster-using-asynchronous-replication/

Page 208

Monitor Kubernetes
Monitoring the state of the database is crucial to timely identify and react to performance issues. Percona Monitoring and Management (PMM) solution

enables you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it’s important to have metrics that can depict the state of the

Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has been tested with the PMM server as the centralized

data storage and the Victoria Metrics Kubernetes monitoring stack as the metrics collector. These steps may also apply if you use another Prometheus-

compatible storage.

Pre-requisites
To set up monitoring of Kubernetes, you need the following:

1. PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the official PMM

documentation for the installation instructions.

2. Helm v3 .

3. kubectl .

4. The PMM Server API key. The key must have the role “Admin”.

Get the PMM API key:

Install the Victoria Metrics Kubernetes monitoring stack

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace <login>:<password>@<server_host> placeholders

with your real PMM Server login, password, and hostname in the following command:

The API key is not rotated.

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d {"name":"operator", "role": "Admin"}'

"https://<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

Page 209

 Quick install

1. To install the Victoria Metrics Kubernetes monitoring stack with the default parameters, use the quick install command. Replace the following

placeholders with your values:

API-KEY - The API key of your PMM Server

PMM-SERVER-URL - The URL to access the PMM Server

UNIQUE-K8s-CLUSTER-IDENTIFIER - Identifier for the Kubernetes cluster. It can be the name you defined during the cluster creation.

You should use a unique identifier for each Kubernetes cluster. The use of the same identifer for more than one Kubernetes cluster will result in the

conflicts during the metrics collection.

NAMESPACE - The namespace where the Victoria metrics Kubernetes stack will be installed. If you haven’t created the namespace before, it will be

created during the command execution.

We recommend to use a separate namespace like monitoring-system .

The Prometheus node exporter is not installed by default since it requires privileged containers with the access to the host file system. If you need the metrics for Nodes, add

the --node-exporter-enabled flag as follows:

 Install manually

You may need to customize the default parameters of the Victoria metrics Kubernetes stack.

Since we use the PMM Server for monitoring, there is no need to store the data in Victoria Metrics Operator. Therefore, the Victoria Metrics Helm chart is

installed with the vmsingle.enabled and vmcluster.enabled parameters set to false in this setup.

Check all the role-based access control (RBAC) rules of the victoria-metrics-k8s-stack chart and the dependencies chart, and modify them based

on your requirements.

Configure authentication in PMM

To access the PMM Server resources and perform actions on the server, configure authentication.

1. Encode the PMM Server API key with base64.

2. Create the Namespace where you want to set up monitoring. The following command creates the Namespace monitoring-system . You can specify a

different name. In the latter steps, specify your namespace instead of the <namespace> placeholder.

3. Create the YAML file for the Kubernetes Secrets and specify the base64-encoded API key value within. Let’s name this file pmm-api-

vmoperator.yaml .

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/quick-

install.sh | bash -s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-

IDENTIFIER> --namespace <NAMESPACE>

Note

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/quick-install.sh | bash -

s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-IDENTIFIER> --namespace <NAMESPACE> --

node-exporter-enabled

 Linux

 macOS

$ echo -n <API-key> | base64 --wrap=0

$ echo -n <API-key> | base64

$ kubectl create namespace monitoring-system

https://helm.sh/docs/topics/rbac/
https://helm.sh/docs/topics/rbac/
https://helm.sh/docs/topics/rbac/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Page 210

4. Create the Secrets object using the YAML file you created previously. Replace the <filename> placeholder with your value.

5. Check that the secret is created. The following command checks the secret for the resource named pmm-token-vmoperator (as defined in the

metadata.name option in the secrets file). If you defined another resource name, specify your value.

Create a ConfigMap to mount for kube-state-metrics

The kube-state-metrics (KSM) is a simple service that listens to the Kubernetes API server and generates metrics about the state of various objects -

Pods, Deployments, Services and Custom Resources.

To define what metrics the kube-state-metrics should capture, create the ConfigMap and mount it to a container.

Use the example configmap.yaml configuration file to create the ConfigMap.

As a result, you have the customresource-config-ksm ConfigMap created.

Install the Victoria Metrics Kubernetes monitoring stack

1. Add the dependency repositories of victoria-metrics-k8s-stack chart.

2. Add the Victoria Metrics Kubernetes monitoring stack repository.

3. Update the repositories.

4. Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the following configuration:

the URL to access the PMM server in the externalVM.write.url option in the format <PMM-SERVER-URL>/victoriametrics/api/v1/write . The

URL can contain either the IP address or the hostname of the PMM server.

the unique name or an ID of the Kubernetes cluster in the vmagent.spec.externalLabels.k8s_cluster_id option. Ensure to set different values if

you are sending metrics from multiple Kubernetes clusters to the same PMM Server.

the <namespace> placeholder with your value. The Namespace must be the same as the Namespace for the Secret and ConfigMap

pmm-api-vmoperator.yaml

apiVersion: v1

data:

api_key: <base-64-encoded-API-key>

kind: Secret

metadata:

name: pmm-token-vmoperator

#namespace: default

type: Opaque

$ kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>

$ kubectl get secret pmm-token-vmoperator -n <namespace>

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-

configmap.yaml -n <namespace>

$ helm repo add grafana https://grafana.github.io/helm-charts

$ helm repo add prometheus-community https://prometheus-community.github.io/helm-charts

$ helm repo add vm https://victoriametrics.github.io/helm-charts/

$ helm repo update

$ helm install vm-k8s vm/victoria-metrics-k8s-stack \

-f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/values.yaml \

--set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1/write \

--set vmagent.spec.externalLabels.k8s_cluster_id=<UNIQUE-CLUSTER-IDENTIFER/NAME> \

-n <namespace>

https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack

Page 211

Validate the successful installation

What Pods are running depends on the configuration chosen in values used while installing victoria-metrics-k8s-stack chart.

Verify metrics capture
1. Connect to the PMM server.

2. Click Explore and switch to the Code mode.

3. Check that the required metrics are captured, type the following in the Metrics browser dropdown:

cadvisor :

kubelet:

To illustrate, say your PMM Server URL is https://pmm-example.com , the cluster ID is test-cluster and the Namespace is monitoring-system .

Then the command would look like this:

$ helm install vm-k8s vm/victoria-metrics-k8s-stack \

-f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/values.yaml \

--set externalVM.write.url=https://pmm-example.com/victoriametrics/api/v1/write \

--set vmagent.spec.externalLabels.k8s_cluster_id=test-cluster \

-n monitoring-system

$ kubectl get pods -n <namespace>

Sample output

vm-k8s-stack-kube-state-metrics-d9d85978d-9pzbs 1/1 Running 0 28m

vm-k8s-stack-victoria-metrics-operator-844d558455-gvg4n 1/1 Running 0 28m

vmagent-vm-k8s-stack-victoria-metrics-k8s-stack-55fd8fc4fbcxwhx 2/2 Running 0 28m

https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md

Page 212

kube-state-metrics metrics that also include Custom resource metrics for the Operator and database deployed in your Kubernetes cluster:

Uninstall Victoria metrics Kubernetes stack
To remove Victoria metrics Kubernetes stack used for Kubernetes cluster monitoring, use the cleanup script. By default, the script removes all the Custom

Resource Definitions(CRD) and Secrets associated with the Victoria metrics Kubernetes stack. To keep the CRDs, run the script with the --keep-crd flag.

https://github.com/kubernetes/kube-state-metrics/tree/main/docs
https://github.com/kubernetes/kube-state-metrics/tree/main/docs
https://github.com/kubernetes/kube-state-metrics/tree/main/docs
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/

Page 213

Check that the Victoria metrics Kubernetes stack is deleted:

The output should provide the empty list.

If you face any issues with the removal, uninstall the stack manually:

 Remove CRDs

Replace the <NAMESPACE> placeholder with the namespace you specified during the Victoria metrics Kubernetes stack installation:

 Keep CRDs

Replace the <NAMESPACE> placeholder with the namespace you specified during the Victoria metrics Kubernetes stack installation:

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-

stack/cleanup.sh) --namespace <NAMESPACE>

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-

stack/cleanup.sh) --namespace <NAMESPACE> --keep-crd

$ helm list -n <namespace>

$ helm uninstall vm-k8s-stack -n < namespace>

Page 214

Delete Percona Operator for MySQL based on Percona XtraDB Cluster
You may have different reasons to clean up your Kubernetes environment: moving from trial deployment to a production one, testing experimental

configurations and the like. In either case, you need to remove some (or all) of these objects:

Percona XtraDB Cluster managed by the Operator

Percona Operator for MySQL itself

Custom Resource Definition deployed with the Operator

Resources like PVCs and Secrets

Delete the database cluster
To delete the database cluster means to delete the Custom Resource associated with it.

There are 3 finalizers defined in the Custom Resource, which define whether to delete or preserve TLS-related objects and data volumes when the cluster is deleted.

finalizers.percona.com/delete-ssl : if present, objects, created for SSL (Secret, certificate, and issuer) are deleted along with the cluster deletion.

finalizers.percona.com/delete-pxc-pvc : if present, Persistent Volume Claims for the database cluster Pods are deleted along with the cluster deletion.

finalizers.percona.com/delete-proxysql-pvc : if present, Persistent Volume Claims for ProxySQL Pods are deleted along with the cluster deletion.

All 3 finalizers are off by default in the deploy/cr.yaml configuration file, and this allows you to recreate the cluster without losing data, credentials for the system users, etc. You

can always delete TLS-related objects and PVCs manually, if needed.

The steps are the following:

Delete the Operator
Choose the instructions relevant to the way you installed the Operator.

Note

List the Custom Resources. Replace the <namespace> placeholder with your value1

$ kubectl get pxc -n <namespace>

Delete the Custom Resource with the name of your cluster

It may take a while to stop and delete the cluster.

2

$ kubectl delete pxc <cluster_name> -n <namespace>

Sample output

perconaxtradbcluster.pxc.percona.com "cluster1" deleted

Check that the cluster is deleted by listing the Custom Resources again:3

$ kubectl get pxc -n <namespace>

Sample output

No resources found in <namespace> namespace.

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Page 215

kubectl

To uninstall the Operator, delete the Deployments related to it.

Helm

To delete the Operator, do the following:

List the deployments. Replace the <namespace> placeholder with your namespace.1

$ kubectl get deploy -n <namespace>

Delete the percona-* deployment2

$ kubectl delete deploy percona-xtradb-cluster-operator -n <namespace>

Sample output

deployment.apps "percona-xtradb-cluster-operator" deleted

Check that the Operator is deleted by listing the Pods. As a result you should have no Pods related to it.3

$ kubectl get pods -n <namespace>

Sample output

No resources found in <namespace> namespace.

If you are not just deleting the Operator and XtraDB Cluster from a specific namespace, but want to clean up your entire Kubernetes environment, you can

also delete the CustomRecourceDefinitions (CRDs) .

 Warning: CRDs in Kubernetes are non-namespaced but are available to the whole environment. This means that you shouldn’t delete CRDs if you still

have the Operator and database cluster in some namespace.

Get the list of CRDs.

4

$ kubectl get crd

Delete the percona*.pxc.percona.com CRDs5

$ kubectl delete crd perconaxtradbclusterbackups.pxc.percona.com perconaxtradbclusterrestores.pxc.percona.com

perconaxtradbclusters.pxc.percona.com

Sample output

customresourcedefinition.apiextensions.k8s.io "perconaxtradbclusterbackups.pxc.percona.com" deleted

customresourcedefinition.apiextensions.k8s.io "perconaxtradbclusterrestores.pxc.percona.com" deleted

customresourcedefinition.apiextensions.k8s.io "perconaxtradbclusters.pxc.percona.com" deleted

List the Helm charts:1

$ helm list -n <namespace>

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

Page 216

Clean up resources
By default, TLS-related objects and data volumes remain in Kubernetes environment after you delete the cluster to allow you to recreate it without losing the

data. If you wish to delete them, do the following:

Sample output

cluster1 <namespace> 1 2023-10-31 10:18:10.763049 +0100 CET deployed pxc-db-1.17.0 1.17.0

my-op <namespace> 1 2023-10-31 10:15:18.41444 +0100 CET deployed pxc-operator-1.17.0 1.17.0

Delete the release object for Percona XtraDB Cluster2

$ helm uninstall cluster1 --namespace <namespace>

Delete the release object for the Operator3

$ helm uninstall my-op --namespace <namespace>

Delete Persistent Volume Claims.1

List PVCs. Replace the <namespace> placeholder with your namespace:1

$ kubectl get pvc -n <namespace>

Sample output

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

datadir-cluster1-pxc-0 Bound pvc-be4e2398-6fc9-456a-836b-9f0bc36d2a16 6Gi RWO standard-rwo 3m57s

datadir-cluster1-pxc-1 Bound pvc-8a9ed524-2f79-4ed1-9265-a09947084e08 6Gi RWO standard-rwo 2m41s

datadir-cluster1-pxc-2 Bound pvc-830fccfb-ced6-4fab-b85a-866aa435a2c7 6Gi RWO standard-rwo 91s

Delete PVCs related to your cluster. The following command deletes PVCs for the cluster1 cluster:2

$ kubectl delete pvc datadir-cluster1-pxc-0 datadir-cluster1-pxc-1 datadir-cluster1-pxc-2 -n <namespace>

Sample output

persistentvolumeclaim "datadir-cluster1-pxc-0" deleted

persistentvolumeclaim "datadir-cluster1-pxc-1" deleted

persistentvolumeclaim "datadir-cluster1-pxc-2" deleted

Delete the Secrets2

List Secrets:1

$ kubectl get secrets -n <namespace>

Delete the Secret:2

$ kubectl delete secret <secret_name> -n <namespace>

https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

Page 217

Reference

Page 218

Custom Resource options reference
Percona Operator for MySQL uses Custom Resources to manage options for the various components of the cluster.

PerconaXtraDBCluster Custom Resource with Percona XtraDB Cluster options,

PerconaXtraDBClusterBackup and PerconaXtraDBClusterRestore Custom Resources contain options for Percona XtraBackup used to backup

Percona XtraDB Cluster and to restore it from backups.

PerconaXtraDBCluster Custom Resource options
PerconaXtraDBCluster Custom Resource contains options for Percona XtraDB Cluster and can be configured via the deploy/cr.yaml configuration file.

The metadata part contains the following keys:

name (cluster1 by default) sets the name of your Percona XtraDB Cluster; it should include only URL-compatible characters , not exceed 22 characters,

start with an alphabetic character, and end with an alphanumeric character;

finalizers subsection:

percona.com/delete-pods-in-order if present, activates the Finalizer which controls the proper Pods deletion order in case of the cluster

deletion event (on by default).

percona.com/delete-pxc-pvc if present, activates the Finalizer which deletes Persistent Volume Claims for Percona XtraDB Cluster Pods after

the cluster deletion event (off by default).

percona.com/delete-proxysql-pvc if present, activates the Finalizer which deletes Persistent Volume Claim for ProxySQL Pod after the cluster

deletion event (off by default).

percona.com/delete-ssl if present, activates the Finalizer which deletes objects, created for SSL (Secret, certificate, and issuer) after the cluster

deletion event (off by default).

The toplevel spec elemets of the deploy/cr.yaml are the following ones:

allowUnsafeConfigurations

Prevents users from configuring a cluster with unsafe parameters such as starting the cluster with the number of Percona XtraDB Cluster instances which is

less than 3, more than 5, or is an even number, with less than 2 ProxySQL or HAProxy Pods, or without TLS/SSL certificates. This option is deprecated and will

be removed in future releases. Use unsafeFlags subsection instead.

Value type Example

 boolean false

enableCRValidationWebhook

Enables or disables schema validation before applying cr.yaml file (works only in cluster-wide mode due to access restrictions).

Value type Example

 boolean true

enableVolumeExpansion

Enables or disables automatic storage scaling / volume expansion.

Value type Example

 boolean false

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml

Page 219

pause

Pause/resume: setting it to true gracefully stops the cluster, and setting it to false after shut down starts the cluster back.

Value type Example

 boolean false

secretsName

A name for users secrets.

Value type Example

 string cluster1-secrets

crVersion

Version of the Operator the Custom Resource belongs to.

Value type Example

 string 1.17.0

ignoreAnnotations

The list of annotations to be ignored by the Operator.

Value type Example

 subdoc iam.amazonaws.com/role

ignoreLabels

The list of labels to be ignored by the Operator.

Value type Example

 subdoc rack

vaultSecretName

A secret for the HashiCorp Vault to carry on Data at Rest Encryption.

Value type Example

 string keyring-secret-vault

sslSecretName

A secret with TLS certificate generated for external communications, see Transport Layer Security (TLS) for details.

https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.vaultproject.io/

Page 220

Value type Example

 string cluster1-ssl

sslInternalSecretName

A secret with TLS certificate generated for internal communications, see Transport Layer Security (TLS) for details.

Value type Example

 string cluster1-ssl-internal

logCollectorSecretName

A secret for the Fluent Bit Log Collector.

Value type Example

 string my-log-collector-secrets

initImage

An alternative image for the initial Operator installation. This option is deprecated and will be removed in future releases. Use initContainer.image

instead.

Value type Example

 string percona/percona-xtradb-cluster-operator:1.17.0

updateStrategy

A strategy the Operator uses for upgrades.

Value type Example

 string SmartUpdate

Unsafe flags section
The unsafeFlags section in the deploy/cr.yaml file contains various configuration options to prevent users from configuring a cluster with unsafe

parameters.

unsafeFlags.tls

Allows users to configure a cluster without TLS/SSL certificates (if false , the Operator will detect unsafe parameters, set cluster status to error , and print

error message in logs).

Value type Example

 boolean false

unsafeFlags.pxcSize

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml

Page 221

Allows users to configure a cluster with less than 3 Percona XtraDB Cluster instances (if false , the Operator will detect unsafe parameters, set cluster status

to error , and print error message in logs).

Value type Example

 boolean false

unsafeFlags.proxySize

Allows users to configure a cluster with less than 2 ProxySQL or HAProxy Pods (if false , the Operator will detect unsafe parameters, set cluster status to

error , and print error message in logs).

Value type Example

 boolean false

unsafeFlags.backupIfUnhealthy

Allows running a backup even if the cluster status is not ready .

Value type Example

 boolean false

initContainer configuration section
The initContainer section in the deploy/cr.yaml file allows providing an alternative image with various options for the initial Operator installation.

initContainer.image

An alternative image for the initial Operator installation.

Value type Example

 string percona/percona-xtradb-cluster-operator:1.17.0

initContainer.containerSecurityContext

A custom Kubernetes Security Context for a Container for the image used for the initial Operator installation.

Value type Example

 subdoc

initContainer.resources.requests.memory

The Kubernetes memory requests for an image used while the initial Operator installation.

Value type Example

 string 1G

privileged: false

runAsUser: 1001

runAsGroup: 1001

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Page 222

initContainer.resources.requests.cpu

Kubernetes CPU requests for an image used while the initial Operator installation.

Value type Example

 string 600m

initContainer.resources.limits.memory

Kubernetes memory limits for an image used while the initial Operator installation.

Value type Example

 string 1G

initContainer.resources.limits.cpu

Kubernetes CPU limits for an image used while the initial Operator installation.

Value type Example

 string 1

TLS (extended cert-manager configuration section)
The tls section in the deploy/cr.yaml file contains various configuration options for additional customization of the TLS cert-manager.

tls.enabled

Enables or disables the TLS encryption. If set to false , it also requires setting unsafeFlags.tls option to true`.

Value type Example

 boolean true

tls.SANs

Additional domains (SAN) to be added to the TLS certificate within the extended cert-manager configuration.

Value type Example

 subdoc

tls.issuerConf.name

A cert-manager issuer name .

Value type Example

 string special-selfsigned-issuer

tls.issuerConf.kind

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://cert-manager.io/docs/concepts/issuer/
https://cert-manager.io/docs/concepts/issuer/
https://cert-manager.io/docs/concepts/issuer/

Page 223

A cert-manager issuer type .

Value type Example

 string ClusterIssuer

tls.issuerConf.group

A cert-manager issuer group . Should be cert-manager.io for built-in cert-manager certificate issuers.

Value type Example

 string cert-manager.io

Upgrade options section
The upgradeOptions section in the deploy/cr.yaml file contains various configuration options to control Percona XtraDB Cluster upgrades.

upgradeOptions.versionServiceEndpoint

The Version Service URL used to check versions compatibility for upgrade.

Value type Example

 string https://check.percona.com

upgradeOptions.apply

Specifies how updates are processed by the Operator. Never or Disabled will completely disable automatic upgrades, otherwise it can be set to Latest or

Recommended or to a specific version string of Percona XtraDB Cluster (e.g. 8.0.19-10.1) that is wished to be version-locked (so that the user can control

the version running, but use automatic upgrades to move between them).

Value type Example

 string Disabled

upgradeOptions.schedule

Scheduled time to check for updates, specified in the crontab format .

Value type Example

 string 0 2 * * *

PXC section
The pxc section in the deploy/cr.yaml file contains general configuration options for the Percona XtraDB Cluster.

pxc.size

The size of the Percona XtraDB cluster must be 3 or 5 for High Availability . Other values are allowed if the spec.unsafeFlags.pxcSize key is set to true.

https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/configuration/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-xtradb-cluster/5.7/intro.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/intro.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/intro.html

Page 224

Value type Example

 int 3

pxc.image

The Docker image of the Percona cluster used (actual image names for Percona XtraDB Cluster 8.0 and Percona XtraDB Cluster 5.7 can be found in the list of

certified images).

Value type Example

 string percona/percona-xtradb-cluster:8.0.41-32.1

pxc.autoRecovery

Turns Automatic Crash Recovery on or off.

Value type Example

 boolean true

pxc.expose.enabled

Enable or disable exposing Percona XtraDB Cluster instances with dedicated IP addresses.

Value type Example

 boolean true

pxc.expose.type

The Kubernetes Service Type used for exposure.

Value type Example

 string LoadBalancer

pxc.expose.trafficPolicy

Specifies whether Service should route external traffic to cluster-wide or node-local endpoints (it can influence the load balancing effectiveness) This

option is deprecated and will be removed in future releases. Use pxc.expose.externalTrafficPolicy instead.

Value type Example

 string Local

pxc.expose.externalTrafficPolicy

Specifies whether Service for Percona XtraDB Cluster should route external traffic to cluster-wide or to node-local endpoints (it can influence the load

balancing effectiveness).

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip

Page 225

Value type Example

 string Local

pxc.expose.internalTrafficPolicy

Specifies whether Service for Percona XtraDB Cluster should route internal traffic to cluster-wide or to node-local endpoints (it can influence the load

balancing effectiveness).

Value type Example

 string Local

pxc.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

Value type Example

 string 10.0.0.0/8

pxc.expose.loadBalancerIP

The static IP-address for the load balancer.

Value type Example

 string 127.0.0.1

pxc.expose.annotations

The Kubernetes annotations .

Value type Example

 string networking.gke.io/load-balancer-type: "Internal"

pxc.replicationChannels.name

Name of the replication channel for cross-site replication.

Value type Example

 string pxc1_to_pxc2

pxc.replicationChannels.isSource

Should the cluster act as Source (true) or Replica (false) in cross-site replication.

Value type Example

 boolean false

https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

Page 226

pxc.replicationChannels.configuration.sourceRetryCount

Number of retries Replica should do when the existing connection source fails.

Value type Example

 int 3

pxc.replicationChannels.configuration.sourceConnectRetry

The interval between reconnection attempts in seconds to be used by Replica when the the existing connection source fails.

Value type Example

 int 60

pxc.replicationChannels.configuration.ssl

Turns SSL for replication channels on or off.

Value type Example

 boolean false

pxc.replicationChannels.configuration.sslSkipVerify

Turns the host name identity verification for SSL-based replication on or off.

Value type Example

 boolean true

pxc.replicationChannels.configuration.ca

The path name of the Certificate Authority (CA) certificate file to be used if the SSL for replication channels is turned on.

Value type Example

 string /etc/mysql/ssl/ca.crt

pxc.replicationChannels.sourcesList.host

For the cross-site replication Replica cluster, this key should contain the hostname or IP address of the Source cluster.

Value type Example

 string 10.95.251.101

pxc.replicationChannels.sourcesList.port

For the cross-site replication Replica cluster, this key should contain the Source port number.

Page 227

Value type Example

 int 3306

pxc.replicationChannels.sourcesList.weight

For the cross-site replication Replica cluster, this key should contain the Source cluster weight (varies from 1 to 100 , the cluster with the higher number will

be selected as the replication source first).

Value type Example

 int 100

pxc.readinessDelaySec

Adds a delay before a run check to verify the application is ready to process traffic.

Value type Example

 int 15

pxc.livenessDelaySec

Adds a delay before the run check ensures the application is healthy and capable of processing requests.

Value type Example

 int 300

pxc.configuration

The my.cnf file options to be passed to Percona XtraDB cluster nodes.

Value type Example

 string

pxc.imagePullSecrets.name

The Kubernetes ImagePullSecret .

Value type Example

 string private-registry-credentials

pxc.priorityClassName

The Kubernetes Pod priority class .

|

[mysqld]

wsrep_debug=ON

wsrep-provider_options=gcache.size=1G;gcache.recover=yes

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass

Page 228

Value type Example

 string high-priority

pxc.schedulerName

The Kubernetes Scheduler .

Value type Example

 string mycustom-scheduler

pxc.annotations

The Kubernetes annotations .

Value type Example

 label iam.amazonaws.com/role: role-arn

pxc.labels

Labels are key-value pairs attached to objects .

Value type Example

 label rack: rack-22

pxc.readinessProbes.initialDelaySeconds

Number of seconds to wait before performing the first readiness probe .

Value type Example

 int 15

pxc.readinessProbes.timeoutSeconds

Number of seconds after which the readiness probe times out.

Value type Example

 int 15

pxc.readinessProbes.periodSeconds

How often (in seconds) to perform the readiness probe .

Value type Example

 int 30

https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Page 229

pxc.readinessProbes.successThreshold

Minimum consecutive successes for the readiness probe to be considered successful after having failed.

Value type Example

 int 1

pxc.readinessProbes.failureThreshold

When the readiness probe fails, Kubernetes will try this number of times before marking the Pod Unready.

Value type Example

 int 5

pxc.livenessProbes.initialDelaySeconds

Number of seconds to wait before performing the first liveness probe .

Value type Example

 int 300

pxc.livenessProbes.timeoutSeconds

Number of seconds after which the liveness probe times out.

Value type Example

 int 5

pxc.livenessProbes.periodSeconds

How often (in seconds) to perform the liveness probe .

Value type Example

 int 10

pxc.livenessProbes.successThreshold

Minimum consecutive successes for the liveness probe to be considered successful after having failed.

Value type Example

 int 1

pxc.livenessProbes.failureThreshold

When the liveness probe fails, Kubernetes will try this number of times before restarting the container.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Page 230

Value type Example

 int 3

pxc.envVarsSecret

A secret with environment variables, see Define environment variables for details.

Value type Example

 string my-env-var-secrets

pxc.resources.requests.memory

The Kubernetes memory requests for a Percona XtraDB Cluster container.

Value type Example

 string 1G

pxc.resources.requests.cpu

Kubernetes CPU requests for a Percona XtraDB Cluster container.

Value type Example

 string 600m

pxc.resources.requests.ephemeral-storage

Kubernetes Ephemeral Storage requests for a Percona XtraDB Cluster container.

Value type Example

 string 1G

pxc.resources.limits.memory

Kubernetes memory limits for a Percona XtraDB Cluster container.

Value type Example

 string 1G

pxc.resources.limits.cpu

Kubernetes CPU limits for a Percona XtraDB Cluster container.

Value type Example

 string 1

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Page 231

pxc.resources.limits.ephemeral-storage

Kubernetes Ephemeral Storage limits for a Percona XtraDB Cluster container.

Value type Example

 string 1G

pxc.nodeSelector

Kubernetes nodeSelector .

Value type Example

 label disktype: ssd

pxc.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label app.kubernetes.io/name: percona-xtradb-cluster-operator

pxc.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

Value type Example

 int 1

pxc.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string kubernetes.io/hostname

pxc.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string DoNotSchedule

pxc.affinity.topologyKey

The Operator topology key node anti-affinity constraint.

https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

Page 232

Value type Example

 string kubernetes.io/hostname

pxc.affinity.advanced

In cases where the Pods require complex tuning the advanced option turns off the topologyKey effect. This setting allows the standard Kubernetes affinity

constraints of any complexity to be used.

Value type Example

 subdoc

pxc.tolerations

Kubernetes Pod tolerations .

Value type Example

 subdoc node.alpha.kubernetes.io/unreachable

pxc.podDisruptionBudget.maxUnavailable

The Kubernetes podDisruptionBudget specifies the number of Pods from the set unavailable after the eviction.

Value type Example

 int 1

pxc.podDisruptionBudget.minAvailable

The Kubernetes podDisruptionBudget Pods that must be available after an eviction.

Value type Example

 int 0

pxc.volumeSpec.emptyDir

The Kubernetes emptyDir volume The directory created on a node and accessible to the Percona XtraDB Cluster Pod containers.

Value type Example

 string {}

pxc.volumeSpec.hostPath.path

Kubernetes hostPath The volume that mounts a directory from the host node’s filesystem into your Pod. The path property is required.

Value type Example

 string /data

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

Page 233

pxc.volumeSpec.hostPath.type

The Kubernetes hostPath . An optional property for the hostPath.

Value type Example

 string Directory

pxc.volumeSpec.persistentVolumeClaim.storageClassName

Set the Kubernetes storage class to use with the Percona XtraDB Cluster PersistentVolumeClaim .

Value type Example

 string standard

pxc.volumeSpec.persistentVolumeClaim.accessModes

The Kubernetes PersistentVolumeClaim access modes for the Percona XtraDB cluster.

Value type Example

 array [ReadWriteOnce]

pxc.volumeSpec.persistentVolumeClaim.dataSource.name

The name of PVC used as a data source to create the Percona XtraDB Cluster Volumes by cloning .

Value type Example

 string new-snapshot-test

pxc.volumeSpec.persistentVolumeClaim.dataSource.kind

The Kubernetes DataSource type .

Value type Example

 string VolumeSnapshot

pxc.volumeSpec.persistentVolumeClaim.dataSource.apiGroup

The Kubernetes API group to use for PVC Data Source .

Value type Example

 string snapshot.storage.k8s.io

pxc.gracePeriod

The Kubernetes grace period when terminating a Pod .

https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes-csi.github.io/docs/volume-datasources.html#supported-datasources
https://kubernetes-csi.github.io/docs/volume-datasources.html#supported-datasources
https://kubernetes-csi.github.io/docs/volume-datasources.html#supported-datasources
https://kubernetes.io/docs/reference/using-api/#api-groups
https://kubernetes.io/docs/reference/using-api/#api-groups
https://kubernetes.io/docs/reference/using-api/#api-groups
https://kubernetes-csi.github.io/docs/volume-datasources.html
https://kubernetes-csi.github.io/docs/volume-datasources.html
https://kubernetes-csi.github.io/docs/volume-datasources.html
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods

Page 234

Value type Example

 int 600

pxc.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

Value type Example

 subdoc privileged: true

pxc.podSecurityContext

A custom Kubernetes Security Context for a Pod to be used instead of the default one.

Value type Example

 subdoc

pxc.serviceAccountName

The Kubernetes Service Account for Percona XtraDB Cluster Pods.

Value type Example

 string percona-xtradb-cluster-operator-workload

pxc.imagePullPolicy

The policy used to update images .

Value type Example

 string Always

pxc.runtimeClassName

Name of the Kubernetes Runtime Class for Percona XtraDB Cluster Pods.

Value type Example

 string image-rc

pxc.sidecars.image

Image for the custom sidecar container for Percona XtraDB Cluster Pods.

Value type Example

 string busybox

fsGroup: 1001

supplementalGroups: [1001, 1002, 1003]

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/runtime-class/
https://kubernetes.io/docs/concepts/containers/runtime-class/
https://kubernetes.io/docs/concepts/containers/runtime-class/

Page 235

pxc.sidecars.command

Command for the custom sidecar container for Percona XtraDB Cluster Pods.

Value type Example

 array ["/bin/sh"]

pxc.sidecars.args

Command arguments for the custom sidecar container for Percona XtraDB Cluster Pods.

Value type Example

 array ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

pxc.sidecars.name

Name of the custom sidecar container for Percona XtraDB Cluster Pods.

Value type Example

 string my-sidecar-1

pxc.sidecars.resources.requests.memory

The Kubernetes memory requests for a Percona XtraDB Cluster sidecar container.

Value type Example

 string 1G

pxc.sidecars.resources.requests.cpu

Kubernetes CPU requests for a Percona XtraDB Cluster sidecar container.

Value type Example

 string 500m

pxc.sidecars.resources.limits.memory

Kubernetes memory limits for a Percona XtraDB Cluster sidecar container.

Value type Example

 string 2G

pxc.sidecars.resources.limits.cpu

Kubernetes CPU limits for a Percona XtraDB Cluster sidecar container.

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Page 236

Value type Example

 string 600m

pxc.lifecycle.preStop.exec.command

Command for the preStop lifecycle hook for Percona XtraDB Cluster Pods.

Value type Example

 array ["/bin/true"]

pxc.lifecycle.postStart.exec.command

Command for the postStart lifecycle hook for Percona XtraDB Cluster Pods.

Value type Example

 array ["/bin/true"]

HAProxy section
The haproxy section in the deploy/cr.yaml file contains configuration options for the HAProxy service.

haproxy.enabled

Enables or disables load balancing with HAProxy Services .

Value type Example

 boolean true

haproxy.size

The number of the HAProxy Pods to provide load balancing . It should be 2 or more unless the spec.unsafeFlags.proxySize key is set to true.

Value type Example

 int 2

haproxy.image

HAProxy Docker image to use.

Value type Example

 string percona/percona-xtradb-cluster-operator:1.17.0-haproxy

haproxy.imagePullPolicy

The policy used to update images .

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-xtradb-cluster/8.0/howtos/haproxy.html
https://www.percona.com/doc/percona-xtradb-cluster/8.0/howtos/haproxy.html
https://www.percona.com/doc/percona-xtradb-cluster/8.0/howtos/haproxy.html
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.percona.com/doc/percona-xtradb-cluster/8.0/howtos/haproxy.html
https://www.percona.com/doc/percona-xtradb-cluster/8.0/howtos/haproxy.html
https://www.percona.com/doc/percona-xtradb-cluster/8.0/howtos/haproxy.html
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images

Page 237

Value type Example

 string Always

haproxy.imagePullSecrets.name

The Kubernetes imagePullSecrets for the HAProxy image.

Value type Example

 string private-registry-credentials

haproxy.readinessDelaySec

Adds a delay before a run check to verify the application is ready to process traffic.

Value type Example

 int 15

haproxy.livenessDelaySec

Adds a delay before the run check ensures the application is healthy and capable of processing requests.

Value type Example

 int 300

haproxy.configuration

The custom HAProxy configuration file contents.

Value type Example

 string

haproxy.annotations

The Kubernetes annotations metadata.

Value type Example

 label iam.amazonaws.com/role: role-arn

haproxy.labels

Labels are key-value pairs attached to objects .

Value type Example

 label rack: rack-22

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Page 238

haproxy.readinessProbes.initialDelaySeconds

Number of seconds to wait before performing the first readiness probe .

Value type Example

 int 15

haproxy.readinessProbes.timeoutSeconds

Number of seconds after which the readiness probe times out.

Value type Example

 int 1

haproxy.readinessProbes.periodSeconds

How often (in seconds) to perform the readiness probe .

Value type Example

 int 5

haproxy.readinessProbes.successThreshold

Minimum consecutive successes for the readiness probe to be considered successful after having failed.

Value type Example

 int 1

haproxy.readinessProbes.failureThreshold

When the readiness probe fails, Kubernetes will try this number of times before marking the Pod Unready.

Value type Example

 int 3

haproxy.serviceType

Specifies the type of Kubernetes Service to be used for HAProxy. This option is deprecated and will be removed in future releases. Use

haproxy.exposePrimary.type instead.

Value type Example

 string ClusterIP

haproxy.externalTrafficPolicy

Specifies whether Service for HAProxy should route external traffic to cluster-wide or to node-local endpoints (it can influence the load balancing

effectiveness). This option is deprecated and will be removed in future releases. Use haproxy.exposePrimary.externalTrafficPolicy instead.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip

Page 239

Value type Example

 string Cluster

haproxy.livenessProbes.initialDelaySeconds

Number of seconds to wait before performing the first liveness probe .

Value type Example

 int 60

haproxy.livenessProbes.timeoutSeconds

Number of seconds after which the liveness probe times out.

Value type Example

 int 5

haproxy.livenessProbes.periodSeconds

How often (in seconds) to perform the liveness probe .

Value type Example

 int 30

haproxy.livenessProbes.successThreshold

Minimum consecutive successes for the liveness probe to be considered successful after having failed.

Value type Example

 int 1

haproxy.readinessProbes.failureThreshold

When the liveness probe fails, Kubernetes will try this number of times before marking the Pod Unready.

Value type Example

 int 4

haproxy.resources.requests.memory

The Kubernetes memory requests for the main HAProxy container.

Value type Example

 string 1G

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Page 240

haproxy.resources.requests.cpu

Kubernetes CPU requests for the main HAProxy container.

Value type Example

 string 600m

haproxy.resources.limits.memory

Kubernetes memory limits for the main HAProxy container.

Value type Example

 string 1G

haproxy.resources.limits.cpu

Kubernetes CPU limits for the main HAProxy container.

Value type Example

 string 700m

haproxy.envVarsSecret

A secret with environment variables, see Define environment variables for details.

Value type Example

 string my-env-var-secrets

haproxy.priorityClassName

The Kubernetes Pod Priority class for HAProxy.

Value type Example

 string high-priority

haproxy.schedulerName

The Kubernetes Scheduler .

Value type Example

 string mycustom-scheduler

haproxy.nodeSelector

Kubernetes nodeSelector .

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

Page 241

Value type Example

 label disktype: ssd

haproxy.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label app.kubernetes.io/name: percona-xtradb-cluster-operator

haproxy.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

Value type Example

 int 1

haproxy.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string kubernetes.io/hostname

haproxy.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string DoNotSchedule

haproxy.affinity.topologyKey

The Operator topology key node anti-affinity constraint.

Value type Example

 string kubernetes.io/hostname

haproxy.affinity.advanced

If available it makes a topologyKey node affinity constraint to be ignored.

Value type Example

 subdoc

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature

Page 242

haproxy.tolerations

Kubernetes Pod tolerations .

Value type Example

 subdoc node.alpha.kubernetes.io/unreachable

haproxy.podDisruptionBudget.maxUnavailable

The Kubernetes podDisruptionBudget specifies the number of Pods from the set unavailable after the eviction.

Value type Example

 int 1

haproxy.podDisruptionBudget.minAvailable

The Kubernetes podDisruptionBudget Pods that must be available after an eviction.

Value type Example

 int 0

haproxy.gracePeriod

The Kubernetes grace period when terminating a Pod .

Value type Example

 int 30

haproxy.exposePrimary.enabled

Enables or disables the HAProxy primary instance Service. This field is deprecated starting with the Operator version 1.17.0.

Value type Example

 boolean false

haproxy.exposePrimary.type

Specifies the type of Kubernetes Service to be used for HAProxy primary instance Service.

Value type Example

 string ClusterIP

haproxy.exposePrimary.externalTrafficPolicy

Specifies whether Service for HAProxy should route external traffic to cluster-wide or to node-local endpoints (it can influence the load balancing

effectiveness).

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip

Page 243

Value type Example

 string Cluster

haproxy.exposePrimary.internalTrafficPolicy

Specifies whether Service for HAProxy primary instance should route internal traffic to cluster-wide or to node-local endpoints (it can influence the load

balancing effectiveness).

Value type Example

 string Cluster

haproxy.exposePrimary.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

Value type Example

 string 10.0.0.0/8

haproxy.exposePrimary.loadBalancerIP

The static IP-address for the load balancer.

Value type Example

 string 127.0.0.1

haproxy.serviceLabels

The Kubernetes labels for the load balancer Service. This option is deprecated and will be removed in future releases. Use

haproxy.exposePrimary.labels instead.

Value type Example

 label rack: rack-22

haproxy.exposePrimary.labels

The Kubernetes labels for the load balancer Service.

Value type Example

 label rack: rack-22

haproxy.serviceAnnotations

The Kubernetes annotations metadata for the load balancer Service. This option is deprecated and will be removed in future releases. Use

haproxy.exposePrimary.annotations instead.

https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

Page 244

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: tcp

haproxy.exposePrimary.annotations

The Kubernetes annotations metadata for the load balancer Service.

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: tcp

haproxy.replicasServiceEnabled

Enables or disables haproxy-replicas Service. This Service (on by default) forwards requests to all Percona XtraDB Cluster instances, and it should not be

used for write requests! This option is deprecated and will be removed in future releases. Use haproxy.exposeReplicas.enabled instead.

Value type Example

 boolean false

haproxy.exposeReplicas.enabled

Enables or disables haproxy-replicas Service. This Service default forwards requests to all Percona XtraDB Cluster instances, and it should not be used for

write requests!

Value type Example

 boolean true

haproxy.exposeReplicas.onlyReaders

Setting it to true excludes current MySQL primary instance (writer) from the list of Pods, to which haproxy-replicas Service directs connections, leaving

only the reader instances.

Value type Example

 boolean false

haproxy.replicasLoadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, no limitations). This option is deprecated and will be removed

in future releases. Use haproxy.exposeReplicas.loadBalancerSourceRanges instead.

Value type Example

 string 10.0.0.0/8

haproxy.exposeReplicas.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, no limitations).

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

Page 245

Value type Example

 string 10.0.0.0/8

haproxy.replicasLoadBalancerIP

The static IP-address for the replicas load balancer. This option is deprecated and will be removed in future releases. Use

haproxy.exposeReplicas.loadBalancerIP instead.

Value type Example

 string 127.0.0.1

haproxy.exposeReplicas.loadBalancerIP

The static IP-address for the replicas load balancer.

Value type Example

 string 127.0.0.1

haproxy.replicasServiceType

Specifies the type of Kubernetes Service to be used for HAProxy replicas. This option is deprecated and will be removed in future releases. Use

haproxy.exposeReplicas.serviceType instead.

Value type Example

 string ClusterIP

haproxy.exposeReplicas.serviceType

Specifies the type of Kubernetes Service to be used for HAProxy replicas.

Value type Example

 string ClusterIP

haproxy.replicasExternalTrafficPolicy

Specifies whether Service for HAProxy replicas should route external traffic to cluster-wide or to node-local endpoints (it can influence the load balancing

effectiveness). This option is deprecated and will be removed in future releases. Use haproxy.exposeReplicas.externalTrafficPolicy instead.

Value type Example

 string Cluster

haproxy.exposeReplicas.externalTrafficPolicy

Specifies whether Service for HAProxy replicas should route external traffic to cluster-wide or to node-local endpoints (it can influence the load balancing

effectiveness).

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip

Page 246

Value type Example

 string Cluster

haproxy.exposeReplicas.internalTrafficPolicy

Specifies whether Service for HAProxy replicas should route internal traffic to cluster-wide or to node-local endpoints (it can influence the load balancing

effectiveness).

Value type Example

 string Cluster

haproxy.replicasServiceLabels

The Kubernetes labels for the haproxy-replicas Service. This option is deprecated and will be removed in future releases. Use

haproxy.exposeReplicas.labels instead.

Value type Example

 label rack: rack-22

haproxy.exposeReplicas.labels

The Kubernetes labels for the haproxy-replicas Service.

Value type Example

 label rack: rack-22

haproxy.replicasServiceAnnotations

The Kubernetes annotations metadata for the haproxy-replicas Service. This option is deprecated and will be removed in future releases. Use

haproxy.exposeReplicas.annotations instead.

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: tcp

haproxy.exposeReplicas.annotations

The Kubernetes annotations metadata for the haproxy-replicas Service.

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: tcp

haproxy.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Page 247

Value type Example

 subdoc privileged: true

haproxy.podSecurityContext

A custom Kubernetes Security Context for a Pod to be used instead of the default one.

Value type Example

 subdoc

haproxy.serviceAccountName

The Kubernetes Service Account for the HAProxy Pod.

Value type Example

 string percona-xtradb-cluster-operator-workload

haproxy.runtimeClassName

Name of the Kubernetes Runtime Class for the HAProxy Pod.

Value type Example

 string image-rc

haproxy.sidecars.image

Image for the custom sidecar container for the HAProxy Pod.

Value type Example

 string busybox

haproxy.sidecars.command

Command for the custom sidecar container for the HAProxy Pod.

Value type Example

 array ["/bin/sh"]

haproxy.sidecars.args

Command arguments for the custom sidecar container for the HAProxy Pod.

Value type Example

 array ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

fsGroup: 1001

supplementalGroups: [1001, 1002, 1003]

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/containers/runtime-class/
https://kubernetes.io/docs/concepts/containers/runtime-class/
https://kubernetes.io/docs/concepts/containers/runtime-class/

Page 248

haproxy.sidecars.name

Name of the custom sidecar container for the HAProxy Pod.

Value type Example

 string my-sidecar-1

haproxy.sidecars.resources.requests.memory

The Kubernetes memory requests for the sidecar HAProxy containers.

Value type Example

 string 1G

haproxy.sidecars.resources.requests.cpu

Kubernetes CPU requests for the sidecar HAProxy containers.

Value type Example

 string 500m

haproxy.sidecars.resources.limits.memory

Kubernetes memory limits for the sidecar HAProxy containers.

Value type Example

 string 2G

haproxy.sidecars.resources.limits.cpu

Kubernetes CPU limits for the sidecar HAProxy containers.

Value type Example

 string 600m

haproxy.lifecycle.preStop.exec.command

Command for the preStop lifecycle hook for HAProxy Pods.

Value type Example

 array ["/bin/true"]

haproxy.lifecycle.postStart.exec.command

Command for the postStart lifecycle hook for HAProxy Pods.

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

Page 249

Value type Example

 array ["/bin/true"]

ProxySQL section
The proxysql section in the deploy/cr.yaml file contains configuration options for the ProxySQL daemon.

proxysql.enabled

Enables or disables load balancing with ProxySQL Services ProxySQL can be enabled only at cluster creation time; otherwise you will be limited to

HAProxy load balancing.

Value type Example

 boolean false

proxysql.size

The number of the ProxySQL daemons to provide load balancing . It should be 2 or more unless the spec.unsafeFlags.proxySize key is set to true.

Value type Example

 int 2

proxysql.image

ProxySQL Docker image to use.

Value type Example

 string percona/percona-xtradb-cluster-operator:1.17.0-proxysql

proxysql.imagePullPolicy

The policy used to update images .

Value type Example

 string Always

proxysql.imagePullSecrets.name

The Kubernetes imagePullSecrets for the ProxySQL image.

Value type Example

 string private-registry-credentials

proxysql.readinessDelaySec

Adds a delay before a run check to verify the application is ready to process traffic.

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-xtradb-cluster/5.7/howtos/proxysql.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/howtos/proxysql.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/howtos/proxysql.html
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.percona.com/doc/percona-xtradb-cluster/5.7/howtos/proxysql.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/howtos/proxysql.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/howtos/proxysql.html
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

Page 250

Value type Example

 int 15

proxysql.livenessDelaySec

Adds a delay before the run check ensures the application is healthy and capable of processing requests.

Value type Example

 int 300

proxysql.configuration

The custom ProxySQL configuration file contents.

Value type Example

 string

proxysql.annotations

The Kubernetes annotations metadata.

Value type Example

 label iam.amazonaws.com/role: role-arn

proxysql.labels

Labels are key-value pairs attached to objects .

Value type Example

 label rack: rack-22

proxysql.expose.enabled

Enable or disable exposing ProxySQL nodes with dedicated IP addresses.

Value type Example

 boolean false

proxysql.serviceType

Specifies the type of Kubernetes Service to be used. This option is deprecated and will be removed in future releases. Use proxysql.expose.type

instead.

Value type Example

 string ClusterIP

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

Page 251

proxysql.expose.type

Specifies the type of Kubernetes Service to be used.

Value type Example

 string ClusterIP

proxysql.externalTrafficPolicy

Specifies whether Service for ProxySQL should route external traffic to cluster-wide or to node-local endpoints (it can influence the load balancing

effectiveness). This option is deprecated and will be removed in future releases. Use proxysql.expose.externalTrafficPolicy instead.

Value type Example

 string Local

proxysql.expose.externalTrafficPolicy

Specifies whether Service for ProxySQL should route external traffic to cluster-wide or to node-local endpoints (it can influence the load balancing

effectiveness).

Value type Example

 string Local

proxysql.expose.internalTrafficPolicy

Specifies whether Service for ProxySQL should route internal traffic to cluster-wide or to node-local endpoints (it can influence the load balancing

effectiveness).

Value type Example

 string Local

proxysql.serviceAnnotations

The Kubernetes annotations metadata for the load balancer Service. This option is deprecated and will be removed in future releases. Use

proxysql.expose.annotations instead.

Value type Example

 label service.beta.kubernetes.io/aws-load-balancer-backend-protocol: tcp

proxysql.expose.annotations

The Kubernetes annotations metadata for the load balancer Service.

Value type Example

 label service.beta.kubernetes.io/aws-load-balancer-backend-protocol: tcp

proxysql.serviceLabels

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

Page 252

The Kubernetes labels for the load balancer Service. This option is deprecated and will be removed in future releases. Use proxysql.expose.labels

instead.

Value type Example

 label rack: rack-22

proxysql.expose.labels

The Kubernetes labels for the load balancer Service.

Value type Example

 label rack: rack-22

proxysql.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations). This option is deprecated and will be

removed in future releases. Use proxysql.expose.loadBalancerSourceRanges instead.

Value type Example

 string 10.0.0.0/8

proxysql.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

Value type Example

 string 10.0.0.0/8

proxysql.expose.loadBalancerIP

The static IP-address for the load balancer.

Value type Example

 string 127.0.0.1

proxysql.resources.requests.memory

The Kubernetes memory requests for the main ProxySQL container.

Value type Example

 string 1G

proxysql.resources.requests.cpu

Kubernetes CPU requests for the main ProxySQL container.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Page 253

Value type Example

 string 600m

proxysql.resources.limits.memory

Kubernetes memory limits for the main ProxySQL container.

Value type Example

 string 1G

proxysql.resources.limits.cpu

Kubernetes CPU limits for the main ProxySQL container.

Value type Example

 string 700m

proxysql.envVarsSecret

A secret with environment variables, see Define environment variables for details.

Value type Example

 string my-env-var-secrets

proxysql.priorityClassName

The Kubernetes Pod Priority class for ProxySQL.

Value type Example

 string high-priority

proxysql.schedulerName

The Kubernetes Scheduler .

Value type Example

 string mycustom-scheduler

proxysql.nodeSelector

Kubernetes nodeSelector .

Value type Example

 label disktype: ssd

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

Page 254

proxysql.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label app.kubernetes.io/name: percona-xtradb-cluster-operator

proxysql.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

Value type Example

 int 1

proxysql.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string kubernetes.io/hostname

proxysql.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string DoNotSchedule

proxysql.affinity.topologyKey

The Operator topology key node anti-affinity constraint.

Value type Example

 string kubernetes.io/hostname

proxysql.affinity.advanced

If available it makes a topologyKey node affinity constraint to be ignored.

Value type Example

 subdoc

proxysql.tolerations

Kubernetes Pod tolerations .

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Page 255

Value type Example

 subdoc node.alpha.kubernetes.io/unreachable

proxysql.volumeSpec.emptyDir

The Kubernetes emptyDir volume The directory created on a node and accessible to the Percona XtraDB Cluster Pod containers.

Value type Example

 string {}

proxysql.volumeSpec.hostPath.path

Kubernetes hostPath The volume that mounts a directory from the host node’s filesystem into your Pod. The path property is required.

Value type Example

 string /data

proxysql.volumeSpec.hostPath.type

The Kubernetes hostPath . An optional property for the hostPath.

Value type Example

 string Directory

proxysql.volumeSpec.persistentVolumeClaim.storageClassName

Set the Kubernetes storage class to use with the Percona XtraDB Cluster PersistentVolumeClaim .

Value type Example

 string standard

proxysql.volumeSpec.persistentVolumeClaim.accessModes

The Kubernetes PersistentVolumeClaim access modes for the Percona XtraDB cluster.

Value type Example

 array [ReadWriteOnce]

proxysql.volumeSpec.resources.requests.storage

The Kubernetes PersistentVolumeClaim size for the Percona XtraDB cluster.

Value type Example

 string 6Gi

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

Page 256

proxysql.podDisruptionBudget.maxUnavailable

The Kubernetes podDisruptionBudget specifies the number of Pods from the set unavailable after the eviction.

Value type Example

 int 1

proxysql.podDisruptionBudget.minAvailable

The Kubernetes podDisruptionBudget Pods that must be available after an eviction.

Value type Example

 int 0

proxysql.gracePeriod

The Kubernetes grace period when terminating a Pod .

Value type Example

 int 30

proxysql.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

Value type Example

 subdoc privileged: true

proxysql.podSecurityContext

A custom Kubernetes Security Context for a Pod to be used instead of the default one.

Value type Example

 subdoc

proxysql.serviceAccountName

The Kubernetes Service Account for the ProxySQL Pod.

Value type Example

 string percona-xtradb-cluster-operator-workload

proxysql.runtimeClassName

Name of the Kubernetes Runtime Class for the ProxySQL Pod.

fsGroup: 1001

supplementalGroups: [1001, 1002, 1003]

https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/containers/runtime-class/
https://kubernetes.io/docs/concepts/containers/runtime-class/
https://kubernetes.io/docs/concepts/containers/runtime-class/

Page 257

Value type Example

 string image-rc

proxysql.sidecars.image

Image for the custom sidecar container for the ProxySQL Pod.

Value type Example

 string busybox

proxysql.sidecars.command

Command for the custom sidecar container for the ProxySQL Pod.

Value type Example

 array ["/bin/sh"]

proxysql.sidecars.args

Command arguments for the custom sidecar container for the ProxySQL Pod.

Value type Example

 array ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

proxysql.sidecars.name

Name of the custom sidecar container for the ProxySQL Pod.

Value type Example

 string my-sidecar-1

proxysql.sidecars.resources.requests.memory

The Kubernetes memory requests for the sidecar ProxySQL containers.

Value type Example

 string 1G

proxysql.sidecars.resources.requests.cpu

Kubernetes CPU requests for the sidecar ProxySQL containers.

Value type Example

 string 500m

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Page 258

proxysql.sidecars.resources.limits.memory

Kubernetes memory limits for the sidecar ProxySQL containers.

Value type Example

 string 2G

proxysql.sidecars.resources.limits.cpu

Kubernetes CPU limits for the sidecar ProxySQL containers.

Value type Example

 string 600m

proxysql.lifecycle.preStop.exec.command

Command for the preStop lifecycle hook for ProxySQL Pods.

Value type Example

 array ["/bin/true"]

proxysql.lifecycle.postStart.exec.command

Command for the postStart lifecycle hook for ProxySQL Pods.

Value type Example

 array ["/bin/true"]

Log Collector section
The logcollector section in the deploy/cr.yaml file contains configuration options for Fluent Bit Log Collector .

logcollector.enabled

Enables or disables cluster-level logging with Fluent Bit.

Value type Example

 boolean true

logcollector.image

Log Collector Docker image to use.

Value type Example

 string percona/percona-xtradb-cluster-operator:1.6.0-logcollector

logcollector.configuration

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://fluentbit.io/
https://fluentbit.io/
https://fluentbit.io/

Page 259

Additional configuration options (see Fluent Bit official documentation for details).

Value type Example

 subdoc

logcollector.resources.requests.memory

The Kubernetes memory requests for a Log Collector sidecar container in a Percona XtraDB Cluster Pod.

Value type Example

 string 100M

logcollector.resources.requests.cpu

Kubernetes CPU requests for a Log collector sidecar container in a Percona XtraDB Cluster Pod.

Value type Example

 string 200m

Users section
The users section in the deploy/cr.yaml file contains various configuration options to configure custom MySQL users via the Custom Resource.

users.name

The username of the MySQL user.

Value type Example

 string my-user

users.dbs

Databases that the user authenticates against. If the specified database is not present, the Operator will create it. When no databases specified, it defaults to

all databases (*). If the user sets administrative grants like SHUTDOWN, this field has to be omitted because administrative privileges are set on a global level.

Value type Example

 array

users.hosts

Hosts that the users are supposed to connect from (if not specified, defaults to ‘%’ - similar to what is happening in MySQL).

Value type Example

 array - localhost

users.passwordSecretRef.name

- db1

-db2

https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/classic-mode/configuration-file
https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/classic-mode/configuration-file
https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/classic-mode/configuration-file
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml

Page 260

Name of the secret that contains the user’s password. If not provided, the Operator will create the <cluster-name>-<custom-user-name>-secret secret

and generate password automatically.

Value type Example

 string my-user-password

users.passwordSecretRef.key

Key in the secret that corresponds to the value of the user’s password (password by default).

Value type Example

 string password

spec.users.withGrantOption

Defines if the user has grant options.

Value type Example

 boolean false

users.grants

Privileges granted to the user.

Value type Example

 array

PMM section
The pmm section in the deploy/cr.yaml file contains configuration options for Percona Monitoring and Management.

pmm.enabled

Enables or disables monitoring Percona XtraDB cluster with PMM .

Value type Example

 boolean false

pmm.image

PMM client Docker image to use.

Value type Example

 string percona/pmm-client:2.44.0

- SELECT

- DELETE

- INSERT

https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-xtradb-cluster/5.7/manual/monitoring.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/manual/monitoring.html
https://www.percona.com/doc/percona-xtradb-cluster/5.7/manual/monitoring.html

Page 261

pmm.serverHost

Address of the PMM Server to collect data from the cluster.

Value type Example

 string monitoring-service

pmm.serverUser

The PMM Server User. The PMM Server password should be configured using Secrets.

Value type Example

 string admin

pmm.resources.requests.memory

The Kubernetes memory requests for a PMM container.

Value type Example

 string 150M

pmm.resources.requests.cpu

Kubernetes CPU requests for a PMM container.

Value type Example

 string 300m

pmm.pxcParams

Additional parameters which will be passed to the pmm-admin add mysql command for pxc Pods.

Value type Example

 string --disable-tablestats-limit=2000

pmm.proxysqlParams

Additional parameters which will be passed to the pmm-admin add proxysql command for proxysql Pods.

Value type Example

 string --custom-labels=CUSTOM-LABELS

pmm.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/mysql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/mysql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/mysql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/proxysql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/proxysql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/proxysql.html
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Page 262

Value type Example

 subdoc privileged: false

pmm.readinessProbes.initialDelaySeconds

The number of seconds to wait before performing the first readiness probe .

Value type Example

 int 15

pmm.readinessProbes.timeoutSeconds

The number of seconds after which the readiness probe times out.

Value type Example

 int 15

pmm.readinessProbes.periodSeconds

How often to perform the readiness probe . Measured in seconds.

Value type Example

 int 30

pmm.readinessProbes.successThreshold

The number of successful probes required to mark the container successful.

Value type Example

 int 1

pmm.readinessProbes.failureThreshold

The number of failed probes required to mark the container unready.

Value type Example

 int 5

pmm.livenessProbes.initialDelaySeconds

The number of seconds to wait before performing the first liveness probe .

Value type Example

 int 300

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Page 263

pmm.livenessProbes.timeoutSeconds

The number of seconds after which the liveness probe times out.

Value type Example

 int 5

pmm.livenessProbes.periodSeconds

How often to perform the liveness probe . Measured in seconds.

Value type Example

 int 10

pmm.livenessProbes.successThreshold

The number of successful probes required to mark the container successful.

Value type Example

 int 1

pmm.livenessProbes.failureThreshold

The number of failed probes required to mark the container unhealthy.

Value type Example

 int 3

Backup section
The backup section in the deploy/cr.yaml file contains the following configuration options for the regular Percona XtraDB Cluster backups.

backup.allowParallel

Enables or disables running backup jobs in parallel. By default, parallel backup jobs are enabled. A user can disable them to prevent the cluster overload.

Value type Example

 string true

backup.image

The Percona XtraDB cluster Docker image to use for the backup.

Value type Example

 string percona/percona-xtradb-cluster-operator:1.17.0-backup

backup.backoffLimit

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/cr.yaml

Page 264

The number of retries to make a backup (by default, 10 retries are made).

Value type Example

 int 6

backup.activeDeadlineSeconds

The timeout value in seconds, after which backup job will automatically fail.

Value type Example

 int 3600

backup.startingDeadlineSeconds

The maximum time in seconds for a backup to start. The Operator compares the timestamp of the backup object against the current time. If the backup is not

started within the set time, the Operator automatically marks it as “failed”.

You can override this setting for a specific backup in the deploy/backup/backup.yaml configuration file.

Value type Example

 int 300

backup.suspendedDeadlineSeconds

The maximum time in seconds for a backup to remain in a suspended state. The Operator compares the timestamp when the backup job was suspended

against the current time. After the defined suspension time expires, the backup is automatically marked as “failed”.

You can override this setting for a specific backup in the deploy/backup/backup.yaml configuration file.

Value type Example

 int 1200

backup.imagePullSecrets.name

The Kubernetes imagePullSecrets for the specified image.

Value type Example

 string private-registry-credentials

backup.storages.STORAGE-NAME.type

The cloud storage type used for backups. Only s3 , azure , and filesystem types are supported.

Value type Example

 string s3

backup.storages.STORAGE-NAME.verifyTLS

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

Page 265

Enable or disable verification of the storage server TLS certificate. Disabling it may be useful e.g. to skip TLS verification for private S3-compatible storage

with a self-issued certificate.

Value type Example

 boolean true

backup.storages.STORAGE-NAME.s3.credentialsSecret

The Kubernetes secret for backups. It should contain AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY keys.

Value type Example

 string my-cluster-name-backup-s3

backup.storages.STORAGE-NAME.s3.bucket

The Amazon S3 bucket name for backups.

Value type Example

 string

backup.storages.STORAGE-NAME.s3.region

The AWS region to use. Please note this option is mandatory for Amazon and all S3-compatible storages.

Value type Example

 string us-east-1

backup.storages.STORAGE-NAME.s3.endpointUrl

The endpoint URL of the S3-compatible storage to be used (not needed for the original Amazon S3 cloud).

Value type Example

 string

backup.storages.STORAGE-NAME.persistentVolumeClaim.type

The persistent volume claim storage type.

Value type Example

 string filesystem

backup.storages.STORAGE-NAME.persistentVolumeClaim.storageClassName

Set the Kubernetes Storage Class to use with the Percona XtraDB Cluster backups PersistentVolumeClaims for the filesystem storage type.

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

Page 266

Value type Example

 string standard

backup.storages.STORAGE-NAME.volume.persistentVolumeClaim.accessModes

The Kubernetes PersistentVolume access modes .

Value type Example

 array [ReadWriteOne]

backup.storages.STORAGE-NAME.volume.persistentVolumeClaim.resources.requests.storage

Storage size for the PersistentVolume.

Value type Example

 string 6Gi

backup.storages.STORAGE-NAME.annotations

The Kubernetes annotations .

Value type Example

 label iam.amazonaws.com/role: role-arn

backup.storages.STORAGE-NAME.labels

Labels are key-value pairs attached to objects .

Value type Example

 label rack: rack-22

backup.storages.STORAGE-NAME.resources.requests.memory

The Kubernetes memory requests for a Percona XtraBackup container.

Value type Example

 string 1G

backup.storages.STORAGE-NAME.resources.requests.cpu

Kubernetes CPU requests for a Percona XtraBackup container.

Value type Example

 string 600m

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Page 267

backup.storages.STORAGE-NAME.resources.limits.memory

Kubernetes memory limits for a Percona XtraBackup container.

Value type Example

 string 1.5G

backup.storages.STORAGE-NAME.resources.limits.cpu

Kubernetes CPU limits for a Percona XtraBackup container.

Value type Example

 string 700m

backup.storages.STORAGE-NAME.nodeSelector

Kubernetes nodeSelector .

Value type Example

 label disktype: ssd

backup.storages.STORAGE-NAME.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label app.kubernetes.io/name: percona-xtradb-cluster-operator

backup.storages.STORAGE-NAME.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

Value type Example

 int 1

backup.storages.STORAGE-NAME.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string kubernetes.io/hostname

backup.storages.STORAGE-NAME.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Page 268

Value type Example

 string DoNotSchedule

backup.storages.STORAGE-NAME.affinity.nodeAffinity

The Operator node affinity constraint.

Value type Example

 subdoc

backup.storages.STORAGE-NAME.tolerations

Kubernetes Pod tolerations .

Value type Example

 subdoc backupWorker

backup.storages.STORAGE-NAME.priorityClassName

The Kubernetes Pod priority class .

Value type Example

 string high-priority

backup.storages.STORAGE-NAME.schedulerName

The Kubernetes Scheduler .

Value type Example

 string mycustom-scheduler

backup.storages.STORAGE-NAME.containerSecurityContext

A custom Kubernetes Security Context for a Container to be used instead of the default one.

Value type Example

 subdoc privileged: true

backup.storages.STORAGE-NAME.podSecurityContext

A custom Kubernetes Security Context for a Pod to be used instead of the default one.

Value type Example

 subdoc fsGroup: 1001

supplementalGroups: [1001, 1002, 1003]

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Page 269

backup.storages.STORAGE-NAME.containerOptions.env

The environment variables set as key-value pairs for the backup container.

Value type Example

 subdoc

backup.storages.STORAGE-NAME.containerOptions.args.xtrabackup

Custom command line options for the xtrabackup Percona XtraBackup tool.

Value type Example

 subdoc

backup.storages.STORAGE-NAME.containerOptions.args.xbcloud

Custom command line options for the xbcloud Percona XtraBackup tool.

Value type Example

 subdoc

backup.storages.STORAGE-NAME.containerOptions.args.xbstream

Custom command line options for the xbstream Percona XtraBackup tool.

Value type Example

 subdoc

backup.schedule.name

The backup name.

Value type Example

 string sat-night-backup

backup.schedule.schedule

Scheduled time to make a backup specified in the crontab format .

Value type Example

 string 0 0 * * 6

backup.schedule.keep

The amount of most recent backups to store. Older backups are automatically deleted. Set keep to zero or completely remove it to disable automatic deletion

of backups.

- name: VERIFY_TLS

value: “false”

- “–someflag=abc”

- “–someflag=abc”

- “–someflag=abc”

https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://docs.percona.com/percona-xtrabackup/innovation-release/xtrabackup-option-reference.html
https://docs.percona.com/percona-xtrabackup/innovation-release/xtrabackup-option-reference.html
https://docs.percona.com/percona-xtrabackup/innovation-release/xtrabackup-option-reference.html
https://docs.percona.com/percona-xtrabackup/innovation-release/xbcloud-options.html
https://docs.percona.com/percona-xtrabackup/innovation-release/xbcloud-options.html
https://docs.percona.com/percona-xtrabackup/innovation-release/xbcloud-options.html
https://docs.percona.com/percona-xtrabackup/innovation-release/xbstream-options.html
https://docs.percona.com/percona-xtrabackup/innovation-release/xbstream-options.html
https://docs.percona.com/percona-xtrabackup/innovation-release/xbstream-options.html
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron

Page 270

Value type Example

 int 3

backup.schedule.storageName

The name of the storage for the backups configured in the storages or fs-pvc subsection.

Value type Example

 string s3-us-west

backup.pitr.enabled

Enables or disables point-in-time-recovery functionality.

Value type Example

 boolean false

backup.pitr.storageName

The name of the storage for the backups configured in the storages subsection, which will be reused to store binlog for point-in-time-recovery.

Value type Example

 string s3-us-west

backup.pitr.timeBetweenUploads

Seconds between running the binlog uploader.

Value type Example

 int 60

backup.pitr.timeoutSeconds

Timeout in seconds for the binlog to be uploaded; the binlog uploader container will be restarted after exceeding this timeout |

Value type Example

 int 60

backup.pitr.resources.requests.memory

The Kubernetes memory requests for a binlog collector Pod.

Value type Example

 string 0.1G

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Page 271

backup.pitr.resources.requests.cpu

Kubernetes CPU requests for a binlog collector Pod.

Value type Example

 string 100m

backup.pitr.resources.limits.memory

Kubernetes memory limits for a binlog collector Pod. | Value type | Example | | ----------- | ---------- | | string | 1G |

backup.pitr.resources.limits.cpu

Kubernetes CPU limits for a binlog collector Pod.

Value type Example

 string 700m

PerconaXtraDBClusterRestore Custom Resource options
Percona XtraDB Cluster Restore options are managed by the Operator via the PerconaXtraDBClusterRestore Custom Resource and can be configured

via the deploy/backup/restore.yaml configuration file. This Custom Resource contains the following options:

Key Value type Description Required

metadata.name string The name of the restore true

spec.pxcCluster string Percona XtraDB Cluster name (the name of your running cluster) true

spec.backupName string The name of the backup which should be restored false

spec.resources subdoc Defines resources limits for the restore job false

spec.backupSource subdoc Defines configuration for different restore sources false

spec.pitr subdoc Defines configuration for PITR restore false

resources section

Key Value type Description Required

requests.memory string The Kubernetes memory requests for the restore job (the specified value is used if memory limits are not set) false

requests.cpu string Kubernetes CPU requests for the restore job (the specified value is used if CPU limits are not set) false

limits.memory string The Kubernetes memory limits for the restore job (if set, the value will be used for memory requests as well) false

limits.cpu string Kubernetes CPU limits for the restore job (if set, the value will be used for CPU requests as well) false

backupSource section

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/deploy/backup/restore.yaml
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Page 272

Key Value type Description Required

destination string Path to the backup false

storageName string The storage name from CR spec.backup.storages false

verifyTLS boolean Enable or disable verification of the storage server TLS certificate. Disabling it may be useful e.g. to skip TLS verification for

private S3-compatible storage with a self-issued certificate

true

s3 subdoc Define configuration for S3 compatible storages false

azure subdoc Define configuration for azure blob storage false

backupSource.s3 subsection

Key Value type Description Required

bucket string The bucket with a backup true

credentialsSecret string The Secret name for the backup true

endpointUrl string A valid endpoint URL false

region string The region corresponding to the S3 bucket false

backupSource.azure subsection

Key Value type Description Required

credentialsSecret string The Secret name for the azure blob storage true

container string The container name of the azure blob storage true

endpointUrl string A valid endpoint URL false

storageClass string The storage class name of the azure blob storage false

blockSize integer The size of a block of data to save and retrieve from the azure blob storage

concurrency integer The number of writers to the same blob

pitr subsection

Key Value type Description Required

type string The type of PITR recover true

date string The exact date of recovery true

gtid string The exact GTID for PITR recover true

spec.backupSource subdoc Percona XtraDB Cluster backups section true

s3 subdoc Defines configuration for S3 compatible storages false

azure subdoc Defines configuration for azure blob storage false

Page 273

Percona certified images
Find Percona’s certified Docker images that you can use with the Percona Operator for MySQL based on Percona XtraDB Cluster in the following table.

Images released with the Operator version 1.17.0:

Image Digest

percona/percona-xtradb-cluster-operator:1.17.0 (x86_64) da9aa5c7cb546c60624b927bdd273fc3646bc5a027bcc6f138291bad4da9b7b8

percona/percona-xtradb-cluster-operator:1.17.0 (ARM64) 2b61ed62848521071bea18988461e99123ea5d5a92465ab046d0f179b5c0b8ac

percona/haproxy:2.8.14 6de8c402d83b88dae7403c05183fd75100774defa887c05a57ec04bc25be2305

percona/proxysql2:2.7.1 975d5c8cc7b5714a0df4dfd2111391a7a79cfa3a217f1dd6de77a83550812fc4

percona/percona-xtradb-cluster-operator:1.17.0-pxc8.4-backup-pxb8.4.0 3a7a8a47ad12ce783feb089e7035d50f6d5b803cec97a16067f476a426f6fda8

percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35 2f28c09027a249426b2f4393aa8b76971583d80e0c56be37f77dad49cb5cd5c4

percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29 bf494243d9784a016bb4c98bd2690b0fc5fbba1aa7d45d98502dff353fb68bee

percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0 9fc0b4097c93f6dba8441d9bcb2803dc62dd8328b84288294444fbadb347f6d7

percona/pmm-client:2.44.0 19a07dfa8c12a0554308cd11d7d38494ea02a14cfac6c051ce8ff254b7d0a4a7

percona/percona-xtradb-cluster:8.4.3-3.1 b7b198133e70cb1bd9d5cd1730373a62e976fd2b9bb9ca5a696fd970c1ac09bf

percona/percona-xtradb-cluster:8.0.41-32.1 8a6799cbded5524c6979442f8d7097831c8c6481f5106a856b44b2791ccaf0fb

percona/percona-xtradb-cluster:8.0.39-30.1 6a53a6ad4e7d2c2fb404d274d993414a22cb67beecf7228df9d5d994e7a09966

percona/percona-xtradb-cluster:8.0.36-28.1 b5cc4034ccfb0186d6a734cb749ae17f013b027e9e64746b2c876e8beef379b3

percona/percona-xtradb-cluster:8.0.35-27.1 1ef24953591ef1c1ce39576843d5615d4060fd09458c7a39ebc3e2eda7ef486b

percona/percona-xtradb-cluster:8.0.32-24.2 1f978ab8912e1b5fc66570529cb7e7a4ec6a38adbfce1ece78159b0fcfa7d47a

percona/percona-xtradb-cluster:5.7.44-31.65 36fafdef46485839d4ff7c6dc73b4542b07031644c0152e911acb9734ff2be85

percona/percona-xtradb-cluster:5.7.42-31.65 9dab86780f86ec9caf8e1032a563c131904b75a37edeaec159a93f7d0c16c603

percona/percona-xtradb-cluster:5.7.39-31.61 9013170a71559bbac92ba9c2e986db9bda3a8a9e39ee1ee350e0ee94488bb6d7

percona/percona-xtradb-cluster:5.7.36-31.55 c7bad990fc7ca0fde89240e921052f49da08b67c7c6dc54239593d61710be504

percona/percona-xtradb-cluster:5.7.34-31.51 f8d51d7932b9bb1a5a896c7ae440256230eb69b55798ff37397aabfd58b80ccb

Image tag format
Image tags have the format:

operator_version-[pxc_version]-[component_name]-[component_version]

Image tags start with the Operator’s version and include a number of optional fields:

the Percona XtraDB Cluster version (pxc8.0.36),

the component name in the image (haproxy , backup , etc.), and

the version of this component (pxb8.0.35).

Page 274

An example looks as follows: 1.16.0-pxc8.0-backup-pxb8.0.35

Percona XtraDB Cluster versions may have different detalization (“pxc” prefix with major and minor numbers, like “pxc8.0”, or with minor, major, and patch

numbers, like “pxc8.0.36”, or the full XtraDB Cluster version without prefix: major, minor, and patch numbers followed by a dash and the version of Percona

Server this XtraDB Cluster version is based on, like “8.0.36-28.1”).

Note, that PMM Client images have their own tags. They contain the version of PMM.

Find images for previous versions

https://docs.percona.com/legacy-documentation/

Page 275

Versions compatibility
Versions of the cluster components and platforms tested with different Operator releases are shown below. Other version combinations may also work but

have not been tested.

Cluster components:

Operator MySQL Percona XtraBackup HA Proxy ProxySQL

1.17.0 8.4 (Tech preview), 8.0, 5.7 8.4.0-1 for MySQL 8.4, 8.0.35-32 for MySQL 8.0, 2.4.29 for MySQL 5.7 2.8.14 2.7.1-1

1.16.1 8.4 (Tech preview), 8.0, 5.7 8.4.0-1 for MySQL 8.4, 8.0.35-30.1 for MySQL 8.0, 2.4.29 for MySQL 5.7 2.8.11 2.7.1

1.16.0 8.4 (Tech preview), 8.0, 5.7 8.4.0-1 for MySQL 8.4, 8.0.35-30.1 for MySQL 8.0, 2.4.29 for MySQL 5.7 2.8.11 2.7.1

1.15.1 8.0, 5.7 8.0.35-30.1 for MySQL 8.0, 2.4.29-1 for MySQL 5.7 2.8.5 2.5.5

1.14.1 8.0, 5.7 8.0.35-30.1 for MySQL 8.0, 2.4.29-1 for MySQL 5.7 2.8.5-1 2.5.5-1.1

1.15.0 8.0, 5.7 8.0.35-30.1 for MySQL 8.0, 2.4.29-1 for MySQL 5.7 2.8.5 2.5.5

1.14.0 8.0, 5.7 8.0.35-30.1 for MySQL 8.0, 2.4.29-1 for MySQL 5.7 2.8.5-1 2.5.5-1.1

1.13.0 8.0, 5.7 8.0.32-26 for MySQL 8.0, 2.4.28 for MySQL 5.7 2.6.12 2.5.1-1.1

1.12.0 8.0, 5.7 8.0.30-23 for MySQL 8.0, 2.4.26 for MySQL 5.7 2.5.6 2.4.4

1.11.0 8.0, 5.7 8.0.27-19 for MySQL 8.0, 2.4.26 for MySQL 5.7 2.4.15 2.3.2

1.10.0 8.0, 5.7 8.0.23-16 for MySQL 8.0, 2.4.24 for MySQL 5.7 2.3.14 2.0.18

1.9.0 8.0, 5.7 8.0.23-16 for MySQL 8.0, 2.4.23 for MySQL 5.7 2.3.10 2.0.18

1.8.0 8.0, 5.7 8.0.23-16 for MySQL 8.0, 2.4.22 for MySQL 5.7 2.3.2 2.0.17

1.7.0 8.0, 5.7 8.0.22-15 for MySQL 8.0, 2.4.21 for MySQL 5.7 2.1.7 2.0.15

1.6.0 8.0, 5.7 8.0.14 for MySQL 8.0, 2.4.20 for MySQL 5.7 2.1.7 2.0.14

1.5.0 8.0, 5.7 8.0.13 for MySQL 8.0, 2.4.20 for MySQL 5.7 2.1.7 2.0.12

1.4.0 8.0, 5.7 8.0.11 for MySQL 8.0, 2.4.20 for MySQL 5.7 - 2.0.10

1.3.0 5.7 2.4.18 - 2.0.6

1.2.0 5.7 2.4.14 - 2.0.6

1.1.0 5.7 2.4.14 - 2.0.4

Platforms:

Operator GKE EKS Openshift AKS Minikube

1.17.0 1.29 - 1.32 1.30 - 1.32 4.14 - 4.18 1.30 - 1.32 1.35.0

1.16.1 1.28 - 1.30 1.28 - 1.31 4.15.42 - 4.17.8 1.28 - 1.31 1.34.0

https://www.percona.com/software/mysql-database/percona-server
https://www.percona.com/software/mysql-database/percona-server
https://www.percona.com/software/mysql-database/percona-server
https://www.percona.com/software/mysql-database/percona-xtrabackup
https://www.percona.com/software/mysql-database/percona-xtrabackup
https://www.percona.com/software/mysql-database/percona-xtrabackup
https://www.haproxy.org/
https://www.haproxy.org/
https://www.haproxy.org/
https://proxysql.com/
https://proxysql.com/
https://proxysql.com/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Page 276

Operator GKE EKS Openshift AKS Minikube

1.16.0 1.28 - 1.30 1.28 - 1.31 4.15.42 - 4.17.8 1.28 - 1.31 1.34.0

1.15.1 1.27 - 1.30 1.28 - 1.30 4.13.46 - 4.16.7 1.28 - 1.30 1.33.1

1.14.1 1.25 - 1.29 1.24 - 1.29 4.12.50 - 4.14.13 1.26 - 1.28 1.32.0

1.15.0 1.27 - 1.30 1.28 - 1.30 4.13.46 - 4.16.7 1.28 - 1.30 1.33.1

1.14.0 1.25 - 1.29 1.24 - 1.29 4.12.50 - 4.14.13 1.26 - 1.28 1.32.0

1.13.0 1.24 - 1.27 1.23 - 1.27 4.10 - 4.13 1.24 - 1.26 1.30

1.12.0 1.21 - 1.24 1.21 - 1.24 4.10 - 4.11 1.22 - 1.24 1.28

1.11.0 1.20 - 1.23 1.20 - 1.22 4.7 - 4.10 - 1.23

1.10.0 1.19 - 1.22 1.17 - 1.21 4.7 - 4.9 - 1.22

1.9.0 1.16, 1.20 1.19 3.11, 4.7 - 1.19

1.8.0 1.16, 1.20 1.19 3.11, 4.7 - 1.19

1.7.0 1.15, 1.17 1.15 3.11, 4.6 - 1.16

1.6.0 1.15, 1.17 1.15 3.11, 4.5 - 1.10

1.5.0 1.13, 1.15 1.15 3.11, 4.2 - 1.16

1.4.0 1.13, 1.15 1.15 3.11, 4.2 - 1.16

1.3.0 1.11, 1.14 - 3.11, 4.1 - 1.12

1.2.0 + - 3.11 - +

1.1.0 + - 3.11 - +

More detailed information about the cluster components for the current version of the Operator can be found in the system requirements and in the list of

certified images. For previous releases of the Operator, you can check the same pages in the documentation archive .

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/

Page 277

Percona Operator for MySQL API Documentation
Percona Operator for MySQL based on Percona XtraDB Cluster provides an aggregation-layer extension for the Kubernetes API . Please refer to the official

Kubernetes API documentation on the API access and usage details. The following subsections describe the Percona XtraDB Cluster API provided by the

Operator.

Prerequisites

1. Create the namespace name you will use, if not exist:

Trying to create an already-existing namespace will show you a self-explanatory error message. Also, you can use the defalut namespace.

In this document default namespace is used in all examples. Substitute default with your namespace name if you use a different one.

2. Prepare

Create new Percona XtraDB Cluster
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body (cluster.json):

$ kubectl create namespace my-namespace-name

Note

set correct API address

KUBE_CLUSTER=$(kubectl config view --minify -o jsonpath='{.clusters[0].name}')

API_SERVER=$(kubectl config view -o jsonpath="{.clusters[?(@.name==\"$KUBE_CLUSTER\")].cluster.server}" | sed -e

's#https://##')

create service account and get token

kubectl apply --server-side -f deploy/crd.yaml -f deploy/rbac.yaml -n default

KUBE_TOKEN=$(kubectl get secret $(kubectl get serviceaccount percona-xtradb-cluster-operator -o

jsonpath='{.secrets[0].name}' -n default) -o jsonpath='{.data.token}' -n default | base64 --decode)

The command to create a new Percona XtraDB Cluster with all its resources

$ kubectl apply -f percona-xtradb-cluster-operator/deploy/cr.yaml

https://$API_SERVER/apis/pxc.percona.com/v{{ apiversion }}/namespaces/default/perconaxtradbclusters

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPOST "https://$API_SERVER/apis/pxc.percona.com/v{{ apiversion }}/namespaces/default/perconaxtradbclusters" \

-H "Content-Type: application/json" \

-H "Accept: application/json" \

-H "Authorization: Bearer $KUBE_TOKEN" \

-d "@cluster.json"

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/

Page 278

Example

Page 279

{

"apiVersion":"pxc.percona.com/v1-5-0",

"kind":"PerconaXtraDBCluster",

"metadata":{

"name":"cluster1",

"finalizers":[

"delete-pxc-pods-in-order"

]

},

"spec":{

"secretsName":"my-cluster-secrets",

"vaultSecretName":"keyring-secret-vault",

"sslSecretName":"my-cluster-ssl",

"sslInternalSecretName":"my-cluster-ssl-internal",

"allowUnsafeConfigurations":true,

"pxc":{

"size":3,

"image":"percona/percona-xtradb-cluster:8.0.19-10.1",

"resources":{

"requests":null

},

"affinity":{

"antiAffinityTopologyKey":"none"

},

"podDisruptionBudget":{

"maxUnavailable":1

},

"volumeSpec":{

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"6Gi"

}

}

}

},

"gracePeriod":600

},

"proxysql":{

"enabled":true,

"size":3,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-proxysql",

"resources":{

"requests":null

},

"affinity":{

"antiAffinityTopologyKey":"none"

},

"volumeSpec":{

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"2Gi"

}

}

}

},

"podDisruptionBudget":{

"maxUnavailable":1

},

"gracePeriod":30

},

"pmm":{

"enabled":false,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pmm",

"serverHost":"monitoring-service",

"serverUser":"pmm"

},

"backup":{

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-backup",

"serviceAccountName":"percona-xtradb-cluster-operator",

"storages":{

"s3-us-west":{

"type":"s3",

"s3":{

"bucket":"S3-BACKUP-BUCKET-NAME-HERE",

"credentialsSecret":"my-cluster-name-backup-s3",

"region":"us-west-2"

}

},

"fs-pvc":{

"type":"filesystem",

"volume":{

"persistentVolumeClaim":{

"accessModes":[

"ReadWriteOnce"

Page 280

Inputs:

],

"resources":{

"requests":{

"storage":"6Gi"

}

}

}

}

}

},

"schedule":[

{

"name":"sat-night-backup",

"schedule":"0 0 * * 6",

"keep":3,

"storageName":"s3-us-west"

},

{

"name":"daily-backup",

"schedule":"0 0 * * *",

"keep":5,

"storageName":"fs-pvc"

}

]

}

}

}

Page 281

Metadata:

1. Name (String, min-length: 1) : contains name of cluster

2. Finalizers (list of string, Default: [“delete-pxc-pods-in-order”]) contains steps to do when deleting the cluster

Spec:

1. secretsName (String, min-length: 1) : contains name of secret to create for the cluster

2. vaultSecretName (String, min-length: 1) : contains name of vault secret to create for the cluster

3. sslInternalSecretName (String, min-length: 1) : contains name of ssl secret to create for the cluster

4. allowUnsafeConfigurations (Boolean, Default: false) : allow unsafe configurations to run

pxc:

1. Size (Int , min-value: 1, default, 3) : number of Percona XtraDB Cluster nodes to create

2. Image (String, min-length: 1) : contains image name to use for Percona XtraDB Cluster nodes

3. volumeSpec : storage (SizeString, default: “6Gi”) : contains the size for the storage volume of Percona XtraDB Cluster nodes

4. gracePeriod (Int, default: 600, min-value: 0) : contains the time to wait for Percona XtraDB Cluster node to shutdown in milliseconds

proxysql:

1. Enabled (Boolean, default: true) : enabled or disables proxysql

pmm:

1. serverHost (String, min-length: 1) : serivce name for monitoring

2. serverUser (String, min-length: 1) : name of pmm user

3. image (String, min-length: 1) : name of pmm image

backup:

1. Storages (Object) : contains the storage destinations to save the backups in

2. schedule:

a. name (String, min-length: 1) : name of backup job

b. schedule (String, Cron format: "* * * * *") : contains cron schedule format for when to run cron jobs

c. keep (Int, min-value = 1) : number of backups to keep

d. storageName (String, min-length: 1) : name of storage object to use

Response:

Page 282

Example

Page 283

{

"apiVersion":"pxc.percona.com/v1-5-0",

"kind":"PerconaXtraDBCluster",

"metadata":{

"creationTimestamp":"2020-05-27T22:23:58Z",

"finalizers":[

"delete-pxc-pods-in-order"

],

"generation":1,

"managedFields":[

{

"apiVersion":"pxc.percona.com/v1-5-0",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:metadata":{

"f:finalizers":{

}

},

"f:spec":{

".":{

},

"f:allowUnsafeConfigurations":{

},

"f:backup":{

".":{

},

"f:image":{

},

"f:schedule":{

},

"f:serviceAccountName":{

},

"f:storages":{

".":{

},

"f:fs-pvc":{

".":{

},

"f:type":{

},

"f:volume":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:accessModes":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:s3-us-west":{

".":{

},

"f:s3":{

".":{

},

"f:bucket":{

Page 284

},

"f:credentialsSecret":{

},

"f:region":{

}

},

"f:type":{

}

}

}

},

"f:pmm":{

".":{

},

"f:enabled":{

},

"f:image":{

},

"f:serverHost":{

},

"f:serverUser":{

}

},

"f:proxysql":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:enabled":{

},

"f:gracePeriod":{

},

"f:image":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

".":{

},

"f:requests":{

}

},

"f:size":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

Page 285

},

"f:storage":{

}

}

}

}

}

},

"f:pxc":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:gracePeriod":{

},

"f:image":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

".":{

},

"f:requests":{

}

},

"f:size":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:secretsName":{

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:vaultSecretName":{

}

}

},

"manager":"kubectl",

"operation":"Update",

"time":"2020-05-27T22:23:58Z"

Page 286

}

],

"name":"cluster1",

"namespace":"default",

"resourceVersion":"8694",

"selfLink":"/apis/pxc.percona.com/v1-5-0/namespaces/default/perconaxtradbclusters/cluster1",

"uid":"e9115e2a-49df-4ebf-9dab-fa5a550208d3"

},

"spec":{

"allowUnsafeConfigurations":false,

"backup":{

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-backup",

"schedule":[

{

"keep":3,

"name":"sat-night-backup",

"schedule":"0 0 * * 6",

"storageName":"s3-us-west"

},

{

"keep":5,

"name":"daily-backup",

"schedule":"0 0 * * *",

"storageName":"fs-pvc"

}

],

"serviceAccountName":"percona-xtradb-cluster-operator",

"storages":{

"fs-pvc":{

"type":"filesystem",

"volume":{

"persistentVolumeClaim":{

"accessModes":[

"ReadWriteOnce"

],

"resources":{

"requests":{

"storage":"6Gi"

}

}

}

}

},

"s3-us-west":{

"s3":{

"bucket":"S3-BACKUP-BUCKET-NAME-HERE",

"credentialsSecret":"my-cluster-name-backup-s3",

"region":"us-west-2"

},

"type":"s3"

}

}

},

"pmm":{

"enabled":false,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pmm",

"serverHost":"monitoring-service",

"serverUser":"pmm"

},

"proxysql":{

"affinity":{

"antiAffinityTopologyKey":"none"

},

"enabled":true,

"gracePeriod":30,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-proxysql",

"podDisruptionBudget":{

"maxUnavailable":1

},

"resources":{

"requests":null

},

"size":3,

"volumeSpec":{

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"2Gi"

}

}

}

}

},

"pxc":{

"affinity":{

"antiAffinityTopologyKey":"none"

},

Page 287

List Percona XtraDB Clusters
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

Response:

"gracePeriod":600,

"image":"percona/percona-xtradb-cluster:8.0.19-10.1",

"podDisruptionBudget":{

"maxUnavailable":1

},

"resources":{

"requests":null

},

"size":3,

"volumeSpec":{

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"6Gi"

}

}

}

}

},

"secretsName":"my-cluster-secrets",

"sslInternalSecretName":"my-cluster-ssl-internal",

"sslSecretName":"my-cluster-ssl",

"vaultSecretName":"keyring-secret-vault"

}

}

Lists all Percona XtraDB Clusters that exist in your kubernetes cluster

$ kubectl get pxc

https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters?limit=500

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XGET "https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters?limit=500" \

-H "Accept:

application/json;as=Table;v=v1;g=meta.k8s.io,application/json;as=Table;v=v1beta1;g=meta.k8s.io,application/json" \

-H "Authorization: Bearer $KUBE_TOKEN"

None

Page 288

Example

Page 289

{

"kind":"Table",

"apiVersion":"meta.k8s.io/v1",

"metadata":{

"selfLink":"/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters",

"resourceVersion":"10528"

},

"columnDefinitions":[

{

"name":"Name",

"type":"string",

"format":"name",

"description":"Name must be unique within a namespace. Is required when creating resources, although some resources may allow a

client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration

definition. Cannot be updated. More info: http://kubernetes.io/docs/user-guide/identifiers#names",

"priority":0

},

{

"name":"Endpoint",

"type":"string",

"format":"",

"description":"Custom resource definition column (in JSONPath format): .status.host",

"priority":0

},

{

"name":"Status",

"type":"string",

"format":"",

"description":"Custom resource definition column (in JSONPath format): .status.state",

"priority":0

},

{

"name":"PXC",

"type":"string",

"format":"",

"description":"Ready pxc nodes",

"priority":0

},

{

"name":"proxysql",

"type":"string",

"format":"",

"description":"Ready pxc nodes",

"priority":0

},

{

"name":"Age",

"type":"date",

"format":"",

"description":"Custom resource definition column (in JSONPath format): .metadata.creationTimestamp",

"priority":0

}

],

"rows":[

{

"cells":[

"cluster1",

"cluster1-proxysql.default",

"ready",

"3",

"3",

"8m37s"

],

"object":{

"kind":"PartialObjectMetadata",

"apiVersion":"meta.k8s.io/v1",

"metadata":{

"name":"cluster1",

"namespace":"default",

"selfLink":"/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1",

"uid":"e9115e2a-49df-4ebf-9dab-fa5a550208d3",

"resourceVersion":"10517",

"generation":1,

"creationTimestamp":"2020-05-27T22:23:58Z",

"finalizers":[

"delete-pxc-pods-in-order"

],

"managedFields":[

{

"manager":"kubectl",

"operation":"Update",

"apiVersion":"pxc.percona.com/v1-5-0",

"time":"2020-05-27T22:23:58Z",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:metadata":{

Page 290

"f:finalizers":{

}

},

"f:spec":{

".":{

},

"f:allowUnsafeConfigurations":{

},

"f:backup":{

".":{

},

"f:image":{

},

"f:schedule":{

},

"f:serviceAccountName":{

},

"f:storages":{

".":{

},

"f:fs-pvc":{

".":{

},

"f:type":{

},

"f:volume":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:accessModes":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:s3-us-west":{

".":{

},

"f:s3":{

".":{

},

"f:bucket":{

},

"f:credentialsSecret":{

},

"f:region":{

}

},

"f:type":{

}

}

}

},

"f:pmm":{

Page 291

".":{

},

"f:image":{

},

"f:serverHost":{

},

"f:serverUser":{

}

},

"f:proxysql":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:enabled":{

},

"f:gracePeriod":{

},

"f:image":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

},

"f:size":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:pxc":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:gracePeriod":{

},

Page 292

"f:image":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

},

"f:size":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:secretsName":{

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:vaultSecretName":{

}

}

}

},

{

"manager":"percona-xtradb-cluster-operator",

"operation":"Update",

"apiVersion":"pxc.percona.com/v1",

"time":"2020-05-27T22:32:31Z",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:spec":{

"f:backup":{

"f:storages":{

"f:fs-pvc":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:s3":{

".":{

},

"f:bucket":{

},

"f:credentialsSecret":{

Page 293

}

}

},

"f:s3-us-west":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

}

}

}

},

"f:pmm":{

"f:resources":{

}

},

"f:proxysql":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:volumeSpec":{

"f:persistentVolumeClaim":{

"f:accessModes":{

}

}

}

},

"f:pxc":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:vaultSecretName":{

},

"f:volumeSpec":{

"f:persistentVolumeClaim":{

"f:accessModes":{

}

}

}

}

},

"f:status":{

".":{

},

"f:conditions":{

},

"f:host":{

Page 294

Get status of Percona XtraDB Cluster
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

},

"f:observedGeneration":{

},

"f:proxysql":{

".":{

},

"f:ready":{

},

"f:size":{

},

"f:status":{

}

},

"f:pxc":{

".":{

},

"f:ready":{

},

"f:size":{

},

"f:status":{

}

},

"f:state":{

}

}

}

}

]

}

}

}

]

}

Gets all information about the specified Percona XtraDB Cluster

$ kubectl get pxc/cluster1 -o json

https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XGET "https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1" \

-H "Accept: application/json" \

-H "Authorization: Bearer $KUBE_TOKEN"

None

Page 295

Response:

Page 296

Example

Page 297

{

"apiVersion":"pxc.percona.com/v1",

"kind":"PerconaXtraDBCluster",

"metadata":{

"annotations":{

"kubectl.kubernetes.io/last-applied-configuration":"

{\"apiVersion\":\"pxc.percona.com/v1\",\"kind\":\"PerconaXtraDBCluster\",\"metadata\":{\"annotations\":{},\"creationTimestamp\":\"2020-05-

27T22:23:58Z\",\"finalizers\":[\"delete-pxc-pods-in-order\"],\"generation\":1,\"managedFields\":[{\"apiVersion\":\"pxc.percona.com/v1-5-

0\",\"fieldsType\":\"FieldsV1\",\"fieldsV1\":{\"f:metadata\":{\"f:finalizers\":{}},\"f:spec\":{\".\":{},\"f:allowUnsafeConfigurations\":

{},\"f:backup\":{\".\":{},\"f:image\":{},\"f:schedule\":{},\"f:serviceAccountName\":{},\"f:storages\":{\".\":{},\"f:fs-pvc\":{\".\":

{},\"f:type\":{},\"f:volume\":{\".\":{},\"f:persistentVolumeClaim\":{\".\":{},\"f:accessModes\":{},\"f:resources\":{\".\":{},\"f:requests\":

{\".\":{},\"f:storage\":{}}}}}},\"f:s3-us-west\":{\".\":{},\"f:s3\":{\".\":{},\"f:bucket\":{},\"f:credentialsSecret\":{},\"f:region\":

{}},\"f:type\":{}}}},\"f:pmm\":{\".\":{},\"f:image\":{},\"f:serverHost\":{},\"f:serverUser\":{}},\"f:proxysql\":{\".\":{},\"f:affinity\":

{\".\":{},\"f:antiAffinityTopologyKey\":{}},\"f:enabled\":{},\"f:gracePeriod\":{},\"f:image\":{},\"f:podDisruptionBudget\":{\".\":

{},\"f:maxUnavailable\":{}},\"f:resources\":{},\"f:size\":{},\"f:volumeSpec\":{\".\":{},\"f:persistentVolumeClaim\":{\".\":{},\"f:resources\":

{\".\":{},\"f:requests\":{\".\":{},\"f:storage\":{}}}}}},\"f:pxc\":{\".\":{},\"f:affinity\":{\".\":{},\"f:antiAffinityTopologyKey\":

{}},\"f:gracePeriod\":{},\"f:image\":{},\"f:podDisruptionBudget\":{\".\":{},\"f:maxUnavailable\":{}},\"f:resources\":{},\"f:size\":

{},\"f:volumeSpec\":{\".\":{},\"f:persistentVolumeClaim\":{\".\":{},\"f:resources\":{\".\":{},\"f:requests\":{\".\":{},\"f:storage\":

{}}}}}},\"f:secretsName\":{},\"f:sslInternalSecretName\":{},\"f:sslSecretName\":{},\"f:vaultSecretName\":

{}}},\"manager\":\"kubectl\",\"operation\":\"Update\",\"time\":\"2020-05-27T22:23:58Z\"},

{\"apiVersion\":\"pxc.percona.com/v1\",\"fieldsType\":\"FieldsV1\",\"fieldsV1\":{\"f:spec\":{\"f:backup\":{\"f:storages\":{\"f:fs-pvc\":

{\"f:podSecurityContext\":{\".\":{},\"f:fsGroup\":{},\"f:supplementalGroups\":{}},\"f:s3\":{\".\":{},\"f:bucket\":{},\"f:credentialsSecret\":

{}}},\"f:s3-us-west\":{\"f:podSecurityContext\":{\".\":{},\"f:fsGroup\":{},\"f:supplementalGroups\":{}}}}},\"f:pmm\":{\"f:resources\":

{}},\"f:proxysql\":{\"f:podSecurityContext\":{\".\":{},\"f:fsGroup\":{},\"f:supplementalGroups\":{}},\"f:sslInternalSecretName\":

{},\"f:sslSecretName\":{},\"f:volumeSpec\":{\"f:persistentVolumeClaim\":{\"f:accessModes\":{}}}},\"f:pxc\":{\"f:podSecurityContext\":{\".\":

{},\"f:fsGroup\":{},\"f:supplementalGroups\":{}},\"f:sslInternalSecretName\":{},\"f:sslSecretName\":{},\"f:vaultSecretName\":

{},\"f:volumeSpec\":{\"f:persistentVolumeClaim\":{\"f:accessModes\":{}}}}},\"f:status\":{\".\":{},\"f:conditions\":{},\"f:host\":

{},\"f:observedGeneration\":{},\"f:proxysql\":{\".\":{},\"f:ready\":{},\"f:size\":{},\"f:status\":{}},\"f:pxc\":{\".\":{},\"f:ready\":

{},\"f:size\":{},\"f:status\":{}},\"f:state\":{}}},\"manager\":\"percona-xtradb-cluster-operator\",\"operation\":\"Update\",\"time\":\"2020-

05-

27T23:06:47Z\"}],\"name\":\"cluster1\",\"namespace\":\"default\",\"resourceVersion\":\"15878\",\"selfLink\":\"/apis/pxc.percona.com/v1/namespa

ces/default/perconaxtradbclusters/cluster1\",\"uid\":\"e9115e2a-49df-4ebf-9dab-fa5a550208d3\"},\"spec\":

{\"allowUnsafeConfigurations\":true,\"backup\":{\"image\":\"percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-debug-backup\",\"schedule\":

[{\"keep\":3,\"name\":\"sat-night-backup\",\"schedule\":\"0 0 * * 6\",\"storageName\":\"s3-us-west\"},{\"keep\":5,\"name\":\"daily-

backup\",\"schedule\":\"0 0 * * *\",\"storageName\":\"fs-pvc\"}],\"serviceAccountName\":\"percona-xtradb-cluster-operator\",\"storages\":

{\"fs-pvc\":{\"type\":\"filesystem\",\"volume\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":

{\"storage\":\"6Gi\"}}}}},\"s3-us-west\":{\"s3\":{\"bucket\":\"S3-BACKUP-BUCKET-NAME-HERE\",\"credentialsSecret\":\"my-cluster-name-backup-

s3\",\"region\":\"us-west-2\"},\"type\":\"s3\"}}},\"pmm\":{\"enabled\":false,\"image\":\"percona/percona-xtradb-cluster-operator:1.5.0-

pmm\",\"serverHost\":\"monitoring-service\",\"serverUser\":\"pmm\"},\"proxysql\":{\"affinity\":

{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":true,\"gracePeriod\":30,\"image\":\"percona/percona-xtradb-cluster-operator:1.5.0-

proxysql\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":{\"requests\":null},\"size\":5,\"volumeSpec\":

{\"persistentVolumeClaim\":{\"resources\":{\"requests\":{\"storage\":\"2Gi\"}}}}},\"pxc\":{\"affinity\":

{\"antiAffinityTopologyKey\":\"none\"},\"gracePeriod\":600,\"image\":\"percona/percona-xtradb-cluster:8.0.19-10.1\",\"podDisruptionBudget\":

{\"maxUnavailable\":1},\"resources\":{\"requests\":null},\"size\":5,\"volumeSpec\":{\"persistentVolumeClaim\":{\"resources\":{\"requests\":

{\"storage\":\"6Gi\"}}}}},\"secretsName\":\"my-cluster-secrets\",\"sslInternalSecretName\":\"my-cluster-ssl-internal\",\"sslSecretName\":\"my-

cluster-ssl\",\"vaultSecretName\":\"keyring-secret-vault\"},\"status\":{\"conditions\":[{\"lastTransitionTime\":\"2020-05-

27T22:23:58Z\",\"status\":\"True\",\"type\":\"Initializing\"},{\"lastTransitionTime\":\"2020-05-

27T22:25:43Z\",\"status\":\"True\",\"type\":\"Ready\"}],\"host\":\"cluster1-proxysql.default\",\"observedGeneration\":1,\"proxysql\":

{\"ready\":3,\"size\":5,\"status\":\"ready\"},\"pxc\":{\"ready\":3,\"size\":5,\"status\":\"ready\"},\"state\":\"ready\"}}\n"

},

"creationTimestamp":"2020-05-27T22:23:58Z",

"finalizers":[

"delete-pxc-pods-in-order"

],

"generation":6,

"managedFields":[

{

"apiVersion":"pxc.percona.com/v1-5-0",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:metadata":{

"f:finalizers":{

}

},

"f:spec":{

".":{

},

"f:allowUnsafeConfigurations":{

},

"f:backup":{

".":{

},

"f:schedule":{

},

"f:serviceAccountName":{

},

"f:storages":{

".":{

},

Page 298

"f:fs-pvc":{

".":{

},

"f:type":{

},

"f:volume":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:accessModes":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:s3-us-west":{

".":{

},

"f:s3":{

".":{

},

"f:bucket":{

},

"f:credentialsSecret":{

},

"f:region":{

}

},

"f:type":{

}

}

}

},

"f:pmm":{

".":{

},

"f:image":{

},

"f:serverHost":{

},

"f:serverUser":{

}

},

"f:proxysql":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:enabled":{

},

Page 299

"f:gracePeriod":{

},

"f:image":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:pxc":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:gracePeriod":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

Page 300

}

}

}

},

"f:secretsName":{

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:vaultSecretName":{

}

}

},

"manager":"kubectl",

"operation":"Update",

"time":"2020-05-27T22:23:58Z"

},

{

"apiVersion":"pxc.percona.com/v1",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:metadata":{

"f:annotations":{

".":{

},

"f:kubectl.kubernetes.io/last-applied-configuration":{

}

}

},

"f:spec":{

"f:backup":{

"f:image":{

}

},

"f:proxysql":{

"f:size":{

}

},

"f:pxc":{

"f:image":{

},

"f:size":{

}

}

}

},

"manager":"kubectl",

"operation":"Update",

"time":"2020-05-27T23:38:49Z"

},

{

"apiVersion":"pxc.percona.com/v1",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:spec":{

"f:backup":{

"f:storages":{

"f:fs-pvc":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:s3":{

".":{

},

"f:bucket":{

},

Page 301

"f:credentialsSecret":{

}

}

},

"f:s3-us-west":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

}

}

}

},

"f:pmm":{

"f:resources":{

}

},

"f:proxysql":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:volumeSpec":{

"f:persistentVolumeClaim":{

"f:accessModes":{

}

}

}

},

"f:pxc":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:vaultSecretName":{

},

"f:volumeSpec":{

"f:persistentVolumeClaim":{

"f:accessModes":{

}

}

}

}

},

"f:status":{

".":{

},

"f:conditions":{

Page 302

},

"f:host":{

},

"f:message":{

},

"f:observedGeneration":{

},

"f:proxysql":{

".":{

},

"f:ready":{

},

"f:size":{

},

"f:status":{

}

},

"f:pxc":{

".":{

},

"f:message":{

},

"f:ready":{

},

"f:size":{

},

"f:status":{

}

},

"f:state":{

}

}

},

"manager":"percona-xtradb-cluster-operator",

"operation":"Update",

"time":"2020-05-28T10:42:00Z"

}

],

"name":"cluster1",

"namespace":"default",

"resourceVersion":"35660",

"selfLink":"/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1",

"uid":"e9115e2a-49df-4ebf-9dab-fa5a550208d3"

},

"spec":{

"allowUnsafeConfigurations":true,

"backup":{

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-debug-backup",

"schedule":[

{

"keep":3,

"name":"sat-night-backup",

"schedule":"0 0 * * 6",

"storageName":"s3-us-west"

},

{

"keep":5,

"name":"daily-backup",

"schedule":"0 0 * * *",

"storageName":"fs-pvc"

}

],

"serviceAccountName":"percona-xtradb-cluster-operator",

"storages":{

"fs-pvc":{

"type":"filesystem",

"volume":{

"persistentVolumeClaim":{

"accessModes":[

"ReadWriteOnce"

],

"resources":{

"requests":{

"storage":"6Gi"

Page 303

}

}

}

}

},

"s3-us-west":{

"s3":{

"bucket":"S3-BACKUP-BUCKET-NAME-HERE",

"credentialsSecret":"my-cluster-name-backup-s3",

"region":"us-west-2"

},

"type":"s3"

}

}

},

"pmm":{

"enabled":false,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pmm",

"serverHost":"monitoring-service",

"serverUser":"pmm"

},

"proxysql":{

"affinity":{

"antiAffinityTopologyKey":"none"

},

"enabled":true,

"gracePeriod":30,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-proxysql",

"podDisruptionBudget":{

"maxUnavailable":1

},

"resources":{

},

"size":3,

"volumeSpec":{

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"2Gi"

}

}

}

}

},

"pxc":{

"affinity":{

"antiAffinityTopologyKey":"none"

},

"gracePeriod":600,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-debug",

"podDisruptionBudget":{

"maxUnavailable":1

},

"resources":{

},

"size":3,

"volumeSpec":{

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"6Gi"

}

}

}

}

},

"secretsName":"my-cluster-secrets",

"sslInternalSecretName":"my-cluster-ssl-internal",

"sslSecretName":"my-cluster-ssl",

"vaultSecretName":"keyring-secret-vault"

},

"status":{

"conditions":[

{

"lastTransitionTime":"2020-05-27T22:25:43Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-05-27T23:06:48Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-05-27T23:08:58Z",

Page 304

"message":"ProxySQL upgrade error: context deadline exceeded",

"reason":"ErrorReconcile",

"status":"True",

"type":"Error"

},

{

"lastTransitionTime":"2020-05-27T23:08:59Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-05-27T23:29:59Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-05-27T23:30:04Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-05-27T23:35:27Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-05-27T23:35:42Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-05-27T23:47:00Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-05-27T23:47:05Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-05-28T09:58:25Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-05-28T09:58:31Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-05-28T10:03:54Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-05-28T10:04:14Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-05-28T10:15:28Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-05-28T10:15:38Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-05-28T10:26:56Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-05-28T10:27:01Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-05-28T10:38:28Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-05-28T10:38:33Z",

Page 305

Scale up/down Percona XtraDB Cluster
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

Input:

"status":"True",

"type":"Initializing"

}

],

"host":"cluster1-proxysql.default",

"message":[

"PXC: pxc: back-off 5m0s restarting failed container=pxc pod=cluster1-pxc-1_default(5b9b16e6-d0f8-4c97-a2d0-294feb9d014b); pxc: back-

off 5m0s restarting failed container=pxc pod=cluster1-pxc-2_default(b8ebedd7-42f0-440b-aa5e-509d28926a5e); pxc: back-off 5m0s restarting

failed container=pxc pod=cluster1-pxc-4_default(2dce12f2-9ebc-419c-a92a-9cec68912004); "

],

"observedGeneration":6,

"proxysql":{

"ready":3,

"size":3,

"status":"ready"

},

"pxc":{

"message":"pxc: back-off 5m0s restarting failed container=pxc pod=cluster1-pxc-1_default(5b9b16e6-d0f8-4c97-a2d0-294feb9d014b); pxc:

back-off 5m0s restarting failed container=pxc pod=cluster1-pxc-2_default(b8ebedd7-42f0-440b-aa5e-509d28926a5e); pxc: back-off 5m0s restarting

failed container=pxc pod=cluster1-pxc-4_default(2dce12f2-9ebc-419c-a92a-9cec68912004); ",

"ready":2,

"size":3,

"status":"initializing"

},

"state":"initializing"

}

}

Increase or decrease the size of the Percona XtraDB Cluster nodes to fit the

current high availability needs

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {"pxc":{ "size": "5" }

}}'

https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPATCH "https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1" \

-H "Authorization: Bearer $KUBE_TOKEN" \

-H "Content-Type: application/merge-patch+json"

-H "Accept: application/json" \

-d '{

"spec": {"pxc":{ "size": "5" }

}}'

Example

{

"spec": {"pxc":{ "size": "5" }

}}

Page 306

spec:

pxc

1. size (Int or String, Defaults: 3): Specifiy the size of the Percona XtraDB Cluster to scale up or down to

Response:

Page 307

Example

Page 308

{

"apiVersion":"pxc.percona.com/v1",

"kind":"PerconaXtraDBCluster",

"metadata":{

"annotations":{

"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"pxc.percona.com/v1-5-

0\",\"kind\":\"PerconaXtraDBCluster\",\"metadata\":{\"annotations\":{},\"finalizers\":[\"delete-pxc-pods-in-

order\"],\"name\":\"cluster1\",\"namespace\":\"default\"},\"spec\":{\"allowUnsafeConfigurations\":true,\"backup\":

{\"image\":\"percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-backup\",\"schedule\":[{\"keep\":3,\"name\":\"sat-night-

backup\",\"schedule\":\"0 0 * * 6\",\"storageName\":\"s3-us-west\"},{\"keep\":5,\"name\":\"daily-backup\",\"schedule\":\"0 0 * *

*\",\"storageName\":\"fs-pvc\"}],\"serviceAccountName\":\"percona-xtradb-cluster-operator\",\"storages\":{\"fs-pvc\":

{\"type\":\"filesystem\",\"volume\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":

{\"storage\":\"6Gi\"}}}}},\"s3-us-west\":{\"s3\":{\"bucket\":\"S3-BACKUP-BUCKET-NAME-HERE\",\"credentialsSecret\":\"my-cluster-name-backup-

s3\",\"region\":\"us-west-2\"},\"type\":\"s3\"}}},\"pmm\":{\"enabled\":false,\"image\":\"percona/percona-xtradb-cluster-operator:1.5.0-

pmm\",\"serverHost\":\"monitoring-service\",\"serverUser\":\"pmm\"},\"proxysql\":{\"affinity\":

{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":true,\"gracePeriod\":30,\"image\":\"percona/percona-xtradb-cluster-operator:1.5.0-

proxysql\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":{\"requests\":null},\"size\":3,\"volumeSpec\":

{\"persistentVolumeClaim\":{\"resources\":{\"requests\":{\"storage\":\"2Gi\"}}}}},\"pxc\":{\"affinity\":

{\"antiAffinityTopologyKey\":\"none\"},\"gracePeriod\":600,\"image\":\"percona/percona-xtradb-cluster:8.0.19-10.1\",\"podDisruptionBudget\":

{\"maxUnavailable\":1},\"resources\":{\"requests\":null},\"size\":3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"resources\":{\"requests\":

{\"storage\":\"6Gi\"}}}}},\"secretsName\":\"my-cluster-secrets\",\"sslInternalSecretName\":\"my-cluster-ssl-internal\",\"sslSecretName\":\"my-

cluster-ssl\",\"updateStrategy\":\"RollingUpdate\",\"vaultSecretName\":\"keyring-secret-vault\"}}\n"

},

"creationTimestamp":"2020-06-01T16:50:05Z",

"finalizers":[

"delete-pxc-pods-in-order"

],

"generation":4,

"managedFields":[

{

"apiVersion":"pxc.percona.com/v1-5-0",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:metadata":{

"f:annotations":{

".":{

},

"f:kubectl.kubernetes.io/last-applied-configuration":{

}

},

"f:finalizers":{

}

},

"f:spec":{

".":{

},

"f:allowUnsafeConfigurations":{

},

"f:backup":{

".":{

},

"f:image":{

},

"f:schedule":{

},

"f:serviceAccountName":{

},

"f:storages":{

".":{

},

"f:fs-pvc":{

".":{

},

"f:type":{

},

"f:volume":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:accessModes":{

Page 309

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:s3-us-west":{

".":{

},

"f:s3":{

".":{

},

"f:bucket":{

},

"f:credentialsSecret":{

},

"f:region":{

}

},

"f:type":{

}

}

}

},

"f:pmm":{

".":{

},

"f:image":{

},

"f:serverHost":{

},

"f:serverUser":{

}

},

"f:proxysql":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:enabled":{

},

"f:gracePeriod":{

},

"f:image":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

Page 310

},

"f:size":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:pxc":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:gracePeriod":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:secretsName":{

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

Page 311

"f:updateStrategy":{

},

"f:vaultSecretName":{

}

}

},

"manager":"kubectl",

"operation":"Update",

"time":"2020-06-01T16:52:30Z"

},

{

"apiVersion":"pxc.percona.com/v1",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:spec":{

"f:backup":{

"f:storages":{

"f:fs-pvc":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:s3":{

".":{

},

"f:bucket":{

},

"f:credentialsSecret":{

}

}

},

"f:s3-us-west":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

}

}

}

},

"f:pmm":{

"f:resources":{

}

},

"f:proxysql":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:volumeSpec":{

"f:persistentVolumeClaim":{

"f:accessModes":{

}

}

Page 312

}

},

"f:pxc":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:vaultSecretName":{

},

"f:volumeSpec":{

"f:persistentVolumeClaim":{

"f:accessModes":{

}

}

}

}

},

"f:status":{

".":{

},

"f:conditions":{

},

"f:host":{

},

"f:observedGeneration":{

},

"f:proxysql":{

".":{

},

"f:ready":{

},

"f:size":{

},

"f:status":{

}

},

"f:pxc":{

".":{

},

"f:ready":{

},

"f:size":{

},

"f:status":{

}

},

"f:state":{

}

}

},

"manager":"percona-xtradb-cluster-operator",

"operation":"Update",

"time":"2020-06-03T15:32:11Z"

},

{

"apiVersion":"pxc.percona.com/v1",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:spec":{

Page 313

"f:pxc":{

"f:image":{

},

"f:size":{

}

}

}

},

"manager":"kubectl",

"operation":"Update",

"time":"2020-06-03T15:32:14Z"

}

],

"name":"cluster1",

"namespace":"default",

"resourceVersion":"129605",

"selfLink":"/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1",

"uid":"15e5e7d6-10b2-46cf-85d0-d3fdea3412ca"

},

"spec":{

"allowUnsafeConfigurations":true,

"backup":{

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-backup",

"schedule":[

{

"keep":3,

"name":"sat-night-backup",

"schedule":"0 0 * * 6",

"storageName":"s3-us-west"

},

{

"keep":5,

"name":"daily-backup",

"schedule":"0 0 * * *",

"storageName":"fs-pvc"

}

],

"serviceAccountName":"percona-xtradb-cluster-operator",

"storages":{

"fs-pvc":{

"type":"filesystem",

"volume":{

"persistentVolumeClaim":{

"accessModes":[

"ReadWriteOnce"

],

"resources":{

"requests":{

"storage":"6Gi"

}

}

}

}

},

"s3-us-west":{

"s3":{

"bucket":"S3-BACKUP-BUCKET-NAME-HERE",

"credentialsSecret":"my-cluster-name-backup-s3",

"region":"us-west-2"

},

"type":"s3"

}

}

},

"pmm":{

"enabled":false,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pmm",

"serverHost":"monitoring-service",

"serverUser":"pmm"

},

"proxysql":{

"affinity":{

"antiAffinityTopologyKey":"none"

},

"enabled":true,

"gracePeriod":30,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-proxysql",

"podDisruptionBudget":{

"maxUnavailable":1

},

"resources":{

"requests":null

},

"size":3,

"volumeSpec":{

Page 314

Update Percona XtraDB Cluster image

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"2Gi"

}

}

}

}

},

"pxc":{

"affinity":{

"antiAffinityTopologyKey":"none"

},

"gracePeriod":600,

"image":"percona/percona-xtradb-cluster:5.7.30-31.43",

"podDisruptionBudget":{

"maxUnavailable":1

},

"resources":{

"requests":null

},

"size":"5",

"volumeSpec":{

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"6Gi"

}

}

}

}

},

"secretsName":"my-cluster-secrets",

"sslInternalSecretName":"my-cluster-ssl-internal",

"sslSecretName":"my-cluster-ssl",

"updateStrategy":"RollingUpdate",

"vaultSecretName":"keyring-secret-vault"

},

"status":{

"conditions":[

{

"lastTransitionTime":"2020-06-01T16:50:37Z",

"message":"create newStatefulSetNode: StatefulSet.apps \"cluster1-pxc\" is invalid: spec.updateStrategy: Invalid value:

apps.StatefulSetUpdateStrategy{Type:\"SmartUpdate\", RollingUpdate:(*apps.RollingUpdateStatefulSetStrategy)(nil)}: must be 'RollingUpdate' or

'OnDelete'",

"reason":"ErrorReconcile",

"status":"True",

"type":"Error"

},

{

"lastTransitionTime":"2020-06-01T16:52:31Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-06-01T16:55:59Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-06-01T17:19:15Z",

"status":"True",

"type":"Initializing"

}

],

"host":"cluster1-proxysql.default",

"observedGeneration":3,

"proxysql":{

"ready":3,

"size":3,

"status":"ready"

},

"pxc":{

"ready":1,

"size":3,

"status":"initializing"

},

"state":"initializing"

}

}

Page 315

Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

Input:

spec:

pxc:

1. image (String, min-length: 1) : name of the image to update for Percona XtraDB Cluster

Response:

Change the image of Percona XtraDB Cluster containers inside the cluster

$ kubectl patch pxc cluster1 --type=merge --patch '{

"spec": {"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.30-31.43" }

}}'

https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPATCH "https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1" \

-H "Authorization: Bearer $KUBE_TOKEN" \

-H "Accept: application/json" \

-H "Content-Type: application/merge-patch+json"

-d '{

"spec": {"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.30-31.43" }

}}'

Example

{

"spec": {"pxc":{ "image": "percona/percona-xtradb-cluster:5.7.30-31.43" }

}}

Page 316

Example

Page 317

{

"apiVersion":"pxc.percona.com/v1",

"kind":"PerconaXtraDBCluster",

"metadata":{

"annotations":{

"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"pxc.percona.com/v1-5-

0\",\"kind\":\"PerconaXtraDBCluster\",\"metadata\":{\"annotations\":{},\"finalizers\":[\"delete-pxc-pods-in-

order\"],\"name\":\"cluster1\",\"namespace\":\"default\"},\"spec\":{\"allowUnsafeConfigurations\":true,\"backup\":

{\"image\":\"percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-backup\",\"schedule\":[{\"keep\":3,\"name\":\"sat-night-

backup\",\"schedule\":\"0 0 * * 6\",\"storageName\":\"s3-us-west\"},{\"keep\":5,\"name\":\"daily-backup\",\"schedule\":\"0 0 * *

*\",\"storageName\":\"fs-pvc\"}],\"serviceAccountName\":\"percona-xtradb-cluster-operator\",\"storages\":{\"fs-pvc\":

{\"type\":\"filesystem\",\"volume\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":

{\"storage\":\"6Gi\"}}}}},\"s3-us-west\":{\"s3\":{\"bucket\":\"S3-BACKUP-BUCKET-NAME-HERE\",\"credentialsSecret\":\"my-cluster-name-backup-

s3\",\"region\":\"us-west-2\"},\"type\":\"s3\"}}},\"pmm\":{\"enabled\":false,\"image\":\"percona/percona-xtradb-cluster-operator:1.5.0-

pmm\",\"serverHost\":\"monitoring-service\",\"serverUser\":\"pmm\"},\"proxysql\":{\"affinity\":

{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":true,\"gracePeriod\":30,\"image\":\"percona/percona-xtradb-cluster-operator:1.5.0-

proxysql\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":{\"requests\":null},\"size\":3,\"volumeSpec\":

{\"persistentVolumeClaim\":{\"resources\":{\"requests\":{\"storage\":\"2Gi\"}}}}},\"pxc\":{\"affinity\":

{\"antiAffinityTopologyKey\":\"none\"},\"gracePeriod\":600,\"image\":\"percona/percona-xtradb-cluster:8.0.19-10.1\",\"podDisruptionBudget\":

{\"maxUnavailable\":1},\"resources\":{\"requests\":null},\"size\":3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"resources\":{\"requests\":

{\"storage\":\"6Gi\"}}}}},\"secretsName\":\"my-cluster-secrets\",\"sslInternalSecretName\":\"my-cluster-ssl-internal\",\"sslSecretName\":\"my-

cluster-ssl\",\"updateStrategy\":\"RollingUpdate\",\"vaultSecretName\":\"keyring-secret-vault\"}}\n"

},

"creationTimestamp":"2020-06-01T16:50:05Z",

"finalizers":[

"delete-pxc-pods-in-order"

],

"generation":3,

"managedFields":[

{

"apiVersion":"pxc.percona.com/v1-5-0",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:metadata":{

"f:annotations":{

".":{

},

"f:kubectl.kubernetes.io/last-applied-configuration":{

}

},

"f:finalizers":{

}

},

"f:spec":{

".":{

},

"f:allowUnsafeConfigurations":{

},

"f:backup":{

".":{

},

"f:image":{

},

"f:schedule":{

},

"f:serviceAccountName":{

},

"f:storages":{

".":{

},

"f:fs-pvc":{

".":{

},

"f:type":{

},

"f:volume":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:accessModes":{

Page 318

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:s3-us-west":{

".":{

},

"f:s3":{

".":{

},

"f:bucket":{

},

"f:credentialsSecret":{

},

"f:region":{

}

},

"f:type":{

}

}

}

},

"f:pmm":{

".":{

},

"f:image":{

},

"f:serverHost":{

},

"f:serverUser":{

}

},

"f:proxysql":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:enabled":{

},

"f:gracePeriod":{

},

"f:image":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

Page 319

},

"f:size":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:pxc":{

".":{

},

"f:affinity":{

".":{

},

"f:antiAffinityTopologyKey":{

}

},

"f:gracePeriod":{

},

"f:podDisruptionBudget":{

".":{

},

"f:maxUnavailable":{

}

},

"f:resources":{

},

"f:size":{

},

"f:volumeSpec":{

".":{

},

"f:persistentVolumeClaim":{

".":{

},

"f:resources":{

".":{

},

"f:requests":{

".":{

},

"f:storage":{

}

}

}

}

}

},

"f:secretsName":{

},

"f:sslInternalSecretName":{

},

Page 320

"f:sslSecretName":{

},

"f:updateStrategy":{

},

"f:vaultSecretName":{

}

}

},

"manager":"kubectl",

"operation":"Update",

"time":"2020-06-01T16:52:30Z"

},

{

"apiVersion":"pxc.percona.com/v1",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:spec":{

"f:pxc":{

"f:image":{

}

}

}

},

"manager":"kubectl",

"operation":"Update",

"time":"2020-06-01T17:18:58Z"

},

{

"apiVersion":"pxc.percona.com/v1",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:spec":{

"f:backup":{

"f:storages":{

"f:fs-pvc":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:s3":{

".":{

},

"f:bucket":{

},

"f:credentialsSecret":{

}

}

},

"f:s3-us-west":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

}

}

}

},

"f:pmm":{

"f:resources":{

}

},

"f:proxysql":{

"f:podSecurityContext":{

".":{

},

Page 321

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:volumeSpec":{

"f:persistentVolumeClaim":{

"f:accessModes":{

}

}

}

},

"f:pxc":{

"f:podSecurityContext":{

".":{

},

"f:fsGroup":{

},

"f:supplementalGroups":{

}

},

"f:sslInternalSecretName":{

},

"f:sslSecretName":{

},

"f:vaultSecretName":{

},

"f:volumeSpec":{

"f:persistentVolumeClaim":{

"f:accessModes":{

}

}

}

}

},

"f:status":{

".":{

},

"f:conditions":{

},

"f:host":{

},

"f:message":{

},

"f:observedGeneration":{

},

"f:proxysql":{

".":{

},

"f:ready":{

},

"f:size":{

},

"f:status":{

}

},

"f:pxc":{

".":{

},

"f:message":{

Page 322

},

"f:ready":{

},

"f:size":{

},

"f:status":{

}

},

"f:state":{

}

}

},

"manager":"percona-xtradb-cluster-operator",

"operation":"Update",

"time":"2020-06-01T17:21:36Z"

}

],

"name":"cluster1",

"namespace":"default",

"resourceVersion":"41149",

"selfLink":"/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusters/cluster1",

"uid":"15e5e7d6-10b2-46cf-85d0-d3fdea3412ca"

},

"spec":{

"allowUnsafeConfigurations":true,

"backup":{

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-backup",

"schedule":[

{

"keep":3,

"name":"sat-night-backup",

"schedule":"0 0 * * 6",

"storageName":"s3-us-west"

},

{

"keep":5,

"name":"daily-backup",

"schedule":"0 0 * * *",

"storageName":"fs-pvc"

}

],

"serviceAccountName":"percona-xtradb-cluster-operator",

"storages":{

"fs-pvc":{

"type":"filesystem",

"volume":{

"persistentVolumeClaim":{

"accessModes":[

"ReadWriteOnce"

],

"resources":{

"requests":{

"storage":"6Gi"

}

}

}

}

},

"s3-us-west":{

"s3":{

"bucket":"S3-BACKUP-BUCKET-NAME-HERE",

"credentialsSecret":"my-cluster-name-backup-s3",

"region":"us-west-2"

},

"type":"s3"

}

}

},

"pmm":{

"enabled":false,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-pmm",

"serverHost":"monitoring-service",

"serverUser":"pmm"

},

"proxysql":{

"affinity":{

"antiAffinityTopologyKey":"none"

},

"enabled":true,

"gracePeriod":30,

"image":"percona/percona-xtradb-cluster-operator:1.5.0-proxysql",

"podDisruptionBudget":{

"maxUnavailable":1

Page 323

},

"resources":{

"requests":null

},

"size":3,

"volumeSpec":{

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"2Gi"

}

}

}

}

},

"pxc":{

"affinity":{

"antiAffinityTopologyKey":"none"

},

"gracePeriod":600,

"image":"percona/percona-xtradb-cluster:5.7.30-31.43",

"podDisruptionBudget":{

"maxUnavailable":1

},

"resources":{

"requests":null

},

"size":3,

"volumeSpec":{

"persistentVolumeClaim":{

"resources":{

"requests":{

"storage":"6Gi"

}

}

}

}

},

"secretsName":"my-cluster-secrets",

"sslInternalSecretName":"my-cluster-ssl-internal",

"sslSecretName":"my-cluster-ssl",

"updateStrategy":"RollingUpdate",

"vaultSecretName":"keyring-secret-vault"

},

"status":{

"conditions":[

{

"lastTransitionTime":"2020-06-01T16:50:37Z",

"message":"create newStatefulSetNode: StatefulSet.apps \"cluster1-pxc\" is invalid: spec.updateStrategy: Invalid value:

apps.StatefulSetUpdateStrategy{Type:\"SmartUpdate\", RollingUpdate:(*apps.RollingUpdateStatefulSetStrategy)(nil)}: must be 'RollingUpdate' or

'OnDelete'",

"reason":"ErrorReconcile",

"status":"True",

"type":"Error"

},

{

"lastTransitionTime":"2020-06-01T16:52:31Z",

"status":"True",

"type":"Initializing"

},

{

"lastTransitionTime":"2020-06-01T16:55:59Z",

"status":"True",

"type":"Ready"

},

{

"lastTransitionTime":"2020-06-01T17:19:15Z",

"status":"True",

"type":"Initializing"

}

],

"host":"cluster1-proxysql.default",

"message":[

"PXC: pxc: back-off 40s restarting failed container=pxc pod=cluster1-pxc-2_default(87cdf1a8-0fb3-4bc0-b50d-f66a0a73c087); "

],

"observedGeneration":3,

"proxysql":{

"ready":3,

"size":3,

"status":"ready"

},

"pxc":{

"message":"pxc: back-off 40s restarting failed container=pxc pod=cluster1-pxc-2_default(87cdf1a8-0fb3-4bc0-b50d-f66a0a73c087); ",

"ready":2,

"size":3,

"status":"initializing"

},

Page 324

Pass custom my.cnf during the creation of Percona XtraDB Cluster
Description:

Kubectl Command:

my.cnf (Contains mysql configuration):

URL:

Authentication:

cURL Request:

Request Body:

Input:

1. data (Object {filename : contents(String, min-length:0)}): contains filenames to create in config map and its contents

2. metadata: name(String, min-length: 1) : contains name of the configmap

3. kind (String): type of object to create

Response:

"state":"initializing"

}

}

Create a custom config map containing the contents of the file my.cnf to be

passed on to the Percona XtraDB Cluster containers when they are created

$ kubectl create configmap cluster1-pxc3 --from-file=my.cnf

[mysqld]

max_connections=250

https://$API_SERVER/api/v1/namespaces/default/configmaps

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPOST "https://$API_SERVER/api/v1/namespaces/default/configmaps" \

-H "Accept: application/json" \

-H "Authorization: Bearer $KUBE_TOKEN" \

-d '{"apiVersion":"v1","data":{"my.cnf":"[mysqld]\nmax_connections=250\n"},"kind":"ConfigMap","metadata":

{"creationTimestamp":null,"name":"cluster1-pxc3"}}' \

-H "Content-Type: application/json"

Example

{

"apiVersion":"v1",

"data":{

"my.cnf":"[mysqld]\nmax_connections=250\n"

},

"kind":"ConfigMap",

"metadata":{

"creationTimestamp":null,

"name":"cluster1-pxc3"

}

}

Page 325

Backup Percona XtraDB Cluster
Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body (backup.json):

Example

{

"kind":"ConfigMap",

"apiVersion":"v1",

"metadata":{

"name":"cluster1-pxc3",

"namespace":"default",

"selfLink":"/api/v1/namespaces/default/configmaps/cluster1-pxc3",

"uid":"d92c7196-f399-4e20-abc7-b5de62c0691b",

"resourceVersion":"85258",

"creationTimestamp":"2020-05-28T14:19:41Z",

"managedFields":[

{

"manager":"kubectl",

"operation":"Update",

"apiVersion":"v1",

"time":"2020-05-28T14:19:41Z",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:data":{

".":{

},

"f:my.cnf":{

}

}

}

}

]

},

"data":{

"my.cnf":""

}

}

Takes a backup of the Percona XtraDB Cluster containers data to be able to

recover from disasters or make a roll-back later

$ kubectl apply -f percona-xtradb-cluster-operator/deploy/backup/backup.yaml

https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusterbackups

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPOST "https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusterbackups" \

-H "Accept: application/json" \

-H "Content-Type: application/json" \

-d "@backup.json" -H "Authorization: Bearer $KUBE_TOKEN"

Page 326

Input:

1. metadata:

name(String, min-length:1) : name of backup to create

1. spec:

Response:

Restore Percona XtraDB Cluster
Description:

Example

{

"apiVersion":"pxc.percona.com/v1",

"kind":"PerconaXtraDBClusterBackup",

"metadata":{

"name":"backup1"

},

"spec":{

"pxcCluster":"cluster1",

"storageName":"fs-pvc"

}

}

1. pxcCluster(String, min-length:1) : `name of Percona XtraDB Cluster`

2. storageName(String, min-length:1) : `name of storage claim to use`

Example

{

"apiVersion":"pxc.percona.com/v1",

"kind":"PerconaXtraDBClusterBackup",

"metadata":{

"creationTimestamp":"2020-05-27T23:56:33Z",

"generation":1,

"managedFields":[

{

"apiVersion":"pxc.percona.com/v1",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:spec":{

".":{

},

"f:pxcCluster":{

},

"f:storageName":{

}

}

},

"manager":"kubectl",

"operation":"Update",

"time":"2020-05-27T23:56:33Z"

}

],

"name":"backup1",

"namespace":"default",

"resourceVersion":"26024",

"selfLink":"/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusterbackups/backup1",

"uid":"95a354b1-e25b-40c3-8be4-388acca055fe"

},

"spec":{

"pxcCluster":"cluster1",

"storageName":"fs-pvc"

}

}

Page 327

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body (restore.json):

Input:

1. metadata:

name(String, min-length:1): name of restore to create

1. spec:

Response:

Restores Percona XtraDB Cluster data to an earlier version to recover from a

problem or to make a roll-back

$ kubectl apply -f percona-xtradb-cluster-operator/deploy/backup/restore.yaml

https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusterrestores

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPOST "https://$API_SERVER/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusterrestores" \

-H "Accept: application/json" \

-H "Content-Type: application/json" \

-d "@restore.json" \

-H "Authorization: Bearer $KUBE_TOKEN"

Example

{

"apiVersion":"pxc.percona.com/v1",

"kind":"PerconaXtraDBClusterRestore",

"metadata":{

"name":"restore1"

},

"spec":{

"pxcCluster":"cluster1",

"backupName":"backup1"

}

}

1. pxcCluster(String, min-length:1) : `name of Percona XtraDB Cluster`

2. backupName(String, min-length:1) : `name of backup to restore from`

Page 328

Example

{

"apiVersion":"pxc.percona.com/v1",

"kind":"PerconaXtraDBClusterRestore",

"metadata":{

"creationTimestamp":"2020-05-27T23:59:41Z",

"generation":1,

"managedFields":[

{

"apiVersion":"pxc.percona.com/v1",

"fieldsType":"FieldsV1",

"fieldsV1":{

"f:spec":{

".":{

},

"f:backupName":{

},

"f:pxcCluster":{

}

}

},

"manager":"kubectl",

"operation":"Update",

"time":"2020-05-27T23:59:41Z"

}

],

"name":"restore1",

"namespace":"default",

"resourceVersion":"26682",

"selfLink":"/apis/pxc.percona.com/v1/namespaces/default/perconaxtradbclusterrestores/restore1",

"uid":"770c3471-be17-46fb-b0a6-e706685ab2fc"

},

"spec":{

"backupName":"backup1",

"pxcCluster":"cluster1"

}

}

Page 329

Frequently Asked Questions

Why do we need to follow “the Kubernetes way” when Kubernetes was never intended to
run databases?
As it is well known, the Kubernetes approach is targeted at stateless applications but provides ways to store state (in Persistent Volumes, etc.) if the

application needs it. Generally, a stateless mode of operation is supposed to provide better safety, sustainability, and scalability, it makes the already-deployed

components interchangeable. You can find more about substantial benefits brought by Kubernetes to databases in this blog post .

The architecture of state-centric applications (like databases) should be composed in a right way to avoid crashes, data loss, or data inconsistencies during

hardware failure. Percona Operator for MySQL provides out-of-the-box functionality to automate provisioning and management of highly available MySQL

database clusters on Kubernetes.

How can I contact the developers?
The best place to discuss Percona Operator for MySQL based on Percona XtraDB Cluster with developers and other community members is the community

forum .

If you would like to report a bug, use the Percona Operator for MySQL project in JIRA .

What is the difference between the Operator quickstart and advanced installation ways?
As you have noticed, the installation section of docs contains both quickstart and advanced installation guides.

The quickstart guide is simpler. It has fewer installation steps in favor of predefined default choices. Particularly, in advanced installation guides, you

separately apply the Custom Resource Definition and Role-based Access Control configuration files with possible edits in them. At the same time, quickstart

guides rely on the all-inclusive bundle configuration.

At another point, quickstart guides are related to specific platforms you are going to use (Minikube, Google Kubernetes Engine, etc.) and therefore include

some additional steps needed for these platforms.

Generally, rely on the quickstart guide if you are a beginner user of the specific platform and/or you are new to the Percona Distribution for MySQL Operator as

a whole.

Which versions of MySQL does the Percona Operator for MySQL support?
Percona Operator for MySQL based on Percona XtraDB Cluster provides a ready-to-use installation of the MySQL-based Percona XtraDB Cluster inside your

Kubernetes installation. It works with both MySQL 8.0 and 5.7 branches, and the exact version is determined by the Docker image in use.

Percona-certified Docker images used by the Operator are listed here. As you can see, both Percona XtraDB Cluster 8.0 and 5.7 are supported with the

following recommended versions: 8.0.41-32.1 and 5.7.44-31.65. Three major numbers in the XtraDB Cluster version refer to the version of Percona Server in

use. More details on the exact Percona Server version can be found in the release notes (8.0 , 5.7).

How is HAProxy better than ProxySQL?
Percona Operator for MySQL based on Percona XtraDB Cluster supports both HAProxy and ProxySQL as a load balancer. HAProxy is turned on by default, but

both solutions are similar in terms of their configuration and operation under the control of the Operator.

Still, they have technical differences. HAProxy is a general and widely used high availability, load balancing, and proxying solution for TCP and HTTP-based

applications. ProxySQL provides similar functionality but is specific to MySQL clusters. As an SQL-aware solution, it is able to provide more tight internal

integration with MySQL instances.

Both projects do a really good job with the Operator. The proxy choice should depend mostly on application-specific workload (including object-relational

mapping), performance requirements, advanced routing and caching needs with one or another project, components already in use in the current

infrastructure, and any other specific needs of the application.

How can I create a directory on the node to use it as a local storage

https://www.percona.com/blog/2020/10/08/the-criticality-of-a-kubernetes-operator-for-databases/
https://www.percona.com/blog/2020/10/08/the-criticality-of-a-kubernetes-operator-for-databases/
https://www.percona.com/blog/2020/10/08/the-criticality-of-a-kubernetes-operator-for-databases/
https://forums.percona.com/categories/kubernetes-operator-percona-xtradb-cluster
https://forums.percona.com/categories/kubernetes-operator-percona-xtradb-cluster
https://forums.percona.com/categories/kubernetes-operator-percona-xtradb-cluster
https://forums.percona.com/categories/kubernetes-operator-percona-xtradb-cluster
https://jira.percona.com/projects/K8SPXC
https://jira.percona.com/projects/K8SPXC
https://jira.percona.com/projects/K8SPXC
https://www.percona.com/doc/percona-server/8.0/release-notes/release-notes_index.html
https://www.percona.com/doc/percona-server/8.0/release-notes/release-notes_index.html
https://www.percona.com/doc/percona-server/8.0/release-notes/release-notes_index.html
https://www.percona.com/doc/percona-server/5.7/release-notes/release-notes_index.html
https://www.percona.com/doc/percona-server/5.7/release-notes/release-notes_index.html
https://www.percona.com/doc/percona-server/5.7/release-notes/release-notes_index.html

Page 330

You can configure hostPath volume to mount some existing file or directory from the node’s filesystem into the Pod and use it as a local storage. The directory

used for local storage should already exist in the node’s filesystem. You can create it through the shell access to the node, with mkdir command, as all other

directories. Alternatively you can create a Pod which will do this job. Let’s suppose you are going to use /var/run/data-dir directory as your local storage,

describing it in the deploy/cr.yaml configuration file as follows:

Create the yaml file (e.g. mypod.yaml), with the following contents:

Don’t forget to apply it as usual:

How can I add custom sidecar containers to my cluster?
The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this feature to run debugging tools, some specific

monitoring solutions, etc. Add such sidecar container to the deploy/cr.yaml configuration file, specifying its name and image, and possibly a command to

run:

You can add sidecars subsection to pxc , haproxy , and proxysql sections.

...

pxc:

...

volumeSpec:

hostPath:

path: /var/run/data-dir

type: Directory

containerSecurityContext:

privileged: false

podSecurityContext:

runAsUser: 1001

runAsGroup: 1001

supplementalGroups: [1001]

nodeSelector:

kubernetes.io/hostname: a.b.c

apiVersion: v1

kind: Pod

metadata:

name: hostpath-helper

spec:

containers:

- name: init

image: busybox

command: ["install", "-o", "1001", "-g", "1001", "-m", "755", "-d", "/mnt/data-dir"]

volumeMounts:

- name: root

mountPath: /mnt

securityContext:

runAsUser: 0

volumes:

- name: root

hostPath:

path: /var/run

restartPolicy: Never

nodeSelector:

kubernetes.io/hostname: a.b.c

$ kubectl apply -f mypod.yaml

spec:

pxc:

....

sidecars:

- image: busybox

command: ["/bin/sh"]

args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]

name: my-sidecar-1

....

Page 331

Custom sidecar containers can easily access other components of your cluster . Therefore they should be used carefully and by experienced users only.

Find more information on sidecar containers in the appropriate documentation page.

How to get core dumps in case of the Percona XtraDB Cluster crash
In the Percona XtraDB Cluster crash case, gathering all possible information for enhanced diagnostics to be shared with Percona Support helps to solve an

issue faster. One of such helpful artifacts is core dump .

Percona XtraDB Cluster can create core dumps on crush using libcoredumper . The Operator has this feature turned on by default. Core dumps are saved to

DATADIR (var/lib/mysql/). You can find appropriate core files in the following way (substitute some-name-pxc-1 with the name of your Pod):

When identified, the appropriate core dump can be downloaded as follows:

It is useful to provide Build ID and Server Version in addition to core dump when Creating a support ticket. Both can be found from logs:

How to choose between HAProxy and ProxySQL when configuring the cluster?
You can configure the Operator to use one of two different proxies, HAProxy (the default choice) and ProxySQL. Both solutions are fully supported by the

Operator, but they have some differences in the architecture, which can make one of them more suitable then the other one in some use cases.

The main difference is that HAProxy operates in TCP mode as an OSI level 4 proxy , while ProxySQL implements OSI level 7 proxy, and thus can provide

some additional functionality like read/write split, firewalling and caching.

From the other side, utilizing HAProxy for the service is the easier way to go, and getting use of the ProxySQL level 7 specifics requires good understanding of

Kubernetes and ProxySQL.

You can enable ProxySQL only at cluster creation time. Otherwise you will be able to use HAProxy only. The switch from HAProxy to ProxySQL is not possible,

because ProxySQL does not yet support caching_sha2_password MySQL authentication plugin used by the Operator by default instead of the older

mysql_native_password one.

See more detailed functionality and performance comparison of using the Operator with both solutions in this blog post .

Which additional access permissions are used by the Custom Resource validation
webhook?
The spec.enableCRValidationWebhook key in the deploy/cr.yaml file enables or disables schema validation done by the Operator before applying

cr.yaml file. This feature works only in cluster-wide mode due to access restrictions. It uses the following additional RBAC permissions :

Note

$ kubectl exec some-name-pxc-1 -c pxc -it -- sh -c 'ls -alh /var/lib/mysql/ | grep core'

-rw------- 1 mysql mysql 1.3G Jan 15 09:30 core.20210015093005

$ kubectl cp some-name-pxc-1:/var/lib/mysql/core.20210015093005 /tmp/core.20210015093005

Note

$ kubectl logs some-name-pxc-1 -c logs

[1] init-deploy-949.some-name-pxc-1.mysqld-error.log: [1610702394.259356066, {"log"=>"09:19:54 UTC - mysqld got signal 11 ;"}]

[2] init-deploy-949.some-name-pxc-1.mysqld-error.log: [1610702394.259356829, {"log"=>"Most likely, you have hit a bug, but this error can also

be caused by malfunctioning hardware."}]

[3] init-deploy-949.some-name-pxc-1.mysqld-error.log: [1610702394.259457282, {"log"=>"Build ID: 5a2199b1784b967a713a3bde8d996dc517c41adb"}]

[4] init-deploy-949.some-name-pxc-1.mysqld-error.log: [1610702394.259465692, {"log"=>"Server Version: 8.0.21-12.1 Percona XtraDB Cluster

(GPL), Release rel12, Revision 4d973e2, WSREP version 26.4.3, wsrep_26.4.3"}]

.....

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://en.wikipedia.org/wiki/Core_dump
https://en.wikipedia.org/wiki/Core_dump
https://en.wikipedia.org/wiki/Core_dump
https://www.percona.com/doc/percona-server/5.7/diagnostics/libcoredumper.html
https://www.percona.com/doc/percona-server/5.7/diagnostics/libcoredumper.html
https://www.percona.com/doc/percona-server/5.7/diagnostics/libcoredumper.html
https://www.haproxy.com/blog/layer-4-and-layer-7-proxy-mode/
https://www.haproxy.com/blog/layer-4-and-layer-7-proxy-mode/
https://www.haproxy.com/blog/layer-4-and-layer-7-proxy-mode/
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html
https://www.percona.com/blog/2021/01/11/percona-kubernetes-operator-for-percona-xtradb-cluster-haproxy-or-proxysql/
https://www.percona.com/blog/2021/01/11/percona-kubernetes-operator-for-percona-xtradb-cluster-haproxy-or-proxysql/
https://www.percona.com/blog/2021/01/11/percona-kubernetes-operator-for-percona-xtradb-cluster-haproxy-or-proxysql/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Page 332

- apiGroups:

- admissionregistration.k8s.io

resources:

- validatingwebhookconfigurations

verbs:

- get

- list

- watch

- create

- update

- patch

- delete

Page 333

Development documentation

Page 334

How we use artificial intelligence
The technical writer oversees the integration of AI-driven tools and platforms into the documentation workflow, ensuring that AI-generated text meets the

standards for clarity, coherence, and accuracy. While AI assists in tasks such as content generation, language enhancement, and formatting optimization, the

technical writer is responsible for validating and refining the output to ensure its suitability for the intended audience.

Throughout the documentation process, the technical writer reviews the quality and relevance of AI-generated content in detail and with critical judgment. By

leveraging their expertise in language, communication, and subject matter knowledge, the technical writer collaborates with AI systems to refine and tailor the

documentation to meet the specific needs and preferences of the audience.

While AI accelerates the documentation process and enhances productivity, the technical writer verifies the information’s accuracy and maintains consistency

in terminology, style, and tone. The technical writer ensures that the final document reflects the company’s commitment to excellence.

Page 335

Copyright and licensing information

Documentation licensing
Percona Operator for MySQL based on Percona XtraDB Cluster documentation is (C)2009-2023 Percona LLC and/or its affiliates and is distributed under the

Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

Page 336

Trademark policy
This Trademark Policy is to ensure that users of Percona-branded products or services know that what they receive has really been developed, approved,

tested and maintained by Percona. Trademarks help to prevent confusion in the marketplace, by distinguishing one company’s or person’s products and

services from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB, XtraBackup, Percona XtraBackup, Percona Server, and

Percona Live, plus the distinctive visual icons and logos associated with these marks. Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service, website, or other use is not permitted without

Percona’s written permission with the following three limited exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona fide Percona product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”), you may use the appropriate Percona mark when

distributing a verbatim copy of that product in accordance with the terms and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona software that has been modified with minor changes for

the sole purpose of allowing the software to operate on an operating system or hardware platform for which Percona has not yet released the software,

provided that those third party changes do not affect the behavior, functionality, features, design or performance of the software. Users who acquire this

Percona-branded software receive substantially exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example, if Percona believes that your modification is beyond the

scope of the limited license granted in this Policy or that your use of the Percona mark is detrimental to Percona, Percona will revoke this authorization. Upon

revocation, you must immediately cease using the applicable Percona mark. If you do not immediately cease using the Percona mark upon revocation,

Percona may take action to protect its rights and interests in the Percona mark. Percona does not grant any license to use any Percona mark for any other

modified versions of Percona software; such use will require our prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate, modify or otherwise use any Percona mark as part

of your own brand. For example, if XYZ creates a modified version of the Percona Server, XYZ may not brand that modification as “XYZ Percona Server” or

“Percona XYZ Server”, even if that modification otherwise complies with the third exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as amended from time to time. For instance, any mention

of Percona trademarks should include the full trademarked name, with proper spelling and capitalization, along with attribution of ownership to Percona Inc.

For example, the full proper name for XtraBackup is Percona XtraBackup. However, it is acceptable to omit the word “Percona” for brevity on the second and

subsequent uses, where such omission does not cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy, please contact trademarks@percona.com for assistance and

we will do our very best to be helpful.

https://www.percona.com/trademark-policy
https://www.percona.com/trademark-policy
https://www.percona.com/trademark-policy
mailto:trademarks@percona.com

Page 337

Release Notes

Page 338

Percona Operator for MySQL based on Percona XtraDB Cluster Release
Notes

Percona Operator for MySQL based on Percona XtraDB Cluster 1.17.0 (2025-04-14)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.16.1 (2024-12-26)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.16.0 (2024-12-19)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.15.1 (2024-10-16)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.14.1 (2024-10-16)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.15.0 (2024-08-20)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.14.0 (2024-03-04)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.13.0 (2023-07-11)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.12.0 (2022-12-07)

Percona Operator for MySQL based on Percona XtraDB Cluster 1.11.0 (2022-06-03)

Percona Distribution for MySQL Operator 1.10.0 (2021-11-24)

Percona Distribution for MySQL Operator 1.9.0 (2021-08-09)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.8.0 (2021-05-26)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.7.0 (2021-02-02)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.6.0 (2020-09-09)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.5.0 (2020-07-21)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0 (2020-04-29)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0 (2020-01-06)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0 (2019-09-20)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0 (2019-07-15)

Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0 (2019-05-29)

Page 339

Percona Operator for MySQL based on Percona XtraDB Cluster 1.17.0
(2025-04-14)

Installation

Release Highlights
This release of Percona Operator for MySQL based on Percona XtraDB Cluster includes the following new features and improvements:

Improved observability for HAProxy and ProxySQL

Get insights into the HAProxy and ProxySQL performance by connecting to their statistics pages. Use the cluster-name-haproxy:8084 and cluster-

name-proxysql:6070 endpoints to do so. Learn about other available ports in the documentation.

Improved cluster load management during backups

If parallel backups overload your cluster, you can turn off parallel execution to prevent this. Previously, this meant that you could only run one backup at a time

- no new backups could start until the current one was finished. Now, the Operator queues backups and runs them one after another automatically. You can

fine-tune the backup sequence by setting the start time for all backups or for a specific on-demand one using the spec.backup.startingDeadlineSeconds

Custom Resource option. This provides greater control over backup operations.

Another improvement is for the case when your database cluster becomes unhealthy, for example, when a Pod crashes or restarts. The Operator suspends

running backups to reduce the cluster’s load. Once the cluster recovers and reports a Ready status, the Operator resumes the suspended backup. To further

offload the cluster during an unhealthy state, you can configure how long a backup remains suspended by using the

spec.backup.suspendedDeadlineSeconds Custom Resource option. If this time expires before the cluster recovers, the backup is marked as “failed.”

Monitor PMM Client health and status

Percona Monitoring and Management (PMM) is a great tool to monitor the health of your database cluster. Now you can also learn if PMM itself is healthy

using probes - a Kubernetes diagnostics mechanism to check the health and status of containers. Use the spec.pmm.readinessProbes.* and

spec.pmm.livenessProbes.* Custom Resource options to fine-tune Readiness and Liveness probes for PMM Client.

Improved observability of binary log backups

Get insights into the success and failure rates of binlog operations, timeliness of processing and uploads and potential gaps or inconsistencies in binlog data

with the Prometheus metrics added for the Operator. Gather this data by connecting to the <pitr-pod-service>:8080/metrics endpoint. Learn more about

the available metrics in the documentation.

Deprecation, Rename and Removal
The spec.haproxy.exposePrimary.enabled field is deprecated. If enabled via the spec.haproxy.enabled , the HAProxy primary service is already

exposed.

New Features

K8SPXC-747, K8SPXC-1473 - Add the ability to access the statistics pages for HAProxy and ProxySQL

K8SPXC-1366 - Add the ability to queue backups and run them sequentially, and to optimize the cluster load with the ability to suspend backups for an

unhealthy cluster. A user can assign the start time and suspension time to backups to manage them better.

K8SPXC-1432 - Enable users to configure cluster-wide Operator deployments in OpenShift certified catalog using OLM.

Improvements

K8SPXC-1367 - Now a user can configure Readiness and Liveness probes for PMM Client container to check its health and status

https://perconadev.atlassian.net/browse/K8SPXC-747
https://perconadev.atlassian.net/browse/K8SPXC-1473
https://perconadev.atlassian.net/browse/K8SPXC-1366
https://perconadev.atlassian.net/browse/K8SPXC-1432
https://perconadev.atlassian.net/browse/K8SPXC-1367

Page 340

K8SPXC-1461 - Improve logging for resizing PVC with the information about successful and failed PVC resize. Log errors on resize attempts if the Storage

Class doesn’t support resizing.

K8SPXC-1466 - Mark the containers that provide the service as default ones with the annotation. This enables a user to connect to a Pod without explicitly

specifying a container.

K8SPXC-1473 - Add the ability to connect to the built-in statistics pages for HAProxy and ProxySQL by exposing the ports for those pages

K8SPXC-1475 - Update the backup image to use AWS CLI instead of MinIO CLI due to the license change

K8SPXC-1510 - Add the ability to suppress messages about the use of deprecated features in MySQL Error Log by adding the

log_error_suppression_list key from the my.cnf configuration file and defining the message number in the spec.pxc.configuration subsection

of the Custom Resource manifest. See how to change MySQL options for steps. This improves readability for MySQL error log.

K8SPXC-1512 - For Percona XtraDB Cluster version 8.4 and above, binary log user defined functions for point-in-time recovery (binlog_utils_udf) are

now installed as a component instead of a plugin. This improves their compatibility across platforms and provides automatic dependency handling.

K8SPXC-1542 - Improve binlog upload for large files to Azure blob storage with the ability to define the block size and the number of concurrent writers for

the upload (Thanks to user dcaputo-harmoni for contribution)

K8SPXC-1543 - Set PITR controller reference for binlog-collector deployment the same way as it’s set for PXC and proxy StatefulSets. This creates a

connection between PITR deployment and cluster resource (Thank you Vlad Gusev for the contribution)

K8SPXC-1544 - Improve observability of binlog collector by adding the support of basic Prometheus metrics (Thank you Vlad Gusev for the contribution)

K8SPXC-1567 - Normalize duplicate slashes if the bucket path for binlog collector ends with a slash (/) (Thank you Vlad Gusev for the contribution)

K8SPXC-1596 - Assign a correct status to a backup if data upload fails due to incomplete backup

K8SPXC-1620 - Fixed the issue with a failing backup by adding a retry logic to the cloud storage cleanup task to check for uploaded files and clean them up

before uploading new files

Bugs Fixed

K8SPXC-1152 Fixed the issue with the restore process being stuck when the Operator is restarted by setting annotations on the

perconaxtradbclusterrestores object

K8SPXC-1482 Fixed the issue with the excessive connection resets on every pod recreation because the cluster’s peer-list is not aware of Time To Live

(TTL) defined for Kubernetes DNS records. Now there’s a 30 second waiting period after a peer update (Thank you Vlad Gusev for reporting this issue and

contributing to it)

K8SPXC-1483 - Fixed the bug where the point-in-time recovery collector process hangs if mysqlbinlog cannot connect to the database and start. Now the

named pipeline is created with the O_RDONLY (Open for Read Only) and O_NONBLOCK (Non-Blocking Mode) to unlock the point-in-time recovery collector

process. (Thank you Vlad Gusev for reporting this issue and contributing to it)

K8SPXC-1509 - Fixed the bug where the cluster enters the error state temporarily if point-in-time is enabled for it.

K8SPXC-1534 - Fixed the issue with the inconsistent secret reconciliation by improving the controller’s behavior to timely sync the secret cache and create

an internal Secret immediately after its reconciliation.

K8SPXC-1538 - Fixed the issue with the Operator failing when it tries to reconcile the Custom Resource for the haproxy-replica service if the haproxy-

primary service has the type LoadBalancer and the LoadBalancerSourceRanges value defined. Now the haproxy-replica service inherits this

configuration.

K8SPXC-1546, K8SPXC-1549 - Fixed the issue with the PITR pod crashing on attempt to assign a GTID set to each binlog if the database cluster has a large

number of binlogs by caching the binlog->gtid set pairs

K8SPXC-1547 - Removed the outdated example from the backup.yaml manifest and update the documentation how to track backup progress

K8SPXC-1616 - Fixed a bug where the ProxySQL fails to be configured if the password for a proxysqladmin user starts with a star (*) character by

reporting an error and making the Operator regenerate a new password that doesn’t start with a star (Thank you Chris Fidao for reporting this issue and

contribution)

Supported Software
The Operator was developed and tested with the following software:

Percona XtraDB Cluster versions 8.4.3-3.1 (Tech preview), 8.0.41-32.1, and 5.7.44-31.65

Percona XtraBackup versions 8.4.0-1, 8.0.35-32, and 2.4.29

https://perconadev.atlassian.net/browse/K8SPXC-1461
https://perconadev.atlassian.net/browse/K8SPXC-1466
https://perconadev.atlassian.net/browse/K8SPXC-1473
https://perconadev.atlassian.net/browse/K8SPXC-1475
https://perconadev.atlassian.net/browse/K8SPXC-1510
https://perconadev.atlassian.net/browse/K8SPXC-1512
https://perconadev.atlassian.net/browse/K8SPXC-1542
https://perconadev.atlassian.net/browse/K8SPXC-1543
https://perconadev.atlassian.net/browse/K8SPXC-1544
https://perconadev.atlassian.net/browse/K8SPXC-1567
https://perconadev.atlassian.net/browse/K8SPXC-1596
https://perconadev.atlassian.net/browse/K8SPXC-1620
https://perconadev.atlassian.net/browse/K8SPXC-1152
https://perconadev.atlassian.net/browse/K8SPXC-1482
https://perconadev.atlassian.net/browse/K8SPXC-1483
https://perconadev.atlassian.net/browse/K8SPXC-1509
https://perconadev.atlassian.net/browse/K8SPXC-1534
https://perconadev.atlassian.net/browse/K8SPXC-1538
https://perconadev.atlassian.net/browse/K8SPXC-1546
https://perconadev.atlassian.net/browse/K8SPXC-1549
https://perconadev.atlassian.net/browse/K8SPXC-1547
https://perconadev.atlassian.net/browse/K8SPXC-1616

Page 341

HAProxy 2.8.14

ProxySQL 2.7.1-1

LogCollector based on fluent-bit 4.0.0

PMM Client 2.44.0

Other options may also work but have not been tested.

Supported Platforms
Percona Operators are designed for compatibility with all CNCF-certified Kubernetes distributions. Our release process includes targeted testing and

validation on major cloud provider platforms and OpenShift, as detailed below for Operator version 1.16.0:

Google Kubernetes Engine (GKE) 1.29 - 1.32

Amazon Elastic Container Service for Kubernetes (EKS) 1.30 - 1.32

Azure Kubernetes Service (AKS) 1.30 - 1.32

OpenShift 4.14 - 4.18

Minikube 1.35.0 based on Kubernetes 1.32.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

Percona certified images
Find Percona’s certified Docker images that you can use with the Percona Operator for MySQL based on Percona XtraDB Cluster in the following table.

Images released with the Operator version 1.17.0:

Image Digest

percona/percona-xtradb-cluster-operator:1.17.0 (x86_64) da9aa5c7cb546c60624b927bdd273fc3646bc5a027bcc6f138291bad4da9b7b8

percona/percona-xtradb-cluster-operator:1.17.0 (ARM64) 2b61ed62848521071bea18988461e99123ea5d5a92465ab046d0f179b5c0b8ac

percona/haproxy:2.8.14 6de8c402d83b88dae7403c05183fd75100774defa887c05a57ec04bc25be2305

percona/proxysql2:2.7.1 975d5c8cc7b5714a0df4dfd2111391a7a79cfa3a217f1dd6de77a83550812fc4

percona/percona-xtradb-cluster-operator:1.17.0-pxc8.4-backup-pxb8.4.0 3a7a8a47ad12ce783feb089e7035d50f6d5b803cec97a16067f476a426f6fda8

percona/percona-xtradb-cluster-operator:1.17.0-pxc8.0-backup-pxb8.0.35 2f28c09027a249426b2f4393aa8b76971583d80e0c56be37f77dad49cb5cd5c4

percona/percona-xtradb-cluster-operator:1.17.0-pxc5.7-backup-pxb2.4.29 bf494243d9784a016bb4c98bd2690b0fc5fbba1aa7d45d98502dff353fb68bee

percona/percona-xtradb-cluster-operator:1.17.0-logcollector-fluentbit4.0.0 9fc0b4097c93f6dba8441d9bcb2803dc62dd8328b84288294444fbadb347f6d7

percona/pmm-client:2.44.0 19a07dfa8c12a0554308cd11d7d38494ea02a14cfac6c051ce8ff254b7d0a4a7

percona/percona-xtradb-cluster:8.4.3-3.1 b7b198133e70cb1bd9d5cd1730373a62e976fd2b9bb9ca5a696fd970c1ac09bf

percona/percona-xtradb-cluster:8.0.41-32.1 8a6799cbded5524c6979442f8d7097831c8c6481f5106a856b44b2791ccaf0fb

percona/percona-xtradb-cluster:8.0.39-30.1 6a53a6ad4e7d2c2fb404d274d993414a22cb67beecf7228df9d5d994e7a09966

percona/percona-xtradb-cluster:8.0.36-28.1 b5cc4034ccfb0186d6a734cb749ae17f013b027e9e64746b2c876e8beef379b3

percona/percona-xtradb-cluster:8.0.35-27.1 1ef24953591ef1c1ce39576843d5615d4060fd09458c7a39ebc3e2eda7ef486b

percona/percona-xtradb-cluster:8.0.32-24.2 1f978ab8912e1b5fc66570529cb7e7a4ec6a38adbfce1ece78159b0fcfa7d47a

https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 342

Image Digest

percona/percona-xtradb-cluster:5.7.44-31.65 36fafdef46485839d4ff7c6dc73b4542b07031644c0152e911acb9734ff2be85

percona/percona-xtradb-cluster:5.7.42-31.65 9dab86780f86ec9caf8e1032a563c131904b75a37edeaec159a93f7d0c16c603

percona/percona-xtradb-cluster:5.7.39-31.61 9013170a71559bbac92ba9c2e986db9bda3a8a9e39ee1ee350e0ee94488bb6d7

percona/percona-xtradb-cluster:5.7.36-31.55 c7bad990fc7ca0fde89240e921052f49da08b67c7c6dc54239593d61710be504

percona/percona-xtradb-cluster:5.7.34-31.51 f8d51d7932b9bb1a5a896c7ae440256230eb69b55798ff37397aabfd58b80ccb

Page 343

Percona Operator for MySQL based on Percona XtraDB Cluster 1.16.1
Date

December 26, 2024

Installation

Installing Percona Operator for MySQL based on Percona XtraDB Cluster

Bugs Fixed
K8SPXC-1536: Fix a bug where scheduled backups were not working due to a bug in the Operator that was creating Kubernetes resources with the names

exceeding the allowed length (Thanks to Vlad Gusev for contribution)

Supported Platforms
The Operator was developed and tested with Percona XtraDB Cluster versions 8.4.2-2.1 (Tech preview), 8.0.39-30.1, and 5.7.44-31.65. Other options may also

work but have not been tested. Other software components include:

Percona XtraBackup versions 8.4.0-1, 8.0.35-30.1 and 2.4.29

HAProxy 2.8.11

ProxySQL 2.7.1

LogCollector based on fluent-bit 3.2.2

PMM Client 2.44.0

Percona Operators are designed for compatibility with all CNCF-certified Kubernetes distributions. Our release process includes targeted testing and

validation on major cloud provider platforms and OpenShift, as detailed below for Operator version 1.16.1:

Google Kubernetes Engine (GKE) 1.28 - 1.30

Amazon Elastic Container Service for Kubernetes (EKS) 1.28 - 1.31

Azure Kubernetes Service (AKS) 1.28 - 1.31

OpenShift 4.14.42 - 4.17.8

Minikube 1.34.0 based on Kubernetes 1.31.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPXC-1536
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 344

Percona Operator for MySQL based on Percona XtraDB Cluster 1.16.0
Date

December 19, 2024

Installation

Installing Percona Operator for MySQL based on Percona XtraDB Cluster

Release Highlights

Declarative user management (technical preview)

Before the Operator version 1.16.0 custom MySQL users had to be created manually. Now the declarative creation of custom MySQL users is supported via

the users subsection in the Custom Resource. You can specify a new user in deploy/cr.yaml manifest, setting the user’s login name and hosts this user is

allowed to connect from, PasswordSecretRef (a reference to a key in a Secret resource containing user’s password) and as well as databases the user is

going to have access to and the appropriate permissions:

See documentation to find more details about this feature with additional explanations and the list of current limitations.

Percona XtraDB Cluster 8.4 support (technical preview)

Percona XtraDB Cluster based on Percona Server for MySQL 8.4 versions is now supported by the Operator in addition to 8.0 and 5.7 versions. The

appropriate images for Percona XtraDB Cluster and Percona XtraBackup are included into the list of Percona-certified images. Being a technical preview,

Percona XtraDB Cluster 8.4 is not yet recommended for production environments.

New Features
K8SPXC-377: It is now possible to create and manage users via the Custom Resource

K8SPXC-1456: Now the user can run Percona XtraDB Cluster Pods initContainers with a security context different from the Pods security context, useful to

customize deployment on tuned Kubernetes environments (Thanks to Vlad Gusev for contribution)

Improvements
K8SPXC-1230 and K8SPXC-1378: Now the Operator assigns labels to all Kubernetes objects it creates (backups/restores, Secrets, Volumes, etc.) to make

them clearly distinguishable

K8SPXC-1411: Enabling/disabling TLS on a running cluster is now possible simply by toggling the appropriate Custom Resource option

K8SPXC-1451: The automated storage scaling is now disabled by default and needs to be explicitly enabled with the enableVolumeExpansion Custom

Resource option

K8SPXC-1462: A restart of Percona XtraDB Cluster Pods is now triggered by the monitor user’s password change if the user secret is used within a sidecar

container, which can be useful for custom monitoring solutions (Thanks to Vlad Gusev for contribution)

...

users:

- name: my-user

dbs:

- db1

- db2

hosts:

- localhost

grants:

- SELECT

- DELETE

- INSERT

withGrantOption: true

passwordSecretRef:

name: my-user-pwd

key: my-user-pwd-key

...

https://jira.percona.com/browse/K8SPXC-377
https://jira.percona.com/browse/K8SPXC-1456
https://jira.percona.com/browse/K8SPXC-1230
https://jira.percona.com/browse/K8SPXC-1378
https://jira.percona.com/browse/K8SPXC-1411
https://jira.percona.com/browse/K8SPXC-1451
https://jira.percona.com/browse/K8SPXC-1462

Page 345

K8SPXC-1503: Improved logic saves logs from the appearance of a number of temporary non-critical errors related to ProxySQL user sync and non-

presence of point-in-time recovery files (Thanks to dcaputo-harmoni for contribution)

K8SPXC-1500: A new backup.activeDeadlineSeconds Custom Resource option was added to fail the backup job automatically after the specified

timeout (Thanks to Vlad Gusev for contribution)

K8SPXC-1532: The peer-list tool used by the Operator was removed from standard HAProxy, ProxySQL and PXC Docker images because recent Operator

versions are adding it with the initContainer approach

Bugs Fixed
K8SPXC-1222: Fix a bug where upgrading a cluster with hundreds of thousands of tables would fail due to a timeout

K8SPXC-1398: Fix a bug which sporadically prevented the scheduled backup job Pod from successfully completing the process

K8SPXC-1413 and K8SPXC-1458: Fix the Operator Pod segfault which was occurring when restoring a backup without backupSource Custom Resource

subsection or without storage specified in the backupSource

K8SPXC-1416: Fix a bug where disabling parallel backups in Custom Resource caused all backups to get stuck in presence of any failed backup

K8SPXC-1420: Fix a bug where HAProxy exposed at the time of point-in-time restore could make conflicting transactions, causing the PITR Pod stuck on

the duplicate key error

K8SPXC-1422: Fix the cluster endpoint change from the external IP to the service name when upgrading the Operator

K8SPXC-1444: Fix a bug where Percona XtraDB Cluster initial creation state was changing to “error” if the backup restore was taking too long

K8SPXC-1454: Fix a bug where the Operator erroneously generated SSL secrets when upgrading from 1.14.0 to 1.15.0 with allowUnsafeConfigurations:

trueCustom Resource option

Deprecation, Rename and Removal
Operator versions older than 1.14.1 become incompatible with new HAProxy, ProxySQL and PXC Docker images due to the absence of the peer-list tool in

them. If you are still using the older Operator version, make sure to update the Operator before switching to the latest database and proxy images. You can see

the list of Percona certified images for the current release, and check image versions certified for previous releases in the documentation archive .

Known limitations
Being a technical preview, Percona XtraDB Cluster 8.4 doesn’t support the full set of features available within 8.0. Percona XtraDB Cluster 8.4 support has

following limitations in this Operator release:

K8SPXC-1529: Cross-site replication is not yet supported,

K8SPXC-1512: Point-in-time recovery doesn’t work yet,

K8SPXC-1511: Encryption is not yet supported,

K8SPXC-1513: Version service does not support XtraDB Cluster 8.4 yet as well.

Supported Platforms
The Operator was developed and tested with Percona XtraDB Cluster versions 8.4.2-2.1 (Tech preview), 8.0.39-30.1, and 5.7.44-31.65. Other options may also

work but have not been tested. Other software components include:

Percona XtraBackup versions 8.4.0-1, 8.0.35-30.1 and 2.4.29

HAProxy 2.8.11

ProxySQL 2.7.1

LogCollector based on fluent-bit 3.2.2

PMM Client 2.44.0

Percona Operators are designed for compatibility with all CNCF-certified Kubernetes distributions. Our release process includes targeted testing and

validation on major cloud provider platforms and OpenShift, as detailed below for Operator version 1.16.0:

Google Kubernetes Engine (GKE) 1.28 - 1.30

Amazon Elastic Container Service for Kubernetes (EKS) 1.28 - 1.31

https://jira.percona.com/browse/K8SPXC-1503
https://jira.percona.com/browse/K8SPXC-1500
https://jira.percona.com/browse/K8SPXC-1532
https://jira.percona.com/browse/K8SPXC-1222
https://jira.percona.com/browse/K8SPXC-1398
https://jira.percona.com/browse/K8SPXC-1413
https://jira.percona.com/browse/K8SPXC-1458
https://jira.percona.com/browse/K8SPXC-1416
https://jira.percona.com/browse/K8SPXC-1420
https://jira.percona.com/browse/K8SPXC-1422
https://jira.percona.com/browse/K8SPXC-1444
https://jira.percona.com/browse/K8SPXC-1454
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://jira.percona.com/browse/K8SPXC-1529
https://jira.percona.com/browse/K8SPXC-1512
https://jira.percona.com/browse/K8SPXC-1511
https://jira.percona.com/browse/K8SPXC-1513
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/

Page 346

Azure Kubernetes Service (AKS) 1.28 - 1.31

OpenShift 4.14.42 - 4.17.8

Minikube 1.34.0 based on Kubernetes 1.31.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 347

Percona Operator for MySQL based on Percona XtraDB Cluster 1.15.1
Date

October 16, 2024

Installation

Installing Percona Operator for MySQL based on Percona XtraDB Cluster

Bugs Fixed
K8SPXC-1476: Fix a bug where upgrade could put the cluster into a non-operational state if using Storage Classes without the Volume expansion

capabilities, by introducing a new enableVolumeExpansion Custom Resource option toggling this functionality

Deprecation, Change, Rename and Removal
The new enableVolumeExpansion Custom Resource option allows to disable the automated storage scaling with Volume Expansion capability. The

default value of this option is false , which means that the automated scaling is turned off by default.

Supported Platforms
The Operator was developed and tested with Percona XtraDB Cluster versions 8.0.36-28.1 and 5.7.44-31.65. Other options may also work but have not been

tested. Other software components include:

Percona XtraBackup versions 8.0.35-30.1 and 2.4.29-1

HAProxy 2.8.5

ProxySQL 2.5.5

LogCollector based on fluent-bit 3.1.4

PMM Client 2.42.0

The following platforms were tested and are officially supported by the Operator 1.15.1:

Google Kubernetes Engine (GKE) 1.27 - 1.30

Amazon Elastic Container Service for Kubernetes (EKS) 1.28 - 1.30

Azure Kubernetes Service (AKS) 1.28 - 1.30

OpenShift 4.13.46 - 4.16.7

Minikube 1.33.1 based on Kubernetes 1.30.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPXC-1476
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 348

Percona Operator for MySQL based on Percona XtraDB Cluster 1.14.1
Date

October 16, 2024

Installation

Installing Percona Operator for MySQL based on Percona XtraDB Cluster

Bugs Fixed
K8SPXC-1476: Fix a bug where upgrade could put the cluster into a non-operational state if using Storage Classes without the Volume expansion

capabilities, by introducing a new enableVolumeExpansion Custom Resource option toggling this functionality

Deprecation, Change, Rename and Removal
The new enableVolumeExpansion Custom Resource option allows to disable the automated storage scaling with Volume Expansion capability. The

default value of this option is false , which means that the automated scaling is turned off by default.

Supported Platforms
The Operator was developed and tested with Percona XtraDB Cluster versions 8.0.35-27.1 and 5.7.44-31.65. Other options may also work but have not been

tested. Other software components include:

Percona XtraBackup versions 2.4.29-1 and 8.0.35-30.1

HAProxy 2.8.5-1

ProxySQL 2.5.5-1.1

LogCollector based on fluent-bit 2.1.10-1

PMM Client 2.41.1

The following platforms were tested and are officially supported by the Operator 1.14.1:

Google Kubernetes Engine (GKE) 1.25 - 1.29

Amazon Elastic Container Service for Kubernetes (EKS) 1.24 - 1.29

Azure Kubernetes Service (AKS) 1.26 - 1.28

OpenShift 4.12.50 - 4.14.13

Minikube 1.32.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPXC-1476
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 349

Percona Operator for MySQL based on Percona XtraDB Cluster 1.15.0
Date

August 20, 2024

Installation

Installing Percona Operator for MySQL based on Percona XtraDB Cluster

Release Highlights

General availability of the automated volume resizing

The possibility to resize Persistent Volumes by just changing the value of the resources.requests.storage option in the PerconaXtraDBCluster custom

resource, introduced in the previous release as a technical preview, graduates to general availability.

Allowing haproxy-replica Service to cycle through the reader instances only

By default haproxy-replica Service directs connections to all Pods of the database cluster in a round-robin manner. The new

haproxy.exposeReplicas.onlyReaders Custom Resource option allows to modify this behavior: setting it to true excludes current MySQL primary

instance (writer) from the list, leaving only the reader instances. By default the option is set to false, which means that haproxy-replicas sends traffic to all

Pods, including the active writer. The feature can be useful to simplify the application logic by splitting read and write MySQL traffic on the Kubernetes level.

Also, it should be noted that changing haproxy.exposeReplicas.onlyReaders value will cause HAProxy Pods to restart.

Fixing the overloaded allowUnsafeConfigurations flag

In the previous Operator versions allowUnsafeConfigurations Custom Resource option was used to allow configuring a cluster with unsafe parameters,

such as starting it with less than 3 Percona XtraDB Cluster instances. In fact, setting this option to true resulted in a wide range of reduced safety features

without the user’s explicit intent: disabling TLS, allowing backups in unhealthy clusters, etc.

With this release, a separate unsafeFlags Custom Resource section is introduced for the fine-grained control of the safety loosening features:

If the appropriate option is set to false and the Operator detects unsafe parameters, it sets cluster status to error , and prints an error message in the log.

Also, TLS configuration is now enabled or disabled by setting unsafeFlags.tls and tls.enabled Custom Resource options to true or false .

New Features
K8SPXC-1330: A new haproxy.exposeReplicas.onlyReaders Custom Resource option makes haproxy-replicas Service to forward requests to

reader instances of the MySQL cluster, avoiding the primary (writer) instance.

K8SPXC-1355: Finalizers were renamed to contain fully qualified domain names (FQDNs), avoiding potential conflicts with other finalizer names in the

same Kubernetes environment

Improvements
K8SPXC-1357: HAProxy Pod no longer restarts when the operator user’s password changes, which is useful or the applications with persistent

connection to MySQL

K8SPXC-1358: Removing allowUnsafeConfigurations Custom Resource option in favor of fine-grained safety control in the unsafeFlags subsection

K8SPXC-1368: Kubernetes PVC DataSources for Percona XtraDB Cluster Volumes are now officially supported via the

pxc.volumeSpec.persistentVolumeClaim.dataSource subsection in the Custom Resource

unsafeFlags:

tls: false

pxcSize: false

proxySize: false

backupIfUnhealthy: false

https://jira.percona.com/browse/K8SPXC-1330
https://jira.percona.com/browse/K8SPXC-1355
https://jira.percona.com/browse/K8SPXC-1357
https://jira.percona.com/browse/K8SPXC-1358
https://jira.percona.com/browse/K8SPXC-1368
https://kubernetes-csi.github.io/docs/volume-datasources.html

Page 350

K8SPXC-1385: Dynamic Volume resize now checks resource quotas and the PVC storage limits

K8SPXC-1423: The percona.com/delete-pxc-pvc finalizer is now able to delete also temporary secrets created by the Operator

Bugs Fixed
K8SPXC-1067: Fix a bug where changing gracePeriod , nodeSelector , priorityClassName , runtimeClassName , and schedulerName fields in the

haproxy Custom Resource subsection didn’t propagate changes to the haproxy StatefulSet

K8SPXC-1338: Fix a bug where binary log collector Pod had unnecessary restart during the Percona XtraDB Cluster rolling restart

K8SPXC-1364: Fix a bug where log rotation functionality didn’t work when the proxy_protocol_networks option was enabled in the Percona XtraDB

Cluster custom configuration

K8SPXC-1365: Fix pxc-operator Helm chart bug where it wasn’t able to create namespaces if multiple namespaces were specified in the

watchNamespace option

K8SPXC-1371: Fix a bug in pxc-db Helm chart which had wrong Percona XtraDB Cluster version for the 1.14.0 release and tried to downgrade the

database in case of the helm chart upgrade

K8SPXC-1380: Fix a bug due to which values in the resources requests for the restore job Pod were overwritten by the resources limits ones

K8SPXC-1381: Fix a bug where HAProxy check script was not correctly identifying all the possible ”offline” state of a PXC instance, causing applications

connects to an instance NOT able to serve the query

K8SPXC-1382: Fix a bug where creating a backup on S3 storage failed automatically if s3.credentialsSecret Custom Resource option was not present

K8SPXC-1396: The xtrabackup user didn’t have rights to grant privileges available in its own privilege level to other users, which caused the point-in-time

recovery fail due to access denied

K8SPXC-1408: Fix a bug where the Operator blocked all restores (including ones without PiTR) in case of a binlog gap detected, instead of only blocking

PiTR restores

K8SPXC-1418: Fix a bug where CA Certificate generated by cert-manager had expiration period of 1 year instead of the 3 years period used by the Operator

for other generated certificates, including ones used for internal and external communications

Deprecation, Rename and Removal

Starting from now, allowUnsafeConfigurations Custom Resource option is deprecated in favor of a number of options under the unsafeFlags

subsection. Also, starting from now the Operator will not set safe defaults automatically. Upgrading existing clusters with

allowUnsafeConfiguration=false and a configuration considered unsafe (i.e. pxc.size<3 or tls.enabled=false) will print errors in the log and the

cluster will have error status until the values are fixed.

Finalizers were renamed to contain fully qualified domain names:

delete-pxc-pods-in-order renamed to percona.com/delete-pxc-pods-in-order

delete-ssl renamed to percona.com/delete-ssl

delete-proxysql-pvc renamed to percona.com/delete-proxysql-pvc

delete-pxc-pvc renamed to percona.com/delete-pxc-pvc

The pxc-operator Helm chart now has createNamespace option now is set to false by default, resulting in not creating any namespaces unless

explicitly allowed to do so by the user

Supported Platforms
The Operator was developed and tested with Percona XtraDB Cluster versions 8.0.36-28.1 and 5.7.44-31.65. Other options may also work but have not been

tested. Other software components include:

Percona XtraBackup versions 8.0.35-30.1 and 2.4.29-1

HAProxy 2.8.5

ProxySQL 2.5.5

LogCollector based on fluent-bit 3.1.4

PMM Client 2.42.0

The following platforms were tested and are officially supported by the Operator 1.15.0:

https://jira.percona.com/browse/K8SPXC-1385
https://jira.percona.com/browse/K8SPXC-1423
https://jira.percona.com/browse/K8SPXC-1067
https://jira.percona.com/browse/K8SPXC-1338
https://jira.percona.com/browse/K8SPXC-1364
https://jira.percona.com/browse/K8SPXC-1365
https://jira.percona.com/browse/K8SPXC-1371
https://jira.percona.com/browse/K8SPXC-1380
https://jira.percona.com/browse/K8SPXC-1381
https://jira.percona.com/browse/K8SPXC-1382
https://jira.percona.com/browse/K8SPXC-1396
https://jira.percona.com/browse/K8SPXC-1408
https://jira.percona.com/browse/K8SPXC-1418

Page 351

Google Kubernetes Engine (GKE) 1.27 - 1.30

Amazon Elastic Container Service for Kubernetes (EKS) 1.28 - 1.30

Azure Kubernetes Service (AKS) 1.28 - 1.30

OpenShift 4.13.46 - 4.16.7

Minikube 1.33.1 based on Kubernetes 1.30.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 352

Percona Operator for MySQL based on Percona XtraDB Cluster 1.14.0
Date

March 4, 2024

Installation

Installing Percona Operator for MySQL based on Percona XtraDB Cluster

Release Highlights

Quickstart guide

Within this release, a Quickstart guide was added to the Operator docs, that’ll set you up and running in no time! Taking a look at this guide you’ll be guided

step by step through quick installing (multiple options), connecting to the database, inserting data, making a backup, and even integrating with Percona

Monitoring and Management (PMM) to monitor your cluster.

Automated volume resizing

Kubernetes supports the Persistent Volume expansion as a stable feature since v1.24. Using it with the Operator previously involved manual operations. Now

this is automated, and users can resize their PVCs by just changing the value of the resources.requests.storage option in the PerconaXtraDBCluster

custom resource. This feature is in a technical preview stage and is not recommended for production environments.

New Features
K8SPXC-1298: Custom prefix for Percona Monitoring and Management (PMM) allows using one PMM Server to monitor multiple databases even if they

have identical cluster names

K8SPXC-1334: The new lifecycle.postStart and lifecycle.preStop Custom Resource options allow configuring postStart and preStop hooks for

ProxySQL and HAProxy Pods

K8SPXC-1341: It is now possible to resize Persistent Volume Claims by patching the PerconaXtraDBCluster custom resource. Change

persistentVolumeClaim.resources.requests.storage and let the Operator do the scaling

Improvements
K8SPXC-1313: The kubectl get pxc-backup command now shows Latest restorable time to make it easier to pick a point-in-time recovery target

K8SPXC-1237: The Operator now checks if the needed Secrets exist and connects to the storage to check the existence of a backup before starting the

restore process

K8SPXC-1079: Standardize cluster and components service exposure to have unification of the expose configuration across all Percona Operators

K8SPXC-1147: Improve log messages by printing the Last_IO_Error for a replication channel if it’s not empty

K8SPXC-1151: The kubectl get pxc-restore command now shows the “Starting cluster” status to indicate that the point-in-time recovery process is

finished

K8SPXC-1230: Add Labels for all Kubernetes objects created by Operator (backups/restores, Secrets, Volumes, etc.) to make them clearly distinguishable

K8SPXC-1271: Use timeout to avoid backup stalls in case of the S3 upload network issues

K8SPXC-1293 and K8SPXC-1294: The new backup.pitr.timeoutSeconds Custom Resource option allows setting a timeout for the point-in-time recovery

process

K8SPXC-1301: The Operator can now be run locally against a remote Kubernetes cluster, which simplifies the development process, substantially

shortening the way to make and try minor code improvements

K8SPXC-200 and K8SPXC-1128: The new containerOptions subsections were added to pxc-backup , pxc-restore , and pxc Custom Resources to

allow setting custom options for xtrabackup, xbstream, and xbcloud tools used by the Operator

K8SPXC-345: The new topologySpreadConstraints Custom Resource option allows to use Pod Topology Spread Constraints to achieve even

distribution of Pods across the Kubernetes cluster

K8SPXC-927: The new serviceLabel and serviceAnnotation Custom Resource options allow setting Service Labels and Annotations for XtraDB

Cluster Pods

https://jira.percona.com/browse/K8SPXC-1298
https://jira.percona.com/browse/K8SPXC-1334
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://jira.percona.com/browse/K8SPXC-1341
https://jira.percona.com/browse/K8SPXC-1313
https://jira.percona.com/browse/K8SPXC-1237
https://jira.percona.com/browse/K8SPXC-1079
https://jira.percona.com/browse/K8SPXC-1147
https://jira.percona.com/browse/K8SPXC-1151
https://jira.percona.com/browse/K8SPXC-1230
https://jira.percona.com/browse/K8SPXC-1271
https://jira.percona.com/browse/K8SPXC-1293
https://jira.percona.com/browse/K8SPXC-1294
https://jira.percona.com/browse/K8SPXC-1301
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/CONTRIBUTING.md#1-contributing-to-the-source-tree
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/CONTRIBUTING.md#1-contributing-to-the-source-tree
https://github.com/percona/percona-xtradb-cluster-operator/blob/main/CONTRIBUTING.md#1-contributing-to-the-source-tree
https://jira.percona.com/browse/K8SPXC-200
https://jira.percona.com/browse/K8SPXC-1128
https://jira.percona.com/browse/K8SPXC-345
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/#spread-constraints-for-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/#spread-constraints-for-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/#spread-constraints-for-pods
https://jira.percona.com/browse/K8SPXC-927

Page 353

K8SPXC-1340: The new Custom Resource option allows setting custom containerSecurityContext for PMM containers (thanks Marko Weiß for report)

K8SPXC-1254: Upgrade instructions for Percona XtraDB Cluster in multi-namespace (cluster-wide) mode were added to documentation

K8SPXC-1276 and K8SPXC-1277: HAProxy log format was changed to JSON with additional information such as timestamps to simplify troubleshooting

Bugs Fixed
K8SPXC-1264: Liveness probe didn’t work if sql_mode ANSI_QUOTES enabled

K8SPXC-1067: Fix a bug that caused the Operator not tracking changes in a number of Custom Resource options in the haproxy subsection

K8SPXC-1105: Fix a bug that didn’t allow point-in-time recovery backups on S3-compatible storage with using self-signed certificates

K8SPXC-1106: Fix a bug which caused point-in-time recovery silently not uploading files if a corrupted binlog file existed in /var/lib/mysql

K8SPXC-1159: Cluster status was repeatedly switching between “ready” and “error” if the password change did not satisfy the complexity and was rejected

by MySQL

K8SPXC-1256: Fix a bug where the Operator was unable to perform a cleanup by deleting a replication channel if the replication was already stopped

K8SPXC-1263: Fix a bug where point-in-time recovery was failing if the xtrabackup user password was changed in the binary log files

K8SPXC-1269: Fix a bug due to which switching from HAProxy to ProxySQL was broken for Percona XtraDB Cluster 5.7

K8SPXC-1274: PXC init container used by XtraDB Cluster and HAProxy instances inherited XtraDB Cluster resource requirements which was too much for

HAProxy (Thanks Tristan for reporting)

K8SPXC-1275: Fix a bug which caused replication error after switching system accounts to caching_sha2_password authentication plugin which became

available in the previous release

K8SPXC-1288: The Operator didn’t treat the name for scheduled backup as a mandatory field

K8SPXC-1302: Fix a bug where the Operator was continuously trying to delete a backup from an S3 bucket that has a retention policy configured and

delete-s3-backup finalizer present, which could cause out-of-memory issue in case of tight Pod’s memory limits

K8SPXC-1333: Scheduled backup was failing if Percona XtraDB Cluster name was not unique across namespaces

K8SPXC-1335: Fix a bug where HAProxy was not stopping existing connections to primary in case of Percona XtraDB Cluster instance failover but only

routed new ones to another instance

K8SPXC-1339: Fix a bug where HAProxy was not aware of the IP address change in case of the restarted Percona XtraDB Cluster Pod and couldn’t reach it

until the DNS cache update

K8SPXC-1345: Fix a regression where the Operator was unable to customize readinessProbe of the pxc container

K8SPXC-1350: Fix a bug due to which log rotate could cause locking TOI (Total Order Isolation) DDL operation on the cluster with flush error logs,

resulting in unnecessary synchronization on the whole cluster and possible warnings in logs

Deprecation, Rename and Removal
K8SPXC-1079: Custom Resource options for service exposure of Percona XtraDB Cluster HAProxy Primary, HAProxy Replicas, and ProxySQL were moved

to dedicated pxc.expose , haproxy.exposePrimary , haproxy.exposeReplicas , and proxysql.expose subsections. This brings more structure to the

Custom Resource and implements the same approach across all Percona Operators. Old variants of service exposure options are now deprecated and will

be removed in next releases

K8SPXC-1274: The initImage Custom Resource option which allows providing an alternative image with various options for the initial Operator

installation, was moved to a dedicated subsection and is now available as initContainer.image

K8SPXC-878: The clustercheck system user deprecated in v1.12.0 was completely removed in this release

Supported Platforms
The Operator was developed and tested with Percona XtraDB Cluster versions 8.0.35-27.1 and 5.7.44-31.65. Other options may also work but have not been

tested. Other software components include:

Percona XtraBackup versions 2.4.29-1 and 8.0.35-30.1

HAProxy 2.8.5-1

ProxySQL 2.5.5-1.1

LogCollector based on fluent-bit 2.1.10-1

https://jira.percona.com/browse/K8SPXC-1340
https://jira.percona.com/browse/K8SPXC-1254
https://jira.percona.com/browse/K8SPXC-1276
https://jira.percona.com/browse/K8SPXC-1277
https://jira.percona.com/browse/K8SPXC-1264
https://jira.percona.com/browse/K8SPXC-1067
https://jira.percona.com/browse/K8SPXC-1105
https://jira.percona.com/browse/K8SPXC-1106
https://jira.percona.com/browse/K8SPXC-1159
https://jira.percona.com/browse/K8SPXC-1256
https://jira.percona.com/browse/K8SPXC-1263
https://jira.percona.com/browse/K8SPXC-1269
https://jira.percona.com/browse/K8SPXC-1274
https://jira.percona.com/browse/K8SPXC-1275
https://jira.percona.com/browse/K8SPXC-1288
https://jira.percona.com/browse/K8SPXC-1302
https://jira.percona.com/browse/K8SPXC-1333
https://jira.percona.com/browse/K8SPXC-1335
https://jira.percona.com/browse/K8SPXC-1339
https://jira.percona.com/browse/K8SPXC-1345
https://jira.percona.com/browse/K8SPXC-1350
https://galeracluster.com/library/documentation/schema-upgrades.html#toi
https://galeracluster.com/library/documentation/schema-upgrades.html#toi
https://galeracluster.com/library/documentation/schema-upgrades.html#toi
https://jira.percona.com/browse/K8SPXC-1079
https://jira.percona.com/browse/K8SPXC-1274
https://jira.percona.com/browse/K8SPXC-878

Page 354

PMM Client 2.41.1

The following platforms were tested and are officially supported by the Operator 1.14.0:

Google Kubernetes Engine (GKE) 1.25 - 1.29

Amazon Elastic Container Service for Kubernetes (EKS) 1.24 - 1.29

Azure Kubernetes Service (AKS) 1.26 - 1.28

OpenShift 4.12.50 - 4.14.13

Minikube 1.32.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 355

Percona Operator for MySQL based on Percona XtraDB Cluster 1.13.0
Date

July 11, 2023

Installation

Installing Percona Operator for MySQL based on Percona XtraDB Cluster

Release Highlights
It is now possible to control whether backup jobs are executed in parallel or sequentially, which can be useful to avoid the cluster overload; also, CPU and

memory resource limits can now be configured for the backup restore job

A substantial improvement of the backup documentation was done in this release, making it much easier to read, and the backup restore options have

been added to the Сustom Resource reference

We are deeply committed to delivering software that truly sets the bar for quality and stability. With our latest release, we put an all-hands-on-deck

approach towards fine-tuning the Operator with minor improvements, along with addressing key bugs reported by our vibrant community. We are extremely

grateful to each and every person who submitted feedback and collaborated to help us get to the bottom of these pesky issues.

New Features and improvements
K8SPXC-1088: It is now possible to configure CPU and memory resources for the backup restore job in the PerconaXtraDBClusterRestore Custom Resource

options

K8SPXC-1166: Starting from now, Docker image tags for Percona XtraBackup include full XtraBackup version instead of the major number used before

K8SPXC-1189: Improve security and meet compliance requirements by building the Operator based on Red Hat Universal Base Image (UBI) 9 instead of UBI

8

K8SPXC-1192: Backup and restore documentation was substantially improved to make it easier to work with, and backup restore options have been added

to the Сustom Resource reference

K8SPXC-1210: A headless service can now be configured for ProxySQL and HAProxy to make them usable on a tenant network (thanks to Vishal

Anarase for contribution)

K8SPXC-1225: The Operator (system) users are now created with the PASSWORD EXPIRE NEVER policy to avoid breaking the cluster due to the password

expiration set by the default_password_lifetime system variable

K8SPXC-362: Code clean-up and refactoring for checking if ProxySQL and HAProxy enabled in the Custom Resource (thanks to Vladislav Safronov for

contributing)

K8SPXC-1224: New backup.allowParallel Custom Resource option allows to disable running backup jobs in parallel, which can be useful to avoid

connection issues caused by the cluster overload

K8SPXC-1183: The Operator now uses the caching_sha2_password authentication plugin for MySQL 8.0 instead of the older mysql_native_password

one

Bugs Fixed
K8SPXC-1179 and K8SPXC-1183: Fix a bug due to which the Operator didn’t use TLS encryption for system users

K8SPXC-1188: The database Helm chart has improved defaults, including the use of random passwords generated by the Operator, and disabling delete-

pxc-pvc and delete-proxysql-pvc finalizers to avoid possible data loss during migration

K8SPXC-1220: Fix a bug due to which DNS resolution problem could force HAProxy to remove all Percona XtraDB Cluster instances, including healthy ones

K8SPXC-1164: Fix a bug which caused the Operator to recreate Secrets in case of the ProxySQL to HAProxy switch with active delete-proxysql-pvc

finalizer

K8SPXC-1255: The log rotation was broken for the audit log, causing it to be written to the old file after the rotation

K8SPXC-687: Fix a bug which caused the backup restoration not starting in the environment which previously had a cluster with a failed restore

K8SPXC-835 and K8SPXC-1029: Fix a bug which prevented using ProxySQL on the replica cluster in cross-site replication

https://jira.percona.com/browse/K8SPXC-1088
https://jira.percona.com/browse/K8SPXC-1166
https://jira.percona.com/browse/K8SPXC-1189
https://jira.percona.com/browse/K8SPXC-1192
https://jira.percona.com/browse/K8SPXC-1210
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://jira.percona.com/browse/K8SPXC-1225
https://jira.percona.com/browse/K8SPXC-362
https://jira.percona.com/browse/K8SPXC-1224
https://jira.percona.com/browse/K8SPXC-1183
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html
https://jira.percona.com/browse/K8SPXC-1179
https://jira.percona.com/browse/K8SPXC-1183
https://jira.percona.com/browse/K8SPXC-1188
https://jira.percona.com/browse/K8SPXC-1220
https://jira.percona.com/browse/K8SPXC-1164
https://jira.percona.com/browse/K8SPXC-1255
https://jira.percona.com/browse/K8SPXC-687
https://jira.percona.com/browse/K8SPXC-835
https://jira.percona.com/browse/K8SPXC-1029

Page 356

K8SPXC-989: Fix a bug which caused on-demand (manual) backup to fail in IPv6-enabled (dual-stack) environments because of the backup script unable to

figure out the proper Pod IPv4 address (thanks to Song Yang for contribution)

K8SPXC-1106: Fix a bug which caused point-in-time recovery failure in case of a corrupted binlog file in /var/lib/mysql

K8SPXC-1122: Fix a bug which made disabling verification of the storage server TLS certificate with verifyTLS PerconaXtraDBClusterRestore Custom

Resource option not working

K8SPXC-1135: Fix a bug where a cluster could incorrectly get a READY status while it had a service with an external IP still in pending state

K8SPXC-1149: Fix delete-pxc-pvc finalizer unable to delete TLS Secret used for external communications in case if this Secret had non-customized

default name

K8SPXC-1161: Fix a bug due to which PMM couldn’t continue monitoring HAProxy Pods after the PMM Server API key change

K8SPXC-1163: Fix a bug that made it impossible to delete the cluster in init state in case of enabled finalizers

K8SPXC-1199: Fix a bug due to which the Operator couldn’t restore backups from Azure blob storage if spec.backupSource.azure.container was not

specified

K8SPXC-1205: Fix a bug which made the Operator to ignore the verifyTLS option for backups deletion caused by the delete-s3-backup finalizer

(thanks to Christ-Jan Prinse for reporting)

K8SPXC-1229 and K8SPXC-1197: Fix a bug due to which the Operator was unable to delete backups from Azure blob storage

K8SPXC-1236: Fix the pxc container entrypoint script printing passwords into the standard output

K8SPXC-1242: Fix a bug due to which the unquoted password value was passed to the pmm-admin commands, making PMM Client unable to add MySQL

service

K8SPXC-1243: Fix a bug which prevented deleting PMM agent from the PMM Server inventory on Pod termination

K8SPXC-1126: Fix a bug that pxc-db Helm chart had PVC-based backup storage enabled by default, which could be inconvenient for the users storing

backups in cloud

K8SPXC-1265: Fix a bug due to which get pxc-backup command could show backup as failed after the first unsuccessful attempt while backup job was

continuing attempts

Known issues and limitations
K8SPXC-1183: Switching between HAProxy and ProxySQL load balancer can’t be done on existing clusters because ProxySQL does not yet support

caching_sha2_password authentication plugin; this makes it necessary to choose load balancer at the cluster creation time

Supported Platforms
The Operator was developed and tested with Percona XtraDB Cluster versions 8.0.32-24.2 and 5.7.42-31.65. Other options may also work but have not been

tested. Other software components include:

Percona XtraBackup versions 2.4.28 and 8.0.32-26

HAProxy 2.6.12

ProxySQL 2.5.1-1.1

LogCollector based on fluent-bit 2.1.5

PMM Client 2.38

The following platforms were tested and are officially supported by the Operator 1.13.0:

Google Kubernetes Engine (GKE) 1.24 - 1.27

Amazon Elastic Container Service for Kubernetes (EKS) 1.23 - 1.27

Azure Kubernetes Service (AKS) 1.24 - 1.26

OpenShift 4.10 - 4.13

Minikube 1.30 (based on Kubernetes 1.27)

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPXC-989
https://jira.percona.com/browse/K8SPXC-1106
https://jira.percona.com/browse/K8SPXC-1122
https://jira.percona.com/browse/K8SPXC-1135
https://jira.percona.com/browse/K8SPXC-1149
https://jira.percona.com/browse/K8SPXC-1161
https://jira.percona.com/browse/K8SPXC-1163
https://jira.percona.com/browse/K8SPXC-1199
https://jira.percona.com/browse/K8SPXC-1205
https://jira.percona.com/browse/K8SPXC-1229
https://jira.percona.com/browse/K8SPXC-1197
https://jira.percona.com/browse/K8SPXC-1236
https://jira.percona.com/browse/K8SPXC-1242
https://jira.percona.com/browse/K8SPXC-1243
https://jira.percona.com/browse/K8SPXC-1126
https://jira.percona.com/browse/K8SPXC-1265
https://jira.percona.com/browse/K8SPXC-1183
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 357

Percona Operator for MySQL based on Percona XtraDB Cluster 1.12.0
Date

December 7, 2022

Installation

Installing Percona Operator for MySQL based on Percona XtraDB Cluster

Release Highlights
Azure Kubernetes Service (AKS) is now officially supported platform, so developers and vendors of the solutions based on the Azure platform can take

advantage of the official support from Percona or just use officially certified Percona Operator for MysQL images; also, Azure Blob Storage can now be

used for backups

This release also includes fixes to the following CVEs (Common Vulnerabilities and Exposures): CVE-2021-20329 (potential injections in MongoDB Go

Driver used HAProxy, which had no effect on Percona Operator for MySQL), and CVE-2022-42898 (images used by the Operator suffering from the

unauthenticated denial of service vulnerability). Users of previous Operator versions are advised to upgrade to version 1.12.0 which resolves this issue

New Features
K8SPXC-1043 and K8SPXC-1005: Add support for the Azure Kubernetes Service (AKS) platform and allow using Azure Blob Storage for backups

K8SPXC-1010: Allow using templates to define innodb_buffer_pool_size auto-tuning based on container memory limits

K8SPXC-1082: New ignoreAnnotations and ignoreLabels Custom Resource options allow to list specific annotations and labels for Kubernetes

Service objects, which the Operator should ignore (useful with various Kubernetes flavors which add annotations to the objects managed by the Operator)

K8SPXC-1120: Add headless service support for the restore Pod to make it possible restoring backups from a Persistent Volume on a tenant network

(thanks to Zulh for contribution)

K8SPXC-1140: The Operator now allows using SSL channel for cross-site replication (thanks to Alvaro Aguilar-Tablada Espinosa for contribution)

Improvements
K8SPXC-1104: Starting from now, the Operator changed its API version to v1 instead of having a separate API version for each release. Three last API

version are supported in addition to v1 , which substantially reduces the size of Custom Resource Definition to prevent reaching the etcd limit

K8SPXC-955: Add Custom Resource options to set static IP-address for the HAProxy and ProxySQL LoadBalancers

K8SPXC-1032: Disable automated upgrade by default to prevent an unplanned downtime for user applications and to provide defaults more focused on

strict user’s control over the cluster

K8SPXC-1095: Process the SIGTERM signal to avoid unneeded lags in case of Percona XtraDB Cluster recovery or using the debug image to start up

K8SPXC-1113: Utilize dual password feature of MySQL 8 to avoid cluster restart when changing password of the monitor user

K8SPXC-1125: The Operator now does not attempt to start Percona Monitoring and Management (PMM) client sidecar if the corresponding secret does not

contain the pmmserver or pmmserverkey key

K8SPXC-1153: Configuring the log structuring and leveling is now supported using the LOG_STRUCTURED and LOG_LEVEL environment variables. This

reduces the information overload in logs, still leaving the possibility of getting more details when needed, for example, for debugging

K8SPXC-1123: Starting from now, installing the Operator for cluster-wide (multi-namespace) doesn’t require to add Operator’s own namespace to the list of

watched namespaces (thanks to Bart Vercoulen for reporting this issue)

K8SPXC-1030: The new delete-ssl finalizer can now be used to automatically delete objects created for SSL (Secret, certificate, and issuer) in case of

cluster deletion

Bugs Fixed
K8SPXC-1158: Fix CVE-2022-42898 vulnerability found in MIT krb5, which made images used by the Operator vulnerable to DoS attacks

K8SPXC-1028: Fix a bug that prevented the Operator to automatically tune innodb_buffer_pool_size and innodb_buffer_pool_chunk_size variables

https://nvd.nist.gov/vuln/detail/CVE-2021-20329
https://nvd.nist.gov/vuln/detail/CVE-2021-20329
https://nvd.nist.gov/vuln/detail/CVE-2021-20329
https://access.redhat.com/security/cve/CVE-2022-42898
https://access.redhat.com/security/cve/CVE-2022-42898
https://access.redhat.com/security/cve/CVE-2022-42898
https://jira.percona.com/browse/K8SPXC-1043
https://jira.percona.com/browse/K8SPXC-1005
https://jira.percona.com/browse/K8SPXC-1010
https://jira.percona.com/browse/K8SPXC-1082
https://jira.percona.com/browse/K8SPXC-1120
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://jira.percona.com/browse/K8SPXC-1140
https://jira.percona.com/browse/K8SPXC-1104
https://jira.percona.com/browse/K8SPXC-955
https://jira.percona.com/browse/K8SPXC-1032
https://jira.percona.com/browse/K8SPXC-1095
https://jira.percona.com/browse/K8SPXC-1113
https://jira.percona.com/browse/K8SPXC-1125
https://jira.percona.com/browse/K8SPXC-1153
https://jira.percona.com/browse/K8SPXC-1123
https://jira.percona.com/browse/K8SPXC-1030
https://jira.percona.com/browse/K8SPXC-1158
https://access.redhat.com/security/cve/CVE-2022-42898
https://access.redhat.com/security/cve/CVE-2022-42898
https://access.redhat.com/security/cve/CVE-2022-42898
https://jira.percona.com/browse/K8SPXC-1028

Page 358

K8SPXC-1036: Fix the bug that caused Liveness Probe failure when XtraBackup was running and the wsrep_sync_wait option was set, making the

instance to be rejected from the cluster

K8SPXC-1065: Fix a bug due to which, in a pair of scheduled backups close in time, the next backup could overwrite the previous one: bucket destination

was made more unique by including seconds

K8SPXC-1059: Fix a bug due to which pxc-monit and proxysql-monit containers were printing passwords in their logs (thanks to zlcnju for

contribution)

K8SPXC-1099: Fix CrashLoopBackOff error caused by incorrect (non-atomic) multi-user password change

K8SPXC-1100: Fix a bug that made it impossible to use slash characters in the monitor user’s password

K8SPXC-1118: Fix a bug due to which the point-in-time recovery collector only reported warnings in logs when the gaps in binlogs were found. Starting from

now, such backups are marked as not suitable for consistent PITR, and restoring them with point-in-time recovery fails without manual user’s intervention

K8SPXC-1137: Fix a bug that prevented adding, deleting or updating ProxySQL Service labels/annotations except at the Service creation time

K8SPXC-1138: Fix a bug due to which not enough responsive scripts for readiness and liveness Probes could be the reason of killing the overloaded

database Pods

Supported Platforms
The following platforms were tested and are officially supported by the Operator 1.12.0:

Google Kubernetes Engine (GKE) 1.21 - 1.24

Amazon Elastic Container Service for Kubernetes (EKS) 1.21 - 1.24

Azure Kubernetes Service (AKS) 1.22 - 1.24

OpenShift 4.10 - 4.11

Minikube 1.28

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPXC-1036
https://jira.percona.com/browse/K8SPXC-1065
https://jira.percona.com/browse/K8SPXC-1059
https://jira.percona.com/browse/K8SPXC-1099
https://jira.percona.com/browse/K8SPXC-1100
https://jira.percona.com/browse/K8SPXC-1118
https://jira.percona.com/browse/K8SPXC-1137
https://jira.percona.com/browse/K8SPXC-1138
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 359

Percona Operator for MySQL based on Percona XtraDB Cluster 1.11.0

Date

June 3, 2022

Installation

Installing Percona Operator for MySQL based on Percona XtraDB Cluster

Release Highlights

With this release, the Operator turns to a simplified naming convention and changes its official name to Percona Operator for MySQL based on Percona

XtraDB Cluster

The new backup.backoffLimit Custom Resource option allows customizing the number of attempts the Operator should make for backup

The OpenAPI schema is now generated for the Operator, which allows Kubernetes to validate Custom Resource and protects users from occasionally

applying deploy/cr.yaml with syntax errors

New Features

K8SPXC-936: Allow modifying the init script via Custom Resource, which is useful for troubleshooting the Operator’s issues

K8SPXC-758: Allow to skip TLS verification for backup storage, useful for self-hosted S3-compatible storage with a self-signed certificate

Improvements

K8SPXC-947: Parametrize the number of attempt the Operator should make for backup backup through a Custom Resource option

K8SPXC-738: Allow to set service labels for HAProxy and ProxySQL in Custom Resource to enable various integrations with cloud providers or service

meshes

K8SPXC-848: PMM container does not cause the crash of the whole database Pod if pmm-agent is not working properly

K8SPXC-625: Print the total number of binlogs and the number of remaining binlogs in the restore log while point-in-time recovery in progress

K8SPXC-920: Using the new Percona XtraBackup Exponential Backoff feature decreases the number of occasional unsuccessful backups due to more

effective retries timing (Thanks to Dustin Falgout for reporting this issue)

K8SPXC-823: Make it possible to use API Key to authorize within Percona Monitoring and Management Server

Bugs Fixed

K8SPXC-985: Fix a bug that caused point-in-time recovery to fail due to incorrect binlog filtering logic

K8SPXC-899: Fix a bug due to which issued certificates didn’t cover all hostnames, making VERIFY_IDENTITY client mode not working with HAProxy

K8SPXC-750: Fix a bug that prevented ProxySQL from connecting to Percona XtraDB Cluster after turning TLS off

K8SPXC-896: Fix a bug due to which the Operator was unable to create ssl-internal Secret if crash happened in the middle of a reconcile and restart

(Thanks to srteam2020 for contribution)

K8SPXC-725 and K8SPXC-763: Fix a bug due to which ProxySQL StatefulSet, and Services where mistakenly deleted by the Operator when reading stale

ProxySQL or HAProxy information (Thanks to srteam2020 for contribution)

K8SPXC-957: Fix a bug due to which pxc-db Helm chart didn’t support setting the replicasServiceType Custom Resource option (Thanks to Carlos

Martell for reporting this issue)

K8SPXC-534: Fix a bug that caused some SQL queries to fail during the pxc StatefulSet update (Thanks to Sergiy Prykhodko for reporting this issue)

K8SPXC-1016: Fix a bug due to which an empty SSL secret name in Custom Resource caused the Operator to throw a misleading error message in the log

K8SPXC-994: Don’t use root user in MySQL Pods to perform checks during cluster restoration, which may be helpful when restoring from non-Kubernetes

environments

https://jira.percona.com/browse/K8SPXC-936
https://jira.percona.com/browse/K8SPXC-758
https://jira.percona.com/browse/K8SPXC-947
https://jira.percona.com/browse/K8SPXC-738
https://jira.percona.com/browse/K8SPXC-848
https://jira.percona.com/browse/K8SPXC-625
https://jira.percona.com/browse/K8SPXC-920
https://docs.percona.com/percona-xtrabackup/8.0/xbcloud/xbcloud_exbackoff.html
https://docs.percona.com/percona-xtrabackup/8.0/xbcloud/xbcloud_exbackoff.html
https://docs.percona.com/percona-xtrabackup/8.0/xbcloud/xbcloud_exbackoff.html
https://jira.percona.com/browse/K8SPXC-823
https://jira.percona.com/browse/K8SPXC-985
https://jira.percona.com/browse/K8SPXC-899
https://jira.percona.com/browse/K8SPXC-750
https://jira.percona.com/browse/K8SPXC-896
https://jira.percona.com/browse/K8SPXC-725
https://jira.percona.com/browse/K8SPXC-763
https://jira.percona.com/browse/K8SPXC-957
https://jira.percona.com/browse/K8SPXC-534
https://jira.percona.com/browse/K8SPXC-1016
https://jira.percona.com/browse/K8SPXC-994

Page 360

K8SPXC-961: Fix a bug due to which a user-defined sidecar container image in the Operator Pod could be treated as the initImage (Thanks to Carlos Martell

for reporting this issue)

K8SPXC-934: Fix a bug due to which the the cluster was not starting as Operator didn’t create the users Secret if the secretsName option was absent in

cr.yaml

K8SPXC-926: Fix a bug due to which failed Smart Update for one cluster in cluster-wide made the Operator unusable for other clusters

K8SPXC-900: Fix a bug where ProxySQL could not apply new configuration settings

K8SPXC-862: Fix a bug due to which changing resources as integer values without quotes in Custom Resource could lead to cluster getting stuck

K8SPXC-858: Fix a bug which could cause a single-node cluster to jump temporarily into the Error status during the upgrade

K8SPXC-814: Fix a bug when Custom Resource status was missing due to invalid variable setting in the manifest

Deprecation, Rename and Removal
K8SPXC-823: Password-based authorization to Percona Monitoring and Management Server is now deprecated and will be removed in future releases in

favor of a token-based one. Password-based authorization was used by the Operator before this release to provide MySQL monitoring, but now using the

API Key is the recommended authorization method

Supported Platforms
The following platforms were tested and are officially supported by the Operator 1.11.0:

OpenShift 4.7 - 4.10

Google Kubernetes Engine (GKE) 1.20 - 1.23

Amazon Elastic Container Service for Kubernetes (EKS) 1.20 - 1.22

Minikube 1.23

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPXC-961
https://jira.percona.com/browse/K8SPXC-934
https://jira.percona.com/browse/K8SPXC-926
https://jira.percona.com/browse/K8SPXC-900
https://jira.percona.com/browse/K8SPXC-862
https://jira.percona.com/browse/K8SPXC-858
https://jira.percona.com/browse/K8SPXC-814
https://jira.percona.com/browse/K8SPXC-823
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

Page 361

Percona Distribution for MySQL Operator 1.10.0

Date

November 24, 2021

Installation

For installation please refer to the documentation page

Release Highlights

Custom sidecar containers allow users to customize Percona XtraDB Cluster and other Operator components without changing the container images. In

this release, we enable even more customization, by allowing users to mount volumes into the sidecar containers.

In this release, we put a lot of effort into fixing bugs that were reported by the community. We appreciate everyone who helped us with discovering these

issues and contributed to the fixes.

New Features
K8SPXC-856: Mount volumes into sidecar containers to enable customization (Thanks to Sridhar L for contributing)

Improvements

K8SPXC-771: spec.Backup.serviceAccount and spec.automountServiceAccountToken Custom Resource options can now be used in the Helm chart

(Thanks to Gerwin van de Steeg for reporting this issue)

K8SPXC-794: The logrotate command now doesn’t use verbose mode to avoid flooding the log with rotate information

K8SPXC-793: Logs are now strictly following JSON specification to simplify parsing

K8SPXC-789: New source_retry_count and source_connect_retry options were added to tune source retries for replication between two clusters

K8SPXC-588: New replicasServiceEnabled option was added to allow disabling the Kubernetes Service for haproxy-replicas , which may be useful to

avoid the unwanted forwarding of the application write requests to all Percona XtraDB Cluster instances

K8SPXC-822: Logrotate now doesn’t rotate GRA logs (binlog events in ROW format representing the failed transaction) as ordinary log files, storing them for

7 days instead which gives additional time to debug the problem

Bugs Fixed

K8SPXC-761: Fixed a bug where HAProxy container was not setting explicit USER id, being incompatible with the runAsNonRoot security policy (Thanks to

Henno Schooljan for reporting this issue)

K8SPXC-894: Fixed a bug where trailing white spaces in the pmm-admin add command caused reconcile loop on OpenShift

K8SPXC-831: Fixed a bug that made it possible to have a split-brain situation, when two nodes were starting their own cluster in case of a DNS failure

K8SPXC-796: Fixed a bug due to which S3 backup deletion didn’t delete Pods attached to the backup job if the S3 finalizer was set (Thanks to Ben Langfeld

for reporting this issue)

K8SPXC-876: Stopped using the service.alpha.kubernetes.io/tolerate-unready-endpoints deprecated Kubernetes option in the

${clustername}-pxc-unready service annotation (Thanks to Antoine Habran for reporting this issue)

K8SPXC-842: Fixed a bug where backup finalizer didn’t delete data from S3 if the backup path contained a folder inside of the S3 bucket (Thanks to

for reporting this issue)

K8SPXC-812: Fix a bug due to which the Operator didn’t support cert-manager versions since v0.14.0 (Thanks to Ben Langfeld for reporting this issue)

K8SPXC-762: Fix a bug due to which the validating webhook was not accepting scale operation in the Operator cluster-wide mode (Thanks to Henno

Schooljan for reporting this issue)

K8SPXC-893: Fix a bug where HAProxy service failed during the config validation check if there was a resolution fail with one of the PXC addresses

K8SPXC-871: Fix a bug that prevented removing a Percona XtraDB Cluster manual backup for PVC storage

K8SPXC-851: Fixed a bug where changing replication user password didn’t work

https://jira.percona.com/browse/K8SPXC-856
https://jira.percona.com/browse/K8SPXC-771
https://jira.percona.com/browse/K8SPXC-794
https://jira.percona.com/browse/K8SPXC-793
https://jira.percona.com/browse/K8SPXC-789
https://jira.percona.com/browse/K8SPXC-588
https://jira.percona.com/browse/K8SPXC-822
https://jira.percona.com/browse/K8SPXC-761
https://jira.percona.com/browse/K8SPXC-894
https://jira.percona.com/browse/K8SPXC-831
https://jira.percona.com/browse/K8SPXC-796
https://jira.percona.com/browse/K8SPXC-876
https://jira.percona.com/browse/K8SPXC-842
https://jira.percona.com/browse/K8SPXC-812
https://jira.percona.com/browse/K8SPXC-762
https://jira.percona.com/browse/K8SPXC-893
https://jira.percona.com/browse/K8SPXC-871
https://jira.percona.com/browse/K8SPXC-851

Page 362

K8SPXC-850: Fixed a bug where the default weight value wasn’t set for a host in a replication channel

K8SPXC-845: Fixed a bug where using malformed cr.yaml caused stuck cases in cluster deletion

K8SPXC-838: Fixed a bug due to which the Log Collector and PMM containers with unspecified memory and CPU requests were inheriting them from the

PXC container

K8SPXC-824: Cluster may get into an unrecoverable state with incomplete full crash

K8SPXC-818: Fixed a bug which made Pods with a custom config inside a Secret or a ConfigMap not restarting at config update

K8SPXC-783: Fixed a bug where the root user was able to modify the monitor and clustercheck system users, making the possibility of cluster failure or

misbehavior

Supported Platforms
The following platforms were tested and are officially supported by the Operator 1.10.0:

OpenShift 4.7 - 4.9

Google Kubernetes Engine (GKE) 1.19 - 1.22

Amazon Elastic Kubernetes Service (EKS) 1.17 - 1.21

Minikube 1.22

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process. Other Kubernetes flavors and

versions depend on the backward compatibility offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPXC-850
https://jira.percona.com/browse/K8SPXC-845
https://jira.percona.com/browse/K8SPXC-838
https://jira.percona.com/browse/K8SPXC-824
https://jira.percona.com/browse/K8SPXC-818
https://jira.percona.com/browse/K8SPXC-783

Page 363

Percona Distribution for MySQL Operator 1.9.0

Date

August 9, 2021

Installation

For installation please refer to the documentation page

Release Highlights

Starting from this release, the Operator changes its official name to Percona Distribution for MySQL Operator. This new name emphasizes gradual

changes which incorporated a collection of Percona’s solutions to run and operate Percona Server for MySQL and Percona XtraDB Cluster, available

separately as Percona Distribution for MySQL .

Now you can see HAProxy metrics in your favorite Percona Monitoring and Management (PMM) dashboards automatically.

The cross-site replication feature allows an asynchronous replication between two Percona XtraDB Clusters, including scenarios when one of the clusters

is outside of the Kubernetes environment. The feature is intended for the following use cases:

provide migrations of your Percona XtraDB Cluster to Kubernetes or vice versa,

migrate regular MySQL database to Percona XtraDB Cluster under the Operator control, or carry on backward migration,

enable disaster recovery capability for your cluster deployment.

New Features

K8SPXC-657: Use Secrets to store custom configuration with sensitive data for Percona XtraDB Cluster, HAProxy, and ProxySQL Pods

K8SPXC-308: Implement Percona XtraDB Cluster asynchronous replication within the Operator

K8SPXC-688: Define environment variables in the Custom Resource to provide containers with additional customizations

Improvements

K8SPXC-673: HAProxy Pods now come with Percona Monitoring and Management integration and support

K8SPXC-791: Allow stopping the restart-on-fail loop for Percona XtraDB Cluster and Log Collector Pods without special debug images

K8SPXC-764: Unblock backups even if just a single instance is available by setting the allowUnsafeConfigurations flag to true

K8SPXC-765: Automatically delete custom configuration ConfigMaps if the variable in Custom Resource was unset (Thanks to Oleksandr Levchenkov for

contributing)

K8SPXC-734: Simplify manual recovery by automatically getting Percona XtraDB Cluster namespace in the pxc container entrypoint script (Thanks to

Michael Lin for contributing)

K8SPXC-656: imagePullPolicy is now set for init container as well to avoid pulling and simplifying deployments in air-gapped environments (Thanks to

Herberto Graça for contributing)

K8SPXC-511: Secret object containing system users passwords is now deleted along with the Cluster if delete-pxc-pvc finalizer is enabled (Thanks to

Matthias Baur for contributing)

K8SPXC-772: All Service objects now have Percona XtraDB Cluster labels attached to them to enable label selector usage

K8SPXC-731: It is now possible to see the overall progress of the provisioning of Percona XtraDB Cluster resources and dependent components in Custom

Resource status

K8SPXC-730: Percona XtraDB Cluster resource statuses in Custom Resource output (e.g. returned by kubectl get pxc command) have been improved

and now provide more precise reporting

K8SPXC-697: Add namespace support in the copy-backup script

K8SPXC-321, K8SPXC-556, K8SPXC-568: Restrict the minimal number of ProxySQL and HAProxy Pods and the maximal number of Percona XtraDB Cluster

Pods if the unsafe flag is not set

K8SPXC-554: Reduced the number of various etcd and k8s object updates from the Operator to minimize the pressure on the Kubernetes cluster

https://www.percona.com/doc/percona-distribution-mysql/8.0/index.html
https://www.percona.com/doc/percona-distribution-mysql/8.0/index.html
https://www.percona.com/doc/percona-distribution-mysql/8.0/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/haproxy.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/haproxy.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/haproxy.html
https://jira.percona.com/browse/K8SPXC-657
https://jira.percona.com/browse/K8SPXC-308
https://jira.percona.com/browse/K8SPXC-688
https://jira.percona.com/browse/K8SPXC-673
https://jira.percona.com/browse/K8SPXC-791
https://jira.percona.com/browse/K8SPXC-764
https://jira.percona.com/browse/K8SPXC-765
https://jira.percona.com/browse/K8SPXC-734
https://jira.percona.com/browse/K8SPXC-656
https://jira.percona.com/browse/K8SPXC-511
https://jira.percona.com/browse/K8SPXC-772
https://jira.percona.com/browse/K8SPXC-731
https://jira.percona.com/browse/K8SPXC-730
https://jira.percona.com/browse/K8SPXC-697
https://jira.percona.com/browse/K8SPXC-321
https://jira.percona.com/browse/K8SPXC-556
https://jira.percona.com/browse/K8SPXC-568
https://jira.percona.com/browse/K8SPXC-554

Page 364

K8SPXC-421: It is now possible to use X Plugin with Percona XtraDB Cluster Pods

Known Issues and Limitations
K8SPXC-835: ProxySQL will fail to start on a Replica Percona XtraDB Cluster for cross-site replication in this release

Bugs Fixed

K8SPXC-757: Fixed a bug where manual crash recovery interfered with auto recovery functionality even with the auto_recovery flag set to false

K8SPXC-706: TLS certificates renewal by a cert-manager was failing (Thanks to Jeff Andrews for reporting this issue)

K8SPXC-785: Fixed a bug where backup to S3 was producing false-positive error messages even if backup was successful

K8SPXC-642: Fixed a bug where PodDisruptionBudget was blocking the upgrade of HAProxy (Thanks to Davi S Evangelista for reporting this issue)

K8SPXC-585: Fixed a bug where the Operator got stuck if the wrong user credentials were set in the Secret object (Thanks to Sergiy Prykhodko for reporting

this issue)

K8SPXC-756: Fixed a bug where the Operator was scheduling backups even when the cluster was paused (Thanks to Dmytro for reporting this issue)

K8SPXC-813: Fixed a bug where backup restore didn’t return error on incorrect AWS credentials

K8SPXC-805: Fixed a bug that made pxc-backups object deletion hang if the Operator couldn’t list objects from the S3 bucket (e.g. due to wrong S3

credentials)

K8SPXC-787: Fixed the “initializing” status of ready clusters caused by the xtrabackup user password change

K8SPXC-775: Fixed a bug where errors in custom mysqld config settings were not detected by the Operator if the config was modified after the initial

cluster was created

K8SPXC-767: Fixed a bug where on-demand backup hung up if created while the cluster was in the “initializing” state

K8SPXC-726: Fixed a bug where the delete-s3-backup finalizer prevented deleting a backup stored on Persistent Volume

K8SPXC-682: Fixed auto-tuning feature setting wrong innodb_buffer_pool_size value in some cases

https://jira.percona.com/browse/K8SPXC-421
https://www.percona.com/blog/2019/01/07/understanding-mysql-x-all-flavors/
https://www.percona.com/blog/2019/01/07/understanding-mysql-x-all-flavors/
https://www.percona.com/blog/2019/01/07/understanding-mysql-x-all-flavors/
https://jira.percona.com/browse/K8SPXC-835
https://jira.percona.com/browse/K8SPXC-757
https://jira.percona.com/browse/K8SPXC-706
https://jira.percona.com/browse/K8SPXC-785
https://jira.percona.com/browse/K8SPXC-642
https://jira.percona.com/browse/K8SPXC-585
https://jira.percona.com/browse/K8SPXC-756
https://jira.percona.com/browse/K8SPXC-813
https://jira.percona.com/browse/K8SPXC-805
https://jira.percona.com/browse/K8SPXC-787
https://jira.percona.com/browse/K8SPXC-775
https://jira.percona.com/browse/K8SPXC-767
https://jira.percona.com/browse/K8SPXC-726
https://jira.percona.com/browse/K8SPXC-682

Page 365

Percona Kubernetes Operator for Percona XtraDB Cluster 1.8.0

Date

April 26, 2021

Installation

Installing Percona Kubernetes Operator for Percona XtraDB Cluster

Release Highlights

It is now possible to use kubectl scale command to scale Percona XtraDB Cluster horizontally (add or remove Replica Set instances). You can also use

Horizontal Pod Autoscaler which will scale your database cluster based on various metrics, such as CPU utilization.

Support for custom sidecar containers. The Operator makes it possible now to deploy additional (sidecar) containers to the Pod. This feature can be useful

to run debugging tools or some specific monitoring solutions, etc. Sidecar containers can be added to pxc, haproxy, and proxysql sections of the

deploy/cr.yaml configuration file.

New Features

K8SPXC-528: Support for custom sidecar containers to extend the Operator capabilities

K8SPXC-647: Allow the cluster scale in and scale out with the kubectl scale command or Horizontal Pod Autoscaler

K8SPXC-643: Operator can now automatically recover Percona XtraDB Cluster after the network partitioning

Improvements

K8SPXC-442: The Operator can now automatically remove old backups from S3 storage if the retention period is set (thanks to Davi S Evangelista for

reporting this issue)

K8SPXC-697: Add namespace support in the script used to copy backups from remote storage to a local machine

K8SPXC-627: Point-in-time recovery uploader now chooses the Pod with the oldest binary log in the cluster to ensure log consistency

K8SPXC-618: Add debug symbols from the percona-xtradb-cluster-server-debuginfo package to the Percona XtraDB Cluster debug docker image to

simplify troubleshooting

K8SPXC-599: It is now possible to recover databases up to a specific transaction with the Point-in-time Recovery feature. Previously the user could only

recover to specific date and time

K8SPXC-598: Point-in-time recovery feature now works with compressed backups

K8SPXC-536: It is now possible to explicitly set the version of Percona XtraDB Cluster for newly provisioned clusters. Before that, all new clusters were

started with the latest PXC version if Version Service was enabled

K8SPXC-522: Add support for the runtimeClassName Kubernetes feature for selecting the container runtime

K8SPXC-519, K8SPXC-558, and K8SPXC-637: Various improvements of Operator log messages

Known Issues and Limitations
K8SPXC-701: Scheduled backups are not compatible with Kubernetes 1.20 in cluster-wide mode.

Bugs Fixed

K8SPXC-654: Use MySQL administrative port for Kubernetes liveness/readiness probes to avoid false positive failures

K8SPXC-614, K8SPXC-619, K8SPXC-545, K8SPXC-641, K8SPXC-576: Fix multiple bugs due to which changes of various objects in deploy/cr.yaml were

not applied to the running cluster (thanks to Sergiy Prykhodko for reporting some of these issues)

K8SPXC-596: Fix a bug due to which liveness probe for pxc container could cause zombie processes

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://jira.percona.com/browse/K8SPXC-528
https://jira.percona.com/browse/K8SPXC-647
https://jira.percona.com/browse/K8SPXC-643
https://en.wikipedia.org/wiki/Network_partition
https://en.wikipedia.org/wiki/Network_partition
https://en.wikipedia.org/wiki/Network_partition
https://jira.percona.com/browse/K8SPXC-442
https://jira.percona.com/browse/K8SPXC-697
https://jira.percona.com/browse/K8SPXC-627
https://jira.percona.com/browse/K8SPXC-618
https://www.percona.com/doc/percona-server/8.0/installation/yum_repo.html#what-s-in-each-rpm-package
https://www.percona.com/doc/percona-server/8.0/installation/yum_repo.html#what-s-in-each-rpm-package
https://www.percona.com/doc/percona-server/8.0/installation/yum_repo.html#what-s-in-each-rpm-package
https://jira.percona.com/browse/K8SPXC-599
https://jira.percona.com/browse/K8SPXC-598
https://jira.percona.com/browse/K8SPXC-536
https://jira.percona.com/browse/K8SPXC-522
https://jira.percona.com/browse/K8SPXC-701
https://jira.percona.com/browse/K8SPXC-654
https://jira.percona.com/browse/K8SPXC-614
https://jira.percona.com/browse/K8SPXC-619
https://jira.percona.com/browse/K8SPXC-545
https://jira.percona.com/browse/K8SPXC-641
https://jira.percona.com/browse/K8SPXC-576
https://jira.percona.com/browse/K8SPXC-596

Page 366

K8SPXC-632: Fix a bug preventing point-in-time recovery when multiple clusters were uploading binary logs to a single S3 bucket

K8SPXC-573: Fix a bug that prevented using special characters in XtraBackup password (thanks to Gertjan Bijl for reporting this issue)

K8SPXC-571: Fix a bug where Percona XtraDB Cluster went into a desynced state at backup job crash (Thanks to Dimitrij Hilt for reporting this issue)

K8SPXC-430: Galera Arbitrator used for backups does not break the cluster anymore in various cases

K8SPXC-684: Fix a bug due to which point-in-time recovery backup didn’t allow specifying the endpointUrl for Amazon S3 storage

K8SPXC-681: Fix operator crash which occurred when non-existing storage name was specified for point-in-time recovery

K8SPXC-638: Fix unneeded delay in showing logs with the kubectl logs command for the logs container

K8SPXC-609: Fix frequent HAProxy service NodePort updates which were causing issues with load balancers

K8SPXC-542: Fix a bug due to which backups were taken only for one cluster out of many controlled by one Operator

CLOUD-611: Stop using the already deprecated runtime/scheme package (Thanks to Jerome Küttner for reporting this issue)

https://jira.percona.com/browse/K8SPXC-632
https://jira.percona.com/browse/K8SPXC-573
https://jira.percona.com/browse/K8SPXC-571
https://jira.percona.com/browse/K8SPXC-430
https://jira.percona.com/browse/K8SPXC-684
https://jira.percona.com/browse/K8SPXC-681
https://jira.percona.com/browse/K8SPXC-638
https://jira.percona.com/browse/K8SPXC-609
https://jira.percona.com/browse/K8SPXC-542
https://jira.percona.com/browse/CLOUD-611

Page 367

Percona Kubernetes Operator for Percona XtraDB Cluster 1.7.0

Date

February 2, 2021

Installation

Installing Percona Kubernetes Operator for Percona XtraDB Cluster

New Features

K8SPXC-530: Add support for point-in-time recovery

K8SPXC-564: PXC cluster will now recover automatically from a full crash when Pods are stuck in CrashLoopBackOff status

K8SPXC-497: Official support for Percona Monitoring and Management (PMM) v.2

NOTE: Monitoring with PMM v.1 configured according to the unofficial instruction will not work after the upgrade. Please switch to PMM v.2.

Improvements

K8SPXC-485: Percona XtraDB Cluster Pod logs are now stored on Persistent Volumes. Users can debug the issues even after the Pod restart

K8SPXC-389: User can now change ServiceType for HAProxy replicas Kubernetes service

K8SPXC-546: Reduce the number of ConfigMap object updates from the Operator to improve performance of the Kubernetes cluster

K8SPXC-553: Change default configuration of ProxySQL to WRITERS_ARE_READERS=yes so Percona XtraDB Cluster continues operating with a single node

left

K8SPXC-512: User can now limit cluster-wide Operator access to specific namespaces (Thanks to user mgar for contribution)

K8SPXC-490: Improve error message when not enough memory is set for auto-tuning

K8SPXC-312: Add schema validation for Custom Resource. Now cr.yaml is validated by a WebHook for syntax typos before being applied. It works only in

cluster-wide mode due to access restrictions

K8SPXC-510: Percona XtraDB Cluster operator can now be deployed through RedHat Marketplace

K8SPXC-543: Check HAProxy custom configuration for syntax errors before applying it to avoid Pod getting stuck in CrashLoopBackOff status (Thanks to

user pservit for reporting this issue)

Bugs Fixed

K8SPXC-544: Add a liveness probe for HAProxy so it is not stuck and automatically restarted when crashed (Thanks to user pservit for reporting this issue)

K8SPXC-500: Fix a bug that prevented creating a backup in cluster-wide mode if default cr.yaml is used (Thanks to user michael.lin1 for reporting this

issue)

K8SPXC-491: Fix a bug due to which compressed backups didn’t work with the Operator (Thanks to user dejw for reporting this issue)

K8SPXC-570: Fix a bug causing backups to fail with some S3-compatible storages (Thanks to user dimitrij for reporting this issue)

K8SPXC-517: Fix a bug causing Operator crash if Custom Resource backup section is missing (Thanks to user deamonmv for reporting this issue)

K8SPXC-253: Fix a bug preventing rolling out Custom Resource changes (Thanks to user bitsbeats for reporting this issue)

K8SPXC-552: Fix a bug when HAProxy secrets cannot be updated by the user

K8SPXC-551: Fix a bug due to which cluster was not initialized when the password had an end of line symbol in secret.yaml

K8SPXC-526: Fix a bug due to which not all clusters managed by the Operator were upgraded by the automatic update

K8SPXC-523: Fix a bug putting cluster into unhealthy status after the clustercheck secret changed

K8SPXC-521: Fix automatic upgrade job repeatedly looking for an already removed cluster

K8SPXC-520: Fix Smart update in cluster-wide mode adding version service check job repeatedly instead of doing it only once

K8SPXC-463: Fix a bug due to which wsrep_recovery log was unavailable after the Pod restart

K8SPXC-424: Fix a bug due to which HAProxy health-check spammed in logs, making them hardly unreadable

https://jira.percona.com/browse/K8SPXC-530
https://jira.percona.com/browse/K8SPXC-564
https://jira.percona.com/browse/K8SPXC-497
https://www.percona.com/blog/2020/07/23/using-percona-kubernetes-operators-with-percona-monitoring-and-management/
https://www.percona.com/blog/2020/07/23/using-percona-kubernetes-operators-with-percona-monitoring-and-management/
https://www.percona.com/blog/2020/07/23/using-percona-kubernetes-operators-with-percona-monitoring-and-management/
https://jira.percona.com/browse/K8SPXC-485
https://jira.percona.com/browse/K8SPXC-389
https://jira.percona.com/browse/K8SPXC-546
https://jira.percona.com/browse/K8SPXC-553
https://jira.percona.com/browse/K8SPXC-512
https://jira.percona.com/browse/K8SPXC-490
https://jira.percona.com/browse/K8SPXC-312
https://jira.percona.com/browse/K8SPXC-510
https://marketplace.redhat.com/en-us/products/percona-kubernetes-operator-for-percona-server-for-xtradb-cluster
https://marketplace.redhat.com/en-us/products/percona-kubernetes-operator-for-percona-server-for-xtradb-cluster
https://marketplace.redhat.com/en-us/products/percona-kubernetes-operator-for-percona-server-for-xtradb-cluster
https://jira.percona.com/browse/K8SPXC-543
https://jira.percona.com/browse/K8SPXC-544
https://jira.percona.com/browse/K8SPXC-500
https://jira.percona.com/browse/K8SPXC-491
https://jira.percona.com/browse/K8SPXC-570
https://jira.percona.com/browse/K8SPXC-517
https://jira.percona.com/browse/K8SPXC-253
https://jira.percona.com/browse/K8SPXC-552
https://jira.percona.com/browse/K8SPXC-551
https://jira.percona.com/browse/K8SPXC-526
https://jira.percona.com/browse/K8SPXC-523
https://jira.percona.com/browse/K8SPXC-521
https://jira.percona.com/browse/K8SPXC-520
https://jira.percona.com/browse/K8SPXC-463
https://jira.percona.com/browse/K8SPXC-424

Page 368

K8SPXC-379: Fix a bug due to which the Operator user credentials were not added into internal secrets when upgrading from 1.4.0 (Thanks to user pservit

for reporting this issue)

https://jira.percona.com/browse/K8SPXC-379

Page 369

Percona Kubernetes Operator for Percona XtraDB Cluster 1.6.0

Date

October 9, 2020

Installation

Installing Percona Kubernetes Operator for Percona XtraDB Cluster

New Features

K8SPXC-394: Support of “cluster-wide” mode for Percona XtraDB Cluster Operator

K8SPXC-416: Support of the proxy-protocol in HAProxy (to use this feature, you should have a Percona XtraDB Cluster image version 8.0.21 or newer)

K8SPXC-429: A possibility to restore backups to a new Kubernetes-based environment with no existing Percona XtraDB Cluster Custom Resource

K8SPXC-343: Helm chart officially provided with the Operator

Improvements

K8SPXC-144: Allow adding ProxySQL configuration options

K8SPXC-398: New crVersion key in deploy/cr.yaml to indicate the API version that the Custom Resource corresponds to (thanks to user mike.saah

for contribution)

K8SPXC-474: The init container now has the same resource requests as the main container of a correspondent Pod (thanks to user yann.leenhardt for

contribution)

K8SPXC-372: Support new versions of cert-manager by the Operator (thanks to user rf_enigm for contribution)

K8SPXC-317: Possibility to configure the imagePullPolicy Operator option (thanks to user imranrazakhan for contribution)

K8SPXC-462: Add readiness probe for HAProxy

K8SPXC-411: Extend cert-manager configuration to add additional domains (multiple SAN) to a certificate

K8SPXC-375: Improve HAProxy behavior in case of switching writer node to a new one and back

K8SPXC-368: Autoupdate system users by changing the appropriate Secret name

Known Issues and Limitations

OpenShift 3.11 requires additional configuration for the correct HAProxy operation: the feature gate PodShareProcessNamespace should be set to true .

If getting it enabled is not possible, we recommend using ProxySQL instead of HAProxy with OpenShift 3.11. Other OpenShift and Kubernetes versions are

not affected.

K8SPXC-491: Compressed backups are not compatible with the Operator 1.6.0 (percona/percona-xtradb-cluster-operator:1.5.0-pxc8.0-backup

or percona/percona-xtradb-cluster-operator:1.5.0-pxc5.7-backup image can be used as a workaround if needed).

Bugs Fixed

K8SPXC-431: HAProxy unable to start on OpenShift with the default cr.yaml file

K8SPXC-408: Insufficient MAX_USER_CONNECTIONS=10 for ProxySQL monitor user (increased to 100)

K8SPXC-391: HAProxy and PMM cannot be enabled at the same time (thanks to user rf_enigm for reporting this issue)

K8SPXC-406: Second node (XXX-pxc-1) always selected as a donor (thanks to user pservit for reporting this issue)

K8SPXC-390: Crash on missing HAProxy PodDisruptionBudget

K8SPXC-355: Counterintuitive YYYY-DD-MM dates in the S3 backup folder names (thanks to user graham-web for contribution)

K8SPXC-305: ProxySQL not working in case of passwords with a % symbol in the Secrets object (thanks to user ben.wilson for reporting this issue)

https://jira.percona.com/browse/K8SPXC-394
https://jira.percona.com/browse/K8SPXC-416
https://jira.percona.com/browse/K8SPXC-429
https://jira.percona.com/browse/K8SPXC-343
https://jira.percona.com/browse/K8SPXC-144
https://jira.percona.com/browse/K8SPXC-398
https://jira.percona.com/browse/K8SPXC-474
https://jira.percona.com/browse/K8SPXC-372
https://jira.percona.com/browse/K8SPXC-317
https://jira.percona.com/browse/K8SPXC-462
https://jira.percona.com/browse/K8SPXC-411
https://jira.percona.com/browse/K8SPXC-375
https://jira.percona.com/browse/K8SPXC-368
https://jira.percona.com/browse/K8SPXC-491
https://jira.percona.com/browse/K8SPXC-431
https://jira.percona.com/browse/K8SPXC-408
https://jira.percona.com/browse/K8SPXC-391
https://jira.percona.com/browse/K8SPXC-406
https://jira.percona.com/browse/K8SPXC-390
https://jira.percona.com/browse/K8SPXC-355
https://jira.percona.com/browse/K8SPXC-305

Page 370

K8SPXC-278: ProxySQL never getting ready status in some environments after the cluster launch due to the proxysql-monit Pod crash (thanks to user

lots0logs for contribution)

K8SPXC-274: The 1.2.0 -> 1.3.0 -> 1.4.0 upgrade path not working (thanks to user martin.atroo for reporting this issue)

K8SPXC-476: SmartUpdate failing to fetch version from Version Service in case of incorrectly formatted Percona XtraDB Cluster patch version higher than

the last known one

K8SPXC-454: After the cluster creation, pxc-0 Pod restarting due to Operator not waiting for cert-manager to issue requested certificates (thanks to user

mike.saah for reporting this issue)

K8SPXC-450: TLS annotations causing unnecessary HAProxy Pod restarts

K8SPXC-443 and K8SPXC-456: The outdated version service endpoint URL (fix with preserving backward compatibility)

K8SPXC-435: MySQL root password visible through kubectl logs

K8SPXC-426: mysqld recovery logs not logged to file and not available through kubectl logs

K8SPXC-423: HAProxy not refreshing IP addresses even when the node gets a different address

K8SPXC-419: Percona XtraDB Cluster incremental state transfers not taken into account by readiness/liveness checks

K8SPXC-418: HAProxy not routing traffic for 1 donor, 2 joiners

K8SPXC-417: Cert-manager not compatible with Kubernetes versions below v1.15 due to unnecessarily high API version demand

K8SPXC-384: Debug images were not fully functional for the latest version of the Operator because of having no infinity loop

K8SPXC-383: DNS warnings in PXC Pods when using HAProxy

K8SPXC-364: Smart Updates showing empty “from” versions for non-PXC objects in logs

K8SPXC-379: The Operator user credentials not added into internal secrets when upgrading from 1.4.0 (thanks to user pservit for reporting this issue)

https://jira.percona.com/browse/K8SPXC-278
https://jira.percona.com/browse/K8SPXC-274
https://jira.percona.com/browse/K8SPXC-476
https://jira.percona.com/browse/K8SPXC-454
https://jira.percona.com/browse/K8SPXC-450
https://jira.percona.com/browse/K8SPXC-443
https://jira.percona.com/browse/K8SPXC-456
https://jira.percona.com/browse/K8SPXC-435
https://jira.percona.com/browse/K8SPXC-426
https://jira.percona.com/browse/K8SPXC-423
https://jira.percona.com/browse/K8SPXC-419
https://jira.percona.com/browse/K8SPXC-418
https://jira.percona.com/browse/K8SPXC-417
https://jira.percona.com/browse/K8SPXC-384
https://jira.percona.com/browse/K8SPXC-383
https://jira.percona.com/browse/K8SPXC-364
https://jira.percona.com/browse/K8SPXC-379

Page 371

Percona Kubernetes Operator for Percona XtraDB Cluster 1.5.0

Date

July 21, 2020

Installation

Installing Percona Kubernetes Operator for Percona XtraDB Cluster

New Features

K8SPXC-298: Automatic synchronization of MySQL users with ProxySQL

K8SPXC-294: HAProxy Support

K8SPXC-284: Fully automated minor version updates (Smart Update)

K8SPXC-257: Update Reader members before Writer member at cluster upgrades

K8SPXC-256: Support multiple PXC minor versions by the Operator

Improvements

K8SPXC-290: Extend usable backup schedule syntax to include lists of values

K8SPXC-309: Quickstart Guide on Google Kubernetes Engine (GKE) - link

K8SPXC-288: Quickstart Guide on Amazon Elastic Kubernetes Service (EKS) - link

K8SPXC-280: Support XtraBackup compression

K8SPXC-279: Use SYSTEM_USER privilege for system users on PXC 8.0

K8SPXC-277: Install GDB in PXC images

K8SPXC-276: Pod-0 should be selected as Writer if possible

K8SPXC-252: Automatically manage system users for MySQL and ProxySQL on password rotation via Secret

K8SPXC-242: Improve internal backup implementation for better stability with PXC 8.0

CLOUD-404: Support of loadBalancerSourceRanges for LoadBalancer Services

CLOUD-556: Kubernetes 1.17 added to the list of supported platforms

Bugs Fixed

K8SPXC-327: CrashloopBackOff if PXC 8.0 Pod restarts in the middle of SST

K8SPXC-291: PXC Restore failure with “The node was low on resource: ephemeral-storage” error (Thanks to user rjeka for reporting this issue)

K8SPXC-270: Restore job wiping data from the original backup’s cluster when restoring to another cluster in the same namespace

K8SPXC-352: Backup cronjob not scheduled in some Kubernetes environments (Thanks to user msavchenko for reporting this issue)

K8SPXC-275: Outdated documentation on the Operator updates (Thanks to user martin.atroo for reporting this issue)

K8SPXC-347: XtraBackup failure after uploading a backup, causing the backup process restart in some cases (Thanks to user connde for reporting this

issue)

K8SPXC-373: Pod not cleaning up the SST tmp dir on start

K8SPXC-326: Changes in TLS Secrets not triggering PXC restart if AllowUnsafeConfig enabled

K8SPXC-323: Missing tar utility in the PXC node docker image

CLOUD-531: Wrong usage of strings.TrimLeft when processing apiVersion

CLOUD-474: Cluster creation not failing if wrong resources are set

https://jira.percona.com/browse/K8SPXC-298
https://jira.percona.com/browse/K8SPXC-294
https://jira.percona.com/browse/K8SPXC-284
https://jira.percona.com/browse/K8SPXC-257
https://jira.percona.com/browse/K8SPXC-256
https://jira.percona.com/browse/K8SPXC-290
https://jira.percona.com/browse/K8SPXC-309
https://jira.percona.com/browse/K8SPXC-288
https://jira.percona.com/browse/K8SPXC-280
https://jira.percona.com/browse/K8SPXC-279
https://jira.percona.com/browse/K8SPXC-277
https://jira.percona.com/browse/K8SPXC-276
https://jira.percona.com/browse/K8SPXC-252
https://jira.percona.com/browse/K8SPXC-242
https://jira.percona.com/browse/CLOUD-404
https://jira.percona.com/browse/CLOUD-556
https://jira.percona.com/browse/K8SPXC-327
https://jira.percona.com/browse/K8SPXC-291
https://jira.percona.com/browse/K8SPXC-270
https://jira.percona.com/browse/K8SPXC-352
https://jira.percona.com/browse/K8SPXC-275
https://jira.percona.com/browse/K8SPXC-347
https://jira.percona.com/browse/K8SPXC-373
https://jira.percona.com/browse/K8SPXC-326
https://jira.percona.com/browse/K8SPXC-323
https://jira.percona.com/browse/CLOUD-531
https://jira.percona.com/browse/CLOUD-474

Page 372

Percona Kubernetes Operator for Percona XtraDB Cluster 1.4.0

Date

April 29, 2020

Installation

Installing Percona Kubernetes Operator for Percona XtraDB Cluster

New Features

K8SPXC-172: Full data-at-rest encryption available in PXC 8.0 is now supported by the Operator. This feature is implemented with the help of the

keyring_vault plugin which ships with PXC 8.0. By utilizing Vault we enable our customers to follow best practices with encryption in their

environment.

K8SPXC-125: Percona XtraDB Cluster 8.0 is now supported

K8SPXC-95: Amazon Elastic Container Service for Kubernetes (EKS) was added to the list of the officially supported platforms

The OpenShift Container Platform 4.3 is now supported

Improvements

K8SPXC-262: The Operator allows setting ephemeral-storage requests and limits on all Pods

K8SPXC-221: The Operator now updates observedGeneration status message to allow better monitoring of the cluster rollout or backup/restore process

K8SPXC-213: A special PXC debug image is now available. It avoids restarting on fail and contains additional tools useful for debugging

K8SPXC-100: The Operator now implements the crash tolerance on the one member crash. The implementation is based on starting Pods with mysqld --

wsrep_recover command if there was no graceful shutdown

Bugs Fixed

K8SPXC-153: S3 protocol credentials were not masked in logs during the PXC backup & restore process

K8SPXC-222: The Operator got caught in reconciliation error in case of the erroneous/absent API version in the deploy/cr.yaml file

K8SPXC-261: ProxySQL logs were showing the root password

K8SPXC-220: The inability to update or delete existing CRD was possible because of too large records in etcd, resulting in “request is too large” errors. Only

20 last status changes are now stored in etcd to avoid this problem.

K8SPXC-52: The Operator produced an unclear error message in case of fail caused by the absent or malformed pxc section in the deploy/cr.yaml file

K8SPXC-269: The copy-backup.sh script didn’s work correctly in case of an existing secret with the AWS_ACCESS_KEY_ID/AWS_SECRET_ACCESS_KEY

credentials and prevented users from copying backups (e.g. to a local machine)

K8SPXC-263: The kubectl get pxc command was unable to show the correct ProxySQL external endpoint

K8SPXC-219: PXC Helm charts were incompatible with the version 3 of the Helm package manager

K8SPXC-40: The cluster was unable to reach “ready” status in case if ProxySQL.Enabled field was set to false

K8SPXC-34: Change of the proxysql.servicetype filed was not detected by the Operator and thus had no effect

https://jira.percona.com/browse/K8SPXC-172
https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.vaultproject.io/
https://jira.percona.com/browse/K8SPXC-125
https://jira.percona.com/browse/K8SPXC-95
https://jira.percona.com/browse/K8SPXC-262
https://jira.percona.com/browse/K8SPXC-221
https://jira.percona.com/browse/K8SPXC-213
https://jira.percona.com/browse/K8SPXC-100
https://jira.percona.com/browse/K8SPXC-153
https://jira.percona.com/browse/K8SPXC-222
https://jira.percona.com/browse/K8SPXC-261
https://jira.percona.com/browse/K8SPXC-220
https://jira.percona.com/browse/K8SPXC-52
https://jira.percona.com/browse/K8SPXC-269
https://jira.percona.com/browse/K8SPXC-263
https://jira.percona.com/browse/K8SPXC-219
https://jira.percona.com/browse/K8SPXC-40
https://jira.percona.com/browse/K8SPXC-34

Page 373

Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0
Percona announces the Percona Kubernetes Operator for Percona XtraDB Cluster 1.3.0 release on January 6, 2020. This release is now the current GA release

in the 1.3 series. Install the Kubernetes Operator for Percona XtraDB Cluster by following the instructions.

The Percona Kubernetes Operator for Percona XtraDB Cluster automates the lifecycle and provides a consistent Percona XtraDB Cluster instance. The

Operator can be used to create a Percona XtraDB Cluster, or scale an existing Cluster and contains the necessary Kubernetes settings.

The Operator simplifies the deployment and management of the Percona XtraDB Cluster in Kubernetes-based environments. It extends the Kubernetes API

with a new custom resource for deploying, configuring and managing the application through the whole life cycle.

The Operator source code is available in our Github repository . All of Percona’s software is open-source and free.

New features and improvements:

CLOUD-412: Auto-Tuning of the MySQL Parameters based on Pod memory resources was implemented in the case of Percona XtraDB Cluster Pod limits

(or at least Pod requests) specified in the cr.yaml file.

CLOUD-411: Now the user can adjust securityContext, replacing the automatically generated securityContext with the customized one.

CLOUD-394: The Percona XtraDB Cluster, ProxySQL, and backup images size decrease by 40-60% was achieved by removing unnecessary dependencies

and modules to reduce the cluster deployment time.

CLOUD-390: Helm chart for Percona Monitoring and Management (PMM) 2.0 has been provided.

CLOUD-383: Affinity constraints and tolerations were added to the backup Pod

CLOUD-430: Image URL in the CronJob Pod template is automatically updated when the Operator detects changed backup image URL

Fixed bugs:

CLOUD-462: Resource requests/limits were set not for all containers in a ProxySQL Pod

CLOUD-437: Percona Monitoring and Management Client was taking resources definition from the Percona XtraDB Cluster despite having much lower need

in resources, particularly lower memory footprint.

CLOUD-434: Restoring Percona XtraDB Cluster was failing on the OpenShift platform with customized security settings

CLOUD-399: The iputils package was added to the backup docker image to provide backup jobs with the ping command for a better network connection

handling

CLOUD-393: The Operator generated various StatefulSets in the first reconciliation cycle and in all subsequent reconciliation cycles, causing Kubernetes to

trigger an unnecessary ProxySQL restart once during the cluster creation.

CLOUD-376: A long-running SST caused the liveness probe check to fail it’s grace period timeout, resulting in an unrecoverable failure

CLOUD-243: Using MYSQL_ROOT_PASSWORD with special characters in a ProxySQL docker image was breaking the entrypoint initialization process

Percona XtraDB Cluster is an open source, cost-effective and robust clustering solution for businesses. It integrates Percona Server for MySQL with the

Galera replication library to produce a highly-available and scalable MySQL® cluster complete with synchronous multi-primary replication, zero data loss and

automatic node provisioning using Percona XtraBackup.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://jira.percona.com/browse/CLOUD-412
https://jira.percona.com/browse/CLOUD-411
https://jira.percona.com/browse/CLOUD-394
https://jira.percona.com/browse/CLOUD-390
https://jira.percona.com/browse/CLOUD-383
https://jira.percona.com/browse/CLOUD-430
https://jira.percona.com/browse/CLOUD-462
https://jira.percona.com/browse/CLOUD-437
https://jira.percona.com/browse/CLOUD-434
https://jira.percona.com/browse/CLOUD-399
https://jira.percona.com/browse/CLOUD-393
https://jira.percona.com/browse/CLOUD-376
https://jira.percona.com/browse/CLOUD-243
http://www.percona.com/doc/percona-xtradb-cluster/
http://www.percona.com/doc/percona-xtradb-cluster/
http://www.percona.com/doc/percona-xtradb-cluster/
https://jira.percona.com/secure/Dashboard.jspa
https://jira.percona.com/secure/Dashboard.jspa
https://jira.percona.com/secure/Dashboard.jspa

Page 374

Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0
Percona announces the Percona Kubernetes Operator for Percona XtraDB Cluster 1.2.0 release on September 20, 2019. This release is now the current GA

release in the 1.2 series. Install the Kubernetes Operator for Percona XtraDB Cluster by following the instructions.

The Percona Kubernetes Operator for Percona XtraDB Cluster automates the lifecycle and provides a consistent Percona XtraDB Cluster instance. The

Operator can be used to create a Percona XtraDB Cluster, or scale an existing Cluster and contains the necessary Kubernetes settings.

The Operator simplifies the deployment and management of the Percona XtraDB Cluster in Kubernetes-based environments. It extends the Kubernetes API

with a new custom resource for deploying, configuring and managing the application through the whole life cycle.

The Operator source code is available in our Github repository . All of Percona’s software is open-source and free.

New features and improvements:

A Service Broker was implemented for the Operator, allowing a user to deploy Percona XtraDB Cluster on the OpenShift Platform, configuring it with a

standard GUI, following the Open Service Broker API.

Now the Operator supports Percona Monitoring and Management 2 , which means being able to detect and register to PMM Server of both 1.x and 2.0

versions.

A NodeSelector constraint is now supported for the backups, which allows using backup storage accessible to a limited set of nodes only (contributed by

Chen Min).

The resource constraint values were refined for all containers to eliminate the possibility of an out of memory error.

Now it is possible to set the schedulerName option in the operator parameters. This allows using storage which depends on a custom scheduler, or a

cloud provider which optimizes scheduling to run workloads in a cost-effective way (contributed by Smaine Kahlouch).

A bug was fixed, which made cluster status oscillate between “initializing” and “ready” after an update.

A 90 second startup delay which took place on freshly deployed Percona XtraDB Cluster was eliminated.

Percona XtraDB Cluster is an open source, cost-effective and robust clustering solution for businesses. It integrates Percona Server for MySQL with the

Galera replication library to produce a highly-available and scalable MySQL® cluster complete with synchronous multi-primary replication, zero data loss and

automatic node provisioning using Percona XtraBackup.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://docs.percona.com/percona-monitoring-and-management/2/index.html
https://docs.percona.com/percona-monitoring-and-management/2/index.html
https://docs.percona.com/percona-monitoring-and-management/2/index.html
https://github.com/chenmin1992
https://github.com/chenmin1992
https://github.com/chenmin1992
https://github.com/Smana
https://github.com/Smana
https://github.com/Smana
http://www.percona.com/doc/percona-xtradb-cluster/
http://www.percona.com/doc/percona-xtradb-cluster/
http://www.percona.com/doc/percona-xtradb-cluster/
https://jira.percona.com/secure/Dashboard.jspa
https://jira.percona.com/secure/Dashboard.jspa
https://jira.percona.com/secure/Dashboard.jspa

Page 375

Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0
Percona announces the general availability of Percona Kubernetes Operator for Percona XtraDB Cluster 1.1.0 on July 15, 2019. This release is now the current

GA release in the 1.1 series. Install the Kubernetes Operator for Percona XtraDB Cluster by following the instructions.

The Percona Kubernetes Operator for Percona XtraDB Cluster automates the lifecycle and provides a consistent Percona XtraDB Cluster instance. The

Operator can be used to create a Percona XtraDB Cluster, or scale an existing Cluster and contains the necessary Kubernetes settings.

The Operator simplifies the deployment and management of the Percona XtraDB Cluster in Kubernetes-based environments. It extends the Kubernetes API

with a new custom resource for deploying, configuring and managing the application through the whole life cycle.

The Operator source code is available in our Github repository . All of Percona’s software is open-source and free.

New features and improvements:

Now the Percona Kubernetes Operator allows upgrading Percona XtraDB Cluster to newer versions, either in semi-automatic or in manual mode.

Also, two modes are implemented for updating the Percona XtraDB Cluster my.cnf configuration file: in automatic configuration update mode Percona

XtraDB Cluster Pods are immediately re-created to populate changed options from the Operator YAML file, while in manual mode changes are held until

Percona XtraDB Cluster Pods are re-created manually.

A separate service account is now used by the Operator’s containers which need special privileges, and all other Pods run on default service account with

limited permissions.

User secrets are now generated automatically if don’t exist: this feature especially helps reduce work in repeated development environment testing and

reduces the chance of accidentally pushing predefined development passwords to production environments.

The Operator is now able to generate TLS certificates itself which removes the need in manual certificate generation.

The list of officially supported platforms now includes Minikube, which provides an easy way to test the Operator locally on your own machine before

deploying it on a cloud.

Also, Google Kubernetes Engine 1.14 and OpenShift Platform 4.1 are now supported.

Percona XtraDB Cluster is an open source, cost-effective and robust clustering solution for businesses. It integrates Percona Server for MySQL with the

Galera replication library to produce a highly-available and scalable MySQL® cluster complete with synchronous multi-primary replication, zero data loss and

automatic node provisioning using Percona XtraBackup.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/percona/percona-xtradb-cluster-operator
http://www.percona.com/doc/percona-xtradb-cluster/
http://www.percona.com/doc/percona-xtradb-cluster/
http://www.percona.com/doc/percona-xtradb-cluster/
https://jira.percona.com/secure/Dashboard.jspa
https://jira.percona.com/secure/Dashboard.jspa
https://jira.percona.com/secure/Dashboard.jspa

Page 376

Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0
Percona announces the general availability of Percona Kubernetes Operator for Percona XtraDB Cluster 1.0.0 on May 29, 2019. This release is now the current

GA release in the 1.0 series. Install the Kubernetes Operator for Percona XtraDB Cluster by following the instructions. Please see the GA release

announcement . All of Percona’s software is open-source and free.

The Percona Kubernetes Operator for Percona XtraDB Cluster automates the lifecycle and provides a consistent Percona XtraDB Cluster instance. The

Operator can be used to create a Percona XtraDB Cluster, or scale an existing Cluster and contains the necessary Kubernetes settings.

The Percona Kubernetes Operators are based on best practices for configuration and setup of the Percona XtraDB Cluster. The Operator provides a consistent

way to package, deploy, manage, and perform a backup and a restore for a Kubernetes application. Operators deliver automation advantages in cloud-native

applications.

The advantages are the following:

Deploy a Percona XtraDB Cluster environment with no single point of failure and environment can span multiple availability zones (AZs).

Deployment takes about six minutes with the default configuration.

Modify the Percona XtraDB Cluster size parameter to add or remove Percona XtraDB Cluster members

Integrate with Percona Monitoring and Management (PMM) to seamlessly monitor your Percona XtraDB Cluster

Automate backups or perform on-demand backups as needed with support for performing an automatic restore

Supports using Cloud storage with S3-compatible APIs for backups

Automate the recovery from failure of a single Percona XtraDB Cluster node

TLS is enabled by default for replication and client traffic using Cert-Manager

Access private registries to enhance security

Supports advanced Kubernetes features such as pod disruption budgets, node selector, constraints, tolerations, priority classes, and affinity/anti-affinity

You can use either PersistentVolumeClaims or local storage with hostPath to store your database

Customize your MySQL configuration using ConfigMap.

Installation
Installation is performed by following the documentation installation instructions for Kubernetes and OpenShift.

https://www.percona.com/blog/2019/05/29/percona-kubernetes-operators/
https://www.percona.com/blog/2019/05/29/percona-kubernetes-operators/
https://www.percona.com/blog/2019/05/29/percona-kubernetes-operators/
https://www.percona.com/blog/2019/05/29/percona-kubernetes-operators/

