
Operator for MongoDB
documentation

1.18.0 (November 14, 2024)

Percona Technical Documentation Team

Percona LLC and/or its affiliates, © 2009 - 2024

Table of contents

51. Percona Operator for MongoDB

51.1 Get expert help

62. Features

62.1 Design overview

102.2 Compare various solutions to deploy MongoDB in Kubernetes

133. Quickstart guides

133.1 Overview

143.2 1. Quick install

213.3 2. Connect to Percona Server for MongoDB

253.4 3. Insert sample data

273.5 4. Make a backup

313.6 5. Monitor database with Percona Monitoring and Management (PMM)

343.7 What’s next?

354. Installation

354.1 System Requirements

374.2 Install Percona Server for MongoDB on Minikube

444.3 Install Percona Server for MongoDB cluster using Everest

454.4 Install Percona Server for MongoDB on Google Kubernetes Engine (GKE)

544.5 Install Percona Server for MongoDB on Amazon Elastic Kubernetes Service (EKS)

614.6 Install Percona Server for MongoDB on Azure Kubernetes Service (AKS)

684.7 Install Percona server for MongoDB on Kubernetes

734.8 Install Percona Server for MongoDB on OpenShift

835. Configuration

835.1 Users

915.2 Changing MongoDB Options

955.3 Binding Percona Server for MongoDB components to Specific Kubernetes/OpenShift Nodes

995.4 Labels and annotations

1015.5 Exposing the cluster

1065.6 Local Storage support for the Percona Operator for MongoDB

1085.7 Using Replica Set Arbiter nodes and non-voting nodes

1115.8 Percona Server for MongoDB Sharding

1165.9 Transport Layer Security (TLS)

1285.10 Data at rest encryption

1335.11 Telemetry

Table of contents

2 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

1356. Management

1356.1 Backup and restore

1566.2 Update Database and Operator

1666.3 Scale Percona Server for MongoDB on Kubernetes and OpenShift

1726.4 Multi-cluster and multi-region deployment

1866.5 Monitor database with Percona Monitoring and Management (PMM)

1906.6 Using sidecar containers

1946.7 Pause/resume Percona Server for MongoDB

1957. Troubleshooting

1957.1 Initial troubleshooting

1987.2 Exec into the containers

2007.3 Check the Logs

2027.4 Special debug images

2038. HOWTOs

2038.1 Install Percona Server for MongoDB with customized parameters

2078.2 How to integrate Percona Operator for MongoDB with OpenLDAP

2168.3 Use Docker images from a custom registry

2208.4 Creating a private S3-compatible cloud for backups

2248.5 How to restore backup to a new Kubernetes-based environment

2288.6 How to use backups to move the external database to Kubernetes

2318.7 Install Percona Operator for MongoDB in multi-namespace (cluster-wide) mode

2368.8 How to carry on low-level manual upgrades of Percona Server for MongoDB

2418.9 Upgrade Database and Operator on OpenShift

2458.10 Monitor Kubernetes

2528.11 Delete Percona Operator for MongoDB

2589. Reference

2589.1 Custom Resource options

3119.2 Percona certified images

3149.3 Versions compatibility

3169.4 Percona Operator for MongoDB API Documentation

3619.5 Frequently Asked Questions

3639.6 Copyright and licensing information

3649.7 Trademark policy

36610. Release notes

36610.1 Percona Operator for MongoDB Release Notes

36710.2 Percona Operator for MongoDB 1.18.0

37010.3 Percona Operator for MongoDB 1.17.0

37310.4 Percona Operator for MongoDB 1.16.2

Table of contents

3 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

37410.5 Percona Operator for MongoDB 1.16.1

37510.6 Percona Operator for MongoDB 1.16.0

37910.7 Percona Operator for MongoDB 1.15.0

38210.8 Percona Operator for MongoDB 1.14.0

38510.9 Percona Operator for MongoDB 1.13.0

38810.10 Percona Operator for MongoDB 1.12.0

39110.11 Percona Distribution for MongoDB Operator 1.11.0

39310.12 Percona Distribution for MongoDB Operator 1.10.0

39510.13 Percona Distribution for MongoDB Operator 1.9.0

39710.14 Percona Kubernetes Operator for Percona Server for MongoDB 1.8.0

39910.15 Percona Kubernetes Operator for Percona Server for MongoDB 1.7.0

40110.16 Percona Kubernetes Operator for Percona Server for MongoDB 1.6.0

40310.17 Percona Kubernetes Operator for Percona Server for MongoDB 1.5.0

40510.18 Percona Kubernetes Operator for Percona Server for MongoDB 1.4.0

40610.19 Percona Kubernetes Operator for Percona Server for MongoDB 1.3.0

40710.20 Percona Kubernetes Operator for Percona Server for MongoDB 1.2.0

40910.21 Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0

41110.22 Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0

Table of contents

4 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

1. Percona Operator for MongoDB

The Percona Operator for MongoDB automates the creation, modification, or deletion of items in your Percona

Server for MongoDB environment. The Operator contains the necessary Kubernetes settings to maintain a consistent
Percona Server for MongoDB instance.

The Percona Kubernetes Operators are based on best practices for the configuration of a Percona Server for MongoDB
replica set. The Operator provides many benefits but saving time, a consistent environment are the most important.

1.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-04-09

1. Percona Operator for MongoDB

5 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

2. Features

2.1 Design overview

The design of the Operator is tighly bound to the Percona Server for MongoDB replica set or sharded cluster. Replica
set cluster is briefly described in the following diagram.

A replica set consists of one primary server and several secondary ones (two in the picture), and the client application
accesses the servers via a driver.

In the case of a sharded cluster, each shard is a replica set which contains a subset of data stored in the database, and
the mongos query router acts as an entry point for client applications. You can find out more details about sharding on
a dedicated documentation page, and a simplified diagram is as follows:

DB Pod 1 DB Pod 3DB Pod 2

Write Write

Client Application

MongoDB driver

W
rit
e

R
ea

d

R
ea

d

2. Features

6 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To provide high availability the Operator uses node affinity to run MongoDB instances on separate worker nodes if

possible, and the database cluster is deployed as a single Replica Set with at least three nodes. If a node fails, the pod
with the mongod process is automatically re-created on another node. If the failed node was hosting the primary
server, the replica set initiates elections to select a new primary. If the failed node was running the Operator,
Kubernetes will restart the Operator on another node, so normal operation will not be interrupted.

Client applications should use a mongo+srv URI for the connection. This allows the drivers (4.2 and up) to retrieve the
list of replica set members from DNS SRV entries without having to list hostnames for the dynamically assigned nodes.

The Operator uses security settings which are more secure than the default Percona Server for MongoDB setup. The
initial configuration contains default passwords for all needed user accounts, which should be changed in the production
environment, as stated in the installation instructions.

DB Pod 1 DB Pod 3DB Pod 2

R
ea

d

R
ea

d

R
ea

d Write

Write Write

W
rit
e

Client Application

DB Proxy/Router (mongos)

Note

2.1 Design overview

7 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC) is
used to implement the automatic storage provisioning to pods. If a failure occurs, the Container Storage Interface
(CSI) should be able to re-mount storage on a different node. The PVC StorageClass must support this feature
(Kubernetes and OpenShift support this in versions 1.9 and 3.9 respectively).

The Operator functionality extends the Kubernetes API with PerconaServerMongoDB object, and it is implemented as a
golang application. Each PerconaServerMongoDB object maps to one separate Percona Server for MongoDB setup. The
Operator listens to all events on the created objects. When a new PerconaServerMongoDB object is created, or an
existing one undergoes some changes or deletion, the operator automatically creates/changes/deletes all needed
Kubernetes objects with the appropriate settings to provide a properly operating replica set.

2.1.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

CSI

Percona Server for MongoDB

2.1.1 Get expert help

8 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Last update: 2024-05-24

2.1.1 Get expert help

9 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

2.2 Compare various solutions to deploy MongoDB in Kubernetes

There are multiple ways to deploy and manage MongoDB in Kubernetes. Here we will focus on comparing the
following open source solutions:

Bitnami Helm chart

KubeDB

MongoDB Community Operator

Percona Operator for MongoDB

2.2.1 Generic

Here is the review of generic features, such as supported MongoDB versions, open source models and more.

2.2.2 Maintenance

Upgrade and scaling are the two most common maintenance tasks that are executed by database administrators and
developers.

•

•

•

•

Feature/
Product

Percona
Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for
MongoDB

MongoDB
Community
Operator

MongoDB
Enterprise
Operator

Open source
model

Apache 2.0 Apache 2.0 Open core Open core Open core

MongoDB
versions

MongoDB 5.0,
6.0, 7.0

MongoDB 5.0 MongoDB 3.4,
3.6. 4.0, 4.1, 4.2

MongoDB 4.2,
4.4, 5.0, 6.0, 7.0

MongoDB 4.2,
4.4, 5.0, 6.0, 7.0

Kubernetes
conformance

Various versions
are tested

No guarantee No guarantee No guarantee No guarantee

Cluster-wide
mode

Yes Not an operator Enterprise only Yes Yes

Network
exposure

Yes Yes No, only
through manual
config

No Yes

Feature/
Product

Percona
Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for
MongoDB

MongoDB
Community
Operator

MongoDB
Enterprise
Operator

Operator
upgrade

Yes Helm upgrade Image change Yes Yes

Database
upgrade

Automated
minor, manual
major

No Manual minor Manual minor
and major

Yes

Compute
scaling

Horizontal and
vertical

Horizontal and
vertical

Enterprise only Horizontal only Yes

Storage scaling Yes Manual Enterprise only No Yes

2.2 Compare various solutions to deploy MongoDB in Kubernetes

10 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

2.2.3 MongoDB topologies

The next comparison is focused on replica sets, arbiters, sharding and other node types.

2.2.4 Backups

Here are the backup and restore capabilities of each solution.

Feature/
Product

Percona
Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for
MongoDB

MongoDB
Community
Operator

MongoDB
Enterprise
Operator

Multi-cluster
deployment

Yes No No No Yes

Sharding Yes Yes, another
chart

Yes No Yes

Arbiter Yes Yes Yes Yes Yes

Non-voting
nodes

Yes No No No Yes

Hidden nodes No Yes Yes Yes Yes

Network
exposure

Yes Yes Manual No Yes

Feature/
Product

Percona
Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for
MongoDB

MongoDB
Community
Operator

MongoDB
Enterprise
Operator

Scheduled
backups

Yes No Enterprise only No Yes

Incremental
backups

No No Enterprise only No No

Point-in-time
recovery

Yes No No No Yes

Logical backups Yes No No No Yes

Physical
backups

Yes No No No Yes

2.2.3 MongoDB topologies

11 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

2.2.5 Monitoring

Monitoring is crucial for any operations team.

2.2.6 Miscellaneous

Finally, let’s compare various features that are not a good fit for other categories.

2.2.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Feature/
Product

Percona
Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for
MongoDB

MongoDB
Community
Operator

MongoDB
Enterprise
Operator

Custom
exporters

Yes, through
sidecars

mongodb-
exporter as a
sidecar

mongodb-
exporter as a
sidecar

Integrate with
prometheus
operator

Integrate with
prometheus
operator

Percona
Monitoring and
Management
(PMM)

Yes No No No No

Feature/
Product

Percona
Operator for
MongoDB

Bitnami Helm
Chart

KubeDB for
MongoDB

MongoDB
Community
Operator

MongoDB
Enterprise
Operator

Customize
MongoDB
configuration

Yes Yes Yes No, only some
params

No, only some
params

Helm Yes Yes Yes, for
operator only

Yes, for
operator only

Yes, for
operator only

SSL/TLS Yes Yes Enterprise only Yes Yes

Create users/
roles

Yes Yes No Yes Yes

Last update: 2024-10-23

2.2.5 Monitoring

12 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3. Quickstart guides

3.1 Overview

Ready to get started with the Percona Operator for MongoDB? In this section, you will learn some basic operations,
such as:

Install and deploy an Operator

Connect to Percona Server for MongoDB

Insert sample data to the database

Set up and make a logical backup

Monitor the database health with Percona Monitoring and Management (PMM)

3.1.1 Next steps

Install the Operator

3.1.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

•

Last update: 2023-11-16

3. Quickstart guides

13 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.2 1. Quick install

3.2.1 Install Percona Server for MongoDB using Helm

Helm is the package manager for Kubernetes. A Helm chart is a package that contains all the necessary

resources to deploy an application to a Kubernetes cluster.

You can find Percona Helm charts in percona/percona-helm-charts repository in Github.

Prerequisites

To install and deploy the Operator, you need the following:

Helm v3 .

kubectl command line utility.

A Kubernetes environment. You can deploy it locally on Minikube for testing purposes or using any cloud provider of

your choice. Check the list of our officially supported platforms.

Set up Minikube

Create and configure the GKE cluster

Set up Amazon Elastic Kubernetes Service

Create and configure the AKS cluster

1.

2.

3.

See also

•

•

•

•

3.2 1. Quick install

14 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Installation

Here’s a sequence of steps to follow:

Add the Percona’s Helm charts repository and make your Helm client up to date with it:

It is a good practice to isolate workloads in Kubernetes via namespaces. Create a namespace:

Install Percona Operator for MongoDB:

The namespace is the name of your namespace. The my-op parameter in the above example is the name of a new
release object which is created for the Operator when you install its Helm chart (use any name you like).

Install Percona Server for MongoDB:

The cluster1 parameter is the name of a new release object which is created for the Percona Server for MongoDB

when you install its Helm chart (use any name you like).

Check the Operator and the Percona Server for MongoDB Pods status.

The creation process may take some time. When the process is over your cluster obtains the ready status.

You have successfully installed and deployed the Operator with default parameters.

The default Percona Server for MongoDB configuration includes three mongod, three mongos, and three config server
instances with enabled sharding.

You can check the rest of the Operator’s parameters in the Custom Resource options reference.

Next steps

Connect to Percona Server for MongoDB

Useful links

Install Percona Server for MongoDB with customized parameters

1.

$ helm repo add percona https://percona.github.io/percona-helm-charts/
$ helm repo update

2.

$ kubectl create namespace <namespace>

3.

$ helm install my-op percona/psmdb-operator --namespace <namespace>

4.

$ helm install cluster1 percona/psmdb-db --namespace <namespace>

5.

$ kubectl get psmdb -n <namespace>

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name cluster1-mongos.default.svc.cluster.local ready 5m26s

3.2.1 Install Percona Server for MongoDB using Helm

15 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-05-24

3.2.1 Install Percona Server for MongoDB using Helm

16 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.2.2 Install Percona Server for MongoDB using kubectl

A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The Operator
extends the Kubernetes API with custom resources.

The Percona Operator for MongoDB is based on best practices for configuration and setup of a Percona Distribution
for MongoDB in a Kubernetes-based environment on-premises or in the cloud.

We recommend installing the Operator with the kubectl command line utility. It is the universal way to interact

with Kubernetes. Alternatively, you can install it using the Helm package manager.

Install with kubectl Install with Helm

Prerequisites

To install Percona Distribution for MongoDB, you need the following:

The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes distributions. Install
not already installed, follow its official installation instructions .

A Kubernetes environment. You can deploy it on Minikube for testing purposes or using any cloud provider of your

choice. Check the list of our officially supported platforms.

Set up Minikube

Create and configure the GKE cluster

Set up Amazon Elastic Kubernetes Service

Create and configure the AKS cluster

1.

2.

See also

•

•

•

•

3.2.2 Install Percona Server for MongoDB using kubectl

17 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Procedure

Here’s a sequence of steps to follow:

3.2.2 Install Percona Server for MongoDB using kubectl

18 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in Kubernetes by installing
the Operator in a custom namespace. Replace the <namespace> placeholder with your value.

Deploy the Operator using the following command:

As the result you will have the Operator Pod up and running.

Deploy Percona Server for MongoDB:

Check the Operator and the Percona Server for MongoDB Pods status.

The creation process may take some time. When the process is over your cluster obtains the ready status.

You have successfully installed and deployed the Operator with default parameters.

1.

$ kubectl create namespace <namespace>

Expected output

namespace/<namespace> was created

2.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/
deploy/bundle.yaml -n <namespace>

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

3.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/deploy/cr.yaml -n
<namespace>

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

4.

$ kubectl get psmdb -n <namespace>

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

3.2.2 Install Percona Server for MongoDB using kubectl

19 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The default Percona Server for MongoDB configuration includes three mongod, three mongos, and three config server
instances with enabled sharding.

You can check the rest of the Operator’s parameters in the Custom Resource options reference.

Next steps

Connect to Percona Server for MongoDB

Useful links

Install Percona Server for MongoDB with customized parameters

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-05-24

3.2.2 Install Percona Server for MongoDB using kubectl

20 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.3 2. Connect to Percona Server for MongoDB

In this tutorial, you will connect to the Percona Server for MongoDB cluster you deployed previously.

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the
credentials of the admin user, which are stored in the Secrets object.

3.3 2. Connect to Percona Server for MongoDB

21 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Here’s how to do it:

3.3 2. Connect to Percona Server for MongoDB

22 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

List the Secrets objects

The Secrets object we target is named as <cluster_name>-secrets . The <cluster_name> value is the name of your Percona
Distribution for MongoDB. The default variant is:

Retrieve the admin user credentials. Replace the secret-name and namespace with your values in the following
commands:

Retrieve the login

The default value is databaseAdmin

Retrieve the password

Run a container with a MongoDB client and connect its console output to your terminal. The following command does
this, naming the new Pod percona-client :

Connect to Percona Server for MongoDB. The format of the MongoDB connection URI string is the following:

If you run MongoDB 5.0 and earlier, use the old mongo client instead of mongosh .

1.

$ kubectl get secrets -n <namespace>

via kubectl

my-cluster-name-secrets

via Helm

cluster1-psmdb-db-secrets

2.

•

$ kubectl get secret <secret-name> -n <namespace> -o yaml -o jsonpath='{.data.MONGODB_DATABASE_ADMIN_USER}' |
base64 --decode | tr '\n' ' ' && echo " "

•

$ kubectl get secret <secret-name> -n <namespace> -o yaml -o
jsonpath='{.data.MONGODB_DATABASE_ADMIN_PASSWORD}' | base64 --decode | tr '\n' ' ' && echo " "

3.

$ kubectl -n <namespace> run -i --rm --tty percona-client --image=percona/percona-server-mongodb:6.0.18-15 --
restart=Never -- bash -il

4.

sharding is on

sharding is off

mongosh "mongodb://databaseAdmin:<databaseAdminPassword>@<cluster-name>-
mongos.<namespace>.svc.cluster.local/admin?ssl=false"

mongosh "mongodb://databaseAdmin:<databaseAdminPassword>@<cluster-name>-rs0.<namespace>.svc.cluster.local/
admin?replicaSet=rs0&ssl=false"

3.3 2. Connect to Percona Server for MongoDB

23 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The following example connects to the admin database of Percona Server for MongoDB 6.0 sharded cluster with the name
my-cluster-name . The cluster runs in the namespace mongodb-operator :

Congratulations! You have connected to Percona Server for MongoDB.

3.3.1 Next steps

Insert sample data

3.3.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Example

mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.mongodb-
operator.svc.cluster.local/admin?ssl=false"

Last update: 2024-05-24

3.3.1 Next steps

24 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.4 3. Insert sample data

In this tutorial you will learn to insert sample data to Percona Server for MongoDB.

MongoDB provides multiple methods for data insert . We will use a For loop to insert some sample documents.

Run the following command:

If there is no test collection created, MongoDB creates when inserting documents.

Query the collection to verify the data insertion

You will have different _id values.

Now your cluster has some data in it.

1.

admin> for (var i = 1; i <= 50; i++) {
db.test.insertOne({ x : i })

}

Output

{
acknowledged: true,
insertedId: ObjectId("652567e5eedca48f97e1868f")

}

2.

admin> db.test.find()

Output

[
{ _id: ObjectId("652567e4eedca48f97e1865e"), x: 1 },
{ _id: ObjectId("652567e4eedca48f97e1865f"), x: 2 },
{ _id: ObjectId("652567e4eedca48f97e18660"), x: 3 },
{ _id: ObjectId("652567e4eedca48f97e18661"), x: 4 },
{ _id: ObjectId("652567e4eedca48f97e18662"), x: 5 },
{ _id: ObjectId("652567e4eedca48f97e18663"), x: 6 },
{ _id: ObjectId("652567e4eedca48f97e18664"), x: 7 },
{ _id: ObjectId("652567e4eedca48f97e18665"), x: 8 },
{ _id: ObjectId("652567e4eedca48f97e18666"), x: 9 },
{ _id: ObjectId("652567e4eedca48f97e18667"), x: 10 },
{ _id: ObjectId("652567e4eedca48f97e18668"), x: 11 },
{ _id: ObjectId("652567e4eedca48f97e18669"), x: 12 },
{ _id: ObjectId("652567e4eedca48f97e1866a"), x: 13 },
{ _id: ObjectId("652567e4eedca48f97e1866b"), x: 14 },
{ _id: ObjectId("652567e4eedca48f97e1866c"), x: 15 },
{ _id: ObjectId("652567e4eedca48f97e1866d"), x: 16 },
{ _id: ObjectId("652567e4eedca48f97e1866e"), x: 17 },
{ _id: ObjectId("652567e4eedca48f97e1866f"), x: 18 },
{ _id: ObjectId("652567e4eedca48f97e18670"), x: 19 },
{ _id: ObjectId("652567e4eedca48f97e18671"), x: 20 }

]

3.4 3. Insert sample data

25 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.4.1 Next steps

Make a backup

3.4.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-04-30

3.4.1 Next steps

26 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.5 4. Make a backup

In this tutorial you will learn how to make a logical backup of your data manually. To learn more about backups, see
the Backup and restore section.

3.5.1 Considerations and prerequisites

In this tutorial we use the AWS S3 as the backup storage. You need the following S3-related information:

the name of the S3 storage

the name of the S3 bucket

the region - the location of the bucket

the S3 credentials to be used to access the storage.

If you don’t have access to AWS, you can use any S3-compatible storage like MinIO . Also check the list of

supported storages.

Also, we will use some files from the Operator repository for setting up backups. So, clone the percona-server-
mongodb-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

3.5.2 Configure backup storage

Encode S3 credentials, substituting AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY with your real values:

Edit the deploy/backup-s3.yaml example Secrets configuration file and specify the following:

the metadata.name key is the name which you use to refer your Kubernetes Secret

the base64-encoded S3 credentials

•

•

•

•

$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

Note

1.

on Linux

on MacOS

$ echo -n 'AWS_ACCESS_KEY_ID' | base64 --wrap=0
$ echo -n 'AWS_SECRET_ACCESS_KEY' | base64 --wrap=0

$ echo -n 'AWS_ACCESS_KEY_ID' | base64
$ echo -n 'AWS_SECRET_ACCESS_KEY' | base64

2.

•

•

deploy/backup-s3.yaml

apiVersion: v1
kind: Secret
metadata:

3.5 4. Make a backup

27 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Create the Secrets object from this yaml file. Specify your namespace instead of the <namespace> placeholder:

Update your deploy/cr.yaml configuration. Specify the following parameters in the backups section:

set the storages.<NAME>.type to s3 . Substitute the <NAME> part with some arbitrary name that you will later use to refer
this storage when making backups and restores.

set the storages.<NAME>.s3.credentialsSecret to the name you used to refer your Kubernetes Secret
(my-cluster-name-backup-s3 in the previous step).

specify the S3 bucket name for the storages.<NAME>.s3.bucket option

specify the region in the storages.<NAME>.s3.region option. Also you can use the storages.<NAME>.s3.prefix option to specify
the path (a sub-folder) to the backups inside the S3 bucket. If prefix is not set, backups are stored in the root directory.

If you use a different S3-compatible storage instead of AWS S3, add the endpointURL key in the s3 subsection, which should
point to the actual cloud used for backups. This value is specific to the cloud provider. For example, using Google Cloud
involves the following endpointUrl :

Apply the configuration. Specify your namespace instead of the <namespace> placeholder:

3.5.3 Make a logical backup

Before you start, verify the backup configuration in the deploy/cr.yaml file:

the backup.enabled key is set to true

the backup.storages subsection contains the configured storage.

name: my-cluster-name-backup-s3
type: Opaque
data:
AWS_ACCESS_KEY_ID: <YOUR_AWS_ACCESS_KEY_ID>
AWS_SECRET_ACCESS_KEY: <YOUR_AWS_SECRET_ACCESS_KEY>

3.

$ kubectl apply -f deploy/backup-s3.yaml -n <namespace>

4.

•

•

•

•

...
backup:
...
storages:
s3-us-west:
type: s3
s3:
bucket: "S3-BACKUP-BUCKET-NAME-HERE"
region: "<AWS_S3_REGION>"
credentialsSecret: my-cluster-name-backup-s3

...

endpointUrl: https://storage.googleapis.com

5.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

1.

•

•

3.5.3 Make a logical backup

28 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To make a backup, you need the configuration file. Edit the sample deploy/backup/backup.yaml configuration file and

specify the following:

metadata.name - specify the backup name. You will use this name to restore from this backup

spec.clusterName - specify the name of your cluster. This is the name you specified when deploying Percona Server for
MongoDB.

spec.storageName - specify the name of your already configured storage.

Apply the configuration. This instructs the Operator to start a backup. Specify your namespace instead of the
<namespace> placeholder:

Track the backup progress.

When the status changes to Ready , backup is made.

3.5.4 Troubleshooting

You may face issues with the backup. To identify the issue, you can do the following:

View the information about the backup with the following command:

View the backup-agent logs. Use the previous command to find the name of the pod where the backup was made:

Congratulations! You have made the first backup manually. Want to learn more about backups? See the Backup and
restore section for how to configure point-in-time recovery, enable server-side encryption and how to automatically
make backups according to the schedule.

2.

•

•

•

deploy/backup/backup.yaml

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBBackup
metadata:
finalizers:
- percona.com/delete-backup
name: backup1

spec:
clusterName: my-cluster-name
storageName: s3-us-west
type: logical

3.

$ kubectl apply -f deploy/backup/backup.yaml -n <namespace>

4.

$ kubectl get psmdb-backup -n <namespace>

Output

NAME CLUSTER STORAGE DESTINATION TYPE STATUS COMPLETED AGE
backup1 my-cluster-name s3-us-west s3://pg-operator-testing/2023-10-10T16:36:46Z logical running 43s

•

$ kubectl get psmdb-backup <backup-name> -n <namespace> -o yaml

•

$ kubectl logs pod/<pod-name> -c backup-agent -n <namespace>

3.5.4 Troubleshooting

29 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.5.5 Next steps

Monitor the database

3.5.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-09-09

3.5.5 Next steps

30 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.6 5. Monitor database with Percona Monitoring and Management (PMM)

In this section you will learn how to monitor Percona Server for MongoDB with Percona Monitoring and Management
(PMM) .

Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. It includes the PMM Server and the number of PMM Clients running on

each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect to the PMM
Server to see database metrics on a number of dashboards .

PMM Server and PMM Client are installed separately.

3.6.1 Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an
AWS instance. Please refer to the official PMM documentation for the installation instructions.

Note

3.6 5. Monitor database with Percona Monitoring and Management (PMM)

31 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.6.2 Install PMM Client

To install PMM Client as a side-car container in your Kubernetes-based environment, do the following:

Authorize PMM Client within PMM Server.

Update the pmm section in the deploy/cr.yaml file:

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM Server IP address should be
resolvable and reachable from within your cluster.

3. Apply the changes:

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on the
previous steps:

1.

Token-based authorization (recommended)

 1. Generate the PMM Server API Key . Specify the Admin role when getting the API Key.

 Warning: The API key is not rotated automatically.

Edit the deploy/secrets.yaml secrets file and specify the PMM API key for the PMM_SERVER_API_KEY option.

Apply the configuration for the changes to take effect.

Password-based authorization (deprecated since version 1.13.0)

Edit the deploy/secrets.yaml secrets file and specify the following:

The user name of your PMM Server (admin by default) in the PMM_SERVER_USER key

The password you set for the PMM Server during its installation in the PMM_SERVER_PASSWORD key.

Apply the configuration for the changes to take effect.

a.

b.

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

a.

b.

c.

d.

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

2.

•

•

pmm:
enabled: true
image: percona/pmm-client:{{pmm2recommended}}
serverHost: monitoring-service

$ kubectl apply -f deploy/cr.yaml -n <namespace>

3.

$ kubectl get pods -n <namespace>
$ kubectl logs <cluster-name>-rs0-0 -c pmm-client -n <namespace>

3.6.2 Install PMM Client

32 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.6.3 Check the metrics

Let’s see how the collected data is visualized in PMM.

Log in to PMM server.

Click MongoDB from the left-hand navigation menu. You land on the Instances Overview page.

Select your cluster from the Clusters drop-down menu and the desired time range on the top of the page. You should
see the metrics.

Click MongoDB → Other dashboards to see the list of available dashboards that allow you to drill down to the

metrics you are interested in.

3.6.4 Next steps

What’s next

3.6.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

1.

2.

3.

4.

Last update: 2024-04-30

3.6.3 Check the metrics

33 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

3.7 What’s next?

Congratulations! You have completed all the steps in the Get started guide.

You have the following options to move forward with the Operator:

Deepen your monitoring insights by setting up Kubernetes monitoring with PMM

Control Pods assignment on specific Kubernetes Nodes by setting up affinity / anti-affinity

Ready to adopt the Operator for production use and need to delete the testing deployment? Use this guide to do it

You can also try operating the Operator and database clusters via the web interface with Percona Everest - an

open-source web-based database provisioning tool based on Percona Operators. See Get started with Percona
Everest on how to start using it

3.7.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

•

•

•

•

Last update: 2024-04-09

3.7 What’s next?

34 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4. Installation

4.1 System Requirements

The Operator was developed and tested with Percona Server for MongoDB 5.0.29-25, 6.0.18-15, and 7.0.14-8. Other
options may also work but have not been tested. The Operator 1.18.0 also uses Percona Backup for MongoDB 2.7.0.

4.1.1 Officially supported platforms

The following platforms were tested and are officially supported by the Operator 1.18.0:

Google Kubernetes Engine (GKE) 1.28-1.30

Amazon Elastic Container Service for Kubernetes (EKS) 1.28-1.31

OpenShift Container Platform 4.13.52 - 4.17.3

Azure Kubernetes Service (AKS) 1.28-1.31

Minikube 1.34.0 based on Kubernetes 1.31.0

Other Kubernetes platforms may also work but have not been tested.

4.1.2 Resource Limits

A cluster running an officially supported platform contains at least 3 Nodes and the following resources (if sharding is
turned off):

2GB of RAM,

2 CPU threads per Node for Pods provisioning,

at least 60GB of available storage for Private Volumes provisioning.

Consider using 4 CPU and 6 GB of RAM if sharding is turned on (the default behavior).

Also, the number of Replica Set Nodes should not be odd if Arbiter is not enabled.

Use Storage Class with XFS as the default filesystem if possible to achieve better MongoDB performance .

4.1.3 Installation guidelines

Choose how you wish to install the Operator:

with Helm

with kubectl

on Minikube

on Google Kubernetes Engine (GKE)

on Amazon Elastic Kubernetes Service (AWS EKS)

on Microsoft Azure Kubernetes Service (AKS)

on Openshift

in a Kubernetes-based environment

•

•

•

•

•

•

•

•

Note

•

•

•

•

•

•

•

•

4. Installation

35 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.1.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-11-14

4.1.4 Get expert help

36 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.2 Install Percona Server for MongoDB on Minikube

Installing the Percona Operator for MongoDB on Minikube is the easiest way to try it locally without a cloud

provider. Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervisor, such
as VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test Kubernetes application locally
prior to deploying it on a cloud.

4.2 Install Percona Server for MongoDB on Minikube

37 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The following steps are needed to run Percona Operator for MongoDB on minikube:

4.2 Install Percona Server for MongoDB on Minikube

38 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Install minikube , using a way recommended for your system. This includes the installation of the following three

components:

kubectl tool,

a hypervisor, if it is not already installed,

actual minikube package

After the installation, run minikube start --memory=5120 --cpus=4 --disk-size=30g (parameters increase the virtual machine
limits for the CPU cores, memory, and disk, to ensure stable work of the Operator). Being executed, this command will
download needed virtualized images, then initialize and run the cluster. After Minikube is successfully started, you can
optionally run the Kubernetes dashboard, which visually represents the state of your cluster. Executing minikube

dashboard will start the dashboard and open it in your default web browser.

Deploy the operator using the following command:

Deploy MongoDB cluster with:

This deploys a one-shard MongoDB cluster with one replica set with one node, one mongos node and one config server
node. The deploy/cr-minimal.yaml is for minimal non-production deployment. For more configuration options please

see deploy/cr.yaml and Custom Resource Options. You can clone the repository with all manifests and source code by

executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time.

The process is over when both operator and replica set pod have reached their Running status. kubectl get pods output
should look like this:

You can also track the progress via the Kubernetes dashboard:

1.

a.

b.

c.

2.

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/
deploy/bundle.yaml

3.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/deploy/cr-
minimal.yaml

Note

$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator

$ kubectl apply -f deploy/cr.yaml

4.2 Install Percona Server for MongoDB on Minikube

39 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.2.1 Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get pods command finally shows you the cluster is
ready, you can try to connect to the cluster.

Workload Status

Running: 1

Deployments

Running: 4

Pods

Running: 1

Replica Sets

Running: 3

Stateful Sets

Deployments

Images Labels Pods

percona-server-mongodb-operator - 1 / 1 3 minutes ago

Name Created

percona/percona-server-mongodb-operator:1.13.0

Pods

Images Labels Node Restarts CPU Usage (cores)
Memory Usage
(bytes)

minimal-cluster-cfg-0

Show all

minikube Running 0 - - 2 minutes ago

Name Status Created

percona/percona-server-m
ongodb:5.0.11-10

app.kubernetes.io/compon
ent: cfg

app.kubernetes.io/instanc
e: minimal-cluster

app.kubernetes.io/manage
d-by: percona-server-mong
odb-operator

app.kubernetes.io/compon
ent: mongos

Workloads

4.2.1 Verifying the cluster operation

40 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the
credentials of the admin user, which are stored in the Secrets object.

4.2.1 Verifying the cluster operation

41 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

List the Secrets objects

The Secrets object you are interested in has the minimal-cluster-secrets name by default.

View the Secret contents to retrive the admin user credentials.

The command returns the YAML file with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

Run a container with a MongoDB client and connect its console output to your terminal. The following command does
this, naming the new Pod percona-client :

Executing it may require some time to deploy the corresponding Pod.

Now run mongosh tool inside the percona-client command shell using the admin user credentialds you obtained from the
Secret, and a proper namespace name instead of the <namespace name> placeholder. The command will look different
depending on whether sharding is on (the default behavior) or off:

If you are using MongoDB versions earler than 6.x (such as 5.0.29-25 instead of the default 7.0.14-8 variant), substitute
mongosh command with mongo in the above examples.

1.

$ kubectl get secrets -n <namespace>

2.

$ kubectl get secret minimal-cluster-secrets -o yaml

Sample output

...
data:

...
MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

3.

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il

4.

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@minimal-cluster-mongos.<namespace
name>.svc.cluster.local/admin?ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@minimal-cluster-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

Note

4.2.1 Verifying the cluster operation

42 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.2.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-04-09

4.2.2 Get expert help

43 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.3 Install Percona Server for MongoDB cluster using Everest

Percona Everest is an open source cloud-native database platform that helps developers deploy code faster,

scale deployments rapidly, and reduce database administration overhead while regaining control over their data,
database configuration, and DBaaS costs.

It automates day-one and day-two database operations for open source databases on Kubernetes clusters. Percona
Everest provides API and Web GUI to launch databases with just a few clicks and scale them, do routine maintenance
tasks, such as software updates, patch management, backups, and monitoring.

You can try it in action by Installing Percona Everest and managing your first cluster .

4.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-04-09

4.3 Install Percona Server for MongoDB cluster using Everest

44 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.4 Install Percona Server for MongoDB on Google Kubernetes Engine (GKE)

This guide shows you how to deploy Percona Operator for MongoDB on Google Kubernetes Engine (GKE). The
document assumes some experience with the platform. For more information on the GKE, see the Kubernetes Engine
Quickstart .

4.4.1 Prerequisites

All commands from this guide can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

gcloud . This tool is part of the Google Cloud SDK. To install it, select your operating system on the official Google

Cloud SDK documentation page and then follow the instructions.

kubectl . It is the Kubernetes command-line tool you will use to manage and deploy applications. To install the tool,

run the following command:

4.4.2 Create and configure the GKE cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local shell (if

you have installed Google Cloud SDK locally on the previous step). The following command will create a cluster named
my-cluster-name :

You must edit the following command and other command-line statements to replace the <project ID> placeholder
with your project ID (see available projects with gcloud projects list command). You may also be required to edit the zone
location, which is set to us-central1 in the above example. Other parameters specify that we are creating a cluster with
3 nodes and with machine type of 4 x86_64 vCPUs. If you need ARM64, use different --machine-type , for example, t2a-

standard-4 .

You may wait a few minutes for the cluster to be generated.

Select Kubernetes Engine → Clusters in the left menu panel:

Now you should configure the command-line access to your newly created cluster to make kubectl be able to use it.

1.

2.

$ gcloud auth login
$ gcloud components install kubectl

$ gcloud container clusters create my-cluster-name --project <project ID> --zone us-central1-a --cluster-version 1.30 --
machine-type n1-standard-4 --num-nodes=3

When the process is over, you can see it listed in the Google Cloud console

us-central1-amy-cluster-name 3 12 45 GB —
Edit

Connect

Delete

4.4 Install Percona Server for MongoDB on Google Kubernetes Engine (GKE)

45 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You will see the
connect statement which configures the command-line access. After you have edited the statement, you may run the
command in your local shell:

Finally, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster. The following

command will give you the ability to create Roles and RoleBindings:

4.4.3 Install the Operator and deploy your MongoDB cluster

Deploy the Operator. By default deployment will be done in the default namespace. If that’s not the desired one, you can
create a new namespace and/or set the context for the namespace as follows (replace the <namespace name> placeholder
with some descriptive name):

At success, you will see the message that namespace/<namespace name> was created, and the context (gke_<project

name>_<zone location>_<cluster name>) was modified.

Deploy the Operator by applying the deploy/bundle.yaml manifest from the Operator source tree.

You can apply it without downloading, using the following command:

The Operator has been started, and you can deploy your MongoDB cluster:

$ gcloud container clusters get-credentials my-cluster-name --zone us-central1-a --project <project name>

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user $(gcloud config get-value
core/account)

Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

1.

$ kubectl create namespace <namespace name>
$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/
deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

2.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/deploy/cr.yaml

4.4.3 Install the Operator and deploy your MongoDB cluster

46 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

This deploys default MongoDB cluster configuration, three mongod, three mongos, and three config server instances.
Please see deploy/cr.yaml and Custom Resource Options for the configuration options. You can clone the repository

with all manifests and source code by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

When the creation process is finished, it will look as follows:

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

Note

$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator

$ kubectl apply -f deploy/cr.yaml

$ kubectl get psmdb

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

You can also track the creation process in Google Cloud console via the Object Browser

Name Status Type Namespace Cluster

core API Group

Pod Kind

my-cluster-name-cfg-0 Running Pod default my-cluster-name

my-cluster-name-cfg-1 Running Pod default my-cluster-name

my-cluster-name-cfg-2 Running Pod default my-cluster-name

my-cluster-name-mongos-0 Running Pod default my-cluster-name

my-cluster-name-mongos-1 Running Pod default my-cluster-name

my-cluster-name-mongos-2 Running Pod default my-cluster-name

my-cluster-name-rs0-0 Running Pod default my-cluster-name

my-cluster-name-rs0-1 Running

Running

Pod default my-cluster-name

my-cluster-name-rs0-2 Pod default my-cluster-name

percona-server-mongodb-operator-665cd69f9b-xg5dl Running Pod default my-cluster-name

4.4.3 Install the Operator and deploy your MongoDB cluster

47 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.4.4 Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get psmdb command finally shows you the cluster
status as ready , you can try to connect to the cluster.

4.4.4 Verifying the cluster operation

48 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the
credentials of the admin user, which are stored in the Secrets object.

4.4.4 Verifying the cluster operation

49 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets name by default.

View the Secret contents to retrive the admin user credentials.

The command returns the YAML file with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

Run a container with a MongoDB client and connect its console output to your terminal. The following command does
this, naming the new Pod percona-client :

Executing it may require some time to deploy the corresponding Pod.

Now run mongosh tool inside the percona-client command shell using the admin user credentialds you obtained from the
Secret, and a proper namespace name instead of the <namespace name> placeholder. The command will look different
depending on whether sharding is on (the default behavior) or off:

If you are using MongoDB versions earler than 6.x (such as 5.0.29-25 instead of the default 7.0.14-8 variant), substitute
mongosh command with mongo in the above examples.

1.

$ kubectl get secrets -n <namespace>

2.

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:

...
MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

3.

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il

4.

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace
name>.svc.cluster.local/admin?ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

Note

4.4.4 Verifying the cluster operation

50 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.4.5 Troubleshooting

If kubectl get psmdb command doesn’t show ready status too long, you can check the creation process with the kubectl

get pods command:

If the command output had shown some errors, you can examine the problematic Pod with the kubectl describe <pod

name> command as follows:

Review the detailed information for Warning statements and then correct the configuration. An example of a warning
is as follows:

Warning FailedScheduling 68s (x4 over 2m22s) default-scheduler 0/1 nodes are available: 1 node(s) didn’t match pod affinity/anti-affinity,

1 node(s) didn’t satisfy existing pods anti-affinity rules.

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE
my-cluster-name-cfg-0 2/2 Running 0 11m
my-cluster-name-cfg-1 2/2 Running 1 10m
my-cluster-name-cfg-2 2/2 Running 1 9m
my-cluster-name-mongos-0 1/1 Running 0 11m
my-cluster-name-mongos-1 1/1 Running 0 11m
my-cluster-name-mongos-2 1/1 Running 0 11m
my-cluster-name-rs0-0 2/2 Running 0 11m
my-cluster-name-rs0-1 2/2 Running 0 10m
my-cluster-name-rs0-2 2/2 Running 0 9m
percona-server-mongodb-operator-665cd69f9b-xg5dl 1/1 Running 0 37m

$ kubectl describe pod my-cluster-name-rs0-2

4.4.5 Troubleshooting

51 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The errors will look as follows:

Clicking the problematic Pod will bring you to the details page with the same warning:

4.4.6 Removing the GKE cluster

There are several ways that you can delete the cluster.

You can clean up the cluster with the gcloud command as follows:

The return statement requests your confirmation of the deletion. Type y to confirm.

Just click the Delete popup menu item in the clusters list:

The cluster deletion may take time.

After deleting the cluster, all data stored in it will be lost!

Alternatively, you can examine your Pods via the object browser

Name Status Type Namespace Cluster

core API Group

Pod Kind

my-cluster-name-cfg-0 Running Pod default my-cluster-name

my-cluster-name-cfg-1 Running Pod default my-cluster-name

my-cluster-name-cfg-2 Running Pod default my-cluster-name

my-cluster-name-mongos-0 Running Pod default my-cluster-name

my-cluster-name-mongos-1 Running Pod default my-cluster-name

my-cluster-name-mongos-2 Running Pod default my-cluster-name

my-cluster-name-rs0-0 Running Pod default my-cluster-name

my-cluster-name-rs0-1 Running Pod default my-cluster-name

my-cluster-name-rs0-2 Unschedulable Pod default my-cluster-name

percona-server-mongodb-operator-665cd69f9b-xg5dl Running Pod default my-cluster-name

0/3 nodes are available: 3 node(s) didn't match Pod's node affinity/selector. SHOW DETAILS

$ gcloud container clusters delete <cluster name> --zone us-central1-a --project <project ID>

Also, you can delete your cluster via the Google Cloud console

us-central1-amy-cluster-name 3 12 45 GB —
Edit

Connect

Delete

Warning

4.4.6 Removing the GKE cluster

52 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.4.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-09-25

4.4.7 Get expert help

53 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.5 Install Percona Server for MongoDB on Amazon Elastic Kubernetes Service

(EKS)

This guide shows you how to deploy Percona Operator for MongoDB on Amazon Elastic Kubernetes Service (EKS). The
document assumes some experience with the platform. For more information on the EKS, see the Amazon EKS official
documentation .

4.5.1 Prerequisites

The following tools are used in this guide and therefore should be preinstalled:

AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can install it following the
official installation instructions for your system .

eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on GitHub .

kubectl to manage and deploy applications on Kubernetes. Install it following the official installation instructions .

Also, you need to configure AWS CLI with your credentials according to the official guide .

4.5.2 Create the EKS cluster

To create your cluster, you will need the following data:

name of your EKS cluster,

AWS region in which you wish to deploy your cluster,

the amount of nodes you would like tho have,

the desired ratio between on-demand and spot instances in the total number of nodes.

spot instances are not recommended for production environment, but may be useful e.g. for testing purposes.

After you have settled all the needed details, create your EKS cluster following the official cluster creation instructions
.

After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver on your cluster. See the

official documentation on adding it as an Amazon EKS add-on.

4.5.3 Install the Operator and deploy your MongoDB cluster

Deploy the Operator. By default deployment will be done in the default namespace. If that’s not the desired one, you can
create a new namespace and/or set the context for the namespace as follows (replace the <namespace name> placeholder
with some descriptive name):

At success, you will see the message that namespace/<namespace name> was created, and the context was modified.

Deploy the Operator by applying the deploy/bundle.yaml manifest from the Operator source tree.

1.

2.

3.

1.

•

•

•

•

Note

2.

1.

$ kubectl create namespace <namespace name>
$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

4.5 Install Percona Server for MongoDB on Amazon Elastic Kubernetes Service (EKS)

54 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The Operator has been started, and you can deploy your MongoDB cluster:

This deploys default MongoDB cluster configuration, three mongod, three mongos, and three config server instances.
Please see deploy/cr.yaml and Custom Resource Options for the configuration options. You can clone the repository

with all manifests and source code by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

You can apply it without downloading, [using :octicons-link-external-16:](https://kubernetes.io/docs/reference/using-api/
server-side-apply/) the following command:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/
deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

2.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/deploy/cr.yaml

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

Note

$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator

$ kubectl apply -f deploy/cr.yaml

$ kubectl get psmdb

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

4.5.3 Install the Operator and deploy your MongoDB cluster

55 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.5.4 Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get psmdb command finally shows you the cluster
status as ready , you can try to connect to the cluster.

4.5.4 Verifying the cluster operation

56 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the
credentials of the admin user, which are stored in the Secrets object.

4.5.4 Verifying the cluster operation

57 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets name by default.

View the Secret contents to retrive the admin user credentials.

The command returns the YAML file with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

Run a container with a MongoDB client and connect its console output to your terminal. The following command does
this, naming the new Pod percona-client :

Executing it may require some time to deploy the corresponding Pod.

Now run mongosh tool inside the percona-client command shell using the admin user credentialds you obtained from the
Secret, and a proper namespace name instead of the <namespace name> placeholder. The command will look different
depending on whether sharding is on (the default behavior) or off:

If you are using MongoDB versions earler than 6.x (such as 5.0.29-25 instead of the default 7.0.14-8 variant), substitute
mongosh command with mongo in the above examples.

1.

$ kubectl get secrets -n <namespace>

2.

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:

...
MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

3.

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il

4.

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace
name>.svc.cluster.local/admin?ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

Note

4.5.4 Verifying the cluster operation

58 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.5.5 Troubleshooting

If kubectl get psmdb command doesn’t show ready status too long, you can check the creation process with the kubectl

get pods command:

If the command output had shown some errors, you can examine the problematic Pod with the kubectl describe <pod

name> command as follows:

Review the detailed information for Warning statements and then correct the configuration. An example of a warning
is as follows:

Warning FailedScheduling 68s (x4 over 2m22s) default-scheduler 0/1 nodes are available: 1 node(s) didn’t match pod affinity/anti-affinity,

1 node(s) didn’t satisfy existing pods anti-affinity rules.

4.5.6 Removing the EKS cluster

To delete your cluster, you will need the following data:

name of your EKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the eksctl command as follows (with real names instead of <region> and <cluster

name> placeholders):

The cluster deletion may take time.

After deleting the cluster, all data stored in it will be lost!

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE
my-cluster-name-cfg-0 2/2 Running 0 11m
my-cluster-name-cfg-1 2/2 Running 1 10m
my-cluster-name-cfg-2 2/2 Running 1 9m
my-cluster-name-mongos-0 1/1 Running 0 11m
my-cluster-name-mongos-1 1/1 Running 0 11m
my-cluster-name-mongos-2 1/1 Running 0 11m
my-cluster-name-rs0-0 2/2 Running 0 11m
my-cluster-name-rs0-1 2/2 Running 0 10m
my-cluster-name-rs0-2 2/2 Running 0 9m
percona-server-mongodb-operator-665cd69f9b-xg5dl 1/1 Running 0 37m

$ kubectl describe pod my-cluster-name-rs0-2

•

•

$ eksctl delete cluster --region=<region> --name="<cluster name>"

Warning

4.5.5 Troubleshooting

59 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.5.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-09-25

4.5.7 Get expert help

60 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.6 Install Percona Server for MongoDB on Azure Kubernetes Service (AKS)

This guide shows you how to deploy Percona Operator for MongoDB on Microsoft Azure Kubernetes Service (AKS). The
document assumes some experience with the platform. For more information on the AKS, see the Microsoft AKS
official documentation .

4.6.1 Prerequisites

The following tools are used in this guide and therefore should be preinstalled:

Azure Command Line Interface (Azure CLI) for interacting with the different parts of AKS. You can install it following
the official installation instructions for your system .

kubectl to manage and deploy applications on Kubernetes. Install it following the official installation instructions .

Also, you need to sign in with Azure CLI using your credentials according to the official guide .

4.6.2 Create and configure the AKS cluster

To create your cluster, you will need the following data:

name of your AKS cluster,

an Azure resource group , in which resources of your cluster will be deployed and managed.

the amount of nodes you would like tho have.

You can create your cluster via command line using az aks create command. The following command will create a 3-
node cluster named my-cluster-name within some already existing resource group named my-resource-group :

Other parameters in the above example specify that we are creating a cluster with x86_64 machine type of
Standard_B4ms and OS disk size reduced to 30 GiB. If you need ARM64, use different machine type, for example,

Standard_D4ps_v5. You can see detailed information about cluster creation options in the AKS official documentation
.

You may wait a few minutes for the cluster to be generated.

Now you should configure the command-line access to your newly created cluster to make kubectl be able to use it.

4.6.3 Install the Operator and deploy your MongoDB cluster

Deploy the Operator. By default deployment will be done in the default namespace. If that’s not the desired one, you can
create a new namespace and/or set the context for the namespace as follows (replace the <namespace name> placeholder
with some descriptive name):

1.

2.

•

•

•

$ az aks create --resource-group my-resource-group --name my-cluster-name --enable-managed-identity --node-count 3 --
node-vm-size Standard_B4ms --node-osdisk-size 30 --network-plugin kubenet --generate-ssh-keys --outbound-type
loadbalancer

az aks get-credentials --resource-group my-resource-group --name my-cluster-name

1.

$ kubectl create namespace <namespace name>
$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

4.6 Install Percona Server for MongoDB on Azure Kubernetes Service (AKS)

61 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

At success, you will see the message that namespace/<namespace name> was created, and the context (<cluster name>) was
modified.

Deploy the Operator, using the following command:

The Operator has been started, and you can deploy your MongoDB cluster:

This deploys default MongoDB cluster configuration, three mongod, three mongos, and three config server instances.
Please see deploy/cr.yaml and Custom Resource Options for the configuration options. You can clone the repository

with all manifests and source code by executing the following command:

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/
deploy/bundle.yaml

Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

2.

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/deploy/cr.yaml

Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

Note

$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator

$ kubectl apply -f deploy/cr.yaml

$ kubectl get psmdb

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

4.6.3 Install the Operator and deploy your MongoDB cluster

62 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.6.4 Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get psmdb command finally shows you the cluster
status as ready , you can try to connect to the cluster.

4.6.4 Verifying the cluster operation

63 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the
credentials of the admin user, which are stored in the Secrets object.

4.6.4 Verifying the cluster operation

64 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets name by default.

View the Secret contents to retrive the admin user credentials.

The command returns the YAML file with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

Run a container with a MongoDB client and connect its console output to your terminal. The following command does
this, naming the new Pod percona-client :

Executing it may require some time to deploy the corresponding Pod.

Now run mongosh tool inside the percona-client command shell using the admin user credentialds you obtained from the
Secret, and a proper namespace name instead of the <namespace name> placeholder. The command will look different
depending on whether sharding is on (the default behavior) or off:

If you are using MongoDB versions earler than 6.x (such as 5.0.29-25 instead of the default 7.0.14-8 variant), substitute
mongosh command with mongo in the above examples.

1.

$ kubectl get secrets -n <namespace>

2.

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:

...
MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

3.

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il

4.

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace
name>.svc.cluster.local/admin?ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

Note

4.6.4 Verifying the cluster operation

65 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.6.5 Troubleshooting

If kubectl get psmdb command doesn’t show ready status too long, you can check the creation process with the kubectl

get pods command:

If the command output had shown some errors, you can examine the problematic Pod with the kubectl describe <pod

name> command as follows:

Review the detailed information for Warning statements and then correct the configuration. An example of a warning
is as follows:

Warning FailedScheduling 68s (x4 over 2m22s) default-scheduler 0/1 nodes are available: 1 node(s) didn’t match pod affinity/anti-affinity,

1 node(s) didn’t satisfy existing pods anti-affinity rules.

4.6.6 Removing the AKS cluster

To delete your cluster, you will need the following data:

name of your AKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the az aks delete command as follows (with real names instead of <resource group>

and <cluster name> placeholders):

It may take ten minutes to get the cluster actually deleted after executing this command.

After deleting the cluster, all data stored in it will be lost!

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE
my-cluster-name-cfg-0 2/2 Running 0 11m
my-cluster-name-cfg-1 2/2 Running 1 10m
my-cluster-name-cfg-2 2/2 Running 1 9m
my-cluster-name-mongos-0 1/1 Running 0 11m
my-cluster-name-mongos-1 1/1 Running 0 11m
my-cluster-name-mongos-2 1/1 Running 0 11m
my-cluster-name-rs0-0 2/2 Running 0 11m
my-cluster-name-rs0-1 2/2 Running 0 10m
my-cluster-name-rs0-2 2/2 Running 0 9m
percona-server-mongodb-operator-665cd69f9b-xg5dl 1/1 Running 0 37m

$ kubectl describe pod my-cluster-name-rs0-2

•

•

$ az aks delete --name <cluster name> --resource-group <resource group> --yes --no-wait

Warning

4.6.5 Troubleshooting

66 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.6.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-09-09

4.6.7 Get expert help

67 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.7 Install Percona server for MongoDB on Kubernetes

Clone the percona-server-mongodb-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

The Custom Resource Definition for Percona Server for MongoDB should be created from the deploy/crd.yaml file. The
Custom Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new items,
in our case these items are the core of the operator. Apply it as follows:

This step should be done only once; the step does not need to be repeated with any other Operator deployments.

Create a namespace and set the context for the namespace. The resource names must be unique within the namespace
and provide a way to divide cluster resources between users spread across multiple projects.

So, create the namespace and save it in the namespace context for subsequent commands as follows (replace the
<namespace name> placeholder with some descriptive name):

At success, you will see the message that namespace/<namespace name> was created, and the context was modified.

The role-based access control (RBAC) for Percona Server for MongoDB is configured with the deploy/rbac.yaml file. Role-
based access is based on defined roles and the available actions which correspond to each role. The role and actions are
defined for Kubernetes resources in the yaml file. Further details about users and roles can be found in Kubernetes
documentation .

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google Kubernetes Engine
can grant user needed privileges with the following command:

Start the operator within Kubernetes:

1.

$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

Note

2.

$ kubectl apply --server-side -f deploy/crd.yaml

3.

$ kubectl create namespace <namespace name>
$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace name>

4.

$ kubectl apply -f deploy/rbac.yaml

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value core/
account)

5.

$ kubectl apply -f deploy/operator.yaml

4.7 Install Percona server for MongoDB on Kubernetes

68 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Add the MongoDB Users secrets to Kubernetes. These secrets should be placed as plain text in the stringData section of
the deploy/secrets.yaml file as login name and passwords for the user accounts (see Kubernetes documentation for

details).

After editing the yaml file, MongoDB Users secrets should be created using the following command:

More details about secrets can be found in Users.

Now certificates should be generated. By default, the Operator generates certificates automatically, and no actions are
required at this step. Still, you can generate and apply your own certificates as secrets according to the TLS instructions.

After the operator is started, Percona Server for MongoDB cluster can be created with the following command:

The creation process may take some time. When the process is over your cluster will obtain the ready status. You can
check it with the following command:

4.7.1 Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get psmdb command finally shows you the cluster
status as ready , you can try to connect to the cluster.

6.

$ kubectl create -f deploy/secrets.yaml

7.

8.

$ kubectl apply -f deploy/cr.yaml

$ kubectl get psmdb

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

4.7.1 Verifying the cluster operation

69 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the
credentials of the admin user, which are stored in the Secrets object.

4.7.1 Verifying the cluster operation

70 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets name by default.

View the Secret contents to retrive the admin user credentials.

The command returns the YAML file with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

Run a container with a MongoDB client and connect its console output to your terminal. The following command does
this, naming the new Pod percona-client :

Executing it may require some time to deploy the corresponding Pod.

Now run mongosh tool inside the percona-client command shell using the admin user credentialds you obtained from the
Secret, and a proper namespace name instead of the <namespace name> placeholder. The command will look different
depending on whether sharding is on (the default behavior) or off:

If you are using MongoDB versions earler than 6.x (such as 5.0.29-25 instead of the default 7.0.14-8 variant), substitute
mongosh command with mongo in the above examples.

1.

$ kubectl get secrets -n <namespace>

2.

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:

...
MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

3.

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il

4.

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace
name>.svc.cluster.local/admin?ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

Note

4.7.1 Verifying the cluster operation

71 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.7.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-05-24

4.7.2 Get expert help

72 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.8 Install Percona Server for MongoDB on OpenShift

Percona Operator for Percona Server for MongoDB is a Red Hat Certified Operator . This means that Percona

Operator is portable across hybrid clouds and fully supports the Red Hat OpenShift lifecycle.

Installing Percona Server for MongoDB on OpenShift includes two steps:

Installing the Percona Operator for MongoDB,

Install Percona Server for MongoDB using the Operator.

4.8.1 Install the Operator

You can install Percona Operator for MongoDB on OpenShift using the web interface (the Operator Lifecycle Manager
 or Red Hat Marketplace), or using the command line interface.

Install the Operator via the Operator Lifecycle Manager (OLM)

Operator Lifecycle Manager (OLM) is a part of the Operator Framework that allows you to install, update, and

manage the Operators lifecycle on the OpenShift platform.

•

•

4.8 Install Percona Server for MongoDB on OpenShift

73 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Following steps will allow you to deploy the Operator and Percona Server for MongoDB on your OLM installation:

4.8.1 Install the Operator

74 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Login to the OLM and click the needed Operator on the OperatorHub page:

Then click “Contiune”, and “Install”.

A new page will allow you to choose the Operator version and the Namespace / OpenShift project you would like to
install the Operator into.

Click “Install” button to actually install the Operator.

When the installation finishes, you can deploy your MongoDB cluster. In the “Operator Details” you will see Provided APIs
(Custom Resources, available for installation). Click “Create instance” for the PerconaServerMongoDB Custom Resource.

1.

2.

3.

4.8.1 Install the Operator

75 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

You will be able to edit manifest to set needed Custom Resource options, and then click “Create” button to deploy your
database cluster.

Install the Operator via the Red Hat Marketplace

login to the Red Hat Marketplace and register your cluster following the official instructions .

Go to the Percona Operator for MongoDB page and click the Free trial button:

Here you can “purchase” the Operator for 0.0 USD.

When finished, chose Workspace->Software in the system menu on the top and choose the Operator:

1.

2.

3.

4.8.1 Install the Operator

76 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Click the Install Operator button.

Install the Operator via the command-line interface

Clone the percona-server-mongodb-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

The Custom Resource Definition for Percona Server for MongoDB should be created from the deploy/crd.yaml file. The
Custom Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new items,
in our case these items are the core of the operator.

This step should be done only once; it does not need to be repeated with other deployments.

Apply it as follows:

1.

$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

Note

2.

4.8.1 Install the Operator

77 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Setting Custom Resource Definition requires your user to have cluster-admin role privileges.

If you want to manage Percona Server for MongoDB cluster with a non-privileged user, the necessary permissions can be
granted by applying the next clusterrole:

If you have a cert-manager installed, then you have to execute two more commands to be able to manage

certificates with a non-privileged user:

Create a new psmdb project:

Add role-based access control (RBAC) for Percona Server for MongoDB is configured with the deploy/rbac.yaml file. RBAC
is based on clearly defined roles and corresponding allowed actions. These actions are allowed on specific Kubernetes
resources. The details about users and roles can be found in OpenShift documentation .

Start the Operator within OpenShift:

4.8.2 Install Percona Server for MongoDB

Add the MongoDB Users secrets to OpenShift. These secrets should be placed as plain text in the stringData section of
the deploy/secrets.yaml file as login name and passwords for the user accounts (see Kubernetes documentation for

details).

After editing the yaml file, the secrets should be created with the following command:

More details about secrets can be found in Users.

Now certificates should be generated. By default, the Operator generates certificates automatically, and no actions are
required at this step. Still, you can generate and apply your own certificates as secrets according to the TLS instructions.

$ oc apply --server-side -f deploy/crd.yaml

Note

$ oc create clusterrole psmdb-admin --verb="*" --
resource=perconaservermongodbs.psmdb.percona.com,perconaservermongodbs.psmdb.percona.com/
status,perconaservermongodbbackups.psmdb.percona.com,perconaservermongodbbackups.psmdb.percona.com/
status,perconaservermongodbrestores.psmdb.percona.com,perconaservermongodbrestores.psmdb.percona.com/status
$ oc adm policy add-cluster-role-to-user psmdb-admin <some-user>

$ oc create clusterrole cert-admin --verb="*" --resource=iissuers.certmanager.k8s.io,certificates.certmanager.k8s.io
$ oc adm policy add-cluster-role-to-user cert-admin <some-user>

3.

$ oc new-project psmdb

4.

$ oc apply -f deploy/rbac.yaml

5.

$ oc apply -f deploy/operator.yaml

1.

$ oc create -f deploy/secrets.yaml

2.

4.8.2 Install Percona Server for MongoDB

78 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Percona Server for MongoDB cluster can be created at any time with the following steps:

Uncomment the deploy/cr.yaml field #platform: and edit the field to platform: openshift . The result should be like this:

(optional) In you’re using minishift, please adjust antiaffinity policy to none

Create/apply the Custom Resource file:

The creation process will take time. When the process is over your cluster will obtain the ready status. You can check it
with the following command:

4.8.3 Verifying the cluster operation

It may take ten minutes to get the cluster started. When oc get psmdb command finally shows you the cluster status as
ready , you can try to connect to the cluster.

3.

a.

apiVersion: psmdb.percona.com/v1alpha1
kind: PerconaServerMongoDB
metadata:
name: my-cluster-name

spec:
platform: openshift

...

b.

affinity:
antiAffinityTopologyKey: "none"

...

c.

$ oc apply -f deploy/cr.yaml

$ oc get psmdb

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

4.8.3 Verifying the cluster operation

79 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the
credentials of the admin user, which are stored in the Secrets object.

4.8.3 Verifying the cluster operation

80 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets name by default.

View the Secret contents to retrive the admin user credentials.

The command returns the YAML file with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

Run a container with a MongoDB client and connect its console output to your terminal. The following command does
this, naming the new Pod percona-client :

Executing it may require some time to deploy the corresponding Pod.

Now run mongosh tool inside the percona-client command shell using the admin user credentialds you obtained from the
Secret, and a proper namespace name instead of the <namespace name> placeholder. The command will look different
depending on whether sharding is on (the default behavior) or off:

If you are using MongoDB versions earler than 6.x (such as 5.0.29-25 instead of the default 7.0.14-8 variant), substitute
mongosh command with mongo in the above examples.

1.

$ oc get secrets -n <namespace>

2.

$ oc get secret my-cluster-name-secrets -o yaml

Sample output

...
data:

...
MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

3.

$ oc run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il

4.

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace
name>.svc.cluster.local/admin?ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

Note

4.8.3 Verifying the cluster operation

81 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

4.8.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-09-09

4.8.4 Get expert help

82 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5. Configuration

5.1 Users

MongoDB user accounts within the Cluster can be divided into two different groups:

application-level users: the unprivileged user accounts,

system-level users: the accounts needed to automate the cluster deployment and management tasks, such as
MongoDB Health checks.

As these two groups of user accounts serve different purposes, they are considered separately in the following
sections.

5.1.1 Unprivileged users

The Operator does not create unprivileged (general purpose) user accounts by default. There are two ways to create
general purpose users:

manual creation of custom MongoDB users,

automated users creation via Custom Resource (Operator versions 1.17.0 and newer).

Create users in the Custom Resource

Starting from the Operator version 1.17.0 declarative creation of custom MongoDB users is supported via the users

subsection in the Custom Resource.

Declarative user management has technical preview status and is not yet recommended for production environments.

You can change users section in the deploy/cr.yaml configuration file at the cluster creation time, and adjust it over
time.

You can specify a new user in deploy/cr.yaml configuration file, setting the user’s login name and database, a reference
to a key in some Secret resource that contains user’s password, as well as MongoDB roles on various databases which
should be assigned to this user. You can find detailed description of the corresponding options in the Custom
Resource reference, and here is a self-explanatory example:

The Secret mentioned in the users.passwordSecretRef.name option should look as follows:

•

•

•

•

Warning

...
users:
- name: my-user
db: admin
passwordSecretRef:
name: my-user-password
key: password

roles:
- name: clusterAdmin
db: admin

- name: userAdminAnyDatabase
db: admin

5. Configuration

83 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The Operator tracks password changes in the Sectet object, and updates the user password in the database. This
applies to the manually created users as well: if a user was created manually in the database before creating user via
Custom Resource, the existing user is updated. But manual password updates in the database are not tracked: the
Operator doesn’t overwrite changed passwords with the old ones from the users Secret.

Custom MongoDB roles

Custom MongoDB roles allow providing fine-grained access control over your MongoDB deployment.

Custom MongoDB roles can be defined in a declarative way via the roles subsection in the Custom Resource.

Custom roles were introduced in the Operator version 1.18.0. It has technical preview status and is not yet recommended
for production environments.

This subsection contains array of roles each with the defined custom name (roles.name), database in which you want to
store the user-defined role (roles.db). The roles.privileges.actions allows to set List of custom role actions that users
granted this role can perform. For a list of accepted values, see Privilege Actions in the manual of the

corresponding MongoDB version. Actions can be granted for the whole cluster (if roles.privileges.resource.cluster set to
true), or be related to a specific database or collection. Adding existing role and database names to the roles.roles

subsection allows you to inherit privileges from existing roles. Finally, you can apply authentication restrictions for
your custom role based on the IP address ranges for the client and server. The following example shows how roles

subsection may look like:

Find more infromation about available options and their accepted values in the roles subsection of the Custom
Resource reference.

apiVersion: v1
kind: Secret
metadata:
name: my-user-password

type: Opaque
stringData:
password: mypassword

Warning

roles:
- role: my-role
db: admin
privileges:
- resource:

db: ''
collection: ''

actions:
- find

authenticationRestrictions:
- clientSource:

- 127.0.0.1
serverAddress:
- 127.0.0.1

roles:
- role: read
db: admin

- role: readWrite
db: admin

5.1.1 Unprivileged users

84 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Create users manually

You can create unprivileged users manually. Please run commands below, substituting the <namespace name>

placeholder with the real namespace of your database cluster:

if sharding is on

Now check the newly created user:

if sharding is off

Now check the newly created user:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il
mongodb@percona-client:/$
$ mongosh "mongodb://userAdmin:userAdmin123456@my-cluster-name--mongos.<namespace name>.svc.cluster.local/
admin?ssl=false"
rs0:PRIMARY> db.createUser({

user: "myApp",
pwd: "myAppPassword",
roles: [
{ db: "myApp", role: "readWrite" }

],
mechanisms: [

"SCRAM-SHA-1"
]

})

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il
mongodb@percona-client:/$ mongosh "mongodb+srv://myApp:myAppPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"
rs0:PRIMARY> use myApp
rs0:PRIMARY> db.test.insert({ x: 1 })
rs0:PRIMARY> db.test.findOne()

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il
mongodb@percona-client:/$
$ mongosh "mongodb+srv://userAdmin:userAdmin123456@my-cluster-name-rs0.<namespace name>.svc.cluster.local/
admin?replicaSet=rs0&ssl=false"
rs0:PRIMARY> db.createUser({

user: "myApp",
pwd: "myAppPassword",
roles: [
{ db: "myApp", role: "readWrite" }

],
mechanisms: [

"SCRAM-SHA-1"
]

})

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il
mongodb@percona-client:/$ mongosh "mongodb+srv://myApp:myAppPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"
rs0:PRIMARY> use myApp
rs0:PRIMARY> db.test.insert({ x: 1 })
rs0:PRIMARY> db.test.findOne()

5.1.1 Unprivileged users

85 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.1.2 System Users

To automate the deployment and management of the cluster components, the Operator requires system-level
MongoDB users.

Credentials for these users are stored as a Kubernetes Secrets object. The Operator requires Kubernetes Secret

before the database cluster is started. It will either use existing Secret or create a new Secret with randomly generated
passwords if it didn’t exist. The name of the required Secret should be set in the spec.secrets.users option of the deploy/

cr.yaml configuration file.

Default Secret name: my-cluster-name-secrets

Secret name field: spec.secrets.users

These users should not be used to run an application.

Password-based authorization method for PMM is deprecated since the Operator 1.13.0. Use token-based
authorization instead.

Backup/Restore - MongoDB Role: backup , restore , clusterMonitor , readWrite , pbmAnyAction

Cluster Admin - MongoDB Roles: clusterAdmin

Cluster Monitor - MongoDB Role: clusterMonitor , read (on the local database) , explainRole

Database Admin - MongoDB Roles: readWriteAnyDatabase , readAnyDatabase , dbAdminAnyDatabase ,

backup , restore , clusterMonitor

User Admin - MongoDB Role: userAdminAnyDatabase

If you change credentials for the MONGODB_CLUSTER_MONITOR user, the cluster Pods will go into restart cycle, and the
cluster can be not accessible through the mongos service until this cycle finishes.

Warning

User Purpose Username Secret Key Password Secret Key

Backup/Restore MONGODB_BACKUP_USER MONGODB_BACKUP_PASSWORD

Cluster Admin MONGODB_CLUSTER_ADMIN_USER MONGODB_CLUSTER_ADMIN_PASSWORD

Cluster Monitor MONGODB_CLUSTER_MONITOR_USER MONGODB_CLUSTER_MONITOR_PASSWORD

Database Admin MONGODB_DATABASE_ADMIN_USER MONGODB_DATABASE_ADMIN_PASSWORD

User Admin MONGODB_USER_ADMIN_USER MONGODB_USER_ADMIN_PASSWORD

PMM Server PMM_SERVER_USER PMM_SERVER_PASSWORD

•

•

•

•

•

5.1.2 System Users

86 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

In some situations it can be needed to reproduce system users in a bare-bone MongoDB. For example, that’s a required
step in the migration scenarios to move existing on-prem MongoDB database to Kubernetes-based MongoDB cluster

managed by the Operator. You can use the following example script which produces a text file with mongo shell
commands to create needed system users with appropriate roles:

YAML Object Format

The default name of the Secrets object for these users is my-cluster-name-secrets and can be set in the CR for your
cluster in spec.secrets.users to something different. When you create the object yourself, the corresponding YAML file
should match the following simple format:

Note

gen_users.sh

clusterAdminPass="clusterAdmin"
userAdminPass="userAdmin"
clusterMonitorPass="clusterMonitor"
backupPass="backup"

mongo shell
cat <<EOF > user-mongo-shell.txt
use admin
db.createRole(
{
"roles": [],
role: "pbmAnyAction",
"privileges" : [
 {
 "resource" : {
 "anyResource" : true
 },
 "actions" : [
 "anyAction"
]
 }
],

})

db.createUser({ user: "clusterMonitor", pwd: "$clusterMonitorPass", roles: ["clusterMonitor"] })
db.createUser({ user: "userAdmin", pwd: "$userAdminPass", roles: ["userAdminAnyDatabase"] })
db.createUser({ user: "clusterAdmin", pwd: "$clusterAdminPass", roles: ["clusterAdmin"] })
db.createUser({ user: "backup", pwd: "$backupPass", roles: ["readWrite", "backup", "clusterMonitor", "restore",
"pbmAnyAction"] })
EOF

apiVersion: v1
kind: Secret
metadata:
name: my-cluster-name-secrets

type: Opaque
stringData:
MONGODB_BACKUP_USER: backup
MONGODB_BACKUP_PASSWORD: backup123456
MONGODB_DATABASE_ADMIN_USER: databaseAdmin
MONGODB_DATABASE_ADMIN_PASSWORD: databaseAdmin123456
MONGODB_CLUSTER_ADMIN_USER: clusterAdmin
MONGODB_CLUSTER_ADMIN_PASSWORD: clusterAdmin123456
MONGODB_CLUSTER_MONITOR_USER: clusterMonitor

5.1.2 System Users

87 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The example above matches what is shipped in deploy/secrets.yaml which contains default passwords and default API
key. You should NOT use these in production, but they are present to assist in automated testing or simple use in a
development environment.

As you can see, because we use the stringData type when creating the Secrets object, all values for each key/value pair
are stated in plain text format convenient from the user’s point of view. But the resulting Secrets object contains
passwords stored as data - i.e., base64-encoded strings. If you want to update any field, you’ll need to encode the
value into base64 format. To do this, you can run echo -n "password" | base64 --wrap=0 (or just echo -n "password" | base64

in case of Apple macOS) in your local shell to get valid values. For example, setting the Database Admin user’s
password to new_password in the my-cluster-name-secrets object can be done with the following command:

The operator creates and updates an additional Secrets object named based on the cluster name, like internal-my-cluster-

name-users . It is used only by the Operator and should undergo no manual changes by the user. This object contains
secrets with the same passwords as the one specified in spec.secrets.users (e.g. my-cluster-name-secrets). When the user
updates my-cluster-name-secrets , the Operator propagates these changes to the internal internal-my-cluster-name-users

Secrets object.

Password Rotation Policies and Timing

When there is a change in user secrets, the Operator creates the necessary transaction to change passwords. This
rotation happens almost instantly (the delay can be up to a few seconds), and it’s not needed to take any action
beyond changing the password.

Please don’t change secrets.users option in CR, make changes inside the secrets object itself.

5.1.3 Development Mode

To make development and testing easier, deploy/secrets.yaml secrets file contains default passwords for MongoDB
system users.

MONGODB_CLUSTER_MONITOR_PASSWORD: clusterMonitor123456
MONGODB_USER_ADMIN_USER: userAdmin
MONGODB_USER_ADMIN_PASSWORD: userAdmin123456
PMM_SERVER_USER: admin
PMM_SERVER_PASSWORD: admin
PMM_SERVER_API_KEY: apikey

in Linux

in macOS

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"MONGODB_DATABASE_ADMIN_PASSWORD": "'$(echo -n
new_password | base64 --wrap=0)'"}}'

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"MONGODB_DATABASE_ADMIN_PASSWORD": "'$(echo -n
new_password | base64)'"}}'

Note

Note

5.1.3 Development Mode

88 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

These development-mode credentials from deploy/secrets.yaml are:

Do not use the default MongoDB Users and/or default PMM API key in production!

5.1.4 MongoDB Internal Authentication Key (optional)

Default Secret name: my-cluster-name-mongodb-keyfile

Secret name field: spec.secrets.key

By default, the operator will create a random, 1024-byte key for MongoDB Internal Authentication if it does not

already exist. If you would like to deploy a different key, create the secret manually before starting the operator.
Example:

Secret Key Secret Value

MONGODB_BACKUP_USER backup

MONGODB_BACKUP_PASSWORD backup123456

MONGODB_DATABASE_ADMIN_USER databaseAdmin

MONGODB_DATABASE_ADMIN_PASSWORD databaseAdmin123456

MONGODB_CLUSTER_ADMIN_USER clusterAdmin

MONGODB_CLUSTER_ADMIN_PASSWORD clusterAdmin123456

MONGODB_CLUSTER_MONITOR_USER clusterMonitor

MONGODB_CLUSTER_MONITOR_PASSWORD clusterMonitor123456

MONGODB_USER_ADMIN_USER userAdmin

MONGODB_USER_ADMIN_PASSWORD userAdmin123456

PMM_SERVER_USER admin

PMM_SERVER_PASSWORD admin

PMM_SERVER_API_KEY apikey

Warning

apiVersion: v1
kind: Secret
metadata:
name: my-cluster-name-mongodb-keyfile

type: Opaque
data:
mongodb-key: <replace-this-value-with-base-64-encoded-text>

5.1.4 MongoDB Internal Authentication Key (optional)

89 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.1.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-11-14

5.1.5 Get expert help

90 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.2 Changing MongoDB Options

You may require a configuration change for your application. MongoDB allows configuring the database with a
configuration file, as many other database management systems do. You can pass options to MongoDB instances in
the cluster in one of the following ways:

edit the deploy/cr.yaml file,

use a ConfigMap,

use a Secret object.

You can pass configuration settings separately for mongod Pods, mongos Pods, and Config Server Pods.

Often there’s no need to add custom options, as the Operator takes care of providing MongoDB with reasonable
defaults. Also, attempt to change some MongoDB options will be ignored: you can’t change TLS/SSL options, as it
would break the behavior of the Operator.

5.2.1 Edit the deploy/cr.yaml file

You can add MongoDB configuration options to the replsets.configuration, sharding.mongos.configuration, and
sharding-configsvrreplset-configuration keys of the deploy/cr.yaml . Here is an example:

See the official manual for the complete list of options, as well as specific Percona Server for

MongoDB documentation pages .

5.2.2 Use a ConfigMap

You can use a ConfigMap and the cluster restart to reset configuration options. A ConfigMap allows Kubernetes to

pass or update configuration data inside a containerized application.

You should give the ConfigMap a specific name, which is composed of your cluster name and a specific suffix:

my-cluster-name-rs0-mongod for the Replica Set (mongod) Pods,

my-cluster-name-cfg-mongod for the Config Server Pods,

my-cluster-name-mongos for the mongos Pods,

To find the cluster name, you can use the following command:

•

•

•

spec:
...
replsets:
- name: rs0
size: 3
configuration: |
operationProfiling:
mode: slowOp

systemLog:
verbosity: 1

...

•

•

•

Note

$ kubectl get psmdb

5.2 Changing MongoDB Options

91 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

For example, let’s define a mongod.conf configuration file and put there several MongoDB options we used in the
previous example:

You can create a ConfigMap from the mongod.conf file with the kubectl create configmap command. It has the following
syntax:

The following example defines my-cluster-name-rs0-mongod as the ConfigMap name and the mongod.conf file as the data
source:

To view the created ConfigMap, use the following command:

Do not forget to restart Percona Server for MongoDB to ensure the cluster has updated the configuration (see details on
how to connect in the Install Percona Server for MongoDB on Kubernetes page).

5.2.3 Use a Secret Object

The Operator can also store configuration options in Kubernetes Secrets . This can be useful if you need additional

protection for some sensitive data.

You should create a Secret object with a specific name, composed of your cluster name and a specific suffix:

my-cluster-name-rs0-mongod for the Replica Set Pods,

my-cluster-name-cfg-mongod for the Config Server Pods,

my-cluster-name-mongos for the mongos Pods,

To find the cluster name, you can use the following command:

Configuration options should be put inside a specific key:

data.mongod key for Replica Set (mongod) and Config Server Pods,

data.mongos key for mongos Pods.

Actual options should be encoded with Base64 .

operationProfiling:
mode: slowOp

systemLog:
verbosity: 1

$ kubectl create configmap <configmap-name> <resource-type=resource-name>

$ kubectl create configmap my-cluster-name-rs0-mongod --from-file=mongod.conf=mongod.conf

$ kubectl describe configmaps my-cluster-name-rs0-mongod

Note

•

•

•

Note

$ kubectl get psmdb

•

•

5.2.3 Use a Secret Object

92 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

For example, let’s define a mongod.conf configuration file and put there several MongoDB options we used in the
previous example:

You can get a Base64 encoded string from your options via the command line as follows:

Similarly, you can read the list of options from a Base64 encoded string:

Finally, use a yaml file to create the Secret object. For example, you can create a deploy/my-mongod-secret.yaml file with
the following contents:

When ready, apply it with the following command:

Do not forget to restart Percona Server for MongoDB to ensure the cluster has updated the configuration (see details on
how to connect in the Install Percona Server for MongoDB on Kubernetes page).

operationProfiling:
mode: slowOp

systemLog:
verbosity: 1

in Linux

in macOS

$ cat mongod.conf | base64 --wrap=0

$ cat mongod.conf | base64

Note

$ echo "ICAgICAgb3BlcmF0aW9uUHJvZmlsaW5nOgogICAgICAgIG1vZGU6IHNsb3dPc\
AogICAgICBzeXN0ZW1Mb2c6CiAgICAgICAgdmVyYm9zaXR5OiAxCg==" | base64 --decode

apiVersion: v1
kind: Secret
metadata:
name: my-cluster-name-rs0-mongod

data:
mongod.conf: "ICAgICAgb3BlcmF0aW9uUHJvZmlsaW5nOgogICAgICAgIG1vZGU6IHNsb3dPc\
AogICAgICBzeXN0ZW1Mb2c6CiAgICAgICAgdmVyYm9zaXR5OiAxCg=="

$ kubectl create -f deploy/my-mongod-secret.yaml

Note

5.2.3 Use a Secret Object

93 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.2.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-05-25

5.2.4 Get expert help

94 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.3 Binding Percona Server for MongoDB components to Specific Kubernetes/

OpenShift Nodes

The operator does a good job of automatically assigning new pods to nodes to achieve balanced distribution across
the cluster. There are situations when you must ensure that pods land on specific nodes: for example, for the
advantage of speed on an SSD-equipped machine, or reduce costs by choosing nodes in the same availability zone.

The appropriate (sub)sections (replsets , replsets.arbiter , backup , etc.) of the deploy/cr.yaml file contain the keys

which can be used to do assign pods to nodes.

5.3.1 Node selector

The nodeSelector contains one or more key-value pairs. If the node is not labeled with each key-value pair from the
Pod’s nodeSelector , the Pod will not be able to land on it.

The following example binds the Pod to any node having a self-explanatory disktype: ssd label:

5.3.2 Affinity and anti-affinity

Affinity defines eligible pods that can be scheduled on the node which already has pods with specific labels. Anti-
affinity defines pods that are not eligible. This approach is reduces costs by ensuring several pods with intensive data
exchange occupy the same availability zone or even the same node or, on the contrary, to spread the pods on different
nodes or even different availability zones for high availability and balancing purposes.

Percona Operator for MongoDB provides two approaches for doing this:

simple way to set anti-affinity for Pods, built-in into the Operator,

more advanced approach based on using standard Kubernetes constraints.

Simple approach - use antiAffinityTopologyKey of the Percona Operator for MongoDB

Percona Operator for MongoDB provides an antiAffinityTopologyKey option, which may have one of the following values:

kubernetes.io/hostname - Pods will avoid residing within the same host,

topology.kubernetes.io/zone - Pods will avoid residing within the same zone,

topology.kubernetes.io/region - Pods will avoid residing within the same region,

none - no constraints are applied.

The following example forces Percona Server for MongoDB Pods to avoid occupying the same node:

Advanced approach - use standard Kubernetes constraints

The previous method can be used without special knowledge of the Kubernetes way of assigning Pods to specific
nodes. Still, in some cases, more complex tuning may be needed. In this case, the advanced option placed in the

nodeSelector:
disktype: ssd

•

•

•

•

•

•

affinity:
antiAffinityTopologyKey: "kubernetes.io/hostname"

5.3 Binding Percona Server for MongoDB components to Specific Kubernetes/OpenShift Nodes

95 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

deploy/cr.yaml file turns off the effect of the antiAffinityTopologyKey and allows the use of the standard Kubernetes

affinity constraints of any complexity:

See explanation of the advanced affinity options in Kubernetes documentation .

5.3.3 Topology Spread Constraints

Topology Spread Constraints allow you to control how Pods are distributed across the cluster based on regions, zones,
nodes, and other topology specifics. This can be useful for both high availability and resource efficiency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection, which can be put into
replsets , sharding.configsvrReplSet , and sharding.mongos sections of the deploy/cr.yaml configuration file as follows:

affinity:
advanced:
podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: security
operator: In
values:
- S1

topologyKey: failure-domain.beta.kubernetes.io/zone
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: security
operator: In
values:
- S2

topologyKey: kubernetes.io/hostname
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/e2e-az-name
operator: In
values:
- e2e-az1
- e2e-az2

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: another-node-label-key
operator: In
values:
- another-node-label-value

topologySpreadConstraints:
- labelSelector:

matchLabels:
app.kubernetes.io/name: percona-server-mongodb

maxSkew: 1
topologyKey: kubernetes.io/hostname
whenUnsatisfiable: DoNotSchedule

5.3.3 Topology Spread Constraints

96 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

You can see the explanation of these affinity options in Kubernetes documentation .

5.3.4 Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is expressed as a key

with and operator , which is either exists or equal (the equal variant requires a corresponding value for comparison).

Toleration should have a specified effect , such as the following:

NoSchedule - less strict

PreferNoSchedule

NoExecute

When a taint with the NoExecute effect is assigned to a Node, any Pod configured to not tolerating this taint is removed
from the node. This removal can be immediate or after the tolerationSeconds interval. The following example defines
this effect and the removal interval:

The Kubernetes Taints and Toleratins contains more examples on this topic.

5.3.5 Priority Classes

Pods may belong to some priority classes. This flexibility allows the scheduler to distinguish more and less important
Pods when needed, such as the situation when a higher priority Pod cannot be scheduled without evicting a lower
priority one. This ability can be accomplished by adding one or more PriorityClasses in your Kubernetes cluster, and
specifying the PriorityClassName in the deploy/cr.yaml file:

See the Kubernetes Pods Priority and Preemption documentation to find out how to define and use priority

classes in your cluster.

5.3.6 Pod Disruption Budgets

Creating the Pod Disruption Budget is the Kubernetes method to limit the number of Pods of an application that

can go down simultaneously due to voluntary disruptions such as the cluster administrator’s actions during a
deployment update. Distribution Budgets allow large applications to retain their high availability during maintenance
and other administrative activities. The maxUnavailable and minAvailable options in the deploy/cr.yaml file can be

used to set these limits. The recommended variant is the following:

•

•

•

tolerations:
- key: "node.alpha.kubernetes.io/unreachable"
operator: "Exists"
effect: "NoExecute"
tolerationSeconds: 6000

priorityClassName: high-priority

podDisruptionBudget:
maxUnavailable: 1

5.3.4 Tolerations

97 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.3.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-07-26

5.3.7 Get expert help

98 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.4 Labels and annotations

Labels and annotations are used to attach additional metadata information to Kubernetes resources.

Labels and annotations are rather similar. The difference between them is that labels are used by Kubernetes to
identify and select objects, while annotations are assigning additional non-identifying information to resources.
Therefore, typical role of Annotations is facilitating integration with some external tools.

5.4.1 Setting labels and annotations in the Custom Resource

You can set labels and/or annotations as key/value string pairs in the Custom Resource metadata section of the
deploy/cr.yaml as follows:

The easiest way to check which labels are attached to a specific object with is using the additional --show-labels option
of the kubectl get command. Checking the annotations is not much more difficult: it can be done as in the following
example:

5.4.2 Using labels and annotations with objects created by the Operator

You can assign labels and annotations to various objects created by the Operator (e.g. Services used to expose
components of the cluster, Persistent Volume Claims, etc.) with labels and annotations options in the appropriate
subsections of the Custom Resource, as seen in the Custom Resource options reference and the deploy/cr.yaml
configuration file .

Sometimes various Kubernetes flavors can add their own annotations to the objects managed by the Operator.

The Operator keeps track of all changes to its objects and can remove annotations that appeared without its
participation.

If there are no annotations or labels in the Custom Resource expose subsections, the Operator does nothing if a new
label or annotation is added to the object.

If the Service per Pod mode is not used, the Operator won’t remove any annotations and labels from any Services
related to this expose subsection. Though, it is still possible to add annotations and labels via the Custom Resource in
this case. Use the appropriate expose.serviceAnnotations and expose.serviceLabels fields.

Else, if the Service per Pod mode is active, the Operator removes unknown annotations and labels from Services
created by the Operator for Pods. Yet it is still possible to specify which annotations and labels should be preserved (not
wiped out) by the Operator. List them in the spec.ignoreAnnotations or spec.ignoreLabels fields of the deploy/cr.yaml , as
follows:

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDB
metadata:
name: my-cluster-name
annotations:
percona.com/issue-vault-token: "true"

labels:
...

$ kubectl get pod my-cluster-name-rs0-0 -o jsonpath='{.metadata.annotations}'

spec:
ignoreAnnotations:
- some.custom.cloud.annotation/smth

5.4 Labels and annotations

99 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The Operator will keep any Service annotation or label, key of which starts with the specified string. For example, the
following annotations and labels will be not removed after applying the above cr.yaml fragment:

5.4.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

ignoreLabels:
- some.custom.cloud.label/smth

...

kind: Service
apiVersion: v1
metadata:
name: my-cluster-name-cfg
...
labels:
some.custom.cloud.label/smth: somethinghere
...

annotations:
some.custom.cloud.annotation/smth: somethinghere
...

Last update: 2024-04-09

5.4.3 Get expert help

100 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.5 Exposing the cluster

The Operator provides entry points for accessing the database by client applications in several scenarios. In either way
the cluster is exposed with regular Kubernetes Service objects , configured by the Operator.

This document describes the usage of Custom Resource manifest options to expose clusters deployed with the
Operator.

5.5.1 Using a single entry point in a sharded cluster

If Percona Server for MongoDB sharding mode is turned on (the default behavior), then the database cluster runs
special mongos Pods - query routers, which act as entry points for client applications:

By default, a ClusterIP type Service is created (this is controlled by sharding.mongos.expose.type). The Service works in
a round-robin fashion between all the mongos Pods.

The URI looks like this (taking into account the need for a proper password obtained from the Secret, and a proper
namespace name instead of the <namespace name> placeholder):

You can get the actual Service endpoints by running the following command:

$ mongosh "mongodb://userAdmin:userAdminPassword@my-cluster-name-mongos.<namespace
name>.svc.cluster.local/admin?ssl=false"

$ kubectl get psmdb

5.5 Exposing the cluster

101 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

A ClusterIP Service endpoint is only reachable inside Kubernetes. If you need to connect from the outside, you need to
expose the mongos Pods by using the NodePort or Load Balancer Service types. See the Connecting from outside
Kubernetes section below for details.

5.5.2 Accessing replica set Pods

If Percona Server for MongoDB sharding mode mode is turned off, the application needs to connect to all the
MongoDB Pods of the replica set:

When Kubernetes creates Pods, each Pod has an IP address in the internal virtual network of the cluster. Creating and
destroying Pods is a dynamic process, therefore binding communication between Pods to specific IP addresses would
cause problems as things change over time as a result of the cluster scaling, maintenance, etc. Due to this changing
environment, you should connect to Percona Server for MongoDB by using Kubernetes internal DNS names in the URI.

By default, a ClusterIP type Service is created (this is controlled by replsets.expose.type). The Service works in a round-
robin fashion between all the mongod Pods of the replica set.

In this case, the URI looks like this (taking into account the need for a proper password obtained from the Secret, and
a proper namespace name instead of the <namespace name> placeholder):

You can get the actual Service endpoints by running the following command:

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 85m

Warning

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

$ kubectl get psmdb

5.5.2 Accessing replica set Pods

102 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

A ClusterIP Service endpoint is only reachable inside Kubernetes. If you need to connect from the outside, you need to
expose the mongod Pods by using the NodePort or Load Balancer Service types. See the Connecting from outside
Kubernetes section below for details.

5.5.3 Connecting from outside Kubernetes

If connecting to a cluster from outside Kubernetes, you cannot reach the Pods using the Kubernetes internal DNS
names. To make the Pods accessible, Percona Operator for MongoDB can create Kubernetes Services .

set expose.enabled option to true to allow exposing the Pods via Services,

set expose.type option specifying the type of Service to be used:

ClusterIP - expose the Pod with an internal static IP address. This variant makes the Service reachable only from
within the Kubernetes cluster.

NodePort - expose the Pod on each Kubernetes Node’s IP address at a static port. A ClusterIP Service, to which the
Node port will be routed, is automatically created in this variant. As an advantage, the Service will be reachable from
outside the cluster by Node address and port number, however the address will be bound to a specific Kubernetes
Node.

LoadBalancer - expose the Pod externally using a cloud provider’s load balancer. Both ClusterIP and NodePort
Services are automatically created in this variant

If the NodePort type is used, the URI looks like this:

mongodb://databaseAdmin:databaseAdminPassword@<node1>:<port1>,<node2>:<port2>,<node3>:<port3>/admin?

replicaSet=rs0&ssl=false

All Node addresses should be directly reachable by the application.

5.5.4 Service per Pod

To make all database Pods accessible, Percona Operator for MongoDB can assign a Kubernetes Service to each

Pod. Particularly, the Service per Pod option allows the application to take care of Cursor tracking instead of relying on
a single Service. This solves the problem of CursorNotFound errors when the Service transparently cycles between the
mongos instances while client is still iterating the cursor on some large collection.

This feature can be enabled for both sharded and non-sharded clusters by setting the
sharding.mongos.expose.servicePerPod Custom Resource option to true in the deploy/cr.yaml file.

If this feature is enabled with the expose.type: NodePort , the created Services look like this:

Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-rs0.default.svc.cluster.local ready 2m19s

Warning

•

•

•

•

•

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-cluster-name-mongos-0 NodePort 10.38.158.103 <none> 27017:31689/TCP 12s
my-cluster-name-mongos-1 NodePort 10.38.155.250 <none> 27017:31389/TCP 12s
...

5.5.3 Connecting from outside Kubernetes

103 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.5.5 Controlling hostnames in replset configuration

Starting from v1.14, the Operator configures replica set members using local fully-qualified domain names (FQDN),
which are resolvable and available only from inside the Kubernetes cluster. Exposing the replica set using the options
described above will not affect hostname usage in the replica set configuration.

Before v1.14, the Operator used the exposed IP addresses in the replica set configuration in the case of the exposed
replica set.

It is still possible to restore the old behavior. For example, it may be useful to have the replica set configured with
external IP addresses for multi-cluster deployments. The clusterServiceDNSMode field in the Custom Resource controls
this Operator behavior. You can set clusterServiceDNSMode to one of the following values:

Internal : Use local FQDNs (i.e., cluster1-rs0-0.cluster1-rs0.psmdb.svc.cluster.local) in replica set configuration even if the replica
set is exposed. This is the default value.

ServiceMesh : Use a special FQDN using the Pod name (i.e., cluster1-rs0-0.psmdb.svc.cluster.local), assuming it’s resolvable
and available in all clusters.

External : Use exposed IP in replica set configuration if replica set is exposed; else, use local FQDN. This copies the
behavior of the Operator v1.13.

If backups are enabled in your cluster, you need to restart replset and config servers after changing
clusterServiceDNSMode . This option changes the hostnames inside the replset configuration and running pbm-agents
don’t discover the change until they’re restarted. You may have errors in backup-agent container logs and your backups
may not work until you restarted the agents.

Restart can be done manually with the kubectl rollout restart sts

<clusterName>-<replsetName> command executed for each replica set in the spec.replsets ; also, if sharding enabled, do
the same for config servers with kubectl rollout restart sts <clusterName>-cfg . Alternatively, you can simply restart your
cluster.

You should be careful with the clusterServiceDNSMode=External variant. Using IP addresses instead of DNS hostnames is
discouraged in MongoDB. IP addresses make reconfiguration and recovery more complicated, and are generally
problematic in scenarios where IP addresses change. In particular, if you delete and recreate the cluster with
clusterServiceDNSMode=External without deleting its volumes (having percona.com/delete-psmdb-pvc finalizer unset), your
cluster will crash and there will be no straightforward way to recover it.

5.5.6 Exposing replica set with split-horizon DNS

Split-horizon DNS provides each replica set Pod with a set of DNS URIs for external usage. This allows to

communicate with replica set Pods both from inside the Kubernetes cluster and from outside of Kubernetes.

Split-horizon can be configured via the replset.splitHorizons subsection in the Custom Resource options. Set it in the
deploy/cr.yaml configuration file as follows:

Note

1.

2.

3.

Warning

...
replsets:
- name: rs0
expose:
enabled: true

5.5.5 Controlling hostnames in replset configuration

104 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

URIs for external usage are specified as key-value pairs, where the key is an arbitrary name and the value is the actual
URI. The URI may include a port number. If nothing is set, the default MongoDB port will be used.

Split horizon has following limitations:

connecting with horizon domains is only supported if client connects using TLS certificates, and these TLS
certificates need to be generated manually

duplicating domain names in horizons is not allowed by MongoDB

using IP addresses in horizons is not allowed by MongoDB

horizons should be set for all Pods of a replica set or not set at all

5.5.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

type: LoadBalancer
splitHorizons:
cluster1-rs0-0:
external: rs0-0.mycluster.xyz
external-2: rs0-0.mycluster2.xyz

cluster1-rs0-1:
external: rs0-1.mycluster.xyz
external-2: rs0-1.mycluster2.xyz

cluster1-rs0-2:
external: rs0-2.mycluster.xyz
external-2: rs0-2.mycluster2.xyz

•

•

•

•

Last update: 2024-10-23

5.5.7 Get expert help

105 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.6 Local Storage support for the Percona Operator for MongoDB

Among the wide rage of volume types, supported by Kubernetes, there are two volume types which allow Pod
containers to access part of the local filesystem on the node the emptyDir and hostPath.

5.6.1 emptyDir

A Pod emptyDir volume is created when the Pod is assigned to a Node. The volume is initially empty and is erased

when the Pod is removed from the Node. The containers in the Pod can read and write the files in the emptyDir
volume.

The emptyDir options in the deploy/cr.yaml file can be used to turn the emptyDir volume on by setting the

directory name.

The emptyDir is useful when you use Percona Memory Engine .

5.6.2 hostPath

A hostPath volume mounts an existing file or directory from the host node’s filesystem into the Pod. If the pod is

removed, the data persists in the host node’s filesystem.

The volumeSpec.hostPath subsection in the deploy/cr.yaml file may include path and type keys to set the node’s

filesystem object path and to specify whether it is a file, a directory, or something else (e.g. a socket):

Please note, you must created the hostPath manually and should have following attributes:

access permissions,

ownership,

SELinux security context.

The hostPath volume is useful when you perform manual actions during the first run and require improved disk
performance. Consider using the tolerations settings to avoid a cluster migration to different hardware in case of a
reboot or a hardware failure.

More details can be found in the official hostPath Kubernetes documentation .

5.6.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

volumeSpec:
hostPath:
path: /data
type: Directory

•

•

•

5.6 Local Storage support for the Percona Operator for MongoDB

106 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Last update: 2024-04-09

5.6.3 Get expert help

107 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.7 Using Replica Set Arbiter nodes and non-voting nodes

Percona Server for MongoDB replication model is based on elections, when nodes of the Replica Set choose which

node becomes the primary node.

The need for elections influences the choice of the number of nodes in the cluster. Elections are the reason to avoid
even number of nodes, and to have at least three and not more than seven participating nodes.

Still, sometimes there is a contradiction between the number of nodes suitable for elections and the number of nodes
needed to store data. You can solve this contradiction in two ways:

Add Arbiter nodes, which participate in elections, but do not store data,

Add non-voting nodes, which store data but do not participate in elections.

5.7.1 Adding Arbiter nodes

Normally, each node stores a complete copy of the data, but there is also a possibility, to reduce disk IO and space
used by the database, to add an arbiter node . An arbiter cannot become a primary and does not have a complete

copy of the data. The arbiter does have one election vote and can be the odd number for elections. The arbiter does
not demand a persistent volume.

Percona Operator for MongoDB has the ability to create Replica Set Arbiter nodes if needed. This feature can be
configured in the Replica Set section of the deploy/cr.yaml file:

set arbiter.enabled option to true to allow Arbiter instances,

use arbiter.size option to set the desired amount of Arbiter instances.

For example, the following keys in deploy/cr.yaml will create a cluster with 4 data instances and 1 Arbiter:

You can find description of other possible options in the replsets.arbiter section of the Custom Resource options
reference.

Preventing Arbiter instances to share Kubernetes Nodes with Replica Set

By default Arbiter instances are allowed to run on the same host as regular Replica Set instances. This may be
reasonable in terms of the number of Kubernetes Nodes required for the cluster. But as a result it increases possibility
to have 50/50 votes division in case of network partitioning. You can use anti-affinity constraints to avoid such Pod
alocation as follows:

•

•

•

•

....
replsets:
....
size: 4
....
arbiter:
enabled: true
size: 1
....

Note

....
arbiter:

5.7 Using Replica Set Arbiter nodes and non-voting nodes

108 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.7.2 Adding non-voting nodes

Non-voting member is a Replica Set node which does not participate in the primary election process. This feature

is required to have more than 7 nodes, or if there is a node in the edge location , which obviously should not

participate in the voting process.

Non-voting nodes support has technical preview status and is not recommended for production environments.

It is possible to add a non-voting node in the edge location through the externalNodes option. Please see cross-site
replication documentation for details.

Percona Operator for MongoDB has the ability to configure non-voting nodes in the Replica Set section of the deploy/
cr.yaml file:

set nonvoting.enabled option to true to allow non-voting instances,

use nonvoting.size option to set the desired amount of non-voting instances.

For example, the following keys in deploy/cr.yaml will create a cluster with 3 data instances and 1 non-voting instance:

You can find description of other possible options in the replsets.nonvoting section of the Custom Resource options
reference.

enabled: true
size: 1
affinity:
antiAffinityTopologyKey: "kubernetes.io/hostname"
advanced:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchLabels:
app.kubernetes.io/component: mongod
app.kubernetes.io/instance: cluster1
app.kubernetes.io/managed-by: percona-server-mongodb-operator
app.kubernetes.io/name: percona-server-mongodb
app.kubernetes.io/part-of: percona-server-mongodb
app.kubernetes.io/replset: rs0

topologyKey: kubernetes.io/hostname

Note

Note

•

•

....
replsets:
....
size: 3
....
nonvoting:
enabled: true
size: 1
....

Note

5.7.2 Adding non-voting nodes

109 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.7.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-05-24

5.7.3 Get expert help

110 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.8 Percona Server for MongoDB Sharding

5.8.1 About sharding

Sharding provides horizontal database scaling, distributing data across multiple MongoDB Pods. It is useful for

large data sets when a single machine’s overall processing speed or storage capacity turns out to be not enough.
Sharding allows splitting data across several machines with a special routing of each request to the necessary subset
of data (so-called shard).

A MongoDB Sharding involves the following components:

shard - a replica set which contains a subset of data stored in the database (similar to a traditional MongoDB replica
set),

mongos - a query router, which acts as an entry point for client applications,

config servers - a replica set to store metadata and configuration settings for the sharded database cluster.

Percona Operator for MongoDB 1.6.0 supported only one shard of a MongoDB cluster; still, this limited sharding support
allowed using mongos as an entry point instead of provisioning a load-balancer per replica set node. Multiple shards are
supported starting from the Operator 1.7.0. Also, before the Operator 1.12.0 mongos were deployed by the Deployment

 object, and starting from 1.12.0 they are deployed by the StatefulSet one.

5.8.2 Turning sharding on and off

Sharding is controlled by the sharding section of the deploy/cr.yaml configuration file and is turned on by default.

To enable sharding, set the sharding.enabled key to true (this will turn existing MongoDB replica set nodes into sharded
ones). To disable sharding, set the sharding.enabled key to false .

When sharding is turned on, the Operator runs replica sets with config servers and mongos instances. Their number is
controlled by configsvrReplSet.size and mongos.size keys, respectively.

Config servers have cfg replica set name by default, which is used by the Operator in StatefulSet and Service names. If
this name needs to be customized (for example when migrating MongoDB cluster from barebone installation to
Kubernetes), you can override the default cfg variant using replsets.configuration Custom Resource option in deploy/

cr.yaml as follows:

Config servers for now can properly work only with WiredTiger engine, and sharded MongoDB nodes can use either
WiredTiger or InMemory one.

•

•

•

Note

...
configuration: |
 replication:
 replSetName: customCfgRS
 ...

Note

5.8 Percona Server for MongoDB Sharding

111 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

By default replsets section of the deploy/cr.yaml configuration file contains only one replica set, rs0 . You can add more
replica sets with different names to the replsets section in a similar way. Please take into account that having more
than one replica set is possible only with the sharding turned on.

The Operator will be able to remove a shard only when it contains no application (non-system) collections.

5.8.3 Checking connectivity to sharded and non-sharded cluster

With sharding turned on, you have mongos service as an entry point to access your database. If you do not use
sharding, you have to access mongod processes of your replica set.

Note

5.8.3 Checking connectivity to sharded and non-sharded cluster

112 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

To connect to Percona Server for MongoDB you need to construct the MongoDB connection URI string. It includes the
credentials of the admin user, which are stored in the Secrets object.

5.8.3 Checking connectivity to sharded and non-sharded cluster

113 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

List the Secrets objects

The Secrets object you are interested in has the my-cluster-name-secrets name by default.

View the Secret contents to retrive the admin user credentials.

The command returns the YAML file with generated Secrets, including the MONGODB_DATABASE_ADMIN_USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

Run a container with a MongoDB client and connect its console output to your terminal. The following command does
this, naming the new Pod percona-client :

Executing it may require some time to deploy the corresponding Pod.

Now run mongosh tool inside the percona-client command shell using the admin user credentialds you obtained from the
Secret, and a proper namespace name instead of the <namespace name> placeholder. The command will look different
depending on whether sharding is on (the default behavior) or off:

If you are using MongoDB versions earler than 6.x (such as 5.0.29-25 instead of the default 7.0.14-8 variant), substitute
mongosh command with mongo in the above examples.

1.

$ kubectl get secrets -n <namespace>

2.

$ kubectl get secret my-cluster-name-secrets -o yaml

Sample output

...
data:

...
MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode
$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

3.

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il

4.

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.<namespace
name>.svc.cluster.local/admin?ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

Note

5.8.3 Checking connectivity to sharded and non-sharded cluster

114 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.8.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

Last update: 2024-04-09

5.8.4 Get expert help

115 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.9 Transport Layer Security (TLS)

The Percona Operator for MongoDB uses Transport Layer Security (TLS) cryptographic protocol for the following types
of communication:

Internal - communication between Percona Server for MongoDB instances in the cluster

External - communication between the client application and the cluster

The internal certificate is also used as an authorization method.

TLS usage is controlled by the tls.mode Custom Resource option, which can be set to allowTLS , preferTLS (default
choice), requireTLS , or disabled :

allowTLS means that both TLS and non-TLS incoming connections are accepted, but server doesn’t use TLS
internally,

preferTLS turns on TLS for internal communication, and allows both TLS and non-TLS external traffic,

requireTLS enforces the use of TLS encrypted connections only,

disabled completely turns TLS off.

Certificates for TLS security can be generated in several ways. By default, the Operator generates long-term
certificates automatically if there are no certificate secrets available.

Other options are the following ones:

the Operator can use a specifically installed cert-manager, which will automatically generate and renew short-term
TLS certificates,

certificates can be generated manually.

The tls.allowInvalidCertificates Custom Resource option is set to true by default to allow certificates automatically
generated by the Operator. It can be set to false with other variants, such as certificates generated by cert-manager.

You can also use pre-generated certificates available in the deploy/ssl-secrets.yaml file for test purposes, but we strongly
recommend avoiding their usage on any production system!

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to
temporarily disable it if needed.

Please note that you will need to additionally configure your client application if you are going to use TLS for external
traffic. See this blog post for detailed instruction with examples. Also, you can check the official MongoDB

documentation . For clients outside of your Kubernetes-based environment, don’t forget about exposing your

cluster.

•

•

...
spec:
...
tls:
mode: preferTLS

•

•

•

•

•

•

Note

5.9 Transport Layer Security (TLS)

116 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

5.9.1 Install and use the cert-manager

About the cert-manager

The cert-manager is a Kubernetes certificate management controller which widely used to automate the

management and issuance of TLS certificates. It is community-driven, and open source.

When you have already installed cert-manager and deploy the operator, the operator requests a certificate from the
cert-manager. The cert-manager acts as a self-signed issuer and generates certificates. The Percona Operator self-
signed issuer is local to the operator namespace. This self-signed issuer is created because Percona Server for
MongoDB requires all certificates issued by the same CA (Certificate authority).

Self-signed issuer allows you to deploy and use the Percona Operator without creating a cluster issuer separately.

Installation of the cert-manager

The steps to install the cert-manager are the following:

create a namespace,

disable resource validations on the cert-manager namespace,

install the cert-manager.

The following commands perform all the needed actions:

After the installation, you can verify the cert-manager by running the following command:

The result should display the cert-manager and webhook active and running:

Once you create the database with the Operator, it will automatically trigger cert-manager to create certificates.
Whenever you check certificates for expiration, you will find that they are valid and short-term.

5.9.2 Generate certificates manually

Using manually generated certificates didn’t work in the Operator version 1.16.0. The problem is fixed starting from the
version 1.16.1.

To generate certificates manually, follow these steps:

Provision a Certificate Authority (CA) to generate TLS certificates,

Generate a CA key and certificate file with the server details,

Create the server TLS certificates using the CA keys, certs, and server details.

•

•

•

$ kubectl apply -f https://github.com/jetstack/cert-manager/releases/download/v 1.16.1/cert-manager.yaml --
validate=false

$ kubectl get pods -n cert-manager

NAME READY STATUS RESTARTS AGE
cert-manager-7d59dd4888-tmjqq 1/1 Running 0 3m8s
cert-manager-cainjector-85899d45d9-8ncw9 1/1 Running 0 3m8s
cert-manager-webhook-84fcdcd5d-697k4 1/1 Running 0 3m8s

Warning

1.

2.

3.

5.9.1 Install and use the cert-manager

117 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The set of commands generate certificates with the following attributes:

Server-pem - Certificate

Server-key.pem - the private key

ca.pem - Certificate Authority

You should generate certificates twice: one set is for external communications, and another set is for internal ones. A
secret created for the external use must be added to the spec.secrets.ssl key of the deploy/cr.yaml file. A certificate
generated for internal communications must be added to the spec.secrets.sslInternal key of the deploy/cr.yaml file.

You can explore pre-generated / development mode sample certificates available as base64-encoded data in the
deploy/ssl-secrets.yaml file. Also, check MongoDB certificate requirements in the upstream documentation .

If you only create the external certificate, then the Operator will not generate the internal one, but instead use certificate
you have provided for both external and internal communications.

Supposing that your cluster name is my-cluster-name , the instructions to generate certificates manually are as follows:

If sharding is off

•

•

•

Note

$ CLUSTER_NAME=my-cluster-name
$ NAMESPACE=default
$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
 {
 "CN": "Root CA",
 "names": [
 {
 "O": "PSMDB"
 }
],
 "key": {
 "algo": "rsa",
 "size": 2048
 }
 }
EOF

$ cat <<EOF > ca-config.json
 {
 "signing": {
 "default": {
 "expiry": "87600h",
 "usages": ["signing", "key encipherment", "server auth", "client auth"]
 }
 }
 }
EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare server
 {
 "hosts": [
 "localhost",
 "${CLUSTER_NAME}-rs0",
 "${CLUSTER_NAME}-rs0.${NAMESPACE}",
 "${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}-rs0",
 "*.${CLUSTER_NAME}-rs0.${NAMESPACE}",

5.9.2 Generate certificates manually

118 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

If sharding is on

 "*.${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local"
],
 "names": [
 {
 "O": "PSMDB"
 }
],
 "CN": "${CLUSTER_NAME/-rs0}",
 "key": {
 "algo": "rsa",
 "size": 2048
 }
 }
EOF
$ cfssl bundle -ca-bundle=ca.pem -cert=server.pem | cfssljson -bare server

$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-
key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare client
 {
 "hosts": [
 "${CLUSTER_NAME}-rs0",
 "${CLUSTER_NAME}-rs0.${NAMESPACE}",
 "${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}-rs0",
 "*.${CLUSTER_NAME}-rs0.${NAMESPACE}",
 "*.${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local"
],
 "names": [
 {
 "O": "PSMDB"
 }
],
 "CN": "${CLUSTER_NAME/-rs0}",
 "key": {
 "algo": "rsa",
 "size": 2048
 }
 }
EOF

$ kubectl create secret generic my-cluster-name-ssl --from-file=tls.crt=client.pem --from-file=tls.key=client-key.pem --from-
file=ca.crt=ca.pem --type=kubernetes.io/tls

$ CLUSTER_NAME=my-cluster-name
$ NAMESPACE=default
$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
 {
 "CN": "Root CA",
 "names": [
 {
 "O": "PSMDB"
 }
],
 "key": {
 "algo": "rsa",
 "size": 2048
 }
 }
EOF

5.9.2 Generate certificates manually

119 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

$ cat <<EOF > ca-config.json
 {
 "signing": {
 "default": {
 "expiry": "87600h",
 "usages": ["signing", "key encipherment", "server auth", "client auth"]
 }
 }
 }
EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare server
 {
 "hosts": [
 "localhost",
 "${CLUSTER_NAME}-rs0",
 "${CLUSTER_NAME}-rs0.${NAMESPACE}",
 "${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}-rs0",
 "*.${CLUSTER_NAME}-rs0.${NAMESPACE}",
 "*.${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
 "${CLUSTER_NAME}-mongos",
 "${CLUSTER_NAME}-mongos.${NAMESPACE}",
 "${CLUSTER_NAME}-mongos.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}-mongos",
 "*.${CLUSTER_NAME}-mongos.${NAMESPACE}",
 "*.${CLUSTER_NAME}-mongos.${NAMESPACE}.svc.cluster.local",
 "${CLUSTER_NAME}-cfg",
 "${CLUSTER_NAME}-cfg.${NAMESPACE}",
 "${CLUSTER_NAME}-cfg.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}-cfg",
 "*.${CLUSTER_NAME}-cfg.${NAMESPACE}",
 "*.${CLUSTER_NAME}-cfg.${NAMESPACE}.svc.cluster.local"
],
 "names": [
 {
 "O": "PSMDB"
 }
],
 "CN": "${CLUSTER_NAME/-rs0}",
 "key": {
 "algo": "rsa",
 "size": 2048
 }
 }
EOF
$ cfssl bundle -ca-bundle=ca.pem -cert=server.pem | cfssljson -bare server

$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-
key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - | cfssljson -bare client
 {
 "hosts": [
 "${CLUSTER_NAME}-rs0",
 "${CLUSTER_NAME}-rs0.${NAMESPACE}",
 "${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}-rs0",
 "*.${CLUSTER_NAME}-rs0.${NAMESPACE}",
 "*.${CLUSTER_NAME}-rs0.${NAMESPACE}.svc.cluster.local",
 "${CLUSTER_NAME}-mongos",
 "${CLUSTER_NAME}-mongos.${NAMESPACE}",
 "${CLUSTER_NAME}-mongos.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}-mongos",

5.9.2 Generate certificates manually

120 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Commands in the above example use rs0 replica set name (the default one). If you set different name in replsets.name

Custom Resource option, change these commands accordingly.

5.9.3 Update certificates

If a cert-manager is used, it should take care of updating the certificates. If you generate certificates manually, you
should take care of updating them in proper time.

TLS certificates issued by cert-manager are short-term ones, valid for 3 months. They are reissued automatically on
schedule and without downtime.

 "*.${CLUSTER_NAME}-mongos.${NAMESPACE}",
 "*.${CLUSTER_NAME}-mongos.${NAMESPACE}.svc.cluster.local",
 "${CLUSTER_NAME}-cfg",
 "${CLUSTER_NAME}-cfg.${NAMESPACE}",
 "${CLUSTER_NAME}-cfg.${NAMESPACE}.svc.cluster.local",
 "*.${CLUSTER_NAME}-cfg",
 "*.${CLUSTER_NAME}-cfg.${NAMESPACE}",
 "*.${CLUSTER_NAME}-cfg.${NAMESPACE}.svc.cluster.local"
],
 "names": [
 {
 "O": "PSMDB"
 }
],
 "CN": "${CLUSTER_NAME/-rs0}",
 "key": {
 "algo": "rsa",
 "size": 2048
 }
 }
EOF

$ kubectl create secret generic my-cluster-name-ssl --from-file=tls.crt=client.pem --from-file=tls.key=client-key.pem --from-
file=ca.crt=ca.pem --type=kubernetes.io/tls

Note

5.9.3 Update certificates

121 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Check your certificates for expiration

First, check the necessary secrets names (my-cluster-name-ssl and my-cluster-name-ssl-internal by default):

You will have the following response:

DB Pod N

Secret

my-cluster-name-ca-certr
(root certificate)

TLS
certificates

TLS
certificates

cert-manager

my-cluster-name-ssl my-cluster-name-ssl-internal
Secret

1.

$ kubectl get certificate

NAME READY SECRET AGE
my-cluster-name-ssl True my-cluster-name-ssl 49m
my-cluster-name-ssl-internal True my-cluster-name-ssl-internal 49m

5.9.3 Update certificates

122 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

This command is available if you have cert-manager installed; if not, you can still check the necessary secrets names
with kubectl get secrets command.

Optionally you can also check that the certificates issuer is up and running:

The response should be as follows:

Again, this command is provided by cert-manager; if you don’t have it installed, you can still use kubectl get secrets .

The presence of two issuers has the following meaning. The my-cluster-name-psmdb-ca-issuer issuer is used to create a self
signed CA certificate (my-cluster-name-ca-cert), and then the my-cluster-name-psmdb-issuer issuer is used to create SSL
certificates (my-cluster-name-ssl and my-cluster-name-ssl-internal) signed by the my-cluster-name-ca-cert CA certificate.

Now use the following command to find out the certificates validity dates, substituting Secrets names if necessary:

The resulting output will be self-explanatory:

Update certificates without downtime

If you don’t use cert-manager and have created certificates manually, you can follow the next steps to perform a no-
downtime update of these certificates if they are still valid.

For already expired certificates, follow the alternative way.

1.

$ kubectl get issuer

NAME READY AGE
my-cluster-name-psmdb-issuer True 61m
my-cluster-name-psmdb-ca-issuer True 61m

Note

2.

$ {
kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64 --decode | openssl x509 -noout -dates
kubectl get secret/my-cluster-name-ssl -o jsonpath='{.data.ca\.crt}' | base64 --decode | openssl x509 -noout -dates
}

notBefore=Apr 25 12:09:38 2022 GMT notAfter=Jul 24 12:09:38 2022 GMT
notBefore=Apr 25 12:09:38 2022 GMT notAfter=Jul 24 12:09:38 2022 GMT

Note

5.9.3 Update certificates

123 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Having non-expired certificates, you can roll out new certificates (both CA and TLS) with the Operator as follows.

Generate a new CA certificate (ca.pem). Optionally you can also generate a new TLS certificate and a key for it, but those
can be generated later on step 6.

Get the current CA (ca.pem.old) and TLS (tls.pem.old) certificates and the TLS certificate key (tls.key.old):

Combine new and current ca.pem into a ca.pem.combined file:

Create a new Secrets object with old TLS certificate (tls.pem.old) and key (tls.key.old), but a new combined ca.pem

(ca.pem.combined):

The cluster will go through a rolling reconciliation, but it will do it without problems, as every node has old TLS
certificate/key, and both new and old CA certificates.

If new TLS certificate and key weren’t generated on step 1, do that now.

Create a new Secrets object for the second time: use new TLS certificate (server.pem in the example) and its key (server-

key.pem), and again the combined CA certificate (ca.pem.combined):

The cluster will go through a rolling reconciliation, but it will do it without problems, as every node already has a new CA
certificate (as a part of the combined CA certificate), and can successfully allow joiners with new TLS certificate to join.
Joiner node also has a combined CA certificate, so it can authenticate against older TLS certificate.

Create a final Secrets object: use new TLS certificate (server.pmm) and its key (server-key.pem), and just the new CA
certificate (ca.pem):

The cluster will go through a rolling reconciliation, but it will do it without problems: the old CA certificate is removed,
and every node is already using new TLS certificate and no nodes rely on the old CA certificate any more.

1.

2.

$ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.ca\.crt}' | base64 --decode > ca.pem.old
$ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64 --decode > tls.pem.old
$ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.key}' | base64 --decode > tls.key.old

3.

$ cat ca.pem ca.pem.old >> ca.pem.combined

4.

$ kubectl delete secret/my-cluster-name-ssl-internal
$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=tls.pem.old --from-file=tls.key=tls.key.old --
from-file=ca.crt=ca.pem.combined --type=kubernetes.io/tls

5.

6.

7.

$ kubectl delete secret/my-cluster-name-ssl-internal
$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-
key.pem --from-file=ca.crt=ca.pem.combined --type=kubernetes.io/tls

8.

9.

$ kubectl delete secret/my-cluster-name-ssl-internal
$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-
key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls

10.

5.9.3 Update certificates

124 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

Update certificates with downtime

If your certificates have been already expired (or if you continue to use the Operator version prior to 1.9.0), you should
move through the pause - update Secrets - unpause route as follows.

Pause the cluster in a standard way, and make sure it has reached its paused state.

If cert-manager is used, delete issuer and TLS certificates:

Delete Secrets to force the SSL reconciliation:

Check certificates to make sure reconciliation have succeeded.

Unpause the cluster in a standard way, and make sure it has reached its running state.

Modify certificates generation

There may be reasons to tweak the certificates generation, making it better fit some needs. Of course, maximum
flexibility can be obtained with manual certificates generation, but sometimes slight tweaking the already automated
job may be enough.

1.

2.

$ {
kubectl delete issuer/my-cluster-name-psmdb-ca-issuer issuer/my-cluster-name-psmdb-issuer
kubectl delete certificate/my-cluster-name-ssl certificate/my-cluster-name-ssl-internal
}

3.

$ kubectl delete secret/my-cluster-name-ssl secret/my-cluster-name-ssl-internal

4.

5.

5.9.3 Update certificates

125 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

The following example shows how to increase CA duration with cert-manager for a cluster named cluster1 :

Delete the psmdb Custom Resource in the proper namespace (this will cause deletion of all Pods of the cluster, but later
you will recreate the cluster using the same deploy/cr.yaml flie from which it was originally created).

you may need to make sure that finalizers.percona.com/delete-psmdb-pvc is not set if you want to preserver Persistent Volumes
with the data.

Deletion command should look as follows:

``` {.bash data-prompt=”$” } $ kubectl -n delete psmdb cluster1

Deletion takes  time.  Check that  all  Pods disappear  with  kubectl  -n  <namespace_name>  get  pods  command,  and delete
certificate related resources:

{.bash data-prompt="$" }

$  kubectl  -n  <namespace_name>  delete  issuer.cert-manager.io/cluster1-psmdb-ca-issuer  issuer.cert-manager.io/cluster1-psmdb-issuer  

certificate.cert-manager.io/cluster1-ssl-internal  certificate.cert-manager.io/cluster1-ssl  certificate.cert-manager.io/cluster1-ca-cert  secret/

cluster1-ca-cert secret/cluster1-ssl secret/cluster1-ssl-internal

Create your own custom CA:

Apply it as usual, with the kubectl -n <namespace_name> apply -f my_new_ca.yml  command.

Recreate the cluster from the original deploy/cr.yaml  configuration file:

Verify certificate duration in usual way.

5.9.4 Run Percona Server for MongoDB without TLS

Omitting TLS is also possible, but we recommend that you run your cluster with the TLS protocol enabled.

1. 

Note

2. 

3. 

my_new_ca.yml

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: cluster1-psmdb-ca-issuer

spec:
selfSigned: {}

---
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: cluster1-ca-cert

spec:
commonName: cluster1-ca
duration: 10000h0m0s
isCA: true
issuerRef:
kind: Issuer
name: cluster1-psmdb-ca-issuer

renewBefore: 730h0m0s
secretName: cluster1-ca-cert

4. 

$ kubectl -n <namespace_name> apply -f deploy/cr.yaml

5. 

5.9.4 Run Percona Server for MongoDB without TLS

126 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



To disable TLS protocol (e.g. for demonstration purposes) set the  tls.mode  key to  disabled  and set  unsafeFlags.tls  to
true  in the deploy/cr.yaml : file.

5.9.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

...
spec:
...
unsafeFlags
tls: true
...

tls:
mode: disabled

Last update: 2024-09-09 

5.9.5 Get expert help

127 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



5.10 Data at rest encryption

Data at rest encryption in Percona Server for MongoDB  is supported by the Operator since version 1.1.0.

Data at rest  means inactive data stored as files, database records, etc.

Data at rest encryption is turned on by default. The Operator implements it by either using encryption key stored in a
Secret, or obtaining encryption key from the HashiCorp Vault key storage.

5.10.1 Using encryption key Secret

The secrets.encryptionKey  key in the deploy/cr.yaml  file should specify the name of the encryption key Secret:

Encryption key Secret will  be created automatically by the Operator if  it  doesn’t  exist.  If  you would like to create it
yourself, take into account that the key must be a 32 character string encoded in base64 .

The replsets.configuration ,  replsets.nonvoting.configuration , and sharding.configsvrReplSet.configuration  keys should include the
following two MongoDB encryption-specific options:

The  enableEncryption  option should be set to  true  (the default value).  The  security.encryptionCipherMode  option should
specify a proper cipher mode for decryption: either AES256-CBC  (the default value) or AES256-GCM .

Don’t forget to apply the modified cr.yaml  configuration file as usual:

5.10.2 Using HashiCorp Vault storage for encryption keys

Starting from the version 1.13,  the Operator supports using  HashiCorp Vault   storage for encryption keys -  a

universal,  secure  and  reliable  way  to  store  and  distribute  secrets  without  depending  on  the  operating  system,
platform or cloud provider.

Vault integration has technical preview status and is not yet recommended for production environments.

Note

1. 

secrets:
...
encryptionKey: my-cluster-name-mongodb-encryption-key

2. 

...
configuration: |
...
security:
enableEncryption: true
encryptionCipherMode: "AES256-CBC"
...

$ kubectl deploy -f deploy/cr.yaml

Warning

5.10 Data at rest encryption

128 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



The Operator will use Vault if the deploy/cr.yaml  configuration file contains the following items:

a secrets.vault  key equal to the name of a specially created Secret,

configuration  keys for mongod and config servers with a number of Vault-specific options.

The Operator itself neither installs Vault, nor configures it; both operations should be done manually, as described in
the following parts.

Installing Vault

The following steps will deploy Vault on Kubernetes with the Helm 3 package manager  . Other Vault installation

methods should also work, so the instruction placed here is not obligatory and is for illustration purposes. Read more
about installation in Vault’s documentation .

Add helm repo and install:

After  installation,  Vault  should  be  first  initialized  and  then  unsealed.  Initializing  Vault  is  done  with  the  following
commands:

To unseal Vault, execute the following command for each Pod of Vault running:

Configuring Vault

First, you should enable secrets within Vault. For this you will need a Vault token . Percona Server for MongoDB can

use any regular token which allows all operations inside the secrets mount point. In the following example we are using
the root token to be sure the permissions requirement is met, but actually there is no need in root permissions. We don’t
recommend using the root token on the production system.

The output will show you the token:

Now login to Vault with this token to enable the key-value secret engine:

• 

• 

1. 

$ helm repo add hashicorp https://helm.releases.hashicorp.com
"hashicorp" has been added to your repositories

$ helm install vault hashicorp/vault

2. 

$ kubectl exec -it pod/vault-0 -- vault operator init -key-shares=1 -key-threshold=1 -format=json > /tmp/vault-init
$ unsealKey=$(jq -r ".unseal_keys_b64[]" < /tmp/vault-init)

$ kubectl exec -it pod/vault-0 -- vault operator unseal "$unsealKey"

1. 

$ cat /tmp/vault-init | jq -r ".root_token"

s.VgQvaXl8xGFO1RUxAPbPbsfN

$ kubectl exec -it vault-0 -- /bin/sh
$ vault login s.VgQvaXl8xGFO1RUxAPbPbsfN

5.10.2 Using HashiCorp Vault storage for encryption keys

129 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Now enable the key-value secret engine with the following command:

You can also enable audit, which is not mandatory, but useful:

Expected output

Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key                  Value
---                  -----
token                s.VgQvaXl8xGFO1RUxAPbPbsfN
token_accessor       iMGp477aReYkPBWrR42Z3L6R
token_duration       ∞
token_renewable      false
token_policies       ["root"]
identity_policies    []
policies             ["root"]`

$ vault secrets enable -path secret kv-v2

Expected output

Success! Enabled the kv-v2 secrets engine at: secret/

Note

$ vault audit enable file file_path=/vault/vault-audit.log

Expected output

Success! Enabled the file audit device at: file/

5.10.2 Using HashiCorp Vault storage for encryption keys

130 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Now generate Secret with the Vault root token using  kubectl  command  (don’t forget to substitute the token from the
example with your real root token) and add necessary options to configuration  keys in your deploy/cr.yaml :

While adding options, modify this template as follows: * substitute the <cluster name>  placeholder with your real cluster
name,  *  substitute  the  placeholder  with  rs0  when  adding  options  to  replsets.configuration  and
replsets.nonvoting.configuration ,  *  substitute  the  placeholder  with  cfg  when  adding  options  to
sharding.configsvrReplSet.configuration .

2. 

without TLS, to access the Vault server via HTTP

Generate Secret: 

Now modify your deploy/cr.yaml :

First set the secrets.encryptionKey  key to the name of your Secret created on the previous step. Then Add Vault-specific
options to the replsets.configuration , replsets.nonvoting.configuration , and sharding.configsvrReplSet.configuration  keys, using the
following template:

with TLS, to access the Vault server via HTTPS

Generate Secret, using the path to your ca.crt  certificate instead of the <path to CA>  placeholder (see the Operator TLS
guide, if needed): 

Now modify your deploy/cr.yaml :

First set the secrets.encryptionKey  key to the name of your Secret created on the previous step. Then Add Vault-specific
options to the replsets.configuration , replsets.nonvoting.configuration , and sharding.configsvrReplSet.configuration  keys, using the
following template:

$ kubectl create secret generic vault-secret --from-literal=token="s.VgQvaXl8xGFO1RUxAPbPbsfN"

...
configuration: |
...
security:
enableEncryption: true
vault:
serverName: vault
port: 8200
tokenFile: /etc/mongodb-vault/token
secret: secret/data/dc/<cluster name>/<path>
disableTLSForTesting: true

...

kubectl create secret generic vault-secret --from-literal=token="s.VgQvaXl8xGFO1RUxAPbPbsfN" --from-file=ca.crt=<path to
CA>/ca.crt

...
configuration: |
...
security:
enableEncryption: true
vault:
serverName: vault
port: 8200
tokenFile: /etc/mongodb-vault/token
secret: secret/data/dc/<cluster name>/<path>
serverCAFile: /etc/mongodb-vault/ca.crt

...

5.10.2 Using HashiCorp Vault storage for encryption keys

131 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Finally, apply your modified cr.yaml  as usual:

To verify that everything was configured properly, use the following log filtering command (substitute the <cluster name>

and <namespace>  placeholders with your real cluster name and namespace):

More details on how to install and configure Vault can be found in the official documentation .

5.10.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

$ kubectl deploy -f deploy/cr.yaml

3. 

$ kubectl logs <cluster name>-rs0-0 -c mongod -n <namespace> | grep -i "Encryption keys DB is initialized successfully"

Last update: 2024-04-09 

5.10.3 Get expert help

132 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



5.11 Telemetry

The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona, which helps us
to determine where to focus the development and what is the uptake for each release of Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid  field)

Kubernetes version

Platform (is it Kubernetes or Openshift)

Is PMM enabled, and the PMM Version

Operator version

Mongo version

Percona Backup for MongoDB (PBM) version

Is sharding enabled (starting from the Operator version 1.13)

Is Hashicorp Vault enabled (starting from the Operator version 1.13)

Is the Operator deployed in a cluster-wide mode (starting from the Operator version 1.13)

Is the Operator deployed with Helm

Are sidecar containers used

Are backups used, are point-in-time recovery and/or scheduled physical backup features used, if so

How large is the cluster

We do not gather anything that identify a system, but the following thing should be mentioned: Custom Resource ID is
a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it at scheduled
times to obtain fresh information about version numbers and valid image paths needed for the upgrade.

The landing page for this service, check.percona.com , explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

if you don’t use helm for installation, you have to edit the operator.yaml  before applying it with the kubectl apply -f  

deploy/operator.yaml  command.  Open  the  operator.yaml  file  with  your  text  editor,  find  the  value  of  the
DISABLE_TELEMETRY  environment variable and set it to true :

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

$ helm install my-db percona/psmdb-db --version 1.18.0 --namespace my-namespace --set disable_telemetry="true"

• 

env:
...
- name: DISABLE_TELEMETRY
value: "true"

...

5.11 Telemetry

133 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



5.11.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-05-24 

5.11.1 Get expert help

134 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6. Management

6.1 Backup and restore

6.1.1 About backups

You can backup your data in two ways:

On-demand. You can do them manually at any moment.

Scheduled backups.  Configure backups and their  schedule in the  deploy/cr.yaml  .  The Operator makes them

automatically according to the specified schedule.

To make backups and restores, the Operator uses the Percona Backup for MongoDB  tool.

Backup storage

You can  store  Percona Server  for  MongoDB backups  outside  the  Kubernetes  cluster  using  the  following remote
backup storages: 

Amazon S3 or S3-compatible storage ,

Azure Blob Storage 

• 

• 

• 

• 

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

Backup Pod

CSI

Cloud storagePercona Server for MongoDB Namespace

6. Management

135 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Backup types

 The Operator can do either logical or physical backups.

Logical backup means querying the Percona Server for MongoDB for the database data and writing the retrieved
data to the remote backup storage.

Physical backup means copying physical files from the Percona Server for MongoDB  dbPath  data directory to the
remote backup storage.

Logical backups use less storage, but are much slower than physical backup/restore.

Logical backups made with the Operator versions before 1.9.0 are incompatible for restore with the Operator 1.9.0 and
later.  That  is  because  Percona  Backup  for  MongoDB  1.5.0  used  by  the  newer  Operator  versions  processes  system
collections Users and Roles differently . The recommended approach is to make a fresh backup after upgrading the

Operator to version 1.9.0.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

Warning

Last update: 2024-05-24 

6.1.1 About backups

136 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.1.2 Configure storage for backups

You can configure storage for backups in the backup.storages  subsection of the Custom Resource, using the deploy/
cr.yaml  configuration file.

You should also create the Kubernetes Secret  object with credentials needed to access the storage.

Amazon S3 or S3-compatible storage

To store backups on the Amazon S3, you need to create a Secret with the following values:

the metadata.name  key is the name which you will further use to refer your Kubernetes Secret,

the  data.AWS_ACCESS_KEY_ID  and  data.AWS_SECRET_ACCESS_KEY  keys  are  base64-encoded credentials  used to  access  the
storage (obviously these keys should contain proper values to make the access possible).

Create the Secrets file with these base64-encoded keys following the deploy/backup-s3.yaml  example:

You can use the following command to get a base64-encoded string from a plain text one:

Once the editing is over, create the Kubernetes Secret object as follows:

1. 

• 

• 

apiVersion: v1
kind: Secret
metadata:
name: my-cluster-name-backup-s3

type: Opaque
data:
AWS_ACCESS_KEY_ID: UkVQTEFDRS1XSVRILUFXUy1BQ0NFU1MtS0VZ
AWS_SECRET_ACCESS_KEY: UkVQTEFDRS1XSVRILUFXUy1TRUNSRVQtS0VZ

Note

in Linux

in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f deploy/backup-s3.yaml

6.1.2 Configure storage for backups

137 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Put the data needed to access the S3-compatible cloud into the backup.storages  subsection of the Custom Resource.

storages.<NAME>.type  should be set to  s3  (substitute the part with some arbitrary name you will later use to refer this
storage when making backups and restores).

storages.<NAME>.s3.credentialsSecret  key should be set to the name used to refer your Kubernetes Secret ( my-cluster-name-

backup-s3  in the last example).

storages.<NAME>.s3.bucket  and  storages.<NAME>.s3.region  should  contain  the  S3  bucket  and  region.  Also  you  can  use
storages.<NAME>.s3.prefix  option to specify the path (sub-folder) to the backups inside the S3 bucket. If prefix is not set,
backups are stored in the root directory.

if  you use some S3-compatible storage instead of the original  Amazon S3, add the  endpointURL   key in the  s3

subsection, which should point to the actual cloud used for backups. This value and is specific to the cloud provider. For
example, using Google Cloud  involves the following  endpointUrl:

The options within the storages.<NAME>.s3  subsection are further explained in the Operator Custom Resource options.

Here is an example of the deploy/cr.yaml  configuration file which configures Amazon S3 storage for backups:

Following steps are needed to turn this feature on:

Create the  IAM instance profile   and the permission policy within where you specify the access level that grants the

access to S3 buckets.

Attach the IAM profile to an EC2 instance.

Configure an S3 storage bucket and verify the connection from the EC2 instance to it.

Do not provide s3.credentialsSecret  for the storage in deploy/cr.yaml .

Finally, make sure that your storage has enough resources to store backups, which is especially important in the case
of large databases. It is clear that you need enough free space on the storage. Beside that, S3 storage upload limitats

 include the maximum number 10000 parts, and backing up large data will result in larger chunk sizes, which in

turn may cause S3 server to run out of RAM, especially within the default memory limits.

2. 

• 

• 

• 

• 

endpointUrl: https://storage.googleapis.com

...
backup:
...
storages:
s3-us-west:
type: s3
s3:
bucket: S3-BACKUP-BUCKET-NAME-HERE
region: us-west-2
credentialsSecret: my-cluster-name-backup-s3

...

Using AWS EC2 instances for backups makes it possible to automate access to AWS S3 buckets based on IAM
roles  for Service Accounts with no need to specify the S3 credentials explicitly.

• 

• 

• 

• 

6.1.2 Configure storage for backups

138 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Microsoft Azure Blob storage

To store backups on the Azure Blob storage, you need to create a Secret with the following values:

the metadata.name  key is the name which you wll further use to refer your Kubernetes Secret,

the data.AZURE_STORAGE_ACCOUNT_NAME  and data.AZURE_STORAGE_ACCOUNT_KEY  keys are base64-encoded credentials used
to access the storage (obviously these keys should contain proper values to make the access possible).

Create the Secrets file with these base64-encoded keys following the deploy/backup-azure.yaml  example:

You can use the following command to get a base64-encoded string from a plain text one:

Once the editing is over, create the Kubernetes Secret object as follows:

Put the data needed to access the Azure Blob storage into the backup.storages  subsection of the Custom Resource.

storages.<NAME>.type should be set to azure` (substitute the part with some arbitrary name you will later use to refer this
storage when making backups and restores).

storages.<NAME>.azure.credentialsSecret  key  should  be  set  to  the  name  used  to  refer  your  Kubernetes  Secret
( my-cluster-azure-secret  in the last example).

storages.<NAME>.azure.container  option  should  contain  the  name  of  the  Azure  container.  Also  you  can  use
storages.<NAME>.azure.prefix  option to specify the path (sub-folder) to the backups inside the container. If prefix is not set,
backups are stored in the root directory of the container.

These and other  options within the  storages.<NAME>.azure  subsection are further  described in  the  Operator  Custom
Resource options.

Here is an example of the deploy/cr.yaml  configuration file which configures Azure Blob storage for backups:

1. 

• 

• 

apiVersion: v1
kind: Secret
metadata:
name: my-cluster-azure-secret

type: Opaque
data:
AZURE_STORAGE_ACCOUNT_NAME: UkVQTEFDRS1XSVRILUFXUy1BQ0NFU1MtS0VZ
AZURE_STORAGE_ACCOUNT_KEY: UkVQTEFDRS1XSVRILUFXUy1TRUNSRVQtS0VZ

Note

in Linux

in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

$ kubectl apply -f deploy/backup-azure.yaml

2. 

• 

• 

• 

...
backup:
...
storages:
azure-blob:

6.1.2 Configure storage for backups

139 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

type: azure
azure:
container: <your-container-name>
prefix: psmdb
credentialsSecret: my-cluster-azure-secret

...

Last update: 2024-11-14 

6.1.2 Configure storage for backups

140 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.1.3 Making scheduled backups

Backups schedule is defined in the  backup  section of the Custom Resource and can be configured via the  deploy/
cr.yaml  file.

The backup.enabled  key should be set to true ,

The backup.storages  subsection should contain at least one configured storage.

The backup.tasks  subsection allows to actually schedule backups:

set the name  key to some arbitray backup name (this name will be needed later to restore the bakup).

specify the schedule  option with the desired backup schedule in crontab format ).

set the enabled  key to true  (this enables making the <backup name>  backup along with the specified schedule.

set the storageName  key to the name of your already configured storage.

you can optionally set the keep  key to the number of backups which should be kept in the storage.

you can optionally set the type  key to physical  if you would like to make physical backups instead of logical ones (please
see the physical backups limitations). Otherwise set this key to logical , or just omit it.

Here is an example of the deploy/cr.yaml  with a scheduled Saturday night backup kept on the Amazon S3 storage:

If you plan to  restore backup to a new Kubernetes-based environment, make sure you will be able to create there a
Secrets object with the same user passwords as in the original cluster. More details about secrets can be found in System
Users. The name of the current Secrets object you will need to recreate can be found out from the spec.secrets  key in the
deploy/cr.yaml  ( my-cluster-name-secrets  by default).

1. 

2. 

3. 

• 

• 

• 

• 

• 

• 

...
backup:
enabled: true
storages:
s3-us-west:
type: s3
s3:
bucket: S3-BACKUP-BUCKET-NAME-HERE
region: us-west-2
credentialsSecret: my-cluster-name-backup-s3

tasks:
- name: "sat-night-backup"
enabled: true
schedule: "0 0 * * 6"
keep: 3
type: logical
storageName: s3-us-west

...

Note

6.1.3 Making scheduled backups

141 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-06-24 

6.1.3 Making scheduled backups

142 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.1.4 Making on-demand backup

To make an on-demand backup, you should first check your Custom Resource for the necessary options and make
changes, if needed, using the deploy/cr.yaml  configuration file:

the backup.enabled  key should be set to true ,

backup.storages  subsection should contain at least one configured storage.

You can apply changes in the deploy/cr.yaml  file with the usual kubectl apply -f deploy/cr.yaml  command.

Now use a special backup configuration YAML file with the following keys:

metadata.name  key should be set to the backup name (this name will be needed later to restore the bakup),

spec.clusterName  key should be set to the name of your cluster (prior to the Operator version 1.12.0 this key was named
spec.psmdbCluster ),

spec.storageName  key should be set to the name of your already configured storage.

optionally you can set the spec.type  key to physical  if you would like to make physical backups instead of logical ones
(please see the physical backups limitations). Otherwise set this key to logical , or just omit it.

You can find the example of such file in deploy/backup/backup.yaml :

Run the actual backup command using this file:

1. 

• 

• 

2. 

• 

• 

• 

• 

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBBackup
metadata:
finalizers:
- percona.com/delete-backup
name: backup1

spec:
clusterName: my-cluster-name
storageName: s3-us-west
type: logical

3. 

$ kubectl apply -f deploy/backup/backup.yaml

6.1.4 Making on-demand backup

143 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



If you plan to  restore backup to a new Kubernetes-based environment, make sure you will be able to create there a
Secrets object with the same user passwords as in the original cluster. More details about secrets can be found in System
Users. The name of the current Secrets object you will need to recreate can be found out from the spec.secrets  key in the
deploy/cr.yaml  ( my-cluster-name-secrets  by default).

You can track the backup process with the PerconaServerMongoDBBackup Custom Resource as follows:

It should show the status as READY  when the backup process is over.

If you have any issues with the backup, you can view logs from the backup-agent container of the appropriate Pod as
follows:

Alternatively,  getting  ssh  access to  the  same  container  will  allow  you  to  carry  on  Percona  Backup  for  MongoDB
diagnostics . 

In both cases you will need the name of the Pod that made the backup. You can find the pbmPodName  field in the output of
the kubectl get psmdb-backup <backup_name> -o yaml  command.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Note

1. 

$ kubectl get psmdb-backup

Expected output

NAME      CLUSTER           STORAGE      DESTINATION            STATUS    COMPLETED   AGE
backup1   my-cluster-name   s3-us-west   2022-09-08T03:22:19Z   running               49s

$ kubectl logs pod/my-cluster-name-rs0 -c backup-agent

Note

Last update: 2024-10-04 

6.1.4 Making on-demand backup

144 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.1.5 Storing operations logs for point-in-time recovery

Point-in-time recovery functionality allows users to roll back the cluster to a specific date and time. Technically, this
feature involves saving operations log updates to the cloud storage.

Starting from the Operator  version 1.15.0,  point-in-time recovery functionality  can be used with both logical  and
physical backups. Previous versions supported point-in-time recovery only with logical backups.

To be used, it requires setting the backup.pitr.enabled key in the deploy/cr.yaml  configuration file:

Setting backup.pitr.oplogOnly  option to true  is needed only for physical backups. For logical backups this option can be
omitted (or set to false , which is the default value).

It is necessary to have at least one full backup to use point-in-time recovery. By default Percona Backup for MongoDB
will not upload operations logs if there is no full backup ( backup.pitr.oplogOnly  option controls this behavior). The rule of
having at least one full backup is true for new clusters and also true for clusters which have been just recovered from
backup.

There is also the ‘backup.pitr.oplogSpanMin` option which sets the time period between the uploads of oplogs,  with
default value of 10 minutes.

Percona Backup for MongoDB uploads operations logs to the same bucket/container, where full backup is stored. This
makes point-in-time recovery functionality available only if there is a single bucket/container in spec.backup.storages.
Otherwise point-in-time recovery will not be enabled and there will be an error message in the operator logs.

Adding a new bucket or container when point-in-time recovery is enabled will not break it, but put error message about
the additional bucket in the Operator logs as well.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

backup:
...
pitr:
enabled: true
oplogOnly: true

Note

Note

Last update: 2024-05-24 

6.1.5 Storing operations logs for point-in-time recovery

145 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.1.6 Enable server-side encryption for backups

Encrypting database backups is done separately for  physical and logical backups. Physical backups are encrypted if
data-at-rest encryption is turned on. Logical backups need to be encrypted on the cloud.

There is a possibility to enable server-side encryption  for backups stored on S3. Starting from the version 1.15.0,

the Operator supports Server Side Encryption either with  AWS Key Management Service (KMS)  , or just encrypt/

decrypt backups with AES-256 encryption algorithm with any S3-compatible storage.

To enable server-side encryption for backups, use backup.storages.<storage-name>.s3.serverSideEncryption section in
the deploy/cr.yaml  configuration file.

6.1.6 Enable server-side encryption for backups

146 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Encryption with keys stored in AWS KMS

To use the server-side AWS KMS encryption, specify the  ID of your customer-managed key   and other needed

options as follows:

6.1.6 Enable server-side encryption for backups

147 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



with kmsKeyID in Custom Resource

Set the following Custom Resource options in the deploy/cr.yaml  configuration file:

Here  <kms_key_ID>  should be substituted with the  ID of your customer-managed key   stored in the AWS KMS. It

should look similar to the following example value: 128887dd-d583-43f2-b3f9-d12036d32b12 .

with kmsKeyID in Secret object

You can avoid storing your kmsKeyID  in Custom Resource, and put it into a dedicated Secrets object. Define your secret
in YAML as follows:

Here  <kms_key_ID>  should be substituted with the  ID of your customer-managed key   stored in the AWS KMS. It

should look similar to the following example value: 128887dd-d583-43f2-b3f9-d12036d32b12 .

When the YAML file is ready, apply it to create the Secret:

After creating the Secret, set the following Custom Resource options in the deploy/cr.yaml  configuration file:

backup:
...
storages:
my-s3:
type: s3
s3:
bucket: my-backup-bucket
serverSideEncryption:
kmsKeyID: <kms_key_ID>
sseAlgorithm: aws:kms

deploy/sse-secret.yaml

apiVersion: v1
kind: Secret
metadata:
name: my-cluster-name-sse

type: Opaque
stringData:
KMS_KEY_ID: <kms_key_ID>

$ kubectl create -f deploy/sse-secret.yaml

secrets:
...
sse: my-cluster-name-sse

...
backup:
...
storages:
my-s3:
type: s3
s3:
bucket: my-backup-bucket
serverSideEncryption:
sseAlgorithm: aws:kms

6.1.6 Enable server-side encryption for backups

148 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Encryption with localy-stored keys on any S3-compatible storage

The Operator also supports server-side encryption with customer-provided keys that are stored on the client side.
During the backup/restore process, encryption key will be provided by the Operator as part of the requests to the S3
storage, and the S3 storage will them to encrypt/decrypt the data using the AES-256 encryption algorithm. This allows
to use server-side encryption on S3-compatible storages different from AWS KMS (the feature was tested with the AWS 

 and MinIO  storages).

6.1.6 Enable server-side encryption for backups

149 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



To use the server-side encryption with locally-stored keys, specify your encryption key and other needed options:

with encryption key in Custom Resource

Set the following Custom Resource options in the deploy/cr.yaml  configuration file:

Here <your_encryption_key_in_base64>  should be substituted with the actual encryption key encoded in base64.

with encryption key in Secret object

You can avoid storing your encryption key in Custom Resource, and put it into a dedicated Secrets object. Define your
secret in YAML as follows:

Here <your_encryption_key_in_base64>  should be substituted with the actual encryption key encoded in base64.

When the YAML file is ready, apply it to create the Secret:

After creating the Secret, set the following Custom Resource options in the deploy/cr.yaml  configuration file:

backup:
...
storages:
my-s3:
type: s3
s3:
bucket: my-backup-bucket
serverSideEncryption:
sseCustomerAlgorithm: AES256
sseCustomerKey: <your_encryption_key_in_base64>

...

deploy/sse-secret.yaml

apiVersion: v1
kind: Secret
metadata:
name: my-cluster-name-sse

type: Opaque
stringData:
SSE_CUSTOMER_KEY: <your_encryption_key_in_base64>

$ kubectl create -f deploy/sse-secret.yaml

secrets:
...
sse: my-cluster-name-sse

...
backup:
...
storages:
my-s3:
type: s3
s3:
bucket: my-backup-bucket
serverSideEncryption:
sseCustomerAlgorithm: AES256

...

6.1.6 Enable server-side encryption for backups

150 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



You can use the following command to get a base64-encoded string from a plain text one:

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Note

in Linux

in macOS

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

Last update: 2024-05-25 

6.1.6 Enable server-side encryption for backups

151 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.1.7 Restore the cluster from a previously saved backup

The  backup  is  normally  restored  on  the  Kubernetes  cluster  where  it  was  made,  but  restoring  it  on  a  different
Kubernetes-based environment with the installed Operator is also possible.

Following things are needed to restore a previously saved backup:

Make sure that the cluster is running.

Find  out  correct  names  for  the  backup and  the  cluster.  Available  backups  can  be  listed  with  the  following
command:

And the following command will list available clusters:

If you have configured storing operations logs for point-in-time recovery, you will have possibility to roll back the cluster
to a specific date and time. Otherwise, restoring backups without point-in-time recovery is the only option.

When the correct names for the backup and the cluster are known, backup restoration can be done in the following
way.

Without point-in-time recovery

Set appropriate keys in the deploy/backup/restore.yaml  file.

set spec.clusterName  key to the name of the target cluster to restore the backup on,

set spec.backupName  key to the name of your backup,

After that, the actual restoration process can be started as follows:

• 

• 

$ kubectl get psmdb-backup

$ kubectl get psmdb

Note

1. 

• 

• 

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
name: restore1

spec:
clusterName: my-cluster-name
backupName: backup1

2. 

$ kubectl apply -f deploy/backup/restore.yaml

6.1.7 Restore the cluster from a previously saved backup

152 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Storing backup settings in a separate file can be replaced by passing its content to the kubectl apply  command as follows:

With point-in-time recovery

Set appropriate keys in the deploy/backup/restore.yaml  file.

set spec.clusterName  key to the name of the target cluster to restore the backup on

set spec.backupName  key to the name of your backup

put additional restoration parameters to the pitr  section:

type  key can be equal to one of the following options

date  - roll back to specific date

latest  - recover to the latest possible transaction

date  key is used with type=date  option and contains value in datetime format The resulting restore.yaml  file may look as
follows:

 Full backup objects available with the kubectl get psmdb-backup  command have a “Latest restorable time” information field
handy when selecting a backup to restore. You can easily query the backup for this information as follows:

Run the actual restoration process:

Note

$ cat <<EOF | kubectl apply -f-
apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
  name: restore1
spec:
  clusterName: my-cluster-name
  backupName: backup1
EOF

1. 

• 

• 

• 

• 

• 

• 

• 

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
name: restore1

spec:
clusterName: my-cluster-name
backupName: backup1
pitr:
type: date
date: YYYY-MM-DD hh:mm:ss

Note

$ kubectl get psmdb-backup <backup_name> -o jsonpath='{.status.latestRestorableTime}'

2. 

$ kubectl apply -f deploy/backup/restore.yaml

6.1.7 Restore the cluster from a previously saved backup

153 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Storing backup settings in a separate file can be replaced by passing its content to the kubectl apply  command as follows:

Selective restore

Starting with the version 1.18.0, the Operator allows doing partial restores, which means to do a selective restore only
with the desired subset of data. This feature allows you to restore a specific database or a collection from a backup.

Selective  restores  are  controlled  by  the  additional  selective  section  in  the  PerconaServerMongoDBRestore  Custom
Resource:

The selective.namespaces  field allows you to specify several “namespaces” (subsets of data) as a list. Each “namespace” is
represented as a pair of database and collection names, or just  database_name.*  to get everything from the specific
database. Specifying “*” as an item in the namespaces  means restoring all databases and collections.

Also, you can use selective.withUsersAndRoles  set to true  to restore a custom database with users and roles from a full
backup.

Selective restores support only logical backups and have a number of other limitations. See the full list of  current
selective restore limitations  in Percona Backup for MongoDB documentation.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Note

$ cat <<EOF | kubectl apply -f-
apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
  name: restore1
spec:
  clusterName: my-cluster-name
  backupName: backup1
  pitr:
    type: date
    date: YYYY-MM-DD hh:mm:ss
EOF

spec:
selective:
withUsersAndRoles: true
namespaces:
- "db1.collection1"
- "db2.collection2"

Last update: 2024-11-14 

6.1.7 Restore the cluster from a previously saved backup

154 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.1.8 Delete the unneeded backup

The maximum amount of stored backups is controlled by the backup.tasks.keep option (only successful backups are
counted). Older backups are automatically deleted, so that amount of stored backups do not exceed this number.
Setting keep=0  or removing this option from deploy/cr.yaml  disables automatic deletion of backups.

Manual deleting of a previously saved backup requires not more than the backup name. This name can be taken from
the list of available backups returned by the following command:

When the name is known, backup can be deleted as follows:

Deleting a backup used  as a base for point-in-time recovery (PITR) is possible only starting from the Operator version
1.15.0. Also, deleting such a backup will delete the stored operations log updates based on this backup.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

$ kubectl get psmdb-backup

$ kubectl delete psmdb-backup/<backup-name>

Note

Last update: 2024-05-24 

6.1.8 Delete the unneeded backup

155 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.2 Update Database and Operator

Starting  from  the  version  1.1.0  the  Percona  Operator  for  MongoDB  allows  upgrades  to  newer  versions.  The
upgradable components of the cluster are the following ones:

the Operator;

Custom Resource Definition (CRD),

Database Management System (Percona Server for MongoDB).

Additional steps are needed to upgrade database and Operator on  Red Hat Marketplace   or to upgrade Red Hat

certified Operators on OpenShift . See this HOWTO for details.

The list of recommended upgrade scenarios includes two variants:

Upgrade to the new versions of the Operator and Percona Server for MongoDB,

Minor Percona Server for MongoDB version upgrade without the Operator upgrade.

6.2.1 Upgrading the Operator and CRD

The Operator supports  last 3 versions of the CRD,  so it  is  technically  possible to skip upgrading the CRD and just
upgrade the Operator. If the CRD is older than the new Operator version by no more than three releases, you will be able to
continue using the old CRD and even carry on Percona Server for MongoDB minor version upgrades with it. But the
recommended way is to update the Operator and CRD.

Only the incremental update to a nearest version of the Operator is supported (for example, update from 1.5.0 to
1.6.0).  To  update  to  a  newer  version,  which  differs  from  the  current  version  by  more  than  one,  make  several
incremental updates sequentially.

Starting from version 1.14.0,  the Operator  configures replica  set  members using local  fully-qualified domain names
(FQDN). Before this version, it used exposed IP addresses in the replica set configuration in case of the exposed replica
set. If you have your replica set exposed and upgrade to 1.14.0, the replica set configuration will change to use FQDN. If
you don’t want such reconfiguration to happen, set clusterServiceDNSMode  Custom Resource option to External  before the
upgrade.

• 

• 

• 

Note

• 

• 

Note

Note

6.2 Update Database and Operator

156 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Starting from the Operator version 1.15.0 the spec.mongod  section (deprecated since 1.12.0) is finally removed from the
Custom Resource configuration. If  you have encryption disabled using the deprecated  mongod.security.enableEncryption

option, you need to set encryption disabled via the custom configuration before upgrade:

Starting from the Operator version 1.16.0 MongoDB 4.4 support in the Operator has reached its end-of-life. Make sure
that  you have a  supported MongoDB version before  upgrading the Operator  to  1.16.0  (you can use  major  version
upgrade functionality to fix it.

Manual upgrade

The upgrade includes the following steps.

Update the Custom Resource Definition  for the Operator, taking it from the official repository on Github, and do the

same for the Role-based access control:

Now you should apply a patch  to your deployment, supplying necessary image name with a newer version tag. You

can find the proper image name for the current Operator release in the list of certified images. updating to the 1.18.0

version should look as follows:

The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process in real time
with the kubectl rollout status  command with the name of your cluster:

Labels set on the Operator Pod will not be updated during upgrade.

Warning

spec:
...
replsets:

- name: rs0
...
configuration: |

security:
enableEncryption: false

...

Warning

1. 

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/
deploy/crd.yaml
$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/deploy/rbac.yaml

2. 

$ kubectl patch deployment percona-server-mongodb-operator \
-p'{"spec":{"template":{"spec":{"containers":[{"name":"percona-server-mongodb-operator","image":"percona/percona-

server-mongodb-operator:1.18.0"}]}}}}'

3. 

$ kubectl rollout status deployments percona-server-mongodb-operator

Note

6.2.1 Upgrading the Operator and CRD

157 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Upgrade via helm

If you have installed the Operator using Helm, you can upgrade the Operator with the helm upgrade  command.

You  can  use  helm  upgrade  to  upgrade  the  Operator  only.  The  Database  (Percona  Server  for  MongoDB)  should  be
upgraded in the same way whether you used helm to install it or not.

Update the Custom Resource Definition  for the Operator, taking it from the official repository on Github, and do the

same for the Role-based access control:

If you installed the Operator with no customized parameters , the upgrade can be done as follows: 

The my-op  parameter in the above example is the name of a release object  which which you have chosen for the

Operator when installing its Helm chart.

If  the Operator  was installed with some  customized parameters  ,  you should list  these options in  the upgrade

command.

You can get list of used options in YAML format with the helm get values my-op -a > my-values.yaml  command, and this file
can be directly passed to the upgrade command as follows:

Note

1. 

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/
deploy/crd.yaml
$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/deploy/rbac.yaml

2. 

$ helm upgrade my-op percona/psmdb-operator --version 1.18.0

$ helm upgrade my-op percona/psmdb-operator --version 1.18.0 -f my-values.yaml

6.2.1 Upgrading the Operator and CRD

158 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Upgrade via Operator Lifecycle Manager (OLM)

If you have installed the Operator on the OpenShift platform using OLM, you can upgrade the Operator within it.

List installed Operators for your Namespace to see if there are upgradable items.

Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and finally “Approve” to
upgrade the Operator.

6.2.2 Upgrading Percona Server for MongoDB

The following section presumes that  you are  upgrading your  cluster  within  the  Smart  Update  strategy,  when the
Operator  controls  how the objects  are updated.  Smart  Update strategy is  on when the  updateStrategy  key in  the
Custom Resource configuration file is set to  SmartUpdate  (this is the default value and the recommended way for
upgrades).

As an alternative, the updateStrategy  key can be used to turn off Smart Update strategy. You can find out more on this in
the appropriate section.

1. 

/

2. 

Note

6.2.2 Upgrading Percona Server for MongoDB

159 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Manual upgrade

Manual update of Percona Server for MongoDB can be done as follows:

Make sure that spec.updateStrategy  option in the Custom Resource is set to SmartUpdate , spec.upgradeOptions.apply  option
is set to Never  or Disabled  (this means that the Operator will not carry on upgrades automatically).

Now apply a patch  to your Custom Resource, setting necessary Custom Resource version and image names with a

newer version tag.

Check the version of the Operator you have in your Kubernetes environment. Please refer to the Operator upgrade guide to
upgrade the Operator and CRD, if needed.

Patching Custom Resource is done with the kubectl patch psmdb  command. Actual image names can be found in the list
of certified images. For example, updating my-cluster-name  cluster to the 1.18.0  version should look as follows:

The above command upgrades various components of the cluster including PMM Client. It is highly recommended  to

upgrade PMM Server  before upgrading PMM Client. If it wasn’t done and you would like to avoid PMM Client upgrade,
remove it from the list of images, reducing the last of two patch commands as follows:

The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process in real time
using the kubectl rollout status  command with the name of your cluster:

The update process is successfully finished when all Pods have been restarted (including the mongos and Config Server
nodes, if Percona Server for MongoDB Sharding is on).

1. 

...
spec:
updateStrategy: SmartUpdate
upgradeOptions:
apply: Disabled
...

2. 

Note

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.18.0",
      "image": "percona/percona-server-mongodb:7.0.14-8",
      "backup": { "image": "percona/percona-backup-mongodb:2.7.0" },
      "pmm": { "image": "percona/pmm-client:2.43.2" }
   }}'

Warning

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.18.0",
      "backup": { "image": "percona/percona-backup-mongodb:2.7.0" }
   }}'

3. 

$ kubectl rollout status sts my-cluster-name-rs0

6.2.2 Upgrading Percona Server for MongoDB

160 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Automated upgrade

Smart Update strategy allows you to automate upgrades even more. In this case the Operator can either detect the
availability of the new Percona Server for MongoDB version, or rely on the user’s choice of the version. To check the
availability of the new version, the Operator will query a special  Version Service server at scheduled times to obtain
fresh information about version numbers and valid image paths.

6.2.2 Upgrading Percona Server for MongoDB

161 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



If the current version should be upgraded, the Operator updates the Custom Resource to reflect the new image paths
and carries on sequential Pods deletion, allowing StatefulSet to redeploy the cluster Pods with the new image. You can
configure Percona Server for MongoDB upgrade via the deploy/cr.yaml  configuration file as follows:

6.2.2 Upgrading Percona Server for MongoDB

162 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Make sure that spec.updateStrategy  option is set to SmartUpdate .

Change  spec.crVersion  option to match the version of the Custom Resource Definition upgrade  you have done while
upgrading the Operator:

If  you don’t  update crVersion,  minor version upgrade is  the only one to occur.  For example,  the image  percona-server-

mongodb:5.0.7-6  can be upgraded to percona-server-mongodb:5.0.11-10 .

Set the upgradeOptions.apply  option from Disabled  to one of the following values:

Recommended  -  automatic  upgrade will  choose the  most  recent  version of  software  flagged as  Recommended (for
clusters created from scratch, the Percona Server for MongoDB 7.0 version will be selected instead of the Percona Server
for MongoDB 6.0 or 5.0 version regardless of the image path; for already existing clusters, the 7.0 vs. 6.0 vs. 5.0 branch
choice will be preserved),

6.0-recommended , 6.0-recommended , 5.0-recommended  - same as above, but preserves specific major MongoDB version for
newly provisioned clusters (ex. 7.0 will not be automatically used instead of 6.0),

Latest  -  automatic upgrade will  choose the most recent version of the software available (for clusters created from
scratch, the Percona Server for MongoDB 7.0 version will be selected instead of the Percona Server for MongoDB 6.0 or
5.0  version regardless  of  the image path;  for  already existing clusters,  the 7.0  vs.  6.0  or  5.0  branch choice will  be
preserved),

7.0-latest ,  6.0-latest ,  5.0-latest  -  same as above, but preserves specific major MongoDB version for newly provisioned
clusters (ex. 7.0 will not be automatically used instead of 6.0),

version number - specify the desired version explicitly (version numbers are specified as 6.0.18-15, 7.0.14-8, etc.). Actual
versions can be found in the list of certified images.

prior to the Operator version 1.16.0 Percona Server for MongoDB 4.4 could be used with upgradeOptions.apply  set to 4.4-

recommended  or 4.4-latest . MongoDB 4.4 support has reached its end-of-life in the Operator version 1.16.0. Users of existing
clusters based on Percona Server for MongoDB 4.4 should explicitly switch to newer database versions before upgrading
the Operator to 1.16.0.

Make sure the versionServiceEndpoint  key is set to a valid Version Server URL (otherwise Smart Updates will not occur).

1. 

2. 

...
spec:
crVersion: 1.18.0
...

Note

3. 

• 

• 

• 

• 

• 

Note

4. 

Percona’s Version Service (default)

You can use the URL of the official Percona’s Version Service (default). Set upgradeOptions.versionServiceEndpoint  to https://

check.percona.com .

Version Service inside your cluster

Alternatively, you can run Version Service inside your cluster. This can be done with the kubectl  command as follows:

$ kubectl run version-service --image=perconalab/version-service --env="SERVE_HTTP=true" --port 11000 --expose

6.2.2 Upgrading Percona Server for MongoDB

163 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Version Service is never checked if automatic updates are disabled in the upgradeOptions.apply  option. If automatic updates
are enabled, but the Version Service URL can not be reached, no updgrades will be performed.

Use the upgradeOptions.schedule  option to specify the update check time in CRON format.

The following example sets the midnight update checks with the official Percona’s Version Service:

You can force an immediate upgrade by changing the schedule to * * * * *  (continuously check and upgrade) and changing
it back to another more conservative schedule when the upgrade is complete.

Don’t forget to apply your changes to the Custom Resource in the usual way:

When automatic upgrades are disabled by the apply  option, Smart Update functionality will continue working for changes
triggered by other events, such as rotating a password, or changing resource values.

Major version automated upgrades

Normally automatic upgrade takes place within minor versions (for example, from 5.0.7-6  to 5.0.11-10 ) of MongoDB.
Major versions upgrade (for example moving from  5.0-recommended  to  6.0-recommended )  is more complicated task
which might potentially affect how data is stored and how applications interacts with the database (in case of some
API changes).

Such upgrade is supported by the Operator within one major version at a time: for example, to change Percona Server
for MongoDB major version from 5.0 to 7.0, you should first upgrade it to 6.0, and later make a separate upgrade from
6.0 to 7.0. The same is true for major version downgrades.

It is recommended to take a backup before upgrade, as well as to perform upgrade on staging environment.

Major version upgrade can be initiated using the upgradeOptions.apply key in the deploy/cr.yaml  configuration file:

Note

5. 

spec:
updateStrategy: SmartUpdate
upgradeOptions:
apply: Recommended
versionServiceEndpoint: https://check.percona.com
schedule: "0 0 * * *"

...

Note

6. 

$ kubectl apply -f deploy/cr.yaml

Note

Note

spec:
upgradeOptions:
apply: 5.0-recommended

6.2.2 Upgrading Percona Server for MongoDB

164 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



When making downgrades (e.g. changing version from 6.0 to 5.0), make sure to remove incompatible features that are
persisted and/or update incompatible configuration settings. Compatibility issues between major MongoDB versions can
be found in upstream documentation .

By default the Operator doesn’t set FeatureCompatibilityVersion (FCV)  to match the new version, thus making sure

that  backwards-incompatible  features  are  not  automatically  enabled  with  the  major  version  upgrade  (which  is
recommended and safe behavior). You can turn this backward compatibility off at any moment (after the upgrade or
even before it) by setting the upgradeOptions.setFCV flag in the deploy/cr.yaml  configuration file to true .

With setFeatureCompatibilityVersion set major version rollback is not currently supported by the Operator. Therefore it is
recommended to stay without enabling this flag for some time after the major upgrade to ensure the likelihood of
downgrade is minimal. Setting setFCV  flag to true  simultaneously with the apply  flag should be done only if the whole
procedure is tested on staging and you are 100% sure about it.

6.2.3 More on upgrade strategies

The recommended way to upgrade your cluster is to use the Smart Update strategy, when the Operator controls how
the  objects  are  updated.  Smart  Update  strategy  is  on  when  the  updateStrategy  key  in  the  Custom  Resource
configuration file is set to SmartUpdate  (this is the default value and the recommended way for upgrades).

Alternatively, you can set this key to RollingUpdate  or OnDelete , which means that you will have to follow the low-level
Kubernetes way of database upgrades. But take into account, that  SmartUpdate  strategy is not just for simplifying
upgrades. Being turned on, it allows to disable automatic upgrades, and still controls restarting Pods in a proper order
for changes triggered by other events, such as updating a ConfigMap, rotating a password, or changing resource
values. That’s why SmartUpdate  strategy is useful even when you have no plans to automate upgrades at all.

6.2.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Note

Note

Last update: 2024-11-05 

6.2.3 More on upgrade strategies

165 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.3 Scale Percona Server for MongoDB on Kubernetes and OpenShift

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an application scaling.
Scaling a Deployment up or down ensures new Pods are created and set to available Kubernetes nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to MongoDB nodes;
horizontal scaling is about adding more nodes to the cluster. High availability looks technically similar, because it also
involves additional nodes, but the reason is maintaining liveness of the system in case of server or network failures.

6.3.1 Vertical scaling

Scale compute

There are multiple components that Operator deploys and manages: MongoDB replica set instances, mongos and
config server instances, etc. To add or reduce CPU or Memory you need to edit corresponding sections in the Custom
Resource. We follow the structure for requests and limits that Kubernetes provides .

To add more resources to your MongoDB replica set instances, edit the following section in the Custom Resource:

Use our reference documentation for the Custom Resource options for more details about other components.

Scale storage

Kubernetes manages storage with a PersistentVolume (PV), a segment of storage supplied by the administrator, and a
PersistentVolumeClaim (PVC), a request for storage from a user. In Kubernetes v1.11 the feature was added to allow a
user to increase the size of an existing PVC object (considered stable since Kubernetes v1.24). The user cannot shrink
the size of an existing PVC object.

Starting from the version 1.16.0, the Operator allows to scale Percona Server for MongoDB storage automatically by
changing the appropriate Custom Resource option, if the volume type supports PVCs expansion.

AUTOMATED SCALING WITH VOLUME EXPANSION CAPABILITY

Automated storage scaling by the Operator is  in a technical  preview stage and is  not recommended for production
environments.

Certain volume types support PVCs expansion (exact details about PVCs and the supported volume types can be found
in Kubernetes documentation ).

You can run the following command to check if your storage supports the expansion capability:

spec:
replsets:
resources:
requests:
memory: 4G
cpu: 2

limits:
memory: 4G
cpu: 2

Warning

$ kubectl describe sc <storage class name> | grep AllowVolumeExpansion

6.3 Scale Percona Server for MongoDB on Kubernetes and OpenShift

166 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



You can enable automated scaling with the enableVolumeExpansion Custom Resource option (turned off by default).
When  enabled,  the  Operator  will  automatically  expand  such  storage  for  you  when  you  change  the
replsets.<NAME>.volumeSpec.persistentVolumeClaim.resources.requests.storage  and/or
configsvrReplSet.volumeSpec.persistentVolumeClaim.resources.requests.storage  options in the Custom Resource.

For example, you can do it by editing and applying the deploy/cr.yaml  file:

Apply changes as usual:

MANUAL SCALING WITHOUT VOLUME EXPANSION CAPABILITY

Manual scaling is the way to go if your version of the Operator is older than 1.16.0, your volumes have type which
does not support Volume Expansion, or you just do not rely on automated scaling.

Expected output

AllowVolumeExpansion: true

spec:
  ...
  enableVolumeExpansion: true
  ...
  replsets:
    ...
    volumeSpec:
      persistentVolumeClaim:
        resources:
          requests:
            storage: <NEW STORAGE SIZE>

$ kubectl apply -f cr.yaml

6.3.1 Vertical scaling

167 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



You will need to delete Pods one by one and their persistent volumes to resync the data to the new volumes. This can
also be used to shrink the storage.

6.3.1 Vertical scaling

168 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Update the Custom Resource with the new storage size by editing and applying the deploy/cr.yaml  file:

Apply the Custom Resource update in a usual way:

Delete the StatefulSet with the orphan  option

The Pods will not go down and the Operator is going to recreate the StatefulSet:

Scale up the cluster (Optional)

Changing the storage size would require us to terminate the Pods, which decreases the computational power of the
cluster and might cause performance issues. To improve performance during the operation we are going to change the
size of the cluster from 3 to 5 nodes:

Apply the change:

New Pods will already have new storage:

1. 

spec:
  ...
  replsets:
    ...
    volumeSpec:
      persistentVolumeClaim:
        resources:
          requests:
            storage: <NEW STORAGE SIZE>

$ kubectl apply -f deploy/cr.yaml

2. 

$ kubectl delete sts <statefulset-name> --cascade=orphan

$ kubectl get sts <statefulset-name>

Expected output

my-cluster-name-rs0       3/3     39s

3. 

spec:
...
replsets:
...
size: 5

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pvc

6.3.1 Vertical scaling

169 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Delete PVCs and Pods with old storage size one by one. Wait for data to sync before you proceeding to the next node.

The new PVC is going to be created along with the Pod.

6.3.2 Horizontal scaling

The size of the cluster is controlled by the size  key in the Custom Resource options configuration.

The  Operator  will  not  allow to  scale  Percona  Server  for  MongoDB with  the  kubectl  scale  statefulset  <StatefulSet  name>

command as it puts size  configuration options out of sync.

You can change size separately for different components of your cluster by setting this option in the appropriate
subsections:

replsets.size allows to set the size of the MongoDB Replica Set,

replsets.arbiter.size allows to set the number of Replica Set Arbiter instances,

sharding.configsvrReplSet.size allows to set the number of Config Server instances ,

sharding.mongos.size allows to set the number of mongos  instances.

For example, the following update in deploy/cr.yaml  will set the size of the MongoDB Replica Set to 5  nodes:

Don’t forget to apply changes as usual, running the kubectl apply -f deploy/cr.yaml  command.

Expected output

NAME                                STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   AGE
mongod-data-my-cluster-name-cfg-0   Bound    pvc-a2b37f4d-6f11-443c-8670-de82ce9fc335   10Gi       RWO            standard       
110m
mongod-data-my-cluster-name-cfg-1   Bound    pvc-ded949e5-0f93-4f57-ab2c-7c5fd9528fa0   10Gi       RWO            standard       
109m
mongod-data-my-cluster-name-cfg-2   Bound    pvc-f3a441dd-94b6-4dc0-b96c-58b7851dfaa0   10Gi       RWO            standard       
108m
mongod-data-my-cluster-name-rs0-0   Bound    pvc-b183c40b-c165-445a-aacd-9a34b8fff227   19Gi       RWO            standard       
49m
mongod-data-my-cluster-name-rs0-1   Bound    pvc-f186426b-cbbe-4c31-860e-97a4dfca3de0   19Gi       RWO            standard       
47m
mongod-data-my-cluster-name-rs0-2   Bound    pvc-6beb6ccd-8b3a-4580-b3ef-a2345a2c21d6   19Gi       RWO            standard       
45m 

4. 

$ kubectl delete pvc <PVC NAME>
$ kubectl delete pod <POD NAME>

Note

• 

• 

• 

• 

spec:
...
replsets:
...
size: 5

6.3.2 Horizontal scaling

170 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.3.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-11-14 

6.3.3 Get expert help

171 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.4 Multi-cluster and multi-region deployment

6.4.1 Set up Percona Server for MongoDB cross-site replication

The cross-site replication involves configuring one MongoDB site as  Main, and another MongoDB site as  Replica to
allow replication between them:

This feature can be useful in several cases:

simplify the migration of the MongoDB cluster to and from Kubernetes

add remote nodes to the replica set for disaster recovery

keep the replica set of the database cluster in different data centers to get a fault-tolerant system.

Prerequisites

Every node in Main and Replica clusters need to be reachable through network.

User credentials should be the same in each cluster.

TLS certificates should be the same in each cluster.

Glossary

Main cluster: The cluster which the primary node runs and accepts write traffic. It’s the  managed cluster if it’s
running on Kubernetes.

Replica cluster: The cluster which is configured to replicate from main cluster. It’s the unmanaged cluster if it’s
running on Kubernetes.

Managed  cluster:  The  cluster  controlled  by  operator.  The  operator  controls  everything  from  Replica  Set
configuration  to users credentials. It’s the default deployment of the operator.

Unmanaged cluster: The cluster controlled by operator but the operator isn’t responsible for managing Replica Set
configuration .

DB Pod N Data
replication

Operator

Main site

ReplicaSet

Config Server
ReplicaSet

mongos

Replica site

Operator

ReplicaSet

Config Server
ReplicaSet

mongos

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

6.4 Multi-cluster and multi-region deployment

172 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Topologies

The Operator automates configuration of  Main and  Replica MongoDB sites,  but the feature itself  is  not bound to
Kubernetes. Either Main or Replica can run outside of Kubernetes, be regular MongoDB and be out of the Operators’
control.

You need to have a single Main cluster but you can have multiple Replica clusters as long as you don’t have more than
50 members in Replica Set. This limitation comes from MongoDB itself, for more information please check MongoDB
docs .

MAIN AND REPLICA CLUSTERS ON KUBERNETES

If you want both Main and Replica clusters to run on Kubernetes, overall steps will look like:

Deploy the Main cluster on a Kubernetes cluster (or use an existing one)

Get TLS secrets from the Main cluster and apply them to the namespace in Kubernetes cluster to which you’ll deploy the
Replica cluster

Deploy Replica cluster on a Kubernetes cluster

Add nodes from the Replica cluster to the Main cluster as external nodes

MAIN CLUSTER ON KUBERNETES AND REPLICA CLUSTER OUTSIDE OF KUBERNETES

If you want Main cluster to run on Kubernetes, but Replica cluster outside of Kubernetes, overall steps will look like:

Deploy the Main cluster on a Kubernetes cluster (or use an existing one)

Get TLS secrets from the Main cluster to configure the Replica cluster

Deploy the Replica cluster on wherever you want

Add nodes from the Replica cluster to the Main cluster as external nodes

MAIN CLUSTER OUTSIDE OF KUBERNETES AND REPLICA CLUSTER ON KUBERNETES

If you want Main cluster to run outside of Kubernetes but Replica cluster on Kubernetes, overall steps will look like:

Deploy the Main cluster on wherever you want (or use an existing one)

Get TLS certificates and create a Kubernetes Secret with them

Get user credentials and create a Kubernetes Secret with them

Deploy the Replica cluster on a Kubernetes cluster

Add nodes from the Replica cluster to the Main cluster using Mongo client

Exposing instances of the MongoDB cluster

You need to expose all Replica Set nodes (including Config Servers) through a dedicated Service to ensure that both
the Main and the Replica can reach each other, like in a full mesh:

1. 

2. 

3. 

4. 

1. 

2. 

3. 

4. 

1. 

2. 

3. 

4. 

5. 

6.4.1 Set up Percona Server for MongoDB cross-site replication

173 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



This  is  done through the  replsets.expose ,  sharding.configsvrReplSet.expose ,  and  sharding.mongos.expose  sections in  the
deploy/cr.yaml  configuration file as follows.

The above example is using the LoadBalancer Kubernetes Service object, and the result will be a LoadBalancer per
each Replica Set Pod. In most cases, this Load Balancer should be Internet-facing for cross-region replication to work.
Also, there are other options except the LoadBalancer (ClusterIP, NodePort, etc.).

Starting from v1.14, the Operator configures the replset using local DNS hostnames even if the replset is exposed. If you
want  to  have  IP  addresses  in  the  replset  configuration  to  achieve  a  multi-cluster  deployment,  you  need to  set
clusterServiceDNSMode  to External .

Main site

Config Server
ReplicaSet

ReplicaSet

Replica site

Config Server
ReplicaSet

ReplicaSet

`

`

spec:
replsets:
- rs0:
expose:
enabled: true
exposeType: LoadBalancer

...
sharding:
configsvrReplSet:
expose:
enabled: true
exposeType: LoadBalancer

...

Note

6.4.1 Set up Percona Server for MongoDB cross-site replication

174 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



To  list  the  endpoints  assigned  to  Pods,  list  the  Kubernetes  Service  objects  by  executing  kubectl  get  services  -l  

"app.kubernetes.io/instance=CLUSTER_NAME"  command.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-11-14 

6.4.1 Set up Percona Server for MongoDB cross-site replication

175 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.4.2 Configuring cross-site replication on the Main site

The cluster managed by the Operator should be able to reach external nodes of the Replica Sets. You can provide
needed information in the  replsets.externalNodes  and  sharding.configsvrReplset.externalNodes  subsections of the  deploy/

cr.yaml  configuration file. Following keys can be set to specify each external Replica, both for its Replica Set and Config
Server instances:

set host  to URL or IP address of the external replset instance,

set port  to the port number of the external node (or rely on the 27017  default value),

set priority  to define the priority  of the external node ( 2  is default for all local members of the cluster; external

nodes should have lower priority to avoid unmanaged node being elected as a primary; 0  adds the node as a non-
voting member),

set votes  to the number of votes  an external node can cast in a replica set election ( 0  is default and should be

used for non-voting members of the cluster).

Here is an example:

The Main site will be ready for replication when you apply changes as usual:

Don’t forget to expose instances of the Main cluster!

Getting the cluster secrets and certificates to be copied from Main to Replica

Main and Replica should have same Secrets objects (to have same users credentials) and certificates. So you may need
to copy them from Main. Names of the corresponding objects are set in the secrets.ssl , secrets.sslInternal , secrets.users ,
and secrets.keyfile  Custom Resource options. The default names are the following ones:

• 

• 

• 

• 

spec:
unmanaged: false
replsets:
- name: rs0
externalNodes:
- host: rs0-1.percona.com
port: 27017
priority: 0
votes: 0

- host: rs0-2.percona.com
...

sharding:
configsvrReplSet:
size: 3
externalNodes:
- host: cfg-1.percona.com
port: 27017
priority: 0
votes: 0

- host: cfg-2.percona.com
...

$ kubectl apply -f deploy/cr.yaml

Note

6.4.2 Configuring cross-site replication on the Main site

176 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



If you can get Secrets from an existing cluster by executing the kubectl get secret  command for each Secrets object you
want to acquire:

Next remove the annotations ,  creationTimestamp ,  resourceVersion ,  selfLink , and uid  metadata fields from the resulting
file to make it ready for the Replica.

You will need to further apply these secrets on Replica.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

* `my-cluster-name-ssl` (SSL certificates for client connections),

* `my-cluster-name-ssl-internal` (SSL certificates for replication),

* `my-cluster-name-secrets` (user credentials),

* `my-cluster-name-mongodb-keyfile` (encryption key file).

$ kubectl get secret my-cluster-name-secrets -o yaml > my-cluster-secrets.yaml

Last update: 2024-11-14 

6.4.2 Configuring cross-site replication on the Main site

177 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.4.3 Configuring cross-site replication on Replica instances

When the Operator creates a new cluster, a lot of things are happening, such as electing the Primary, generating
certificates, and picking specific names. This should not happen if we want the Operator to run the Replica site, so first
of all the cluster should be put into unmanaged state by setting the unmanaged  key in the deploy/cr.yaml  configuration
file to true. Also you should set  updateStrategy  key to  OnDelete  and backup.enabled  to  false , because Smart Updates
and backups are not allowed on unmanaged clusters.

Setting unmanaged  to true will not only prevent the Operator from controlling the Replica Set configuration, but it will
also result in not generating certificates and users credentials for new clusters.

Here is an example:

The Main and Replica sites should have the same Secrets objects, so don’t forget to apply Secrets from your Main site.
Names of the corresponding objects are set in the secrets.ssl , secrets.sslInternal , secrets.users , and secrets.keyfile  Custom
Resource options ( my-cluster-name-ssl ,  my-cluster-name-ssl-internal ,  my-cluster-name-secrets , and  my-cluster-name-mongodb-

keyfile  by default).

Replica will not start if the TLS secrets and the encryption key are not copied. If users are not copied, the replica will join
the replica set, but it will be restarting due to failed liveness checks.

Copy your secrets from an existing cluster and apply each of them on your Replica site as follows:

The Replica site will be ready for replication when you apply changes as usual:

Don’t forget that you need to expose instances of the Replica cluster!

Note

spec:
unmanaged: true
updateStrategy: OnDelete
replsets:
- name: rs0
size: 3
...

backup:
enabled: false

...

Note

$ kubectl apply -f my-cluster-secrets.yaml

$ kubectl apply -f deploy/cr.yaml

Note

6.4.3 Configuring cross-site replication on Replica instances

178 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-11-14 

6.4.3 Configuring cross-site replication on Replica instances

179 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.4.4 Splitting replica set across multiple data centers

Splitting the replica set of the database cluster over multiple Kubernetes clusters can be useful to get a fault-tolerant
system in which all replicas are in different data centers.

The Operator cannot deploy MongoDB replicas to other data centers, but this solution can be achieved with a number
of Operator deployments, equal to the size of your replica set. So, you will need at least 3 Operator instances: one
Operator to control the replica set via cross-site replication, and at least two Operators to bootstrap the unmanaged
clusters. Each cluster will contain replica set with only one member, and the  Main site will manage instances from
other sites as external nodes. All configuration of the replica set is done manually.

The solution has the following limitations to consider:

setting it up involves a number of manual operations, and the same applies to scaling such a manually configured
replica,

backups are supported on the Main site only, not on the Replica sites.

Configuring the Main site

You will use the externally reachable URI for each of your replica set instances, manually overwiriting its default local
fully-qualified domain name (FQDN) in the Custom Resouce manifest.  Also you will  need including all  these host
names into TLS certificates. So the first thing needed is the list of these externally reachable names. In the above
example we will use the following ones:

r1.percona.local:443  URI for the cluster-name-rs0-0  (1st replica set instance),

r2.percona.local:443  for the 2nd replica set instance,

r3.percona.local:443  for the 3rd replica set instance.

Following steps will allow you to prepare the  Main site for cross-site replication, keeping in mind the multiple data
centers deployment:

• 

• 

• 

• 

• 

6.4.4 Splitting replica set across multiple data centers

180 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



TLS certificates generated by the Operator are not suitable and it’s required to generate certificates manually on the
Main site before creating a database cluster, with all names from replsetOverrides  and externalNodes .

Use TLS ceritficates manual generation instruction to prepare TLS certificates with the host names from your prepared
list.

Deploy your  Main site as usual, with these manually generated certificates. Don’t forget to turn on Pods exposure on
your Main cluster.

Now override hostname of the first replica in the replica set configuration by using the replsets.replsetOverrides  subsection
in the Custom Resource options manifest with the externally reachable endpoint from your externally reachable URI list:

The unsafeFlags.replsetSize  option in the above example is needed to create replica set with less than 3 instances.

The actual approach to make the URI reachable from the outside of your Kubernetes culster depends on the exposure
type. It is different in case of the NodePort exposure , Load balancer of the cloud provider , etc. Operator won’t

perform any validation for hostnames. It’s user’s responsibility to ensure connectivity.

You can also add custom tags to the replset members, just to make their identication easier:

1. 

2. 

3. 

...
unsafeFlags:
replsetSize: true

replsets:
- name: rs0

size: 1
replsetOverrides:
cluster-name-rs0-0:
host: r1.percona.local:443

...

Note

...
replsetOverrides:

cluster-name-rs0-0:
host: r1.percona.local:443
tags:

team: cloud
...

6.4.4 Splitting replica set across multiple data centers

181 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



CONFIGURING REPLICA SITES

To configure  Replica sites,  you should  deploy your Relica sites,  repeating the following steps for each Kubernetes
cluster you are adding:

Copy secrets from the Main site, rename them according to the cluster name you use on the Replica site (if needed), and
apply.

cluster1-ssl  (SSL certificates for client connections),

cluster1-ssl-internal  (SSL certificates for replication),

cluster1-secrets  (user credentials),

cluster1-mongodb-encryption-key  (encryption key).

Deploy the database cluster on the Replica site. Don’t forgetting the following:

All Replica sites must be deployed with the unmanaged: true  Custom Resource option. This will stop the Operator in the
Replica cluster from touching the MongoDB replset configuration. Starting from this moment, only the Operator of the
Main cluster will be able to modify it.

Backups must be disabled with the backup.enabaled: false  Custom Resource option.

The updateStrategy  Custom Resource option must be set to RollingUpdate  or OnDelete .

In order to create a single-instance replica set, you will need to the unsafeFlags.replsetSize  option to true  as you did on the
Main site.

Now add the new  Replica site’s  Pod  to  your  Main site’s externalNodes  subsection of  the  Custom Resource  options
manifest:

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

1. 

• 

• 

• 

• 

2. 

a. 

b. 

c. 

d. 

3. 

replsets:
- name: rs0
size: 1
replsetOverrides:
cluster1-rs0-0:
host: r1.percona.local:443

externalNodes:
- host: r2.percona.local:443
votes: 1
priority: 1

Last update: 2024-11-14 

6.4.4 Splitting replica set across multiple data centers

182 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.4.5 Enabling multi-cluster Services

Kubernetes  multi-cluster  Services  (MCS)   is  a  cross-cluster  discovery  and  invocation  of  Services.  MCS-enabled

Services become discoverable and accessible across clusters with a virtual IP address.

This feature allows splitting applications into multiple clusters combined in one fleet, which can be useful to separate
logically standalone parts (i.e. stateful and stateless ones), or to address privacy and scalability requirements, etc.

Multi-cluster Services should be supported by the cloud provider. It is supported by Google Kubernetes Engine (GKE)
, and by Amazon Elastic Kubernetes Service (EKS) .

Configuring your cluster for multi-cluster Services includes two parts:

configure MCS with your cloud provider,

make needed preparations with the Operator.

To set up MCS for a specific cloud provider you should follow official guides, for example ones from Google Kubernetes
Engine (GKE) , or from Amazon Elastic Kubernetes Service (EKS) .

For EKS, you also need to create ClusterProperty objects prior to enabling multi-cluster services.

Check AWS MCS controller repository  for more information.

Setting up the Operator for MCS results in registering Services for export to other clusters  using the ServiceExport
object  ,  and using ServiceImport one to import external  services.  Set the following options in the  multiCluster

subsection of the deploy/cr.yaml  configuration file to make it happen:

multiCluster.enabled  should be set to true ,

multiCluster.DNSSuffix  string  should  be  equal  to  the  cluster  domain  suffix  for  multi-cluster  Services  used  by
Kubernetes ( svc.clusterset.local by default ).

The following example in the deploy/cr.yaml  configuration file is rather straightforward:

Apply changes as usual with the kubectl apply -f deploy/cr.yaml  command.

• 

• 

Warning

apiVersion: about.k8s.io/v1alpha1
kind: ClusterProperty

metadata:
name: cluster.clusterset.k8s.io

spec:
value: [Your Cluster identifier]

---
apiVersion: about.k8s.io/v1alpha1
kind: ClusterProperty
metadata:

name: clusterset.k8s.io
spec:

value: [Your ClusterSet identifier]

• 

• 

...
multiCluster:
enabled: true
DNSSuffix: svc.clusterset.local

...

6.4.5 Enabling multi-cluster Services

183 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



If  you  want  to  enable  multi-cluster  services  in  a  new  cluster,  we  recommended  deploying  the  cluster  first  with
multiCluster.enabled  set to  false  and enable it after replset is initialized. Having MCS enabled from the start is prone to
errors on replset initialization.

The initial ServiceExport creation and sync with the clusters of the fleet takes approximately five minutes. You can
check the list of services for export and import with the following commands:

ServiceExport objects are created automatically by the Percona Server for MongoDB Operator. ServiceImport objects, on
the other hand, are not controlled by the operator. If you need to troubleshoot ServiceImport objects you must check the
MCS controller installed by your cloud provider.

After  ServiceExport  object  is  created,  exported  Services  can  be  resolved  from  any  Pod  in  any  fleet  cluster  as
SERVICE_EXPORT_NAME.NAMESPACE.svc.clusterset.local .

Note

$ kubectl get serviceexport

Expected output

NAME                     AGE
my-cluster-name-cfg      22m
my-cluster-name-cfg-0    22m
my-cluster-name-cfg-1    22m
my-cluster-name-cfg-2    22m
my-cluster-name-mongos   22m
my-cluster-name-rs0      22m
my-cluster-name-rs0-0    22m
my-cluster-name-rs0-1    22m
my-cluster-name-rs0-2    22m

$ kubectl get serviceimport

Expected output

NAME                     TYPE           IP                  AGE
my-cluster-name-cfg      Headless                           22m
my-cluster-name-cfg-0    ClusterSetIP   ["10.73.200.89"]    22m
my-cluster-name-cfg-1    ClusterSetIP   ["10.73.192.104"]   22m
my-cluster-name-cfg-2    ClusterSetIP   ["10.73.207.254"]   22m
my-cluster-name-mongos   ClusterSetIP   ["10.73.196.213"]   22m
my-cluster-name-rs0      Headless                           22m
my-cluster-name-rs0-0    ClusterSetIP   ["10.73.206.24"]    22m
my-cluster-name-rs0-1    ClusterSetIP   ["10.73.207.20"]    22m
my-cluster-name-rs0-2    ClusterSetIP   ["10.73.193.92"]    22m

Note

6.4.5 Enabling multi-cluster Services

184 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



This means that ServiceExports with the same name and namespace will be recognized as a single combined Service.

MCS can charge cross-site  replication with  additional  limitations specific  to  the cloud provider.  For  example,  GKE
demands all participating Pods to be in the same project . Also, default  Namespace should be used with caution:

your cloud provider may not allow  exporting Services from it to other clusters.

Applying MCS to an existing cluster

Additional actions are needed to turn on MCS for the already-existing non-MCS cluster.

You need to restart the Operator after editing the multiCluster  subsection keys and applying deploy/cr.yaml . Find the
Operator’s  Pod  name  in  the  output  of  the  kubectl  get  pods  command  (it  will  be  something  like
percona-server-mongodb-operator-d859b69b6-t44vk ) and delete it as follows:

If you are enabling MCS for a running cluster after upgrading from the Operator version 1.11.0  or below, you need
rotating multi-domain (SAN) certificates. Do this by pausing the cluster and deleting TLS Secrets.

Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Note

• 

$ kubectl delete percona-server-mongodb-operator-d859b69b6-t44vk

• 

Last update: 2024-04-09 

6.4.5 Enabling multi-cluster Services

185 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.5 Monitor database with Percona Monitoring and Management (PMM)

In this section you will learn how to monitor Percona Server for MongoDB with Percona Monitoring and Management
(PMM) .

Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. It includes the  PMM Server   and the number of  PMM Clients   running on

each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect to the PMM
Server to see database metrics on a number of dashboards .

PMM Server and PMM Client are installed separately.

6.5.1 Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an
AWS instance. Please refer to the official PMM documentation  for the installation instructions.

Note

6.5 Monitor database with Percona Monitoring and Management (PMM)

186 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.5.2 Install PMM Client

To install PMM Client as a side-car container in your Kubernetes-based environment, do the following:

Authorize PMM Client within PMM Server. 

Update the pmm  section in the deploy/cr.yaml  file:

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost  option. The PMM Server IP address should be
resolvable and reachable from within your cluster.

3. Apply the changes:

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on the
previous steps:

1. 

Token-based authorization (recommended)

 1. Generate the PMM Server API Key . Specify the Admin role when getting the API Key. 

 Warning: The API key is not rotated automatically.

Edit the deploy/secrets.yaml  secrets file and specify the PMM API key for the PMM_SERVER_API_KEY  option.

Apply the configuration for the changes to take effect.

Password-based authorization (deprecated since version 1.13.0)

Edit the deploy/secrets.yaml  secrets file and specify the following:

The user name of your PMM Server ( admin  by default) in the PMM_SERVER_USER  key 

The password you set for the PMM Server during its installation in the PMM_SERVER_PASSWORD  key.

Apply the configuration for the changes to take effect.

a. 

b. 

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

a. 

b. 

c. 

d. 

$ kubectl apply -f deploy/secrets.yaml -n <namespace>

2. 

• 

• 

pmm:
enabled: true
image: percona/pmm-client:{{pmm2recommended}}
serverHost: monitoring-service

$ kubectl apply -f deploy/cr.yaml -n <namespace>

3. 

$ kubectl get pods -n <namespace>
$ kubectl logs <cluster-name>-rs0-0 -c pmm-client -n <namespace>

6.5.2 Install PMM Client

187 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.5.3 Check the metrics

Let’s see how the collected data is visualized in PMM.

Log in to PMM server.

Click MongoDB from the left-hand navigation menu. You land on the Instances Overview page. 

Select your cluster from the Clusters drop-down menu and the desired time range on the top of the page. You should
see the metrics.

Click  MongoDB →  Other dashboards to see the list of available dashboards that allow you to drill down to the

metrics you are interested in. 

6.5.4 Enable profiling

Starting from the Operator  version 1.12.0,  MongoDB operation profiling is  disabled by default.  To analyze query
execution on the PMM Query Analytics  dashboard, you should enable profiling  explicitly. You can pass options

to MongoDB in several ways.

For example, update the configuration  subsection of the deploy/cr.yaml :

Optionally,  you  can  specify  additional  parameters  for  the  pmm-admin  add  mongodb  command  in  the

pmm.mongodParams  and pmm.mongosParams  keys for mongod  and mongos  Pods respectively.

 Info:  Please take into account that the Operator automatically manages common  MongoDB Service Monitoring

parameters  , such as username, password, service-name, host, etc. Assigning values to these parameters is not

recommended and can negatively affect the functionality of the PMM setup carried out by the Operator.

When done, apply the edited deploy/cr.yaml  file:

6.5.5 Update the secrets file

The  deploy/secrets.yaml  file  contains  all  values  for  each  key/value  pair  in  a  convenient  plain  text  format.  But  the
resulting Secrets Objects contains passwords stored as base64-encoded strings. If you want to update the password
field, you need to encode the new password into the base64 format and pass it to the Secrets Object.

1. 

2. 

3. 

4. 

spec:
...
replsets:
- name: rs0
size: 3
configuration: |
operationProfiling:
slowOpThresholdMs: 200
mode: slowOp
rateLimit: 100

$ kubectl apply -f deploy/cr.yaml

6.5.3 Check the metrics

188 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



To encode a password or any other parameter, run the following command:

For example, to set the new PMM API key in the my-cluster-name-secrets  object, do the following:

6.5.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

on Linux

on macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

in Linux

on macOS

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"PMM_SERVER_API_KEY": '$(echo -n new_key | base64 --
wrap=0)'}}'

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"PMM_SERVER_API_KEY": '$(echo -n new_key | base64)'}}'

Last update: 2024-05-24 

6.5.6 Get expert help

189 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.6 Using sidecar containers

The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this feature to run
debugging tools, some specific monitoring solutions, etc.

Custom sidecar  containers  can easily  access  other  components  of  your  cluster  .  Therefore they should be used

carefully and by experienced users only.

6.6.1 Adding a sidecar container

You can add sidecar containers to Percona Distribution for MongoDB Replica Set, Config Servers, and mongos Pods.
Just  use  sidecars  subsection  in  the  replsets ,  sharding.configsvrReplSet ,  and  sharding.mongos  of  the  deploy/cr.yaml

configuration  file.  In  this  subsection,  you  should  specify  the  name  and  image  of  your  container  and  possibly  a
command to run:

Apply your modifications as usual:

Running  kubectl describe  command for the appropriate Pod can bring you the information about the newly created
container:

Note

spec:
replsets:
....
sidecars:
- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: rs-sidecar-0

....

$ kubectl apply -f deploy/cr.yaml

$ kubectl describe pod my-cluster-name-rs0-0

6.6 Using sidecar containers

190 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.6.2 Getting shell access to a sidecar container

You can login to your sidecar container as follows:

6.6.3 Mount volumes into sidecar containers

It is possible to mount volumes into sidecar containers.

Following subsections describe different volume types , which were tested with sidecar containers and are known

to work.

Persistent Volume

You can use Persistent volumes  when you need dynamically provisioned storage which doesn’t depend on the Pod

lifecycle. To use such volume, you should  claim durable storage with  persistentVolumeClaim   without specifying

any non-important details.

The  following  example  requests  1G  storage  with  sidecar-volume-claim  PersistentVolumeClaim,  and  mounts  the
correspondent Persistent Volume to the rs-sidecar-0  container’s filesystem under the /volume0  directory:

Expected output

....
Containers:
....
rs-sidecar-0:
  Container ID:  docker://f0c3437295d0ec819753c581aae174a0b8d062337f80897144eb8148249ba742
  Image:         busybox
  Image ID:      docker-pullable://
busybox@sha256:139abcf41943b8bcd4bc5c42ee71ddc9402c7ad69ad9e177b0a9bc4541f14924
  Port:          <none>
  Host Port:     <none>
  Command:
    /bin/sh
  Args:
    -c
    while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done
  State:          Running
    Started:      Thu, 11 Nov 2021 10:38:15 +0300
  Ready:          True
  Restart Count:  0
  Environment:    <none>
  Mounts:
    /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fbrbn (ro)
....

$ kubectl exec -it my-cluster-name-rs0-0 -c rs-sidecar-0 -- sh
/ #

...
sidecars:
- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: rs-sidecar-0
volumeMounts:
- mountPath: /volume0
name: sidecar-volume-claim

6.6.2 Getting shell access to a sidecar container

191 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Sidecar containers for  mongos Pods have limited Persistent volumes support:  sharding.mongos.sidecarPVCs  option can be
used if there is a single mongos in deployment or when ReadWriteMany/ReadOnlyMany  access modes are used (but these
modes are available not in every storage).

Secret

You can use a secret volume  to pass the information which needs additional protection (e.g. passwords), to the

container. Secrets are stored with the Kubernetes API and mounted to the container as RAM-stored files.

You can mount a secret volume as follows:

The above example creates a sidecar-secret  volume (based on already existing mysecret Secret object ) and mounts

it to the rs-sidecar-0  container’s filesystem under the /secret  directory.

Don’t forget you need to create a Secret Object  before you can use it.

configMap

You can use a  configMap volume  to pass some configuration data to the container. Secrets are stored with the

Kubernetes API and mounted to the container as RAM-stored files.

You can mount a configMap volume as follows:

sidecarPVCs:
- apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: sidecar-volume-claim

spec:
resources:
requests:
storage: 1Gi

volumeMode: Filesystem
accessModes:
- ReadWriteOnce

Note

...
sidecars:
- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: rs-sidecar-0
volumeMounts:
- mountPath: /secret
name: sidecar-secret

sidecarVolumes:
- name: sidecar-secret
secret:
secretName: mysecret

Note

...
sidecars:

6.6.3 Mount volumes into sidecar containers

192 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



The above example creates a sidecar-config  volume (based on already existing myconfigmap configMap object ) and

mounts it to the rs-sidecar-0  container’s filesystem under the /config  directory.

Don’t forget you need to create a configMap Object  before you can use it.

6.6.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: rs-sidecar-0
volumeMounts:
- mountPath: /config
name: sidecar-config

sidecarVolumes:
- name: sidecar-config
configMap:
name: myconfigmap

Note

Last update: 2024-04-09 

6.6.4 Get expert help

193 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



6.7 Pause/resume Percona Server for MongoDB

There may be external situations when it is needed to shutdown the cluster for a while and then start it back up (some
works related to the maintenance of the enterprise infrastructure, etc.).

 The deploy/cr.yaml  file contains a special spec.pause  key for this. Setting it to true  gracefully stops the cluster:

To start the cluster after it was shut down just revert the spec.pause  key to false .

6.7.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

spec:
.......
pause: true

Last update: 2023-03-13 

6.7 Pause/resume Percona Server for MongoDB

194 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



7. Troubleshooting

7.1 Initial troubleshooting

Percona Operator for MongoDB uses  Custom Resources   to manage options for the various components of the

cluster.

PerconaServerMongoDB  Custom Resource with Percona Server for MongoDB options (it has handy psmdb  shortname
also),

PerconaServerMongoDBBackup  and  PerconaServerMongoDBRestore  Custom  Resources  contain  options  for  Percona
Backup for MongoDB used to backup Percona Server for MongoDB and to restore it from backups ( psmdb-backup

and psmdb-restore  shortnames are available for them).

The first thing you can check for the Custom Resource is to query it with kubectl get  command:

The Custom Resource should have Ready  status.

You can check which Percona’s Custom Resources are present and get some information about them as follows:

7.1.1 Check the Pods

If Custom Resource is not getting Ready  status, it makes sense to check individual Pods. You can do it as follows:

• 

• 

$ kubectl get psmdb

Expected output

NAME              ENDPOINT                                           STATUS   AGE
my-cluster-name   my-cluster-name-mongos.default.svc.cluster.local   ready    5m26s

Note

$ kubectl api-resources | grep -i percona

Expected output

perconaservermongodbbackups       psmdb-backup    psmdb.percona.com/v1                   true         
PerconaServerMongoDBBackup
perconaservermongodbrestores      psmdb-restore   psmdb.percona.com/v1                   true         
PerconaServerMongoDBRestore
perconaservermongodbs             psmdb           psmdb.percona.com/v1                   true         PerconaServerMongoDB

$ kubectl get pods

7. Troubleshooting

195 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



The above command provides the following insights:

READY  indicates how many containers in the Pod are ready to serve the traffic. In the above example,  my-cluster-

name-rs0-0  Pod has all two containers ready (2/2). For an application to work properly, all containers of the Pod
should be ready.

STATUS  indicates the current status of the Pod. The Pod should be in a Running  state to confirm that the application
is working as expected. You can find out other possible states in the official Kubernetes documentation .

RESTARTS  indicates how many times containers of Pod were restarted. This is impacted by the  Container Restart
Policy . In an ideal world, the restart count would be zero, meaning no issues from the beginning. If the restart

count exceeds zero, it may be reasonable to check why it happens.

AGE : Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

You can find more details about a specific Pod using the kubectl describe pods <pod-name>  command.

Expected output

NAME                                               READY   STATUS    RESTARTS   AGE
my-cluster-name-cfg-0                              2/2     Running   0          11m
my-cluster-name-cfg-1                              2/2     Running   1          10m
my-cluster-name-cfg-2                              2/2     Running   1          9m
my-cluster-name-mongos-0                           1/1     Running   0          11m
my-cluster-name-mongos-1                           1/1     Running   0          11m
my-cluster-name-mongos-2                           1/1     Running   0          11m
my-cluster-name-rs0-0                              2/2     Running   0          11m
my-cluster-name-rs0-1                              2/2     Running   0          10m
my-cluster-name-rs0-2                              2/2     Running   0          9m
percona-server-mongodb-operator-665cd69f9b-xg5dl   1/1     Running   0          37m

• 

• 

• 

• 

$ kubectl describe pods my-cluster-name-rs0-0

7.1.1 Check the Pods

196 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



This gives a lot of information about containers,  resources,  container status and also events.  So,  describe output
should be checked to see any abnormalities.

7.1.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Expected output

...
Name:         my-cluster-name-rs0-0
Namespace:    default
...
Controlled By:  StatefulSet/my-cluster-name-rs0
Init Containers:
 mongo-init:
...
Containers:
 mongod:
...
   Restart Count:  0
   Limits:
     cpu:     300m
     memory:  500M
   Requests:
     cpu:      300m
     memory:   500M
   Liveness:   exec [/opt/percona/mongodb-healthcheck k8s liveness --ssl --sslInsecure --sslCAFile /etc/mongodb-ssl/ca.crt --
sslPEMKeyFile /tmp/tls.pem --startupDelaySeconds 7200] delay=60s timeout=10s period=30s #success=1 #failure=4
   Readiness:  tcp-socket :27017 delay=10s timeout=2s period=3s #success=1 #failure=8
   Environment Variables from:
     internal-my-cluster-name-users  Secret  Optional: false
   Environment:
...
   Mounts:
...
Volumes:
...
Events:                      <none>

Last update: 2024-04-09 

7.1.2 Get expert help

197 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



7.2 Exec into the containers

If you want to examine the contents of a container “in place” using remote access to it, you can use the kubectl exec

command. It allows you to run any command or just open an interactive shell session in the container. Of course, you
can have shell access to the container only if container supports it and has a “Running” state.

In the following examples we will access the container mongod  of the my-cluster-name-rs0-0  Pod.

Run date  command:

You will see an error if the command is not present in a container. For example, trying to run the time  command,
which is not present in the container, by executing kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- time  would show the
following result:

Print /var/log/mongo/mongod.log  file to a terminal:

Similarly, opening an Interactive terminal, executing a pair of commands in the container, and exiting it may look as
follows:

7.2.1 Avoid the restart-on-fail loop for Percona Server for MongoDB containers

The restart-on-fail loop takes place when the container entry point fails (e.g. mongod  crashes). In such a situation, Pod
is  continuously  restarting.  Continuous  restarts  prevent  to  get  console  access  to  the  container,  and  so  a  special
approach is needed to make fixes.

You can prevent such infinite boot loop by putting the Percona Server for MongoDB containers into the “infinite sleep”
without starting mongod. This behavior of the container entry point is triggered by the presence of the /data/db/sleep-

forever  file. The feature is available for both replica set and confg server Pods.

For example, you can do it for the mongod  container of an appropriate Percona Server for MongoDB Pod as follows:

• 

$ kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- date

Expected output

Thu Nov 24 10:01:17 UTC 2022

OCI runtime exec failed: exec failed: unable to start container process: exec: "time": executable file not found in $PATH: 
unknown command terminated with exit code 126

• 

$ kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- cat /var/log/mongo/mongod.log

• 

$ kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- bash
[mongodb@my-cluster-name-rs0-0 db]$ cat /etc/hostname
my-cluster-name-rs0-0
[mongodb@my-cluster-name-rs0-0 db]$ ls /var/log/mongo/mongod.log
/var/log/mongo/mongod.log
[mongodb@my-cluster-name-rs0-0 db]$ exit
exit
$

7.2 Exec into the containers

198 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



If mongod  container can’t start, you can use backup-agent  container instead:

The instance will restart automatically and run in its usual way as soon as you remove this file (you can do it with a
command similar to the one you have used to create the file, just substitute touch  to rm  in it).

7.2.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

$ kubectl exec -it my-cluster-name-cfg-0 -c mongod -- sh -c 'touch /data/db/sleep-forever'

$ kubectl exec -it my-cluster-name-cfg-0 -c backup-agent -- sh -c 'touch /data/db/sleep-forever'

Last update: 2023-10-09 

7.2.2 Get expert help

199 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



7.3 Check the Logs

Logs provide valuable information. It makes sense to check the logs of the database Pods and the Operator Pod.
Following flags are helpful for checking the logs with the kubectl logs  command:

In the following examples we will access containers of the my-cluster-name-rs0-0  Pod.

Check logs of the mongod  container:

Check logs of the pmm-client  container:

Filter logs of the mongod  container which are not older than 600 seconds:

Check logs of a previous instantiation of the mongod  container, if any:

Check logs of the mongod  container, parsing the output with jq JSON processor :

7.3.1 Changing logs representation

You can also change the representation of  logs:  either  use structured representation,  which produces a  parcing-
friendly JSON, or use traditional console-frienldy logging with specific level. Changing representation of logs is possible
by editing the  deploy/operator.yml  file, which sets the following environment variables with self-speaking names and
values:

Flag Description

--container=<container-

name>

Print log of a specific container in case of multiple containers in a Pod

--follow Follows the logs for a live output

--since=<time> Print logs newer than the specified time, for example: --since="10s"

--timestamps Print timestamp in the logs (timezone is taken from the container)

--previous Print previous instantiation of a container. This is extremely useful in case of container
restart, where there is a need to check the logs on why the container restarted. Logs of
previous instantiation might not be available in all the cases.

• 

$ kubectl logs my-cluster-name-rs0-0 -c mongod

• 

$ kubectl logs my-cluster-name-rs0-0 -c pmm-client

• 

$ kubectl logs my-cluster-name-rs0-0 -c mongod --since=600s

• 

$ kubectl logs my-cluster-name-rs0-0 -c mongod --previous

• 

$ kubectl logs my-cluster-name-rs0-0 -c mongod -f | jq -R 'fromjson?'

env:
...
name: LOG_STRUCTURED
value: 'false'

7.3 Check the Logs

200 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



7.3.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

name: LOG_LEVEL
value: INFO
...

Last update: 2024-04-09 

7.3.2 Get expert help

201 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



7.4 Special debug images

For the cases when Pods are failing for some reason or just show abnormal behavior, the Operator can be used with a
special debug image of the Percona Server for MongoDB, which has the following specifics:

it avoids restarting on fail,

it contains additional tools useful for debugging (sudo, telnet, gdb, mongodb-debuginfo package, etc.),

extra verbosity is added to the mongodb daemon.

Images are available for Percona server for MongoDB versions 5.0 and 6.0, not for 7.0.

Particularly, using this image is useful if the container entry point fails ( mongod  crashes). In such a situation, Pod is
continuously restarting. Continuous restarts prevent to get console access to the container, and so a special approach
is needed to make fixes.

To use the debug image instead of the normal one, set the following image name for the image  key in the deploy/

cr.yaml  configuration file:

percona/percona-server-mongodb:6.0.18-15-debug

The Pod should be restarted to get the new image.

When the Pod is continuously restarting, you may have to delete it to apply image changes.

7.4.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

Note

Last update: 2024-05-24 

7.4 Special debug images

202 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8. HOWTOs

8.1 Install Percona Server for MongoDB with customized parameters

You can customize the configuration of Percona Server for MongoDB and install it with customized parameters.

8. HOWTOs

203 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



To check available configuration options, see deploy/cr.yaml  and Custom Resource Options.

8.1 Install Percona Server for MongoDB with customized parameters

204 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



kubectl

To customize the configuration, do the following:

Clone the repository with all manifests and source code by executing the following command:

Edit the required options and apply the modified deploy/cr.yaml  file as follows:

Helm

To install Percona Server for MongoDB with custom parameters, use the following command:

You can pass any of the Operator’s Custom Resource options  as a --set key=value[,key=value]  argument.

The  following  example  deploys  a  Percona  Server  for  MongoDB  Cluster  in  the  psmdb  namespace,  with  disabled
backups and 20 Gi storage:

1. 

$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator

2. 

$ kubectl apply -f deploy/cr.yaml

$ helm install --set key=value

Command line

YAML file

You can specify customized options in a YAML file instead of using separate command line parameters. The resulting
file similar to the following example looks as follows: 

Apply the resulting YAML file as follows: 

$ helm install my-db percona/psmdb-db --version 1.18.0 --namespace psmdb \
--set "replsets.rs0.name=rs0" --set "replsets.rs0.size=3" \
--set "replsets.rs0.volumeSpec.pvc.resources.requests.storage=20Gi" \
--set backup.enabled=false --set sharding.enabled=false

values.yaml

allowUnsafeConfigurations: true
sharding:
enabled: false

replsets:
- name: rs0
size: 3
volumeSpec:
pvc:
resources:
requests:
storage: 2Gi

backup:
enabled: false

$ helm install my-db percona/psmdb-db --namespace psmdb -f values.yaml

8.1 Install Percona Server for MongoDB with customized parameters

205 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.1.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-05-24 

8.1.1 Get expert help

206 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.2 How to integrate Percona Operator for MongoDB with OpenLDAP

LDAP services provided by software like OpenLDAP, Microsoft Active Directory, etc. are widely used by enterprises to
control information about users, systems, networks, services and applications and the corresponding access rights for
the authentication/authorization process in a centralized way.

The following guide covers a simple integration of the already-installed OpenLDAP server with Percona Distribution for
MongoDB and the Operator. You can know more about LDAP concepts and LDIF  files used to configure it, and find

how  to  install  and  configure  OpenLDAP  in  the  official  OpenLDAP   and  Percona  Server  for  MongoDB  

documentation.

8.2.1 The OpenLDAP side

You can add needed OpenLDAP settings will the following LDIF  portions:

Also a read-only user should be created for the database-issued user lookups. If  everything is done correctly, the
following command should work, resetting the percona user password:

If you are not sure about the approach to make references between user and group objects,  OpenDAP overlays  

provide one of the possible ways to go.

0-percona-ous.ldif: |-
dn: ou=perconadba,dc=ldap,dc=local
objectClass: organizationalUnit
ou: perconadba

1-percona-users.ldif: |-
dn: uid=percona,ou=perconadba,dc=ldap,dc=local
objectClass: top
objectClass: account
objectClass: posixAccount
objectClass: shadowAccount
cn: percona
uid: percona
uidNumber: 1100
gidNumber: 100
homeDirectory: /home/percona
loginShell: /bin/bash
gecos: percona
userPassword: {crypt}x
shadowLastChange: -1
shadowMax: -1
shadowWarning: -1 

2-group-cn.ldif: |-
dn: cn=admin,ou=perconadba,dc=ldap,dc=local
cn: admin
objectClass: groupOfUniqueNames
objectClass: top
ou: perconadba
uniqueMember: uid=percona,ou=perconadba,dc=ldap,dc=local

$ ldappasswd -s percona -D "cn=admin,dc=ldap,dc=local" -w password -x "uid=percona,ou=perconadba,dc=ldap,dc=local"

Note

8.2 How to integrate Percona Operator for MongoDB with OpenLDAP

207 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.2.2 The MongoDB and Operator side

The following steps will look different depending on whether sharding is on (the default behavior) or off.

If sharding is off

In order to get MongoDB connected with OpenLDAP in case of a a non-sharded (ReplicaSet) MongoDB cluster we need
to configure two things:

Mongod

Internal mongodb role

Create configuration Secrets for mongod:

This fragment provides mongod with LDAP-specific parameters, such as FQDN of the LDAP server ( server ), explicit lookup
user, domain rules, etc.

Put the snippet on you local machine and create a Kubernetes Secret object named based on your MongoDB cluster
name:

Next step is to start the MongoDB cluster up as it’s described in Install Percona server for MongoDB on Kubernetes.
On successful  completion of  the  steps  from this  doc,  we are  to  proceed with  setting the  roles  for  the  ‘external’
(managed by LDAP) user inside the MongoDB. For this, log into MongoDB as administrator:

When logged in, execute the following:

• 

• 

my_mongod.conf

security:
authorization: "enabled"
ldap:
authz:
queryTemplate: '{USER}?memberOf?base'

servers: "openldap"
transportSecurity: none
bind:
queryUser: "cn=readonly,dc=ldap,dc=local"
queryPassword: "password"

userToDNMapping:
'[

{
match : "(.+)",
ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"

}
]'

setParameter:
authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'

Note

$ kubectl create secret generic <your_cluster_name>-rs0-mongod --from-file=mongod.conf=my_mongod.conf

$ mongo "mongodb+srv://userAdmin:<userAdmin_password>@<your_cluster_name>-
rs0.<your_namespace>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

8.2.2 The MongoDB and Operator side

208 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Extra roles listed in the above example are just to show more than one possible variant.

Now the new percona  user created inside OpenLDAP is able to login to MongoDB as administrator. Verify whether the
user role has been identified correctly with the following command:

When logged in, execute the following:

The output should be like follows:

mongos> db.getSiblingDB("admin").createRole(
{
role: "cn=admin,ou=perconadba,dc=ldap,dc=local",
privileges: [],
roles : [
{
"role" : "readAnyDatabase",
"db" : "admin"

},
{
"role" : "dbAdminAnyDatabase",
"db" : "admin"

},
{
"role" : "clusterMonitor",
"db" : "admin"

},
{
"role" : "readWriteAnyDatabase",
"db" : "admin"

},
{
"role" : "restore",
"db" : "admin"

},
{
"role" : "backup",
"db" : "admin"

}
],
}
)

Note

$ mongo --username percona --password 'percona' --authenticationMechanism 'PLAIN' --authenticationDatabase
'$external' --host <mongodb-rs-endpoint> --port 27017

mongos> db.runCommand({connectionStatus:1})

{
"authInfo" : {
"authenticatedUsers" : [
{
"user" : "percona",
"db" : "$external"

}
],
"authenticatedUserRoles" : [
{

8.2.2 The MongoDB and Operator side

209 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



If sharding is on

In order to get MongoDB connected with OpenLDAP in this case we need to configure three things:

Mongod

Internal mongodb role

Mongos

Both the routing interface (mongos) and the configuraion ReplicaSet (mongod) have to be configured to make the
LDAP server a part of the Authentication/Authorization chain. 

mongos is just a router between shards and underlying database instances, and configuration ReplicaSet is responsible
for  keeping  information  about  database  users  and  roles.  Thus,  the  router  can  perform  only  authentication,  while
authorization is the responsibility of the configuration ReplicaSet.

Create configuration Secrets for the router and the configuration ReplicaSet respectively.

"role" : "restore",
"db" : "admin"

},
{
"role" : "readAnyDatabase",
"db" : "admin"

},
{
"role" : "clusterMonitor",
"db" : "admin"

},
{
"role" : "dbAdminAnyDatabase",
"db" : "admin"

},
{
"role" : "backup",
"db" : "admin"

},
{
"role" : "cn=admin,ou=perconadba,dc=ldap,dc=local",
"db" : "admin"

},
{
"role" : "readWriteAnyDatabase",
"db" : "admin"

}
]

},
"ok" : 1,
"$clusterTime" : {
"clusterTime" : Timestamp(1663067287, 4),
"signature" : {
"hash" : BinData(0,"ZaLGSVj4ZwZrngXZSOqXB5rx+oo="),
"keyId" : NumberLong("7142816031004688408")

}
},
"operationTime" : Timestamp(1663067287, 4)
}
mongos>

• 

• 

• 

Note

8.2.2 The MongoDB and Operator side

210 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Secret for the router should look as follows:

Put the snippet on you local machine and create a Kubernetes Secret object named based on your MongoDB cluster
name:

Secret for the configuration ReplicaSet should look as follows:

Put the snippet on you local machine and create a Kubernetes Secret object named based on your MongoDB cluster
name:

Both  files  are  pretty  much  the  same  except  the  authz  subsection,  which  is  only  present  for  the  configuration
ReplicaSet.

my_mongos.conf

security:
ldap:
servers: "openldap"
transportSecurity: none
bind:
queryUser: "cn=readonly,dc=ldap,dc=local"
queryPassword: "password"

userToDNMapping:
'[

{
match : "(.+)",
ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"

}
]'

setParameter:
authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'

$ kubectl create secret generic <your_cluster_name>-mongos --from-file=mongos.conf=my_mongos.conf

my_mongod.conf

security:
authorization: "enabled"
ldap:
authz:
queryTemplate: '{USER}?memberOf?base'

servers: "openldap"
transportSecurity: none
bind:
queryUser: "cn=readonly,dc=ldap,dc=local"
queryPassword: "password"

userToDNMapping:
'[

{
match : "(.+)",
ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"

}
]'

setParameter:
authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'

$ kubectl create secret generic <your_cluster_name>-cfg-mongod --from-file=mongod.conf=my_mongod.conf

8.2.2 The MongoDB and Operator side

211 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Next step is to start the MongoDB cluster up as it’s described in Install Percona server for MongoDB on Kubernetes.
On successful  completion of  the  steps  from this  doc,  we are  to  proceed with  setting the  roles  for  the  ‘external’
(managed by LDAP) user inside the MongoDB. For this, log into MongoDB as administrator:

When logged in, execute the following:

Extra roles listed in the above example are just to show more than one possible variant.

Now the new percona  user created inside OpenLDAP is able to login to MongoDB as administrator. Verify whether the
user role has been identified correctly with the following command:

When logged in, execute the following:

The output should be like follows:

$ mongo "mongodb://userAdmin:<userAdmin_password>@<your_cluster_name>-
mongos.<your_namespace>.svc.cluster.local/admin?ssl=false"

mongos> db.getSiblingDB("admin").createRole(
{
role: "cn=admin,ou=perconadba,dc=ldap,dc=local",
privileges: [],
roles : [
{
"role" : "readAnyDatabase",
"db" : "admin"

},
{
"role" : "dbAdminAnyDatabase",
"db" : "admin"

},
{
"role" : "clusterMonitor",
"db" : "admin"

},
{
"role" : "readWriteAnyDatabase",
"db" : "admin"

},
{
"role" : "restore",
"db" : "admin"

},
{
"role" : "backup",
"db" : "admin"

}
],
}
)

Note

$ mongo --username percona --password 'percona' --authenticationMechanism 'PLAIN' --authenticationDatabase
'$external' --host <your_cluster_name>-mongos --port 27017

mongos> db.runCommand({connectionStatus:1})

8.2.2 The MongoDB and Operator side

212 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.2.3 Using LDAP over TLS connection

LDAP over TLS  allows you to use Transport Layer Security, encrypting your communication between MongoDB and

OpenLDAP server.

{
"authInfo" : {
"authenticatedUsers" : [
{
"user" : "percona",
"db" : "$external"

}
],
"authenticatedUserRoles" : [
{
"role" : "restore",
"db" : "admin"

},
{
"role" : "readAnyDatabase",
"db" : "admin"

},
{
"role" : "clusterMonitor",
"db" : "admin"

},
{
"role" : "dbAdminAnyDatabase",
"db" : "admin"

},
{
"role" : "backup",
"db" : "admin"

},
{
"role" : "cn=admin,ou=perconadba,dc=ldap,dc=local",
"db" : "admin"

},
{
"role" : "readWriteAnyDatabase",
"db" : "admin"

}
]

},
"ok" : 1,
"$clusterTime" : {
"clusterTime" : Timestamp(1663067287, 4),
"signature" : {
"hash" : BinData(0,"ZaLGSVj4ZwZrngXZSOqXB5rx+oo="),
"keyId" : NumberLong("7142816031004688408")

}
},
"operationTime" : Timestamp(1663067287, 4)
}
mongos>

8.2.3 Using LDAP over TLS connection

213 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Here are the needed modifications to The MongoDB and Operator side subsection which will enable it:

First, create a secret that contains the SSL certificate to connect to LDAP. The following example creates it from the file
with CA certificate (the one you use in /etc/openldap/ldap.conf ), naming the new secret my-ldap-secret :

Set the secrets.ldapSecret  Custom Resource option to the name of your newly created secret. Your modified deploy/cr.yaml

may look as follows:

It  is  also  necessary  to  change  the  value  of  transportSecurity  to  tls  in  mongod  and  mongos  configurations.  The
configuration is similar to one described at the The MongoDB and Operator side subsection:

Changed mongod configuration should look as follows:

1. 

$ kubectl create secret generic my-ldap-secret --from-file=ca.crt=ldap-ca.pem

2. 

...
secrets:
...
ldapSecret: my-ldap-secret

3. 

``` yaml title="my_mongod.conf"  hl_lines="7"
security:
 authorization: "enabled"
 ldap:
 authz:
 queryTemplate: '{USER}?memberOf?base'
 servers: "openldap"
 transportSecurity: tls
 bind:
 queryUser: "cn=readonly,dc=ldap,dc=local"
 queryPassword: "password"
 userToDNMapping:
 '[
 {
 match : "(.+)",
 ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"
 }
]'
setParameter:
 authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'
```

If **sharding is on**, you will also need to change mongos configuration:

```yaml title="my_mongos.conf" hl_lines="4"
security:
 ldap:
 servers: "openldap"
 transportSecurity: tls
 bind:
 queryUser: "cn=readonly,dc=ldap,dc=local"
 queryPassword: "password"
 userToDNMapping:
 '[
 {
 match : "(.+)",
 ldapQuery: "OU=perconadba,DC=ldap,DC=local??sub?(uid={0})"
 }
]'
setParameter:

8.2.3 Using LDAP over TLS connection

214 of 412 Percona LLC and/or its affiliates, © 2009 - 2024

8.2.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts for professional support and services. Join K8S Squad to benefit from early access to
features and “ask me anything” sessions with the Experts.

 Community Forum Get a Percona Expert Join K8S Squad

 authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'
```

Last update: 2024-09-09 

8.2.4 Get expert help

215 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.3 Use Docker images from a custom registry

Using images from a private Docker registry may required for privacy,  security  or  other reasons.  In these cases,
Percona Operator for MongoDB allows the use of a custom registry This following example of the Operator deployed
in the OpenShift environment demonstrates the process:

8.3 Use Docker images from a custom registry

216 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Log into the OpenShift and create a project.

You need obtain the following objects to configure your custom registry access:

A user token

the registry IP address

You can view the token with the following command:

The following command returns the registry IP address:

Use the user token and the registry IP address to login to the registry:

1. 

$ oc login

Expected output

Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin
Password:
Login successful.

$ oc new-project psmdb

Expected output

Now using project "psmdb" on server "https://192.168.1.100:8443".

2. 

• 

• 

$ oc whoami -t

Expected output

ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

$ kubectl get services/docker-registry -n default

Expected output

NAME              TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
docker-registry   ClusterIP   172.30.162.173   <none>        5000/TCP   1d

3. 

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s 172.30.162.173:5000

8.3 Use Docker images from a custom registry

217 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Use the Docker commands to pull the needed image by its SHA digest:

You can find correct names and SHA digests in the  current list  of the Operator-related images officially certified by
Percona.

The following method can push an image to the custom registry for the example OpenShift psmdb  project:

Verify the image is available in the OpenShift registry with the following command:

When the custom registry image is available, edit the the image:  option in deploy/operator.yaml  configuration file with a
Docker Repo + Tag string (it should look like docker-registry.default.svc:5000/psmdb/percona-server-mongodb:7.0.14-8 )

If the registry requires authentication, you can specify the imagePullSecrets  option for all images.

Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml  file.

Expected output

Login Succeeded

4. 

$ docker pull docker.io/perconalab/percona-server-
mongodb@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

Expected output

Trying to pull repository docker.io/perconalab/percona-server-mongodb ...
sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0: Pulling from docker.io/perconalab/
percona-server-mongodb
Digest: sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0
Status: Image is up to date for docker.io/perconalab/percona-server-
mongodb@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

5. 

$ docker tag \
docker.io/perconalab/percona-server-

mongodb@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0 \
172.30.162.173:5000/psmdb/percona-server-mongodb:7.0.14-8

$ docker push 172.30.162.173:5000/psmdb/percona-server-mongodb:7.0.14-8

6. 

$ oc get is

Expected output

NAME                              DOCKER REPO                                                             TAGS             UPDATED
percona-server-mongodb            docker-registry.default.svc:5000/psmdb/percona-server-mongodb  7.0.14-8  2 hours ago

7. 

Note

8. 

8.3 Use Docker images from a custom registry

218 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Don’t forget to set upgradeoptions.apply option to Disabled . Otherwise Smart Upgrade functionality will try using the image
recommended by the Version Service instead of the custom one.

Now follow the standard Percona Operator for MongoDB installation instruction.

8.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Note

9. 

Last update: 2024-05-24 

8.3.1 Get expert help

219 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.4 Creating a private S3-compatible cloud for backups

As it is mentioned in backups, any cloud storage which implements the S3 API can be used for backups. The one way
to setup and implement the S3 API  storage on Kubernetes or  OpenShift  is  Minio   -  the S3-compatible object

storage server deployed via Docker on your own infrastructure.

8.4 Creating a private S3-compatible cloud for backups

220 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Setting up Minio to be used with Percona Operator for MongoDB backups involves the following steps:

8.4 Creating a private S3-compatible cloud for backups

221 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Install Minio in your Kubernetes or OpenShift environment and create the correspondent Kubernetes Service as follows:

Don’t forget to substitute default  some-access-key  and  some-secret-key  strings in this command with actual unique key
values. The values can be used later for access control. The  storageClass  option is needed if you are using the special
Kubernetes  Storage  Class   for  backups.  Otherwise,  this  setting  may  be  omitted.  You  may  also  notice  the

MINIO_REGION  value which is may not be used within a private cloud. Use the same region value here and on later steps
( us-east-1  is a good default choice).

Create an S3 bucket for backups:

This  command  creates  the  bucket  named  operator-testing  with  the  selected  access  and  secret  keys  (substitute
some-access-key  and some-secret-key  with the values used on the previous step).

Now edit the backup section of the deploy/cr.yaml  file to set proper values for the bucket  (the S3 bucket for backups

created on the previous step), region , credentialsSecret  and the endpointUrl  (which should point to the previously created
Minio Service).

The option which should be specially mentioned is credentialsSecret  which is a Kubernetes secret  for backups. Sample

backup-s3.yaml  can be used to create this secret object. Check that the object contains the proper name  value and is

equal to the one specified for credentialsSecret , i.e.  my-cluster-name-backup-minio  in the backup to Minio example, and also
contains the proper  AWS_ACCESS_KEY_ID  and  AWS_SECRET_ACCESS_KEY  keys. After you have finished editing the file, the
secrets object are created or updated when you run the following command:

1. 

$ helm install \
--name minio-service \
--version 8.0.5 \
--set accessKey=some-access-key \
--set secretKey=some-secret-key \
--set service.type=ClusterIP \
--set configPath=/tmp/.minio/ \
--set persistence.size=2G \
--set environment.MINIO_REGION=us-east-1 \
stable/minio

2. 

$ kubectl run -i --rm aws-cli --image=perconalab/awscli --restart=Never -- \
bash -c 'AWS_ACCESS_KEY_ID=some-access-key \

  AWS_SECRET_ACCESS_KEY=some-secret-key \
  AWS_DEFAULT_REGION=us-east-1 \
  /usr/bin/aws \
  --endpoint-url http://minio-service:9000 \
  s3 mb s3://operator-testing'

3. 

...
backup:
enabled: true
version: 0.3.0
...
storages:
minio:
type: s3
s3:
bucket: operator-testing
region: us-east-1
credentialsSecret: my-cluster-name-backup-minio
endpointUrl: http://minio-service:9000

...

$ kubectl apply -f deploy/backup-s3.yaml

8.4 Creating a private S3-compatible cloud for backups

222 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



When the setup process is completed, making the backup is based on a script. Following example illustrates how to
make an on-demand backup:

Don’t forget to specify the name of your cluster instead of the <cluster-name>  part of the Backup Coordinator URL (the
cluster name is specified in the deploy/cr.yaml  file). Also substitute <storage>  with the actual storage name located in

a subsection inside of the backups  in the deploy/cr.yaml  file. In the earlier example this value is minio .

To restore a previously saved backup you must specify the backup name. With the proper Backup Coordinator URL and
storage name, you can obtain a list of the available backups:

Now, restore the backup, using backup name instead of the backup-name  parameter:

8.4.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

4. 

$ kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-backup-pbmctl --restart=Never -- \
run backup \
--server-address=<cluster-name>-backup-coordinator:10001 \
--storage <storage> \
--compression-algorithm=gzip \
--description=my-backup

5. 

$ kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-backup-pbmctl --restart=Never -- list
backups --server-address=<cluster-name>-backup-coordinator:10001

$ kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-backup-pbmctl --restart=Never -- \
run restore \
--server-address=<cluster-name>-backup-coordinator:10001 \
--storage <storage> \
backup-name

Last update: 2024-04-09 

8.4.1 Get expert help

223 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.5 How to restore backup to a new Kubernetes-based environment

The Operator allows restoring a backup not only on the Kubernetes cluster where it  was made, but also on any
Kubernetes-based environment with the installed Operator.

When restoring to  a  new Kubernetes-based environment,  make sure  it  has  a  Secrets  object  with  the same user
passwords as in the original  cluster.  More details  about secrets  can be found in  System Users.  The name of  the
required Secrets object  can be found out from the  spec.secrets  key in the  deploy/cr.yaml  ( my-cluster-name-secrets  by
default).

You will  need correct names for the  backup and the  cluster.  If  you have access to the original  cluster,  available
backups can be listed with the following command:

And the following command will list available clusters:

If you have configured storing operations logs for point-in-time recovery, you will have possibility to roll back the cluster
to a specific date and time. Otherwise, restoring backups without point-in-time recovery is the only option.

When the correct names for the backup and the cluster are known, backup restoration can be done in the following
way.

$ kubectl get psmdb-backup

$ kubectl get psmdb

Note

8.5 How to restore backup to a new Kubernetes-based environment

224 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.5.1 Without point-in-time recovery

Set appropriate keys in the deploy/backup/restore.yaml  file.

set spec.clusterName  key to the name of the target cluster to restore the backup on,

set spec.backupSource  subsection to point on the appropriate cloud storage. This backupSource  subsection should contain
the backup type (either logical  or physical ), and a destination  key, followed by necessary storage configuration keys, same
as in the deploy/cr.yaml  file:

As you have noticed, destination  value is composed of three parts in case of S3-compatible storage: the s3://  prefix, the
s3 bucket name, and the actual backup name, which you have already found out using the  kubectl  get psmdb-backup

command). For Azure Blob storage, you don’t put the prefix, and use your container name as an equivalent of a bucket.

you can also use a  storageName  key to specify the exact name of the storage (the actual storage should be  already
defined in the backup.storages  subsection of the deploy/cr.yaml  file):

After that, the actual restoration process can be started as follows:

1. 

• 

• 

...
backupSource:
type: logical
destination: s3://S3-BUCKET-NAME/BACKUP-NAME
s3:
credentialsSecret: my-cluster-name-backup-s3
region: us-west-2
endpointUrl: https://URL-OF-THE-S3-COMPATIBLE-STORAGE

• 

...
storageName: s3-us-west
backupSource:
destination: s3://S3-BUCKET-NAME/BACKUP-NAME

2. 

$ kubectl apply -f deploy/backup/restore.yaml

8.5.1 Without point-in-time recovery

225 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.5.2 With point-in-time recovery

Set appropriate keys in the deploy/backup/restore.yaml  file.

set spec.clusterName  key to the name of the target cluster to restore the backup on

put additional restoration parameters to the pitr  section:

type  key can be equal to one of the following options

date  - roll back to specific date

latest  - recover to the latest possible transaction

date  key is used with type=date  option and contains value in datetime format

set spec.backupSource  subsection to point on the appropriate cloud storage. For S3-compatible storage this backupSource

subsection should contain a destination  key equal to the s3 bucket with a special s3://  prefix, followed by necessary S3
configuration keys, same as in deploy/cr.yaml  file:

you can also use a  storageName  key to specify the exact name of the storage (the actual storage  should be already
defined in the backup.storages  subsection of the deploy/cr.yaml  file):

Run the actual restoration process:

8.5.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

1. 

• 

• 

• 

• 

• 

• 

• 

apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDBRestore
metadata:
name: restore1

spec:
clusterName: my-cluster-name
pitr:
type: date
date: YYYY-MM-DD hh:mm:ss

backupSource:
destination: s3://S3-BUCKET-NAME/BACKUP-NAME
s3:
credentialsSecret: my-cluster-name-backup-s3
region: us-west-2
endpointUrl: https://URL-OF-THE-S3-COMPATIBLE-STORAGE

• 

...
storageName: s3-us-west
backupSource:
destination: s3://S3-BUCKET-NAME/BACKUP-NAME

2. 

$ kubectl apply -f deploy/backup/restore.yaml

8.5.2 With point-in-time recovery

226 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Last update: 2024-06-24 

8.5.3 Get expert help

227 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.6 How to use backups to move the external database to Kubernetes

The Operator allows restoring a backup not only on the Kubernetes cluster where it  was made, but also on any
Kubernetes-based environment with the installed Operator, and the backup/restore tool actually used by the Operator
is the Percona Backup for MongoDB . That makes it possible to move external MongoDB Cluster to Kubernetes with

Percona Backup for MongoDB.

There are other scenarios for migrating MongoDB database to Kubernetes as well. For example, this blogpost  covers

migration based on the regular MongoDB replication capabilities.

Note

8.6 How to use backups to move the external database to Kubernetes

228 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Backups can be stored either locally,  or remotely (on  Amazon S3 or S3-compatible storage  ,  or on  Azure Blob

Storage ). S3-compatible storage to be used for backups.

Make sure the following prerequisite requirements are satisfied within your setup:

Percona Backup for MongoDB packages are installed on the replica set nodes of the source cluster following the official
installation  instructions  ,  and the  authentication  of  the  pbm-agent  is  configured   to  allow it  accessing your

database.

The Operator and the  destination cluster should be  installed in the Kuberentes-based environment. For simplicity, it’s
reasonable to have the same topology of the  source and  destination clusters, although Percona Backup for MongoDB
allows replset-remapping  as well.

Configure the cloud storage for backups on your source cluster following the official guide . For example, using the

Amazon S3 storage can be configured with the following YAML file:

After putting all needed details into the file ( AWS_ACCESS_KEY_ID , AWS_SECRET_ACCESS_KEY , the S3 bucket and region in the
above example), provide the config file to the pbm-agent on all nodes as follows:

Start the pbm-agent:

Now you can make backup as follows:

The command output will contain the backup name, which you will further use to restore the backup:

The rest of operations will be carried out on your destination cluster in a Kubernetes-based environment of your choice.
These actions are described in the How to restore backup to a new Kubernetes-based environment guide. Just use the
proper name of the backup ( 2022-06-15T08:18:44Z ) in the above example, and proper parameters specific to your cloud
storage (e.g. the pbm-test-bucket  bucket name we used above).

1. 

• 

• 

2. 

pbm_config.yaml

type: s3
s3:
region: us-west-2
bucket: pbm-test-bucket
credentials:
access-key-id: <your-access-key-id-here>
secret-access-key: <your-secret-key-here>

$ pbm config --file pbm_config.yaml

3. 

$ sudo systemctl start pbm-agent

4. 

$ pbm backup --wait

Starting backup '2022-06-15T08:18:44Z'....
Waiting for '2022-06-15T08:18:44Z' backup.......... done

pbm-conf> pbm status -s backups

Backups:
========
FS  /data/pbm
  Snapshots:
    2022-06-15T08:18:44Z 28.23KB <logical> [complete: 2022-06-15T08:18:49Z]

5. 

8.6 How to use backups to move the external database to Kubernetes

229 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.6.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-05-24 

8.6.1 Get expert help

230 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.7  Install  Percona Operator  for  MongoDB in  multi-namespace (cluster-wide)

mode

8.7.1 Difference between single-namespace and multi-namespace Operator deployment

By default, Percona Operator for MongoDB functions in a specific Kubernetes namespace. You can create one during
installation (like it is shown in the  installation instructions) or just use the  default  namespace. This approach allows
several Operators to co-exist in one Kubernetes-based environment, being separated in different namespaces:

Still,  sometimes  it  is  more  convenient  to  have  one Operator  watching for  Percona Server  for  MongoDB Custom
Resources in several namespaces.

We recommend running Percona Operator for MongoDB in a traditional way, limited to a specific namespace. But it is
possible to run it in so-called cluster-wide mode, one Operator watching several namespaces, if needed:

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Kubernetes API

OperatorOperator

DB Pod 1 DB Pod N

CSI

Storage
Area

Network

Percona Server for MongoDB
Namespace (psmdbN)

Percona Server for MongoDB
Namespace (psmdb1)

8.7 Install Percona Operator for MongoDB in multi-namespace (cluster-wide) mode

231 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Please  take  into  account  that  if  several  Operators  are  configured  to  watch  the  same  namespace,  it  is  entirely
unpredictable which one will get ownership of the Custom Resource in it, so this situation should be avoided.

8.7.2 Installing the Operator in cluster-wide mode

To use the Operator in such  cluster-wide mode, you should install it with a different set of configuration YAML files,
which are available in the deploy  folder and have filenames with a special cw-  prefix: e.g. deploy/cw-bundle.yaml .

While using this cluster-wide versions of configuration files, you should set the following information there:

subjects.namespace  option should contain the namespace which will host the Operator,

WATCH_NAMESPACE  key-value pair in the  env  section should have  value  equal to a comma-separated list  of the
namespaces to be watched by the Operator, and the namespace in which the Operator resides (or just a blank string
to make the Operator deal with all namespaces in a Kubernetes cluster).

Kubernetes API

Percona Operator for MongoDB

DB Pod 1 DB Pod 2

CSI

Storage
Area

Network

api

DB Pod DB Pod

Operator Namespace (psmdb-operator)

Percona Server for MongoDB
Namespace (psmdb1)

Namespace
psmdb2

Namespace
psmdbN

Note

• 

• 

8.7.2 Installing the Operator in cluster-wide mode

232 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



The following simple example shows how to install Operator cluster-wide on Kubernetes.

First of all, clone the percona-server-mongodb-operator repository:

Let’s suppose that Operator’s namespace should be the psmdb-operator  one. Create it as follows:

Namespaces to be watched by the Operator should be created in the same way if not exist. Let’s say the Operator should
watch the psmdb  namespace:

Edit the deploy/cw-bundle.yaml  configuration file to set proper namespaces:

Apply  the deploy/cw-bundle.yaml  file with the following command:

After the Operator is started, Percona Server for MongoDB can be created at any time by applying the  deploy/cr.yaml

configuration file, like in the case of normal installation:

The creation process may take some time. When the process is over your cluster will obtain the ready  status. You can
check it by quering the PerconaServerMongoDB  Custom Resource (it has handy psmdb  shortname also) with the following
command:

1. 

$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

2. 

$ kubectl create namespace psmdb-operator

$ kubectl create namespace psmdb

3. 

...
subjects:
- kind: ServiceAccount
name: percona-server-mongodb-operator
namespace: "psmdb-operator"

...
env:

- name: WATCH_NAMESPACE
value: "psmdb"

...

4. 

$ kubectl apply -f deploy/cw-bundle.yaml --server-side -n psmdb-operator

5. 

$ kubectl apply -f deploy/cr.yaml -n psmdb

$ kubectl get psmdb -n psmdb

Expected output

NAME              ENDPOINT                                         STATUS   AGE
my-cluster-name   my-cluster-name-mongos.psmdb.svc.cluster.local   ready    5m26s

8.7.2 Installing the Operator in cluster-wide mode

233 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.7.3 Verifying the cluster operation

It may take ten minutes to get the cluster started. When  kubectl get psmdb  command finally shows you the cluster
status as ready , you can try to connect to the cluster.

You will need the login and password for the admin user to access the cluster. Use kubectl get secrets  command to see the
list of Secrets objects (by default the Secrets object you are interested in has my-cluster-name-secrets  name). Then kubectl 

get  secret  my-cluster-name-secrets  -o  yaml  command  will  return  the  YAML  file  with  generated  Secrets,  including  the
MONGODB_DATABASE_ADMIN  and MONGODB_DATABASE_ADMIN_PASSWORD  strings, which should look as follows:

Here the actual login name and password are base64-encoded. Use  echo 'aDAzQ0pCY3NSWEZ2ZUIzS1I='  | base64 --decode

command to bring it back to a human-readable form.

Run a container with a MongoDB client and connect its console output to your terminal. The following command will do
this, naming the new Pod percona-client :

Executing it may require some time to deploy the correspondent Pod.

Now run  mongo  tool  in the percona-client command shell  using the login (which is  normally  databaseAdmin )  and a
proper password obtained from the Secret. The command will look different depending on whether sharding is on (the
default behavior) or off:

8.7.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

1. 

...
data:
...
MONGODB_DATABASE_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
MONGODB_DATABASE_ADMIN_USER: ZGF0YWJhc2VBZG1pbg==

2. 

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:6.0.18-15 --restart=Never --
env="POD_NAMESPACE=psmdb" -- bash -il

3. 

if sharding is on

if sharding is off

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-mongos.psmdb.svc.cluster.local/
admin?ssl=false"

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.psmdb.svc.cluster.local/
admin?replicaSet=rs0&ssl=false"

8.7.3 Verifying the cluster operation

234 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Last update: 2024-05-24 

8.7.4 Get expert help

235 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.8 How to carry on low-level manual upgrades of Percona Server for MongoDB

Percona  Operator  for  MongoDB  supports  upgrades  of  the  database  management  system  (Percona  Server  for
MongoDB) starting from the Operator version 1.1.0. The Operator 1.5.0 had automated such upgrades with a new
upgrade strategy called Smart Update. Smart Update automates the upgrade process while giving the user full control
over updates, so it is the most convenient upgrade strategy.

Still there may be use cases when automatic upgrade of Percona Server for MongoDB is not an option (for example,
you may be using Percona Server for MongoDB with the Operator version 1.5.0 or earlier), and you have to carry on
upgrades manually.

Percona Server for MongoDB can be upgraded manually using one of the following upgrade strategies:

Rolling Update, initiated manually and controlled by Kubernetes ,

On Delete, done by Kubernetes on per-Pod basis  when Pods are manually deleted.

In case of Smart Updates, the Operator can either detect the availability of the Percona Server for MongoDB version or
rely on the user’s choice of the version. In both cases Pods are restarted by the Operator automatically in the order, which
assures the primary instance to be updated last, preventing possible connection issues until the whole cluster is updated
to the new settings. Kubernetes-controlled Rolling Update can’t guarantee that Pods update order is optimal from the
Percona Server for MongoDB point of view.

• 

• 

Warning

8.8 How to carry on low-level manual upgrades of Percona Server for MongoDB

236 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.8.1 Rolling Update strategy and semi-automatic updates

Semi-automatic update of Percona Server for MongoDB can be done as follows:

Edit the deploy/cr.yaml  file, setting updateStrategy  key to RollingUpdate .

Now you should apply a patch  to your Custom Resource, setting necessary image names with a newer version tag.

Check the version of the Operator you have in your Kubernetes environment. Please refer to the Operator upgrade guide to
upgrade the Operator and CRD, if needed.

Patching Custom Resource is done with the kubectl patch psmdb  command. Actual image names can be found in the list
of certified images. For example, updating to the 1.18.0  version should look as follows:

The above command upgrades various components of the cluster including PMM Client. It is highly recommended  to

upgrade PMM Server  before upgrading PMM Client. If it wasn’t done and you would like to avoid PMM Client upgrade,
remove it from the list of images, reducing the last of two patch commands as follows:

The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process in real time
with the kubectl rollout status  command with the name of your cluster:

1. 

2. 

Note

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.18.0",
      "image": "percona/percona-server-mongodb:7.0.14-8",
      "backup": { "image": "percona/percona-backup-mongodb:2.7.0" },
      "pmm": { "image": "percona/pmm-client:2.43.2" }
   }}'

Warning

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.18.0",
      "image": "percona/percona-server-mongodb:7.0.14-8",
      "backup": { "image": "percona/percona-backup-mongodb:2.7.0" }
   }}'

3. 

$ kubectl rollout status sts my-cluster-name-rs0

8.8.1 Rolling Update strategy and semi-automatic updates

237 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.8.2 Manual upgrade (the On Delete strategy)

Manual update of Percona Server for MongoDB can be done as follows:

8.8.2 Manual upgrade (the On Delete strategy)

238 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Edit the deploy/cr.yaml  file, setting updateStrategy  key to OnDelete .

Now you should apply a patch  to your Custom Resource, setting necessary image names with a newer version tag.

Check the version of the Operator you have in your Kubernetes environment. Please refer to the Operator upgrade guide to
upgrade the Operator and CRD, if needed.

Patching Custom Resource is done with the kubectl patch psmdb  command. Actual image names can be found in the list
of certified images. For example, updating to the 1.18.0  version should look as follows.

The above command upgrades various components of the cluster including PMM Client. It is highly recommended  to

upgrade PMM Server  before upgrading PMM Client. If it wasn’t done and you would like to avoid PMM Client upgrade,
remove it from the list of images, reducing the last of two patch commands as follows:

The Pod with the newer Percona Server for MongoDB image will start after you delete it. Delete targeted Pods manually
one by one to make them restart in the desired order:

Delete the Pod using its name with the command like the following one:

Wait until Pod becomes ready:

The output should be like this:

The update process is successfully finished when all Pods have been restarted (including the mongos and Config Server
nodes, if Percona Server for MongoDB Sharding is on).

1. 

2. 

Note

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.18.0",
      "image": "percona/percona-server-mongodb:7.0.14-8",
      "backup": { "image": "percona/percona-backup-mongodb:2.7.0" },
      "pmm": { "image": "percona/pmm-client:2.43.2" }
   }}'

Warning

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
   "spec": {
      "crVersion":"1.18.0",
      "image": "percona/percona-server-mongodb:7.0.14-8",
      "backup": { "image": "percona/percona-backup-mongodb:2.7.0" }
   }}'

3. 

a. 

$ kubectl delete pod my-cluster-name-rs0-2

b. 

$ kubectl get pod my-cluster-name-rs0-2

NAME                    READY   STATUS    RESTARTS   AGE
my-cluster-name-rs0-2   1/1     Running   0          3m33s

4. 

8.8.2 Manual upgrade (the On Delete strategy)

239 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.8.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-05-24 

8.8.3 Get expert help

240 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.9 Upgrade Database and Operator on OpenShift

Upgrading  database  and  Operator  on  Red  Hat  Marketplace   or  to  upgrade  Red  Hat  certified  Operators  on

OpenShift   generally follows the  standard upgrade scenario, but includes a number of special steps specific for

these platforms.

8.9.1 Upgrading the Operator and CRD

First  of  all  you need to  manually  update  initImage  Custom Resource option with  the value of  an alternative  initial
Operator installation image. You need doing this for all database clusters managed by the Operator. Without this step
the cluster will go into error state after the Operator upgrade.

Find the initial Operator installation image with kubectl get deploy  command:

Apply  a  patch   to  update  the  initImage  option  of  your  cluster  Custom  Resource  with  this  value  taken  from

containerImage . Supposing that your cluster name is my-cluster-name , the command should look as follows:

Now you can actually update the Operator via the Operator Lifecycle Manager (OLM)  web interface.

Login to your OLM installation and list installed Operators for your Namespace to see if there are upgradable items:

1. 

a. 

$ kubectl get deploy percona-server-mongodb-operator -o yaml

Expected output

...
"containerImage": "registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:201092cf97c9ceaaaf3b60dd1b24c7c5228d35aab2674345893f4cd4d9bb0e2e",
...

b. 

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
    "spec": {
       "initImage":"registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:201092cf97c9ceaaaf3b60dd1b24c7c5228d35aab2674345893f4cd4d9bb0e2e"
    }}'

2. 

8.9 Upgrade Database and Operator on OpenShift

241 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and finally “Approve” to
upgrade the Operator.

8.9.2 Upgrading Percona Server for MongoDB

Make sure that spec.updateStrategy  option in the Custom Resource is set to SmartUpdate , spec.upgradeOptions.apply  option
is set to Never  or Disabled  (this means that the Operator will not carry on upgrades automatically).

Find the new initial Operator installation image name (it had changed during the Operator upgrade) and other image
names for the components of your cluster with the kubectl get deploy  command:

/

1. 

...
spec:
updateStrategy: SmartUpdate
upgradeOptions:
apply: Disabled
...

2. 

$ kubectl get deploy percona-server-mongodb-operator -o yaml

8.9.2 Upgrading Percona Server for MongoDB

242 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Apply a patch  to set the necessary crVersion  value (equal to the Operator version) and update images in your cluster

Custom Resource. Supposing that your cluster name is cluster1 , the command should look as follows:

The above command upgrades various components of the cluster including PMM Client. If you didn’t follow the  official
recommendation   to  upgrade  PMM  Server  before  upgrading  PMM  Client,  you  can  avoid  PMM  Client  upgrade  by

removing it from the list of images as follows:

The deployment rollout will be automatically triggered by the applied patch.

Expected output

...
"image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:5d29132a60b89e660ab738d463bcc0707a17be73dc955aa8da9e50bed4d9ad3e",
...
"initImage": "registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:8adc57e9445cfcea1ae02798a8f9d6a4958ac89f0620b9c6fa6cf969545dd23f",
...
"pmm": {
  "enabled": true,
  "image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:165f97cdae2b6def546b0df7f50d88d83c150578bdb9c992953ed866615016f1",
...
"backup": {
  "enabled": true,
  "image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:a73889d61e996bc4fbc6b256a1284b60232565e128a64e4f94b2c424966772eb",
...

3. 

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
    "spec": {
       "crVersion":"1.18.0",
       "image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:5d29132a60b89e660ab738d463bcc0707a17be73dc955aa8da9e50bed4d9ad3e",
       "initImage": "registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:8adc57e9445cfcea1ae02798a8f9d6a4958ac89f0620b9c6fa6cf969545dd23f",
       "pmm": {"image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:165f97cdae2b6def546b0df7f50d88d83c150578bdb9c992953ed866615016f1"},
       "backup": {"image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:a73889d61e996bc4fbc6b256a1284b60232565e128a64e4f94b2c424966772eb"}
    }}'

Warning

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
    "spec": {
       "crVersion":"1.18.0",
       "image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:5d29132a60b89e660ab738d463bcc0707a17be73dc955aa8da9e50bed4d9ad3e",
       "initImage": "registry.connect.redhat.com/percona/percona-server-mongodb-
operator@sha256:8adc57e9445cfcea1ae02798a8f9d6a4958ac89f0620b9c6fa6cf969545dd23f",
       "backup": {"image": "registry.connect.redhat.com/percona/percona-server-mongodb-operator-
containers@sha256:a73889d61e996bc4fbc6b256a1284b60232565e128a64e4f94b2c424966772eb"}
    }}'

4. 

8.9.2 Upgrading Percona Server for MongoDB

243 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.9.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-11-05 

8.9.3 Get expert help

244 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.10 Monitor Kubernetes

Monitoring the state of the database is crucial to timely identify and react to performance issues. Percona Monitoring
and Management (PMM) solution enables you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it’s important to have
metrics that can depict the state of the Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has been tested with
the  PMM server   as the centralized data storage and the Victoria Metrics Kubernetes monitoring stack as the

metrics collector. These steps may also apply if you use another Prometheus-compatible storage.

8.10.1 Pre-requisites

To set up monitoring of Kubernetes, you need the following:

PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an AWS instance.
Please refer to the official PMM documentation  for the installation instructions.

Helm v3 .

kubectl .

The PMM Server API key. The key must have the role “Admin”.

 Get the PMM API key: 

1. 

2. 

3. 

4. 

 From PMM UI

Generate the PMM API key 

 From command line

You  can  query  your  PMM  Server  installation  for  the  API  Key  using  curl  and  jq  utilities.  Replace
<login>:<password>@<server_host>  placeholders with your real PMM Server login, password, and hostname in the following
command:

The API key is not rotated. 

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d {"name":"operator", "role": "Admin"}' "https://
<login>:<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

8.10 Monitor Kubernetes

245 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.10.2 Install the Victoria Metrics Kubernetes monitoring stack

Quick install

To install the Victoria Metrics Kubernetes monitoring stack with the default parameters, use the quick install command.
Replace the following placeholders with your values:

API-KEY  - The API key of your PMM Server

PMM-SERVER-URL  - The URL to access the PMM Server 

UNIQUE-K8s-CLUSTER-IDENTIFIER  - Identifier for the Kubernetes cluster. It can be the name you defined during the cluster
creation.

You should  use  a  unique identifier  for  each  Kubernetes  cluster.  The  use  of  the  same identifer  for  more  than one
Kubernetes cluster will result in the conflicts during the metrics collection.

NAMESPACE  - The namespace where the Victoria metrics Kubernetes stack will be installed. If you haven’t created the
namespace before, it will be created during the command execution.

We recommend to use a separate namespace like monitoring-system .

The Prometheus node exporter is not installed by default since it requires privileged containers with the access to the host
file system. If you need the metrics for Nodes, add the --node-exporter-enabled  flag as follows: 

Install manually

You may need to customize the default parameters of the Victoria metrics Kubernetes stack.

Since we use the PMM Server  for  monitoring,  there is  no need to store the data in  Victoria  Metrics  Operator.
Therefore, the Victoria Metrics Helm chart is installed with the vmsingle.enabled  and vmcluster.enabled  parameters set
to false  in this setup.

Check all the role-based access control (RBAC) rules  of the victoria-metrics-k8s-stack  chart and the dependencies

chart, and modify them based on your requirements.

1. 

• 

• 

• 

• 

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/quick-install.sh |
bash -s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-IDENTIFIER> --
namespace <NAMESPACE>

Note

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/quick-install.sh |
bash -s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-IDENTIFIER> --
namespace <NAMESPACE> --node-exporter-enabled

• 

• 

8.10.2 Install the Victoria Metrics Kubernetes monitoring stack

246 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



CONFIGURE AUTHENTICATION IN PMM

To access the PMM Server resources and perform actions on the server, configure authentication.

Encode the PMM Server API key with base64.

Create  the  Namespace  where  you  want  to  set  up  monitoring.  The  following  command  creates  the  Namespace
monitoring-system .  You  can  specify  a  different  name.  In  the  latter  steps,  specify  your  namespace  instead  of  the
<namespace>  placeholder.

Create the YAML file for the Kubernetes Secrets  and specify the base64-encoded API key value within. Let’s name this

file pmm-api-vmoperator.yaml .

Create the Secrets object using the YAML file you created previously. Replace the <filename>  placeholder with your value.

Check that the secret is created. The following command checks the secret for the resource named pmm-token-vmoperator

(as defined in the metadata.name  option in the secrets file). If you defined another resource name, specify your value.

CREATE A CONFIGMAP TO MOUNT FOR KUBE-STATE-METRICS

The  kube-state-metrics  (KSM)   is a simple service that listens to the Kubernetes API server and generates metrics

about the state of various objects - Pods, Deployments, Services and Custom Resources.

To define what metrics the kube-state-metrics  should capture, create the ConfigMap  and mount it to a container.

Use the example configmap.yaml  configuration file  to create the ConfigMap.

1. 

 Linux

 macOS

$ echo -n <API-key> | base64 --wrap=0

$ echo -n <API-key> | base64

2. 

$ kubectl create namespace monitoring-system

3. 

pmm-api-vmoperator.yaml

apiVersion: v1
data:
api_key: <base-64-encoded-API-key>

kind: Secret
metadata:
name: pmm-token-vmoperator
#namespace: default

type: Opaque

4. 

$ kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>

5. 

$ kubectl get secret pmm-token-vmoperator -n <namespace>

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/ksm-
configmap.yaml -n <namespace>

8.10.2 Install the Victoria Metrics Kubernetes monitoring stack

247 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



As a result, you have the customresource-config-ksm  ConfigMap created.

INSTALL THE VICTORIA METRICS KUBERNETES MONITORING STACK

Add the dependency repositories of victoria-metrics-k8s-stack  chart.

Add the Victoria Metrics Kubernetes monitoring stack repository.

Update the repositories.

Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the following configuration:

the URL to access the PMM server in the externalVM.write.url  option in the format <PMM-SERVER-URL>/victoriametrics/api/v1/

write . The URL can contain either the IP address or the hostname of the PMM server.

the unique name or an ID of the Kubernetes cluster in the vmagent.spec.externalLabels.k8s_cluster_id  option. Ensure to set
different values if you are sending metrics from multiple Kubernetes clusters to the same PMM Server. 

the <namespace>  placeholder with your value. The Namespace must be the same as the Namespace for the Secret and
ConfigMap.

To illustrate, say your PMM Server URL is  https://pmm-example.com , the cluster ID is  test-cluster  and the Namespace is
monitoring-system . Then the command would look like this:

8.10.3 Validate the successful installation

1. 

$ helm repo add grafana https://grafana.github.io/helm-charts
$ helm repo add prometheus-community https://prometheus-community.github.io/helm-charts

2. 

$ helm repo add vm https://victoriametrics.github.io/helm-charts/

3. 

$ helm repo update

4. 

• 

• 

• 

$ helm install vm-k8s vm/victoria-metrics-k8s-stack \
-f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/values.yaml \
--set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1/write \
--set vmagent.spec.externalLabels.k8s_cluster_id=<UNIQUE-CLUSTER-IDENTIFER/NAME> \
-n <namespace>

$ helm install vm-k8s vm/victoria-metrics-k8s-stack \
-f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/values.yaml \
--set externalVM.write.url=https://pmm-example.com/victoriametrics/api/v1/write \
--set vmagent.spec.externalLabels.k8s_cluster_id=test-cluster \
-n monitoring-system

$ kubectl get pods -n <namespace>

Sample output

vm-k8s-stack-kube-state-metrics-d9d85978d-9pzbs                   1/1     Running   0          28m
vm-k8s-stack-victoria-metrics-operator-844d558455-gvg4n           1/1     Running   0          28m
vmagent-vm-k8s-stack-victoria-metrics-k8s-stack-55fd8fc4fbcxwhx   2/2     Running   0          28m

8.10.3 Validate the successful installation

248 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



What Pods are running depends on the configuration chosen in values used while installing  victoria-metrics-k8s-stack

chart.

8.10.4 Verify metrics capture

Connect to the PMM server.

Click Explore and switch to the Code mode.

Check that the required metrics are captured, type the following in the Metrics browser dropdown:

cadvisor :

kubelet:

1. 

2. 

3. 

• 

• 

8.10.4 Verify metrics capture

249 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



kube-state-metrics   metrics that also include Custom resource metrics for the Operator and database deployed in

your Kubernetes cluster:

• 

8.10.4 Verify metrics capture

250 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.10.5 Uninstall Victoria metrics Kubernetes stack

To remove Victoria  metrics  Kubernetes  stack  used for  Kubernetes  cluster  monitoring,  use  the  cleanup script.  By
default,  the script removes all  the  Custom Resource Definitions(CRD)   and Secrets associated with the Victoria

metrics Kubernetes stack. To keep the CRDs, run the script with the --keep-crd  flag.

Check that the Victoria metrics Kubernetes stack is deleted:

The output should provide the empty list.

If you face any issues with the removal, uninstall the stack manually:

8.10.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

 Remove CRDs

Replace the <NAMESPACE>  placeholder with the namespace you specified during the Victoria metrics Kubernetes stack
installation: 

 Keep CRDs

Replace the <NAMESPACE>  placeholder with the namespace you specified during the Victoria metrics Kubernetes stack
installation: 

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/
cleanup.sh) --namespace <NAMESPACE>

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-stack/
cleanup.sh) --namespace <NAMESPACE> --keep-crd

$ helm list -n <namespace>

$ helm uninstall vm-k8s-stack -n < namespace>

Last update: 2024-07-23 

8.10.5 Uninstall Victoria metrics Kubernetes stack

251 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.11 Delete Percona Operator for MongoDB

You  may  have  different  reasons  to  clean  up  your  Kubernetes  environment:  moving  from  trial  deployment  to  a
production one, testing experimental configurations and the like. In either case, you need to remove some (or all) of
these objects:

Percona Distribution for MongoDB cluster managed by the Operator

Percona Operator for MongoDB itself

Custom Resource Definition deployed with the Operator

Resources like PVCs and Secrets

8.11.1 Delete the database cluster

To delete the database cluster means to delete the Custom Resource associated with it.

There are two finalizers  defined in the Custom Resource, which are related to cluster deletion:

percona.com/delete-psmdb-pods-in-order :  if  present,  ensures  the  proper  Pods  deletion  order  at  cluster  deletion  (on  by
default).

percona.com/delete-psmdb-pvc : if present,  Persistent Volume Claims   for the database cluster Pods are deleted along

with the cluster deletion.

Second one is off by default in the  deploy/cr.yaml  configuration file, allowing you to recreate the cluster without losing
data. Also, you can delete TLS-related objects and PVCs manually, if needed. 

• 

• 

• 

• 

Note

• 

• 

8.11 Delete Percona Operator for MongoDB

252 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



The steps are the following:

List the Custom Resources. Replace the <namespace>  placeholder with your value

Delete the Custom Resource with the name of your cluster

It may take a while to stop and delete the cluster. 

Check that the cluster is deleted by listing the Custom Resources again:

8.11.2 Delete the Operator

Choose the instructions relevant to the way you installed the Operator.

1. 

$ kubectl get psmdb -n <namespace>

2. 

$ kubectl delete psmdb <cluster_name> -n <namespace>

Sample output

perconaservermongodb.psmdb.percona.com "my-cluster-name" deleted

3. 

$ kubectl get psmdb -n <namespace>

Sample output

No resources found in <namespace> namespace.

8.11.2 Delete the Operator

253 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Use kubectl

To uninstall the Operator, delete the Deployments  related to it.

List the deployments. Replace the <namespace>  placeholder with your namespace.

Delete the percona-*  deployment

Check that the Operator is deleted by listing the Pods. As a result you should have no Pods related to it.

If you are not just deleting the Operator and MongoDB cluster from a specific namespace, but want to clean up your
entire Kubernetes environment, you can also delete the CustomRecourceDefinitions (CRDs) .

 Warning: CRDs in Kubernetes are non-namespaced but are available to the whole environment. This means that you

shouldn’t delete CRDs if you still have the Operator and database cluster in some namespace.

Get the list of CRDs. 

Delete the percona*.psmdb.percona.com  CRDs

1. 

$ kubectl get deploy -n <namespace>

2. 

$ kubectl delete deploy percona-server-mongodb-operator -n <namespace>

3. 

$ kubectl get pods -n <namespace>

Sample output

No resources found in <namespace> namespace.

4. 

$ kubectl get crd

5. 

$ kubectl delete crd perconaservermongodbbackups.psmdb.percona.com
perconaservermongodbrestores.psmdb.percona.com perconaservermongodbs.psmdb.percona.com

Sample output

customresourcedefinition.apiextensions.k8s.io "perconaservermongodbbackups.psmdb.percona.com" deleted
customresourcedefinition.apiextensions.k8s.io "perconaservermongodbrestores.psmdb.percona.com" deleted
customresourcedefinition.apiextensions.k8s.io "perconaservermongodbs.psmdb.percona.com" deleted

8.11.2 Delete the Operator

254 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Use Helm

To delete the Operator, do the following:

List the Helm charts:

Delete the release object  for Percona Server for MongoDB 

Delete the release object  for the Operator 

1. 

$ helm list -n <namespace>

Sample output

cluster1    <namespace>         1           2023-10-31 10:18:10.763049 +0100 CET    deployed    psmdb-db-1.14.4         1.18.0
my-op       <namespace>         1           2023-10-31 10:15:18.41444 +0100 CET     deployed    psmdb-operator-1.14.3   1.18.0

2. 

$ helm uninstall cluster1 --namespace <namespace>

3. 

$ helm uninstall my-op --namespace <namespace>

8.11.2 Delete the Operator

255 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.11.3 Clean up resources

By default, TLS-related objects and data volumes remain in Kubernetes environment after you delete the cluster to
allow you to recreate it without losing the data. If you wish to delete them, do the following:

Delete Persistent Volume Claims.

List PVCs. Replace the <namespace>  placeholder with your namespace:

Delete PVCs related to your cluster. The following command deletes PVCs for the my-cluster-name  cluster:

Delete the Secrets

List Secrets:

Delete the Secret:

1. 

a. 

$ kubectl get pvc -n <namespace>

Sample output

NAME                                STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   AGE
mongod-data-my-cluster-name-cfg-0   Bound    pvc-245641fe-b172-439b-8c9c-cba5ea4ccd80   3Gi        RWO            standard-
rwo   10m
mongod-data-my-cluster-name-cfg-1   Bound    pvc-4ff7c3c4-b91c-4938-a52e-591fd559f4a4   3Gi        RWO            standard-rwo   
9m19s
mongod-data-my-cluster-name-cfg-2   Bound    pvc-acbff4a3-784a-48e7-ad4b-8b00239982d3   3Gi        RWO            standard-
rwo   8m36s
mongod-data-my-cluster-name-rs0-0   Bound    pvc-0a56e9ab-e22b-47ce-95de-a55f2676456a   3Gi        RWO            standard-
rwo   10m
mongod-data-my-cluster-name-rs0-1   Bound    pvc-cd075679-a7f5-4182-a8ce-341db1fb12d3   3Gi        RWO            standard-
rwo   9m19s
mongod-data-my-cluster-name-rs0-2   Bound    pvc-9ff0d41d-c739-494d-a45c-576f3a1fb590   3Gi        RWO            standard-rwo   
8m26s

b. 

$ kubectl delete pvc mongod-data-my-cluster-name-cfg-0 mongod-data-my-cluster-name-cfg-1 mongod-data-my-cluster-
name-cfg-2 mongod-data-my-cluster-name-rs0-0 mongod-data-my-cluster-name-rs0-1 mongod-data-my-cluster-name-
rs0-2 -n <namespace>

Sample output

persistentvolumeclaim "mongod-data-my-cluster-name-cfg-0" deleted persistentvolumeclaim "mongod-data-my-cluster-name-
cfg-1" deleted
persistentvolumeclaim "mongod-data-my-cluster-name-cfg-2" deleted
persistentvolumeclaim "mongod-data-my-cluster-name-rs0-0" deleted
persistentvolumeclaim "mongod-data-my-cluster-name-rs0-1" deleted
persistentvolumeclaim "mongod-data-my-cluster-name-rs0-2" deleted

2. 

a. 

$ kubectl get secrets -n <namespace>

b. 

$ kubectl delete secret <secret_name> -n <namespace>

8.11.3 Clean up resources

256 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



8.11.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-09-09 

8.11.4 Get expert help

257 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9. Reference

9.1 Custom Resource options

The operator is configured via the spec section of the deploy/cr.yaml  file.

9.1.1 metadata

The metadata part of this file contains the following keys:

name  ( my-cluster-name  by default) sets the name of your Percona Server for MongoDB Cluster; it should include only
URL-compatible  characters  ,  not  exceed 22  characters,  start  with  an alphabetic  character,  and end with  an

alphanumeric character

finalizers  subsection:

percona.com/delete-psmdb-pods-in-order  if present, activates the Finalizer  which controls the proper Pods deletion

order in case of the cluster deletion event (on by default)

percona.com/delete-psmdb-pvc  if  present,  activates  the  Finalizer   which  deletes  appropriate  Persistent  Volume

Claims  after the cluster deletion event (off by default)

percona.com/delete-pitr-chunks  if present, activates the  Finalizer   which deletes all  point-in-time recovery chunks

from the cloud storage on cluster deletion (off by default)

9.1.2 Toplevel spec  elements

The spec part of the deploy/cr.yaml  file contains the following keys and sections:

platform

Override/set the Kubernetes platform: kubernetes  or openshift .

pause

Pause/resume: setting it to true  gracefully stops the cluster, and setting it to false  after shut down starts the cluster
back.

• 

• 

• 

• 

• 

Value type Example

 string kubernetes

Value type Example

 boolean false

9. Reference

258 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



unmanaged

Setting it to true  instructs the Operator to run the cluster in unmanaged state - the Operator does not form replica
sets, and does not generate TLS certificates or user credentials. This can be useful for migration scenarios and for
cross-site replication. 

enableVolumeExpansion

Enables or disables automatic storage scaling / volume expansion.

crVersion

Version of the Operator the Custom Resource belongs to.

image

The Docker image of  Percona Server for MongoDB   to deploy (actual image names can be found  in the list of

certified images).

imagePullPolicy

The policy used to update images .

imagePullSecrets.name

The Kubernetes ImagePullSecret  to access the custom registry.

Value type Example

 boolean false

Value type Example

 boolean false

Value type Example

 string 1.18.0

Value type Example

 string percona/percona - server - mongodb:6.0.18-15

Value type Example

 string Always

Value type Example

 string private - registry - credentials

9.1.2 Toplevel spec elements

259 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



initImage

An alternative image for the initial Operator installation.

initContainerSecurityContext

A custom Kubernetes Security Context for a Container  for the initImage (image, which can be used instead of the

default one while the initial Operator installation).

ClusterServiceDNSSuffix

The (non-standard) cluster domain to be used as a suffix of the Service name.

clusterServiceDNSMode

Can be internal  (local fully-qualified domain names will be used in replset configuration even if the replset is exposed -
the default value), external  (exposed MongoDB instances will use ClusterIP addresses, should be applied with caution)
or  ServiceMesh  (turned on for the exposed Services). Being set,  ServiceMesh  value suprecedes multiCluster settings,
and therefore these two modes cannot be combined together.

allowUnsafeConfigurations

Prevents users from configuring a cluster with unsafe parameters: starting it with less than 3 replica set instances,
with an even number of replica set instances without additional arbiter, or without TLS/SSL certificates, or running a
sharded  cluster  with  less  than  3  config  server  Pods  or  less  than  2  mongos  Pods  (if  false ,  the  Operator  will
automatically change unsafe parameters to safe defaults). After switching to unsafe configurations permissive mode you
will not be able to switch the cluster back by setting spec.allowUnsafeConfigurations  key to false , the flag will be ignored. This
option is deprecated and will be removed in future releases. Use unsafeFlags  subsection instead 

updateStrategy

A strategy the Operator uses for upgrades. Possible values are SmartUpdate, RollingUpdate  and OnDelete .

Value type Example

 string percona/percona-server-mongodb-operator:1.18.0

Value type Example

 subdoc {}

Value type Example

 string svc.cluster.local

Value type Example

 string Internal

Value type Example

 boolean false

Value type Example

 string SmartUpdate

9.1.2 Toplevel spec elements

260 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



ignoreAnnotations

The list of annotations to be ignored by the Operator.

ignoreLabels

The list of labels to be ignored by the Operator.

multiCluster.enabled

Multi-cluster Services (MCS): setting it to true  enables MCS cluster mode .

multiCluster.DNSSuffix

The cluster domain to be used as a suffix for multi-cluster Services used by Kubernetes ( svc.clusterset.local by default
).

9.1.3 Unsafe flags section

The  unsafeFlags  section in the  deploy/cr.yaml   file contains various configuration options to prevent users from

configuring a cluster with unsafe parameters.  After switching to unsafe configurations permissive mode you will not be
able to switch the cluster back by setting same keys to false , the flags will be ignored.

unsafeFlags.tls

Prevents users from configuring a cluster without TLS/SSL certificates (if false , the Operator will automatically change
unsafe parameters to safe defaults).

Value type Example

 subdoc service.beta.kubernetes.io/aws-load-balancer-backend-protocol

Value type Example

 subdoc rack

Value type Example

 boolean false

Value type Example

 string svc.clusterset.local

Value type Example

 boolean false

9.1.3 Unsafe flags section

261 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



unsafeFlags.replsetSize

Prevents users from configuring a cluster with unsafe parameters: starting it with less than 3 replica set instances or
with  an  even number of  replica  set  instances  without  additional  arbiter (if  false ,  the  Operator  will  automatically
change unsafe parameters to safe defaults).

unsafeFlags.mongosSize

Prevents users from configuring a sharded cluster with less than 3 config server Pods or less than 2 mongos Pods (if
false , the Operator will automatically change unsafe parameters to safe defaults).

unsafeFlags.terminationGracePeriod

Prevents users from configuring a sharded cluster without termination grace period for replica set, config servers and
mongos Pods.

unsafeFlags.backupIfUnhealthy

Prevents running backup on a cluster with failed health checks .

TLS (extended cert-manager configuration section)

The tls  section in the deploy/cr.yaml  file contains various configuration options for additional customization of the

Transport Layer Security.

tls.mode

Controls if the TLS encryption should be used and/or enforced. Can be disabled ,  allowTLS ,  preferTLS , or requireTLS . If
set to disabled , it also requires setting unsafeFlags.tls option to true`.

Value type Example

 boolean false

Value type Example

 boolean false

Value type Example

 boolean false

Value type Example

 boolean false

Value type Example

 string preferTLS

9.1.3 Unsafe flags section

262 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



tls.certValidityDuration

The validity duration of the external certificate for cert manager (90 days by default). This value is used only at cluster
creation time and can’t be changed for existing clusters.

tls.allowInvalidCertificates

If true , the mongo shell will not attempt to validate the server certificates. Should be true (default variant) to use
self-signed certificates generated by the Operator when there is no cert-manager.

‘tls.issuerConf.name’

A cert-manager issuer name .

‘tls.issuerConf.kind’

A cert-manager issuer type .

‘tls.issuerConf.group’

A cert-manager issuer group . Should be cert-manager.io  for built-in cert-manager certificate issuers.

9.1.4 Upgrade Options Section

The  upgradeOptions  section in the  deploy/cr.yaml   file contains various configuration options to control Percona

Server for MongoDB upgrades.

upgradeOptions.versionServiceEndpoint

The Version Service URL used to check versions compatibility for upgrade.

upgradeOptions.apply

Specifies how updates are processed by the Operator. Never  or Disabled  will completely disable automatic upgrades,
otherwise it can be set to Latest  or  Recommended  or to a specific version  stringof Percona Server for MongoDB

Value type Example

 string 2160h

Value type Example

 boolean true

Value type Example

 string special-selfsigned-issuer

Value type Example

 string cert-manager.io

Value type Example

 string https://check.percona.com

9.1.4 Upgrade Options Section

263 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



(e.g. 6.0.18-15 ) that is wished to be version-locked (so that the user can control the version running, but use automatic
upgrades to move between them).

upgradeOptions.schedule

Scheduled time to check for updates, specified in the crontab format .

upgradeOptions.setFCV

If enabled, FeatureCompatibilityVersion (FCV)  will be set to match the version during major version upgrade.

9.1.5 Secrets section

Each spec in its turn may contain some key-value pairs. The secrets one has only two of them:

secrets.keyFile

The secret name for the MongoDB Internal Auth Key file . This secret is auto-created by the operator if it doesn’t

exist.

secrets.users

The name of the Secrets object for the MongoDB users required to run the operator.

secrets.sse

The name of the Secrets object for server side encryption credentials

Value type Example

 string disabled

Value type Example

 string 0 2 \* \* \*

Value type Example

 boolean false

Value type Example

 string my-cluster-name-mongodb-keyfile

Value type Example

 string my-cluster-name-secrets

Value type Example

 string my-cluster-name-sse

9.1.5 Secrets section

264 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



secrets.ssl

A secret with TLS certificate generated for external communications, see Transport Layer Security (TLS) for details.

secrets.sslInternal

A secret with TLS certificate generated for internal communications, see Transport Layer Security (TLS) for details.

secrets.encryptionKey

Specifies a secret object with the encryption key .

secrets.vault

Specifies a secret object to provide integration with HashiCorp Vault.

secrets.ldapSecret

Specifies a secret object for LDAP over TLS connection between MongoDB and OpenLDAP server.

9.1.6 Replsets Section

The replsets section controls the MongoDB Replica Set.

replsets.name

The name of the MongoDB Replica Set .

Value type Example

 string my-custom-ssl

Value type Example

 string my-custom-ssl-internal

Value type Example

 string my-cluster-name-mongodb-encryption-key

Value type Example

 string my-cluster-name-vault

Value type Example

 string my-ldap-secret

Value type Example

 string rs 0

9.1.6 Replsets Section

265 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.size

The size of the MongoDB Replica Set, must be >= 3 for High-Availability .

replsets.terminationGracePeriodSeconds

The amount of seconds Kubernetes will wait for a clean replica set Pods termination.

‘replsets.serviceAccountName’

Name of the separate privileged service account for Replica Set Pods.

replsets.topologySpreadConstraints.labelSelector.matchLabels

The label selector for the Kubernetes Pod Topology Spread Constraints .

replsets.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

replsets.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

replsets.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 int 3

Value type Example

 int 300

Value type Example

 string default

Value type Example

 label app.kubernetes.io/name: percona-server-mongodb

Value type Example

 int 1

Value type Example

 string kubernetes.io/hostname

Value type Example

 string DoNotSchedule

9.1.6 Replsets Section

266 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.replsetOverrides

Use if you need to override the replica set members FQDNs with custom hostnames. Each key under replsetOverrides

should be name of a Pod. The Operator won’t perform any validation for hostnames, so it’s the user’s responsibility to
ensure connectivity.

replsets.externalNodes.host

The URL or IP address of the external replset instance.

replsets.externalNodes.port

The port number of the external replset instance.

replsets.externalNodes.votes

The number of votes  of the external replset instance.

replsets.externalNodes.priority

The priority  of the external replset instance.

Value type Example

 subdoc my-cluster-name-rs0-0:
  host: my-cluster-name-rs0-0.example.net:27017
  tags:
    key: value-0
my-cluster-name-rs0-1:
   host: my-cluster-name-rs0-1.example.net:27017
     tags:
    key: value-1
my-cluster-name-rs0-2:
  host: my-cluster-name-rs0-2.example.net:27017
  tags:
    key: value-2

Value type Example

 string 34.124.76.90

Value type Example

 string 27017

Value type Example

 string 0

Value type Example

 string 0

9.1.6 Replsets Section

267 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.configuration

Custom configuration options for mongod. Please refer to the  official  manual   for the full  list  of options,  and

specific Percona Server for MongoDB docs .

replsets.affinity.antiAffinityTopologyKey

The Kubernetes topologyKey  node affinity constraint for the Replica Set nodes.

replsets.affinity.advanced

In cases where the pods require complex tuning the advanced option turns off the  topologykey  effect. This setting
allows the standard Kubernetes affinity constraints of any complexity to be used.

replsets.tolerations.key

The Kubernetes Pod tolerations  key for the Replica Set nodes.

replsets.tolerations.operator

The Kubernetes Pod tolerations  operator for the Replica Set nodes.

Value type Example

 subdoc |
operationProfiling:
  mode: slowOp
systemLog:
  verbosity: 1
storage:
  engine: wiredTiger
  wiredTiger:
    engineConfig:
      directoryForIndexes: false
      journalCompressor: snappy
    collectionConfig:
      blockCompressor: snappy
    indexConfig:
      prefixCompression: true

Value type Example

 string kubernetes.io/hostname

Value type Example

 subdoc

Value type Example

 string node.alpha.kubernetes.io/unreachable

Value type Example

 string Exists

9.1.6 Replsets Section

268 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.tolerations.effect

The Kubernetes Pod tolerations  effect for the Replica Set nodes.

replsets.tolerations.tolerationSeconds

The Kubernetes Pod tolerations  time limit for the Replica Set nodes.

replsets.primaryPreferTagSelector.region

Ensures the MongoDB instance is selected as Primary based on specified region

replsets.primaryPreferTagSelector.zone

Ensures the MongoDB instance is selected as Primary based on specified zone

replsets.priorityClassName

The Kuberentes Pod priority class  for the Replica Set nodes.

replsets.annotations

The Kubernetes annotations  metadata for the Replica Set nodes.

replsets.labels

The Kubernetes affinity labels  for the Replica Set nodes.

Value type Example

 string NoExecute

Value type Example

 int 6000

Value type Example

 string us-west-2

Value type Example

 string us-west-2c

Value type Example

 string high priority

Value type Example

 string iam.amazonaws.com/role: role-arn

Value type Example

 label rack: rack-22

9.1.6 Replsets Section

269 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.nodeSelector

The Kubernetes nodeSelector  affinity constraint for the Replica Set nodes.

replsets.storage.engine

Sets the storage.engine option https://docs.mongodb.com/manual/reference/configuration-options/#storage.engine`_
for the Replica Set nodes.

replsets.storage.wiredTiger.engineConfig.cacheSizeRatio

The ratio used to compute the storage.wiredTiger.engineConfig.cacheSizeGB option  for the Replica Set nodes.

replsets.storage.wiredTiger.engineConfig.directoryForIndexes

Sets the storage.wiredTiger.engineConfig.directoryForIndexes option  for the Replica Set nodes.

replsets.storage.wiredTiger.engineConfig.journalCompressor

Sets the storage.wiredTiger.engineConfig.journalCompressor option  for the Replica Set nodes.

replsets.storage.wiredTiger.collectionConfig.blockCompressor

Sets the storage.wiredTiger.collectionConfig.blockCompressor option  for the Replica Set nodes.

replsets.storage.wiredTiger.indexConfig.prefixCompression

Sets the storage.wiredTiger.indexConfig.prefixCompression option  for the Replica Set nodes.

Value type Example

 label disktype: ssd

Value type Example

 string wiredTiger

Value type Example

 float 0.5

Value type Example

 boolean false

Value type Example

 string snappy

Value type Example

 string snappy

Value type Example

 boolean true

9.1.6 Replsets Section

270 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.storage.inMemory.engineConfig.inMemorySizeRatio

The ratio used to compute the storage.engine.inMemory.inMemorySizeGb option  for the Replica Set nodes.

replsets.livenessProbe.failureThreshold

Number of consecutive unsuccessful tries of the liveness probe  to be undertaken before giving up.

replsets.livenessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the liveness probe .

replsets.livenessProbe.periodSeconds

How often to perform a liveness probe  (in seconds).

replsets.livenessProbe.timeoutSeconds

Number of seconds after which the liveness probe  times out.

replsets.livenessProbe.startupDelaySeconds

Time after which the liveness probe is failed if the MongoDB instance didn’t finish its full startup yet.

replsets.readinessProbe.failureThreshold

Number of consecutive unsuccessful tries of the readiness probe  to be undertaken before giving up.

Value type Example

 float 0.9

Value type Example

 int 4

Value type Example

 int 60

Value type Example

 int 30

Value type Example

 int 10

Value type Example

 int 7200

Value type Example

 int 8

9.1.6 Replsets Section

271 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.readinessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the readiness probe .

replsets.readinessProbe.periodSeconds

How often to perform a readiness probe  (in seconds).

replsets.readinessProbe.successThreshold

Minimum consecutive successes for the readiness probe  to be considered successful after having failed.

replsets.readinessProbe.timeoutSeconds

Number of seconds after which the readiness probe  times out.

‘replsets.containerSecurityContext’

A custom Kubernetes Security Context for a Container  to be used instead of the default one.

‘replsets.podSecurityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

replsets.runtimeClassName

Name of the Kubernetes Runtime Class  for Replica Set Pods.

Value type Example

 int 10

Value type Example

 int 3

Value type Example

 int 1

Value type Example

 int 2

Value type Example

 subdoc privileged: false

Value type Example

 subdoc runAsUser: 1001
runAsGroup: 1001
supplementalGroups: [1001]

Value type Example

 string image-rc

9.1.6 Replsets Section

272 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.sidecars.image

Image for the custom sidecar container for Replica Set Pods.

replsets.sidecars.command

Command for the custom sidecar container for Replica Set Pods.

replsets.sidecars.args

Command arguments for the custom sidecar container for Replica Set Pods.

replsets.sidecars.name

Name of the custom sidecar container for Replica Set Pods.

replsets.sidecars.volumeMounts.mountPath

Mount path of the custom sidecar container volume for Replica Set Pods.

replsets.sidecars.volumeMounts.name

Name of the custom sidecar container volume for Replica Set Pods.

replsets.sidecarVolumes.name

Name of the custom sidecar container volume for Replica Set Pods.

Value type Example

 string busybox

Value type Example

 array ["/bin/sh"]

Value type Example

 array ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5;done"]

Value type Example

 string rs-sidecar-1

Value type Example

 string /volume1

Value type Example

 string sidecar-volume-claim

Value type Example

 string sidecar-config

9.1.6 Replsets Section

273 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.sidecarVolumes.configMap.name

Name of the ConfigMap  for a custom sidecar container volume for Replica Set Pods.

replsets.sidecarVolumes.secret.secretName

Name of the Secret  for a custom sidecar container volume for Replica Set Pods.

replsets.sidecarPVCs

Persistent Volume Claim  for the custom sidecar container volume for Replica Set Pods.

replsets.podDisruptionBudget.maxUnavailable

The Kubernetes Pod distribution budget  limit specifying the maximum value for unavailable Pods.

replsets.podDisruptionBudget.minAvailable

The Kubernetes Pod distribution budget  limit specifying the minimum value for available Pods.

replsets.splitHorizons.REPLICASET-POD-NAME.external

External URI for Split-horizon for replica set Pods of the exposed cluster.

replsets.splitHorizons.REPLICASET-POD-NAME.external-2

External URI for Split-horizon for replica set Pods of the exposed cluster.

Value type Example

 string myconfigmap

Value type Example

 string sidecar-secret

Value type Example

 subdoc

Value type Example

 int 1

Value type Example

 int 1

Value type Example

 string rs0-0.mycluster.xyz

Value type Example

 string rs0-0.mycluster2.xyz

9.1.6 Replsets Section

274 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.expose.enabled

Enable or disable exposing MongoDB Replica Set  nodes with dedicated IP addresses.

replsets.expose.type

The IP address type  to be exposed.

replsets.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

replsets.expose.annotations

The Kubernetes annotations  metadata for the MongoDB mongod daemon.

replsets.expose.labels

The Kubernetes labels  for the MongoDB Replica Set Service.

replsets.expose.internalTrafficPolicy

Specifies  whether  Service  for  MongoDB  instances  should  route  internal  traffic  to  cluster-wide  or  to  node-local
endpoints  (it can influence the load balancing effectiveness).

replsets.nonvoting.enabled

Enable or disable creation of Replica Set non-voting instances within the cluster.

Value type Example

 boolean false

Value type Example

 string ClusterIP

Value type Example

 string 10.0.0.0/8

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

Value type Example

 string rack: rack-22

Value type Example

 boolean Local

Value type Example

 boolean false

9.1.6 Replsets Section

275 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.nonvoting.size

The number of Replica Set non-voting instances within the cluster.

replsets.nonvoting.podSecurityContext

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

replsets.nonvoting.containerSecurityContext

A custom Kubernetes Security Context for a Container  to be used instead of the default one.

replsets.nonvoting.afinity.antiAffinityTopologyKey

The Kubernetes topologyKey  node affinity constraint for the non-voting nodes.

replsets.nonvoting.affinity.advanced

In cases where the pods require complex tuning the advanced option turns off the  topologykey  effect. This setting
allows the standard Kubernetes affinity constraints of any complexity to be used.

replsets.nonvoting.tolerations.key

The Kubernetes Pod tolerations  key for the non-voting nodes.

replsets.nonvoting.tolerations.operator

The Kubernetes Pod tolerations  operator for the non-voting nodes.

Value type Example

 int 1

Value type Example

 subdoc {}

Value type Example

 subdoc {}

Value type Example

 string kubernetes.io/hostname

Value type Example

 subdoc

Value type Example

 string node.alpha.kubernetes.io/unreachable

Value type Example

 string Exists

9.1.6 Replsets Section

276 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.nonvoting.tolerations.effect

The Kubernetes Pod tolerations  effect for the non-voting nodes.

replsets.nonvoting.tolerations.tolerationSeconds

The Kubernetes Pod tolerations  time limit for the non-voting nodes.

replsets.nonvoting.priorityClassName

The Kuberentes Pod priority class  for the non-voting nodes.

replsets.nonvoting.annotations

The Kubernetes annotations  metadata for the non-voting nodes.

replsets.nonvoting.labels

The Kubernetes affinity labels  for the non-voting nodes.

replsets.nonvoting.nodeSelector

The Kubernetes nodeSelector  affinity constraint for the non-voting nodes.

replsets.nonvoting.podDisruptionBudget.maxUnavailable

The  Kubernetes Pod distribution budget   limit specifying the maximum value for unavailable Pods among non-

voting nodes.

Value type Example

 string NoExecute

Value type Example

 int 6000

Value type Example

 string high priority

Value type Example

 string iam.amazonaws.com/role: role-arn

Value type Example

 label rack: rack-22

Value type Example

 label disktype: ssd

Value type Example

 int 1

9.1.6 Replsets Section

277 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.nonvoting.podDisruptionBudget.minAvailable

The Kubernetes Pod distribution budget  limit specifying the minimum value for available Pods among non-voting

nodes.

replsets.nonvoting.resources.limits.cpu

Kubernetes CPU limit  for MongoDB container.

replsets.nonvoting.resources.limits.memory

Kubernetes Memory limit  for MongoDB container.

replsets.nonvoting.resources.requests.cpu

The Kubernetes CPU requests  for MongoDB container.

replsets.nonvoting.resources.requests.memory

The Kubernetes Memory requests  for MongoDB container.

replsets.nonvoting.volumeSpec.emptyDir

The Kubernetes emptyDir volume , i.e. the directory which will be created on a node, and will be accessible to the

MongoDB Pod containers.

Value type Example

 int 1

Value type Example

 string 300m

Value type Example

 string 0.5G

Value type Example

 string 300m

Value type Example

 string 0.5G

Value type Example

 string {}

9.1.6 Replsets Section

278 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.nonvoting.volumeSpec.hostPath.path

Kubernetes hostPath volume  ,  i.e.  the file or directory of  a node that will  be accessible to the MongoDB Pod

containers.

replsets.nonvoting.volumeSpec.hostPath.type

The Kubernetes hostPath volume type .

replsets.nonvoting.volumeSpec.persistentVolumeClaim.annotations

The Kubernetes annotations  metadata for Persistent Volume Claim .

replsets.nonvoting.volumeSpec.persistentVolumeClaim.labels

The Kubernetes labels  metadata for Persistent Volume Claim .

replsets.nonvoting.volumeSpec.persistentVolumeClaim.storageClassName

The Kubernetes Storage Class  to use with the MongoDB container Persistent Volume Claim  for the non-voting

nodes. Use Storage Class with XFS as the default filesystem if possible, [for better MongoDB performance ](https://

dba.stackexchange.com/questions/190578/is-xfs-still-the-best-choice-for-mongodb.

replsets.nonvoting.volumeSpec.persistentVolumeClaim.accessModes

The Kubernetes Persistent Volume  access modes for the MongoDB container for the non-voting nodes.

Value type Example

 string /data

Value type Example

 string Directory

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

Value type Example

 string rack: rack-22

Value type Example

 string standard

Value type Example

 array [ "ReadWriteOnce" ]

9.1.6 Replsets Section

279 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.nonvoting.volumeSpec.persistentVolumeClaim.resources.requests.storage

The Kubernetes Persistent Volume  size for the MongoDB container for the non-voting nodes.

replsets.arbiter.enabled

Enable or disable creation of Replica Set Arbiter  nodes within the cluster.

replsets.arbiter.size

The number of Replica Set Arbiter  instances within the cluster.

replsets.arbiter.afinity.antiAffinityTopologyKey

The Kubernetes topologyKey  node affinity constraint for the Arbiter.

replsets.arbiter.affinity.advanced

In cases where the pods require complex tuning the advanced option turns off the  topologykey  effect. This setting
allows the standard Kubernetes affinity constraints of any complexity to be used.

replsets.arbiter.tolerations.key

The Kubernetes Pod tolerations  key for the Arbiter nodes.

replsets.arbiter.tolerations.operator

The Kubernetes Pod tolerations  operator for the Arbiter nodes.

Value type Example

 string 3Gi

Value type Example

 boolean false

Value type Example

 int 1

Value type Example

 string kubernetes.io/hostname

Value type Example

 subdoc

Value type Example

 string node.alpha.kubernetes.io/unreachable

Value type Example

 string Exists

9.1.6 Replsets Section

280 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.arbiter.tolerations.effect

The Kubernetes Pod tolerations  effect for the Arbiter nodes.

replsets.arbiter.tolerations.tolerationSeconds

The Kubernetes Pod tolerations  time limit for the Arbiter nodes.

replsets.arbiter.priorityClassName

The Kuberentes Pod priority class  for the Arbiter nodes.

replsets.arbiter.annotations

The Kubernetes annotations  metadata for the Arbiter nodes.

replsets.arbiter.labels

The Kubernetes affinity labels  for the Arbiter nodes.

replsets.arbiter.nodeSelector

The Kubernetes nodeSelector  affinity constraint for the Arbiter nodes.

replsets.resources.limits.cpu

Kubernetes CPU limit  for MongoDB container.

Value type Example

 string NoExecute

Value type Example

 int 6000

Value type Example

 string high priority

Value type Example

 string iam.amazonaws.com/role: role-arn

Value type Example

 label rack: rack-22

Value type Example

 label disktype: ssd

Value type Example

 string 300m

9.1.6 Replsets Section

281 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.resources.limits.memory

Kubernetes Memory limit  for MongoDB container.

replsets.resources.requests.cpu

The Kubernetes CPU requests  for MongoDB container.

replsets.resources.requests.memory

The Kubernetes Memory requests  for MongoDB container.

replsets.volumeSpec.emptyDir

The Kubernetes emptyDir volume , i.e. the directory which will be created on a node, and will be accessible to the

MongoDB Pod containers.

replsets.volumeSpec.hostPath.path

Kubernetes hostPath volume  ,  i.e.  the file or directory of  a node that will  be accessible to the MongoDB Pod

containers.

replsets.volumeSpec.hostPath.type

The Kubernetes hostPath volume type .

Value type Example

 string 0.5G

Value type Example

 string 300m

Value type Example

 string 0.5G

Value type Example

 string {}

Value type Example

 string /data

Value type Example

 string Directory

9.1.6 Replsets Section

282 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



replsets.volumeSpec.persistentVolumeClaim.annotations

The Kubernetes annotations  metadata for Persistent Volume Claim .

replsets.volumeSpec.persistentVolumeClaim.labels

The Kubernetes labels  metadata for Persistent Volume Claim .

replsets.volumeSpec.persistentVolumeClaim.storageClassName

The Kubernetes Storage Class  to use with the MongoDB container Persistent Volume Claim . Use Storage Class

with XFS as the default filesystem if possible, for better MongoDB performance .

replsets.volumeSpec.persistentVolumeClaim.accessModes

The Kubernetes Persistent Volume  access modes for the MongoDB container.

replsets.volumeSpec.persistentVolumeClaim.resources.requests.storage

The Kubernetes Persistent Volume  size for the MongoDB container.

replsets.hostAliases.ip

The IP address for Kubernetes host aliases  for replica set Pods.

replsets.hostAliases.hostnames

Hostnames for Kubernetes host aliases  for replica set Pods.

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

Value type Example

 string rack: rack-22

Value type Example

 string standard

Value type Example

 array [ "ReadWriteOnce" ]

Value type Example

 string 3Gi

Value type Example

 string "10.10.0.2"

Value type Example

 subdoc

9.1.6 Replsets Section

283 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.1.7 PMM Section

The pmm  section in the deploy/cr.yaml file contains configuration options for Percona Monitoring and Management.

pmm.enabled

Enables or disables monitoring Percona Server for MongoDB with PMM .

pmm.image

PMM Client docker image to use.

pmm.serverHost

Address of the PMM Server to collect data from the Cluster.

pmm.containerSecurityContext

A custom Kubernetes Security Context for a Container  to be used instead of the default one.

pmm.mongodParams

Additional parameters which will be passed to the pmm-admin add mongodb  command for mongod  Pods.

pmm.mongosParams

Additional parameters which will be passed to the pmm-admin add mongodb  command for mongos  Pods.

9.1.8 Sharding Section

The  sharding  section  in  the  deploy/cr.yaml  file  contains  configuration  options  for  Percona  Server  for  MondoDB
sharding.

Value type Example

 boolean false

Value type Example

 string percona/pmm-client:2.43.2

Value type Example

 string monitoring-service

Value type Example

 subdoc {}

Value type Example

 string --environment=DEV-ENV --custom-labels=DEV-ENV

Value type Example

 string --environment=DEV-ENV --custom-labels=DEV-ENV

9.1.7 PMM Section

284 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.enabled

Enables or disables Percona Server for MondoDB sharding .

sharding.configsvrReplSet.size

The number of Config Server instances  within the cluster.

sharding.configsvrReplSet.terminationGracePeriodSeconds

The amount of seconds Kubernetes will wait for a clean config server Pods termination.

‘sharding.configsvrReplSet.serviceAccountName’

Name of the separate privileged service account for Config Server Pods.

sharding.configsvrReplSet.topologySpreadConstraints.labelSelector.matchLabels

The label selector for the Kubernetes Pod Topology Spread Constraints .

sharding.configsvrReplSet.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

sharding.configsvrReplSet.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 boolean true

Value type Example

 int 3

Value type Example

 int 300

Value type Example

 string default

Value type Example

 label app.kubernetes.io/name: percona-server-mongodb

Value type Example

 int 1

Value type Example

 string kubernetes.io/hostname

9.1.8 Sharding Section

285 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.configsvrReplSet.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

sharding.configsvrReplSet.externalNodes.host

The URL or IP address of the external config server instance.

sharding.configsvrReplSet.externalNodes.port

The port number of the external config server instance.

sharding.configsvrReplSet.externalNodes.votes

The number of votes  of the external config server instance.

sharding.configsvrReplSet.externalNodes.priority

The priority  of the external config server instance.

sharding.configsvrReplSet.configuration

Custom configuration options for Config Servers. Please refer to the official manual  for the full list of options.

Value type Example

 string DoNotSchedule

Value type Example

 string 34.124.76.90

Value type Example

 string 27017

Value type Example

 string 0

Value type Example

 string 0

Value type Example

 string |
operationProfiling:
  mode: slowOp
systemLog:
  verbosity: 1

9.1.8 Sharding Section

286 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.configsvrReplSet.livenessProbe.failureThreshold

Number of consecutive unsuccessful tries of the liveness probe  to be undertaken before giving up.

sharding.configsvrReplSet.livenessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the liveness probe .

sharding.configsvrReplSet.livenessProbe.periodSeconds

How often to perform a liveness probe  (in seconds).

sharding.configsvrReplSet.livenessProbe.timeoutSeconds

Number of seconds after which the liveness probe  times out.

sharding.configsvrReplSet.livenessProbe.startupDelaySeconds

Time after which the liveness probe is failed if the MongoDB instance didn’t finish its full startup yet.

sharding.configsvrReplSet.readinessProbe.failureThreshold

Number of consecutive unsuccessful tries of the readiness probe  to be undertaken before giving up.

sharding.configsvrReplSet.readinessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the readiness probe .

Value type Example

 int 4

Value type Example

 int 60

Value type Example

 int 30

Value type Example

 int 10

Value type Example

 int 7200

Value type Example

 int 3

Value type Example

 int 10

9.1.8 Sharding Section

287 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.configsvrReplSet.readinessProbe.periodSeconds

How often to perform a readiness probe  (in seconds).

sharding.configsvrReplSet.readinessProbe.successThreshold

Minimum consecutive successes for the readiness probe  to be considered successful after having failed.

sharding.configsvrReplSet.readinessProbe.timeoutSeconds

Number of seconds after which the readiness probe  times out.

‘sharding.configsvrReplSet.containerSecurityContext’

A custom Kubernetes Security Context for a Container  to be used instead of the default one.

‘sharding.configsvrReplSet.podSecurityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

sharding.configsvrReplSet.runtimeClassName

Name of the Kubernetes Runtime Class  for Config Server Pods.

sharding.configsvrReplSet.sidecars.image

Image for the custom sidecar container for Config Server Pods.

Value type Example

 int 3

Value type Example

 int 1

Value type Example

 int 2

Value type Example

 subdoc privileged: false

Value type Example

 subdoc runAsUser: 1001
runAsGroup: 1001
supplementalGroups: [1001]

Value type Example

 string image-rc

Value type Example

 string busybox

9.1.8 Sharding Section

288 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.configsvrReplSet.sidecars.command

Command for the custom sidecar container for Config Server Pods.

sharding.configsvrReplSet.sidecars.args

Command arguments for the custom sidecar container for Config Server Pods.

sharding.configsvrReplSet.sidecars.name

Name of the custom sidecar container for Config Server Pods.

sharding.configsvrReplSet.limits.cpu

Kubernetes CPU limit  for Config Server container.

sharding.configsvrReplSet.limits.memory

Kubernetes Memory limit  for Config Server container.

sharding.configsvrReplSet.resources.requests.cpu

The Kubernetes CPU requests  for Config Server container.

sharding.configsvrReplSet.requests.memory

The Kubernetes Memory requests  for Config Server container.

Value type Example

 array ["/bin/sh"]

Value type Example

 array ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5;done"]

Value type Example

 string rs-sidecar-1

Value type Example

 string 300m

Value type Example

 string 0.5G

Value type Example

 string 300m

Value type Example

 string 0.5G

9.1.8 Sharding Section

289 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.configsvrReplSet.expose.enabled

Enable or disable exposing Config Server  nodes with dedicated IP addresses.

sharding.configsvrReplSet.expose.type

The IP address type  to be exposed.

sharding.configsvrReplSet.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

sharding.configsvrReplSet.expose.annotations

The Kubernetes annotations  metadata for the Config Server daemon.

sharding.configsvrReplSet.expose.labels

The Kubernetes labels  for the Config Server Service.

sharding.configsvrReplSet.expose.internalTrafficPolicy

Specifies whether Service for config servers should route internal traffic to cluster-wide or to node-local endpoints 

(it can influence the load balancing effectiveness).

Value type Example

 boolean false

Value type Example

 string ClusterIP

Value type Example

 string 10.0.0.0/8

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

Value type Example

 string rack: rack-22

Value type Example

 boolean Local

9.1.8 Sharding Section

290 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.configsvrReplSet.volumeSpec.emptyDir

The Kubernetes emptyDir volume , i.e. the directory which will be created on a node, and will be accessible to the

Config Server Pod containers.

sharding.configsvrReplSet.volumeSpec.hostPath.path

Kubernetes hostPath volume , i.e. the file or directory of a node that will be accessible to the Config Server Pod

containers.

sharding.configsvrReplSet.volumeSpec.hostPath.type

The Kubernetes hostPath volume type .

sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.annotations

The Kubernetes annotations  metadata for Persistent Volume Claim .

sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.labels

The Kubernetes labels  metadata for Persistent Volume Claim .

sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.storageClassName

The Kubernetes Storage Class  to use with the Config Server container Persistent Volume Claim . Use Storage

Class with XFS as the default filesystem if possible, for better MongoDB performance .

Value type Example

 string {}

Value type Example

 string /data

Value type Example

 string Directory

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

Value type Example

 string rack: rack-22

Value type Example

 string standard

9.1.8 Sharding Section

291 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.accessModes

The Kubernetes Persistent Volume  access modes for the Config Server container.

sharding.configsvrReplSet.volumeSpec.persistentVolumeClaim.resources.requests.storage

The Kubernetes Persistent Volume  size for the Config Server container.

sharding.configsvrReplSet.hostAliases.ip

The IP address for Kubernetes host aliases  for replica set Pods.

sharding.configsvrReplSet.hostAliases.hostnames

Hostnames for Kubernetes host aliases  for config server Pods.

sharding.mongos.size

The number of mongos  instances within the cluster.

sharding.mongos.terminationGracePeriodSeconds

The amount of seconds Kubernetes will wait for a clean mongos Pods termination.

‘sharding.mongos.serviceAccountName’

Name of the separate privileged service account for mongos Pods.

Value type Example

 array [ "ReadWriteOnce" ]

Value type Example

 string 3Gi

Value type Example

 string "10.10.0.2"

Value type Example

 subdoc

Value type Example

 int 3

Value type Example

 int 300

Value type Example

 string default

9.1.8 Sharding Section

292 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.mongos.topologySpreadConstraints.labelSelector.matchLabels

The label selector for the Kubernetes Pod Topology Spread Constraints .

sharding.mongos.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread Constraints .

sharding.mongos.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

sharding.mongos.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

sharding.mongos.configuration

Custom configuration options for mongos. Please refer to the official manual  for the full list of options.

sharding.mongos.afinity.antiAffinityTopologyKey

The Kubernetes topologyKey  node affinity constraint for mongos.

Value type Example

 label app.kubernetes.io/name: percona-server-mongodb

Value type Example

 int 1

Value type Example

 string kubernetes.io/hostname

Value type Example

 string DoNotSchedule

Value type Example

 string |
systemLog:
  verbosity: 1

Value type Example

 string kubernetes.io/hostname

9.1.8 Sharding Section

293 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.mongos.affinity.advanced

In cases where the Pods require complex tuning the advanced option turns off the  topologykey  effect. This setting
allows the standard Kubernetes affinity constraints of any complexity to be used.

sharding.mongos.tolerations.key

The Kubernetes Pod tolerations  key for mongos instances.

sharding.mongos.tolerations.operator

The Kubernetes Pod tolerations  operator for mongos instances.

sharding.mongos.tolerations.effect

The Kubernetes Pod tolerations  effect for mongos instances.

sharding.mongos.tolerations.tolerationSeconds

The Kubernetes Pod tolerations  time limit for mongos instances.

sharding.mongos.priorityClassName

The Kuberentes Pod priority class  for mongos instances.

sharding.mongos.annotations

The Kubernetes annotations  metadata for the mongos instances.

Value type Example

 subdoc

Value type Example

 string node.alpha.kubernetes.io/unreachable

Value type Example

 string Exists

Value type Example

 string NoExecute

Value type Example

 int 6000

Value type Example

 string high priority

Value type Example

 string iam.amazonaws.com/role: role-arn

9.1.8 Sharding Section

294 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.mongos.labels

The Kubernetes affinity labels  for mongos instances.

sharding.mongos.nodeSelector

The Kubernetes nodeSelector  affinity constraint for mongos instances.

sharding.mongos.livenessProbe.failureThreshold

Number of consecutive unsuccessful tries of the liveness probe  to be undertaken before giving up.

sharding.mongos.livenessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the liveness probe .

sharding.mongos.livenessProbe.periodSeconds

How often to perform a liveness probe  (in seconds).

sharding.mongos.livenessProbe.timeoutSeconds

Number of seconds after which the liveness probe  times out.

sharding.mongos.livenessProbe.startupDelaySeconds

Time after which the liveness probe is failed if the MongoDB instance didn’t finish its full startup yet.

Value type Example

 label rack: rack-22

Value type Example

 label disktype: ssd

Value type Example

 int 4

Value type Example

 int 60

Value type Example

 int 30

Value type Example

 int 10

Value type Example

 int 7200

9.1.8 Sharding Section

295 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.mongos.readinessProbe.failureThreshold

Number of consecutive unsuccessful tries of the readiness probe  to be undertaken before giving up.

sharding.mongos.readinessProbe.initialDelaySeconds

Number of seconds to wait after the container start before initiating the readiness probe .

sharding.mongos.readinessProbe.periodSeconds

How often to perform a readiness probe  (in seconds).

sharding.mongos.readinessProbe.successThreshold

Minimum consecutive successes for the readiness probe  to be considered successful after having failed.

sharding.mongos.readinessProbe.timeoutSeconds

Number of seconds after which the readiness probe  times out.

‘sharding.mongos.containerSecurityContext’

A custom Kubernetes Security Context for a Container  to be used instead of the default one.

‘sharding.mongos.podSecurityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

Value type Example

 int 3

Value type Example

 int 10

Value type Example

 int 3

Value type Example

 int 1

Value type Example

 int 2

Value type Example

 subdoc privileged: false

Value type Example

 subdoc runAsUser: 1001
runAsGroup: 1001
supplementalGroups: [1001]

9.1.8 Sharding Section

296 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.mongos.runtimeClassName

Name of the Kubernetes Runtime Class  for mongos Pods.

sharding.mongos.sidecars.image

Image for the custom sidecar container for mongos Pods.

sharding.mongos.sidecars.command

Command for the custom sidecar container for mongos Pods.

sharding.mongos.sidecars.args

Command arguments for the custom sidecar container for mongos Pods.

sharding.mongos.sidecars.name

Name of the custom sidecar container for mongos Pods.

sharding.mongos.limits.cpu

Kubernetes CPU limit  for mongos container.

sharding.mongos.limits.memory

Kubernetes Memory limit  for mongos container.

Value type Example

 string image-rc

Value type Example

 string busybox

Value type Example

 array ["/bin/sh"]

Value type Example

 array ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5;done"]

Value type Example

 string rs-sidecar-1

Value type Example

 string 300m

Value type Example

 string 0.5G

9.1.8 Sharding Section

297 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



sharding.mongos.resources.requests.cpu

The Kubernetes CPU requests  for mongos container.

sharding.mongos.requests.memory

The Kubernetes Memory requests  for mongos container.

sharding.mongos.expose.type

The IP address type  to be exposed.

sharding.mongos.expose.servicePerPod

If set to true , a separate ClusterIP Service is created for each mongos instance.

sharding.mongos.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no limitations).

sharding.mongos.expose.annotations

The Kubernetes annotations  metadata for the MongoDB mongos daemon.

sharding.mongos.expose.labels

The Kubernetes labels  for the MongoDB mongos Service.

Value type Example

 string 300m

Value type Example

 string 0.5G

Value type Example

 string ClusterIP

Value type Example

 boolean true

Value type Example

 string 10.0.0.0/8

Value type Example

 string service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http

Value type Example

 string rack: rack-22

9.1.8 Sharding Section

298 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



‘sharding.mongos.expose.nodePort’

The Node port number  to be allocated for the MongoDB mongos Service when the sharding.mongos.expose.type  is

set to the NodePort , and sharding.mongos.expose.servicePerPod  is not turned on.

sharding.mongos.internalTrafficPolicy

Specifies whether Services for the mongos instances should  route internal  traffic to cluster-wide or to node-local
endpoints  (it can influence the load balancing effectiveness).

sharding.mongos.hostAliases.ip

The IP address for Kubernetes host aliases  for mongos Pods.

sharding.mongos.hostAliases.hostnames

Hostnames for Kubernetes host aliases  for mongos Pods.

9.1.9 Roles section

The roles  section in the deploy/cr.yaml  file contains various configuration options to configure custom MongoDB

user roles via the Custom Resource.

roles.role

The cusom MongoDB role  name.

roles.db

Database in which you want to store the user-defined role.

Value type Example

 int 32017

Value type Example

 boolean Local

Value type Example

 string "10.10.0.2"

Value type Example

 subdoc

Value type Example

 string myClusterwideAdmin

Value type Example

 string `admin

9.1.9 Roles section

299 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



roles.authenticationRestrictions.clientSource

List of the IP addresses or CIDR blocks  from which users assigned this role can connect.  MongoDB servers reject
connection requests from users with this role if the requests come from a client that is not present in this array.

roles.authenticationRestrictions.serverAddress

List  of  the  IP  addresses  or  CIDR  blocks  to  which users  assigned  this  role  can  connect.  MongoDB  servers  reject
connection requests from users with this role if the client requests to connect to a server that is not present in this
array.

roles.privileges.actions

List of custom role actions that users granted this role can perform: For a list of accepted values, see Privilege Actions
 in the MongoDB Manual.

roles.privileges.resource.db

Database for which the custom role actions apply. An empty string (“”) indicates that the privilege actions apply to all
databases.

roles.privileges.resource.collection

Collection for which the custom role actions apply. An empty string (“”) indicates that the privilege actions apply to all
of the database’s collections.

roles.privileges.resource.cluster

If true, the custom role actions apply to all databases and collections in the MongoDB deployment. False by default. If
set to true, values for  roles.privileges.resource.db  and  roles.privileges.resource.collection  shouldn’t be provided.

Value type Example

 subdoc 127.0.0.1

Value type Example

 subdoc 127.0.0.1

Value type Example

 subdoc addShard

Value type Example

 string ""

Value type Example

 string ""

Value type Example

 boolean true

9.1.9 Roles section

300 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



roles.roles

An array of roles (with names of the role and the database) from which this role inherits privileges, if any.

9.1.10 Users section

The users  section in the deploy/cr.yaml  file contains various configuration options to configure custom MongoDB

users via the Custom Resource.

users.name

The username of the MongoDB user.

users.db

Database that the user authenticates against.

users.passwordSecretRef.name

Name of the secret that contains the user’s password.

users.passwordSecretRef.key

Key in the secret that corresponds to the value of the user’s password.

users.roles.role.name

Name of the MongoDB role assigned to the user. As built-in roles, so custom roles are supported.

Value type Example

 subdoc role: read
db: admin

Value type Example

 string my-user

Value type Example

 string admin

Value type Example

 string my-user-password

Value type Example

 string password

Value type Example

 string clusterAdmin

9.1.10 Users section

301 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



users.roles.role.db

Database that the MongoDB role applies to.

9.1.11 Backup Section

The backup  section in the deploy/cr.yaml  file contains the following configuration options for the regular Percona

Server for MongoDB backups.

backup.enabled

Enables or disables making backups.

backup.image

The Percona Server for MongoDB Docker image to use for the backup.

backup.serviceAccountName

Name of  the separate privileged service  account  for  backups;  service account for  backups is  not used by the
Operator any more, and the option is deprecated since the Operator version 1.16.0.

backup.annotations

The Kubernetes annotations  metadata for the backup job.

backup.resources.limits.cpu

Kubernetes CPU limit  for backups.

Value type Example

 string admin

Value type Example

 boolean true

Value type Example

 string percona/percona-server-mongodb-operator:1.18.0-backup

Value type Example

 string percona-server-mongodb-operator

Value type Example

 string sidecar.istio.io/inject: "false"

Value type Example

 string 300m

9.1.11 Backup Section

302 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



backup.resources.limits.memory

Kubernetes Memory limit  for backups.

backup.resources.requests.cpu

The Kubernetes CPU requests  for backups.

backup.resources.requests.memory

The Kubernetes Memory requests  for backups.

‘backup.containerSecurityContext’

A custom Kubernetes Security Context for a Container  to be used instead of the default one.

backup.storages.STORAGE-NAME.type

The cloud storage type used for backups. Only s3  type is currently supported.

backup.storages.STORAGE-NAME.s3.insecureSkipTLSVerify

Enable  or  disable  verification  of  the  storage  server  TLS  certificate.  Disabling  it  may  be  useful  e.g.  to  skip  TLS
verification for private S3-compatible storage with a self-issued certificate.

backup.storages.STORAGE-NAME.s3.credentialsSecret

The Kubernetes secret  for backups. It should contain AWS_ACCESS_KEY_ID  and AWS_SECRET_ACCESS_KEY  keys.

Value type Example

 string 1.2G

Value type Example

 string 300m

Value type Example

 string 1G

Value type Example

 subdoc privileged: false

Value type Example

 string s3

Value type Example

 boolean true

Value type Example

 string my-cluster-name-backup-s3

9.1.11 Backup Section

303 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



backup.storages.STORAGE-NAME.s3.bucket

The Amazon S3 bucket  name for backups.

backup.storages.STORAGE-NAME.s3.prefix

The path (sub-folder) to the backups inside the bucket .

backup.storages.STORAGE-NAME.s3.uploadPartSize

The size of data chunks in bytes to be uploaded to the storage bucket (10 MiB by default).

backup.storages.STORAGE-NAME.s3.maxUploadParts

The maximum number of data chunks to be uploaded to the storage bucket (10000 by default).

backup.storages.STORAGE-NAME.s3.storageClass

The storage class name  of the S3 storage.

backup.storages.STORAGE-NAME.s3.retryer.numMaxRetries

The maximum number of retries to upload data to S3 storage.

backup.storages.STORAGE-NAME.s3.retryer.minRetryDelay

The minimum time in milliseconds to wait till the next retry.

Value type Example

 string

Value type Example

 string ""

Value type Example

 int 10485760

Value type Example

 int 10000

Value type Example

 string STANDARD

Value type Example

 int 3

Value type Example

 int 10

9.1.11 Backup Section

304 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



backup.storages.STORAGE-NAME.s3.retryer.maxRetryDelay

The maximum time in minutes to wait till the next retry.

backup.storages.STORAGE-NAME.s3.region

The AWS region  to use. Please note this option is mandatory for Amazon and all S3-compatible storages.

backup.storages.STORAGE-NAME.s3.Url

The URL of the S3-compatible storage to be used (not needed for the original Amazon S3 cloud).

backup.storages.STORAGE-NAME.s3.serverSideEncryption.kmsKeyID

The ID of the key stored in the AWS KMS  used by the Operator for backups server-side encryption

backup.storages.STORAGE-NAME.s3.serverSideEncryption.sseAlgorithm

The key management mode used for backups server-side encryption with the encryption keys stored in AWS KMS  -

aws:kms  is the only supported value for now.

backup.storages.STORAGE-NAME.s3.serverSideEncryption.sseCustomerAlgorithm

The key management mode for  backups server-side encryption with customer-provided keys -  AES256  is  the only
supported value for now.

Value type Example

 int 5

Value type Example

 string us-east-1

Value type Example

 string

Value type Example

 string ""

Value type Example

 string aws:kms

Value type Example

 string AES256

9.1.11 Backup Section

305 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



backup.storages.STORAGE-NAME.s3.serverSideEncryption.sseCustomerKey

The locally-stored base64-encoded custom encryption key used by the Operator for backups server-side encryption on
S3-compatible storages.

backup.storages.STORAGE-NAME.azure.credentialsSecret

The  Kubernetes  secret   for  backups.  It  should  contain  AZURE_STORAGE_ACCOUNT_NAME  and

AZURE_STORAGE_ACCOUNT_KEY  |

backup.storages.STORAGE-NAME.azure.container

Name of the container  for backups.

backup.storages.STORAGE-NAME.azure.prefix

The path (sub-folder) to the backups inside the container .

‘backup.storages.STORAGE-NAME.azure.endpointUrl’

The private endpoint URL  to use instead of the public endpoint.

backup.pitr.enabled

Enables or disables point-in-time-recovery functionality.

Value type Example

 string ""

Value type Example

 string my-cluster-azure-secret

Value type Example

 string my-container

Value type Example

 string ""

Value type Example

 string https://accountName.blob.core.windows.net

Value type Example

 boolean false

9.1.11 Backup Section

306 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



backup.pitr.oplogOnly

If  true,  Percona Backup for MongoDB saves oplog chunks even without the base logical  backup snapshot (oplog
chunks without a base backup can’t be used with logical backups to restore a backup by the Operator, but can still be
useful for manual restore operations ).

backup.pitr.oplogSpanMin

Number of minutes between the uploads of oplogs.

backup.pitr.compressionType

The point-in-time-recovery chunks compression format, can be gzip, snappy, lz4, pgzip, zstd, s2, or none .

backup.pitr.compressionLevel

The point-in-time-recovery chunks compression level (higher values result in better but slower compression ).

backup.configuration.backupOptions.priority

The list of mongod nodes and their priority for making backups.

backup.configuration.backupOptions.timeouts.startingStatus

The wait time in seconds Percona Backup for MongoDB should use to start physical backups on all shards. The 0 (zero)
value resets the timeout to the default 33 seconds. 

Value type Example

 boolean false

Value type Example

 int 10

Value type Example

 string gzip

Value type Example

 int 6

Value type Example

 subdoc “localhost:28019”: 2.5
“localhost:27018”: 2.5

Value type Example

 int 33

9.1.11 Backup Section

307 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



backup.configuration.backupOptions.oplogSpanMin

The duration (in minutes) of oplog slices saved by Percona Backup for MongoDB with the logical backup snapshot.

backup.configuration.restoreOptions.batchSize

The number of documents Percona Backup for MongoDB should buffer.

backup.configuration.restoreOptions.numInsertionWorkers

The number of workers that Percona Backup for MongoDB should use to add the documents to buffer.

backup.configuration.restoreOptions.numDownloadWorkers

The number of workers that Percona Backup for MongoDB should use to request data chunks from the storage during
the restore.

backup.configuration.restoreOptions.maxDownloadBufferMb

The maximum size of the in-memory buffer that Percona Backup for MongoDB should use use when downloading files
from the S3 storage.

backup.configuration.restoreOptions.downloadChunkMb

The size of the data chunk in MB, that Percona Backup for MongoDB should use when downloading from the S3
storage.

Value type Example

 int 10

Value type Example

 int 500

Value type Example

 int 10

Value type Example

 int 4

Value type Example

 int 0

Value type Example

 int 32

9.1.11 Backup Section

308 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



backup.configuration.restoreOptions.mongodLocation

The custom path to mongod binaries which Percona Backup for MongoDB should use during restore.

backup.configuration.restoreOptions.mongodLocationMap

The list of custom paths to mongod binaries on every node, which Percona Backup for MongoDB should use during
restore. 

backup.tasks.name

The name of the backup.

backup.tasks.enabled

Enables or disables this exact backup.

backup.tasks.schedule

The scheduled time to make a backup, specified in the crontab format .

backup.tasks.keep

The amount of most recent backups to store. Older backups are automatically deleted. Set keep  to zero or completely
remove it to disable automatic deletion of backups.

Value type Example

 string /usr/bin/mongo

Value type Example

 subdoc “node01:2017”: /usr/bin/mongo
“node03:27017”: /usr/bin/mongo

Value type Example

 string

Value type Example

 boolean true

Value type Example

 string 0 0 \* \* 6

Value type Example

 int 3

9.1.11 Backup Section

309 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



backup.tasks.storageName

The name of the S3-compatible storage for backups, configured in the storages subsection.

backup.tasks.compressionType

The backup compression format, can be gzip, snappy, lz4, pgzip, zstd, s2, or none .

backup.tasks.compressionLevel

The backup compression level (higher values result in better but slower compression ).

backup.tasks.type

The backup type: (can be either  logical  (default)  or  physical ;  see  the Operator backups official  documentation for
details.

9.1.12 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Value type Example

 string st-us-west

Value type Example

 string gzip

Value type Example

 int 6

Value type Example

 string physical

Last update: 2024-11-14 

9.1.12 Get expert help

310 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.2 Percona certified images

Following table presents Percona’s certified docker images to be used with the Percona Operator for Percona Server
for MongoDB:

9.2 Percona certified images

311 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Image Digest

percona/percona-server-
mongodb-operator:1.18.0
(x86_64)

cf3f870e8b6e052a1cca017d651ad9091b67ca833dc9a16a7fcacfcfc19df9f6

percona/percona-server-
mongodb-operator:1.18.0
(ARM64)

cc1ddacfe4af6a6a13c700a1d82c6786a3b1f40343eda4b2392d68c64a7cf4e4

percona/pmm-client:2.43.2
(x86_64)

e381f607a48ce6dccf24e732067323dce751115228f1f377936b9ed2bf31942d

percona/pmm-client:2.43.2
(ARM64)

605ddda6aa64c9b8766dccf20cb593cf92eab5100ab10a9ed8462f8b7e54ba39

percona/percona-backup-
mongodb:2.7.0-multi (x86_64)

4e29486419f06be69e5ce15490ff46b68cf44958c9ca716fa1eaba17cf32701b

percona/percona-backup-
mongodb:2.7.0-multi (ARM64)

6d04f21185c2931514790e18ca982603e2453fd431f922be3bef4c42460083d5

percona/percona-server-
mongodb:7.0.14-8-multi
(x86_64)

ed932d4e7231dcb793bf609f781226a8393aa8958b103339f4a503a8f70ed17e

percona/percona-server-
mongodb:7.0.14-8-multi
(ARM64)

052f84ee926ad9b5146f08a7e887820342d65b757a284c2f0ea8e937bb51cd7b

percona/percona-server-
mongodb:7.0.12-7

7f00e19878bd143119772cd5468f1f0f9857dfcd2ae2f814d52ef3fa7cff6899

percona/percona-server-
mongodb:7.0.8-5

f81d1353d5497c5be36ee525f742d498ee6e1df9aba9502660c50f0fc98743b6

percona/percona-server-
mongodb:6.0.18-15-multi
(x86_64)

d197ce16ab0eed6df25e632b92dea5ce448e549e02028f39b78f5730c2ffef36

percona/percona-server-
mongodb:6.0.18-15-multi
(ARM64)

7fd1d8f74f71dea6ad423e8e202a0617bdd1e8783f2b5cb071b5281685ce0adf

percona/percona-server-
mongodb:6.0.16-13

1497e58e39497d8425ccd053898dc323338d6eb3f0e3c4c223f9d5a468da7931

percona/percona-server-
mongodb:6.0.15-12

f12dd271d78cf3e70088fea0c420e8c03703457d8a5959b645053546bff94dea

percona/percona-server-
mongodb:6.0.9-7

5ef8404e200a680a67f0a94599963e17c029ebe5e0045b60b45062bba127c505

percona/percona-server-
mongodb:6.0.5-4

b6f875974c59d8ea0174675c85f41668460233784cbf2cbe7ce5eca212ac5f6a

percona/percona-server-
mongodb:5.0.29-25-multi
(x86_64)

732eb60f2d3750aaf654ada7f52d2869928be885f6b7012666d6777f85411b74

4fef96a66df35e0ad3c28003970ef3b7fb5ebbcbb61c23172dc3bc8c77cc13a3

9.2 Percona certified images

312 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.2.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Image Digest

percona/percona-server-
mongodb:5.0.29-25-multi
(ARM64)

percona/percona-server-
mongodb:5.0.28-24

7f9ac418bcd22fc8fbcf6ddba9aff3142a07ddfdfbe58efd5d55d5f7c9f43aaf

percona/percona-server-
mongodb:5.0.26-22

50873aa99f36319c5590ad2bddf407b4df44728bee86025ccae1bfed9329a0d1

percona/percona-server-
mongodb:5.0.20-17

56a19362b1082c37eb5e7069d05f7bb281a09c4788101faeea15a50bb8a49e8b

percona/percona-server-
mongodb:5.0.15-13

f0b5a8291d778d7419c20dcf0d1985a0f33770d05e94dba41db8f071957e9929

Last update: 2024-09-09 

9.2.1 Get expert help

313 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.3 Versions compatibility

Versions of the cluster components and platforms tested with different Operator releases are shown below. Other
version combinations may also work but have not been tested.

Cluster components:

Operator MongoDB Percona Backup for MongoDB 

1.18.0 5.0 - 7.0 2.7.0

1.17.0 5.0 - 7.0 2.5.0

1.16.2 5.0 - 7.0 2.4.1

1.16.1 5.0 - 7.0 2.4.1

1.16.0 5.0 - 7.0 2.4.1

1.15.0 4.4 - 6.0 2.3.0

1.14.0 4.4 - 6.0 2.0.4, 2.0.5

1.13.0 4.2 - 5.0 1.8.1

1.12.0 4.2 - 5.0 1.7.0

1.11.0 4.0, 4.2, 4.4, 5.0 1.6.1

1.10.0 4.0, 4.2, 4.4, 5.0 1.6.0

1.9.0 4.0, 4.2, 4.4 1.5.0

1.8.0 3.6, 4.0, 4.2, 4.4 1.4.1

1.7.0 3.6, 4.0, 4.2, 4.4 1.4.1

1.6.0 3.6, 4.0, 4.2 1.3.4

1.5.0 3.6, 4.0, 4.2 1.3.1

1.4.0 3.6, 4.0, 4.2 1.1.0

1.3.0 3.6, 4.0 0.4.0

1.2.0 3.6, 4.0 0.4.0

1.1.0 3.6, 4.0 0.4.0

9.3 Versions compatibility

314 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Platforms:

More detailed information about the cluster components for the current version of the Operator can be found in the
system requirements and in the list of certified images. For previous releases of the Operator, you can check the same
pages in the documentation archive .

9.3.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Operator GKE EKS Openshift AKS Minikube 

1.18.0 1.28 - 1.30 1.28 - 1.31 4.13.52 - 4.17.3 1.28 - 1.31 1.34.0

1.17.0 1.27 - 1.30 1.28 - 1.30 4.13.48 - 4.16.9 1.28 - 1.30 1.33.1

1.16.2 1.26 - 1.29 1.26 - 1.29 4.12.56 - 4.15.11 1.27 - 1.29 1.33

1.16.1 1.26 - 1.29 1.26 - 1.29 4.12.56 - 4.15.11 1.27 - 1.29 1.33

1.16.0 1.26 - 1.29 1.26 - 1.29 4.12.56 - 4.15.11 1.27 - 1.29 1.33

1.15.0 1.24 - 1.28 1.24 - 1.28 4.11 - 4.13 1.25 - 1.28 1.31.2

1.14.0 1.22 - 1.25 1.22 - 1.24 4.10 - 4.12 1.23 - 1.25 1.29

1.13.0 1.21 - 1.23 1.21 - 1.23 4.10 - 4.11 1.22 - 1.24 1.26

1.12.0 1.19 - 1.22 1.19 - 1.22 4.7 - 4.10 - 1.23

1.11.0 1.19 - 1.22 1.18 - 1.22 4.7 - 4.9 - 1.22

1.10.0 1.17 - 1.21 1.16 - 1.21 4.6 - 4.8 - 1.22

1.9.0 1.17 - 1.21 1.16-1.20 4.7 - 1.20

1.8.0 1.16 - 1.20 1.19 3.11, 4.7 - 1.19

1.7.0 1.15 - 1.17 1.15 3.11, 4.5 - 1.10

1.6.0 1.15 - 1.17 1.15 3.11, 4.5 - 1.10

1.5.0 1.15 - 1.17 1.15 3.11, 4.5 - 1.18

1.4.0 1.13, 1.15 1.15 3.11, 4.2 - 1.16

1.3.0 1.11, 1.14 - 3.11, 4.1 - 1.12

1.2.0 - - 3.11, 4.0 - -

1.1.0 - - 3.11, 4.0 - -

Last update: 2024-11-14 

9.3.1 Get expert help

315 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.4 Percona Operator for MongoDB API Documentation

Percona Operator for MongoDB provides an aggregation-layer extension for the Kubernetes API . Please refer to

the official Kubernetes API documentation  on the API access and usage details. The following subsections describe

the Percona XtraDB Cluster API provided by the Operator.

9.4.1 Prerequisites

Create the namespace name you will use, if not exist:

Trying to create an already-existing namespace will show you a self-explanatory error message. Also, you can use the
defalut  namespace.

In this document  default  namespace is used in all examples. Substitute  default  with your namespace name if you use a
different one.

Prepare:

9.4.2 Create new Percona Server for MongoDB cluster

Description:

Kubectl Command:

URL:

Authentication:

1. 

$ kubectl create namespace my-namespace-name

Note

2. 

# set correct API address
KUBE_CLUSTER=$(kubectl config view --minify -o jsonpath='{.clusters[0].name}')
API_SERVER=$(kubectl config view -o jsonpath="{.clusters[?(@.name==\"$KUBE_CLUSTER\")].cluster.server}" | sed -e
's#https://##')

# create service account and get token
kubectl apply --server-side -f deploy/crd.yaml -f deploy/rbac.yaml -n default
KUBE_TOKEN=$(kubectl get secret $(kubectl get serviceaccount percona-server-mongodb-operator -o
jsonpath='{.secrets[0].name}' -n default) -o jsonpath='{.data.token}' -n default | base64 --decode )

The command to create a new Percona Server for MongoDB cluster

$ kubectl apply -f percona-server-mongodb-operator/deploy/cr.yaml

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs

Authorization: Bearer $KUBE_TOKEN

9.4 Percona Operator for MongoDB API Documentation

316 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



cURL Request:

Request Body (cluster.json):

$ curl -k -v -XPOST "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs" \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization: Bearer $KUBE_TOKEN" \
-d "@cluster.json"

9.4.2 Create new Percona Server for MongoDB cluster

317 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Example

{
"apiVersion": "psmdb.percona.com/v1-5-0",
"kind": "PerconaServerMongoDB",
"metadata": {

"name": "my-cluster-name"
},
"spec": {

"image": "percona/percona-server-mongodb:4.2.8-8",
"imagePullPolicy": "Always",
"allowUnsafeConfigurations": false,
"updateStrategy": "SmartUpdate",
"secrets": {

"users": "my-cluster-name-secrets"
},
"pmm": {

"enabled": false,
"image": "percona/percona-server-mongodb-operator:1.5.0-pmm",
"serverHost": "monitoring-service"

},
"replsets": [

{
"name": "rs0",
"size": 3,
"affinity": {

"antiAffinityTopologyKey": "none"
},
"podDisruptionBudget": {

"maxUnavailable": 1
},
"expose": {

"enabled": false,
"exposeType": "LoadBalancer"

},
"arbiter": {

"enabled": false,
"size": 1,
"affinity": {

"antiAffinityTopologyKey": "none"
}

},
"resources": {

"limits": null
},
"volumeSpec": {

"persistentVolumeClaim": {
"storageClassName": "standard",
"accessModes": [

"ReadWriteOnce"
],
"resources": {

"requests": {
"storage": "3Gi"

}
}

}
}

}
],
"mongod": {

"net": {
"port": 27017,
"hostPort": 0

},
"security": {

"redactClientLogData": false,

9.4.2 Create new Percona Server for MongoDB cluster

318 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"enableEncryption": true,
"encryptionKeySecret": "my-cluster-name-mongodb-encryption-key",
"encryptionCipherMode": "AES256-CBC"

},
"setParameter": {

"ttlMonitorSleepSecs": 60,
"wiredTigerConcurrentReadTransactions": 128,
"wiredTigerConcurrentWriteTransactions": 128

},
"storage": {

"engine": "wiredTiger",
"inMemory": {

"engineConfig": {
"inMemorySizeRatio": 0.9

}
},
"mmapv1": {

"nsSize": 16,
"smallfiles": false

},
"wiredTiger": {

"engineConfig": {
"cacheSizeRatio": 0.5,
"directoryForIndexes": false,
"journalCompressor": "snappy"

},
"collectionConfig": {

"blockCompressor": "snappy"
},
"indexConfig": {

"prefixCompression": true
}

}
},
"operationProfiling": {

"mode": "slowOp",
"slowOpThresholdMs": 100,
"rateLimit": 100

}
},
"backup": {

"enabled": true,
"restartOnFailure": true,
"image": "percona/percona-server-mongodb-operator:1.5.0-backup",
"serviceAccountName": "percona-server-mongodb-operator",
"storages": null,
"tasks": null

}
}

}

9.4.2 Create new Percona Server for MongoDB cluster

319 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Inputs:

Metadata:

Name (String, min-length: 1) : contains name of cluster

Spec:

secrets[users] (String, min-length: 1) : contains name of secret for the users

allowUnsafeConfigurations (Boolean, Default: false) : allow unsafe configurations to run

image (String, min-length: 1) : name of the Percona Server for MongoDB cluster image

replsets:

name (String, min-length: 1) : name of monogo replicaset

size (Integer, min-value: 1) : contains size of MongoDB replicaset

expose[exposeType] (Integer, min-value: 1) : type of service to expose replicaset

arbiter (Object) : configuration for mongo arbiter

mongod:

net:

port (Integer, min-value: 0) : contains mongod container port

hostPort (Integer, min-value: 0) : host port to expose mongod on

security:

enableEncryption (Boolean, Default: true) : enable encrypting mongod storage

encryptionKeySecret (String, min-length: 1) : name of encryption key secret

encryptionCipherMode (String, min-length: 1) : type of encryption cipher to use

setParameter (Object): configure mongod enginer paramters

storage:

engine (String, min-length: 1, default “wiredTiger”): name of mongod storage engine

inMemory (Object) : wiredTiger engine configuration

wiredTiger (Object) : wiredTiger engine configuration

pmm:

serverHost (String, min-length: 1) : serivce name for monitoring

image (String, min-length: 1) : name of pmm image

backup:

image (String, min-length: 1) : name of MngoDB backup docker image

serviceAccountName (String, min-length: 1) name of service account to use for backup

storages (Object) : storage configuration object for backup

Response:

1. 

1. 

2. 

3. 

1. 

2. 

3. 

4. 

1. 

a. 

b. 

2. 

a. 

b. 

c. 

3. 

4. 

a. 

b. 

c. 

1. 

2. 

1. 

2. 

3. 

9.4.2 Create new Percona Server for MongoDB cluster

320 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Example

{
"apiVersion":"psmdb.percona.com/v1-5-0",
"kind":"PerconaServerMongoDB",
"metadata":{

"annotations":{
"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-0\",\"kind\":

\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},
\"spec\":{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-
operator:1.5.0-backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-operator\",
\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",
\"mongod\":{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":
100,\"slowOpThresholdMs\":100},\"security\":{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",
\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-key\",\"redactClientLogData\":false},\"setParameter\":
{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},
\"storage\":{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":{\"nsSize\":
16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":
{\"prefixCompression\":true}}}},\"pmm\":{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-
pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":
{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":{\"enabled\":false,\"exposeType\":
\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":{\"limits\":null},\"size\":
3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":{\"storage\":
\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-secrets\"},\"updateStrategy\":
\"SmartUpdate\"}}\n"

},
"creationTimestamp":"2020-07-24T14:27:58Z",
"generation":1,
"managedFields":[

{
"apiVersion":"psmdb.percona.com/v1-5-0",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:metadata":{
"f:annotations":{

".":{

},
"f:kubectl.kubernetes.io/last-applied-configuration":{

}
}

},
"f:spec":{

".":{

},
"f:allowUnsafeConfigurations":{

},
"f:backup":{

".":{

},
"f:enabled":{

},
"f:image":{

},
"f:restartOnFailure":{

},
"f:serviceAccountName":{

},

9.4.2 Create new Percona Server for MongoDB cluster

321 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"f:storages":{

},
"f:tasks":{

}
},
"f:image":{

},
"f:imagePullPolicy":{

},
"f:mongod":{

".":{

},
"f:net":{

".":{

},
"f:hostPort":{

},
"f:port":{

}
},
"f:operationProfiling":{

".":{

},
"f:mode":{

},
"f:rateLimit":{

},
"f:slowOpThresholdMs":{

}
},
"f:security":{

".":{

},
"f:enableEncryption":{

},
"f:encryptionCipherMode":{

},
"f:encryptionKeySecret":{

},
"f:redactClientLogData":{

}
},
"f:setParameter":{

".":{

},
"f:ttlMonitorSleepSecs":{

},
"f:wiredTigerConcurrentReadTransactions":{

},

9.4.2 Create new Percona Server for MongoDB cluster

322 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"f:wiredTigerConcurrentWriteTransactions":{

}
},
"f:storage":{

".":{

},
"f:engine":{

},
"f:inMemory":{

".":{

},
"f:engineConfig":{

".":{

},
"f:inMemorySizeRatio":{

}
}

},
"f:mmapv1":{

".":{

},
"f:nsSize":{

},
"f:smallfiles":{

}
},
"f:wiredTiger":{

".":{

},
"f:collectionConfig":{

".":{

},
"f:blockCompressor":{

}
},
"f:engineConfig":{

".":{

},
"f:cacheSizeRatio":{

},
"f:directoryForIndexes":{

},
"f:journalCompressor":{

}
},
"f:indexConfig":{

".":{

},
"f:prefixCompression":{

}
}

9.4.2 Create new Percona Server for MongoDB cluster

323 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



}
}

},
"f:pmm":{

".":{

},
"f:enabled":{

},
"f:image":{

},
"f:serverHost":{

}
},
"f:replsets":{

},
"f:secrets":{

".":{

},
"f:users":{

}
},
"f:updateStrategy":{

}
}

},
"manager":"kubectl",
"operation":"Update",
"time":"2020-07-24T14:27:58Z"

}
],
"name":"my-cluster-name",
"namespace":"default",
"resourceVersion":"1268922",
"selfLink":"/apis/psmdb.percona.com/v1-5-0/namespaces/default/perconaservermongodbs/my-cluster-name",
"uid":"5207e71a-c83f-4707-b892-63aa93fb615c"

},
"spec":{

"allowUnsafeConfigurations":false,
"backup":{

"enabled":true,
"image":"percona/percona-server-mongodb-operator:1.5.0-backup",
"restartOnFailure":true,
"serviceAccountName":"percona-server-mongodb-operator",
"storages":null,
"tasks":null

},
"image":"percona/percona-server-mongodb:4.2.8-8",
"imagePullPolicy":"Always",
"mongod":{

"net":{
"hostPort":0,
"port":27017

},
"operationProfiling":{

"mode":"slowOp",
"rateLimit":100,
"slowOpThresholdMs":100

},
"security":{

"enableEncryption":true,
"encryptionCipherMode":"AES256-CBC",

9.4.2 Create new Percona Server for MongoDB cluster

324 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"encryptionKeySecret":"my-cluster-name-mongodb-encryption-key",
"redactClientLogData":false

},
"setParameter":{

"ttlMonitorSleepSecs":60,
"wiredTigerConcurrentReadTransactions":128,
"wiredTigerConcurrentWriteTransactions":128

},
"storage":{

"engine":"wiredTiger",
"inMemory":{

"engineConfig":{
"inMemorySizeRatio":0.9

}
},
"mmapv1":{

"nsSize":16,
"smallfiles":false

},
"wiredTiger":{

"collectionConfig":{
"blockCompressor":"snappy"

},
"engineConfig":{

"cacheSizeRatio":0.5,
"directoryForIndexes":false,
"journalCompressor":"snappy"

},
"indexConfig":{

"prefixCompression":true
}

}
}

},
"pmm":{

"enabled":false,
"image":"percona/percona-server-mongodb-operator:1.5.0-pmm",
"serverHost":"monitoring-service"

},
"replsets":[

{
"affinity":{

"antiAffinityTopologyKey":"none"
},
"arbiter":{

"affinity":{
"antiAffinityTopologyKey":"none"

},
"enabled":false,
"size":1

},
"expose":{

"enabled":false,
"exposeType":"LoadBalancer"

},
"name":"rs0",
"podDisruptionBudget":{

"maxUnavailable":1
},
"resources":{

"limits":null
},
"size":3,
"volumeSpec":{

"persistentVolumeClaim":{
"accessModes":[

"ReadWriteOnce"
],
"resources":{

9.4.2 Create new Percona Server for MongoDB cluster

325 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.4.3 List Percona Server for MongoDB clusters

Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

Response:

"requests":{
"storage":"3Gi"

}
},
"storageClassName":"standard"

}
}

}
],
"secrets":{

"users":"my-cluster-name-secrets"
},
"updateStrategy":"SmartUpdate"

}
}

Lists all Percona Server for MongoDB clusters that exist in your kubernetes cluster

$ kubectl get psmdb

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs?limit=500

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XGET "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs?
limit=500" \

-H "Accept: application/json;as=Table;v=v1;g=meta.k8s.io,application/
json;as=Table;v=v1beta1;g=meta.k8s.io,application/json" \

-H "Authorization: Bearer $KUBE_TOKEN"

None

9.4.3 List Percona Server for MongoDB clusters

326 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Example

{
"kind":"Table",
"apiVersion":"meta.k8s.io/v1",
"metadata":{

"selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs",
"resourceVersion":"1273793"

},
"columnDefinitions":[

{
"name":"Name",
"type":"string",
"format":"name",
"description":"Name must be unique within a namespace. Is required when creating resources, although some 

resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for 
creation idempotence and configuration definition. Cannot be updated. More info: http://kubernetes.io/docs/user-guide/
identifiers#names",

"priority":0
},
{

"name":"Status",
"type":"string",
"format":"",
"description":"Custom resource definition column (in JSONPath format): .status.state",
"priority":0

},
{

"name":"Age",
"type":"date",
"format":"",
"description":"Custom resource definition column (in JSONPath format): .metadata.creationTimestamp",
"priority":0

}
],
"rows":[

{
"cells":[

"my-cluster-name",
"ready",
"37m"

],
"object":{

"kind":"PartialObjectMetadata",
"apiVersion":"meta.k8s.io/v1",
"metadata":{

"name":"my-cluster-name",
"namespace":"default",
"selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name",
"uid":"5207e71a-c83f-4707-b892-63aa93fb615c",
"resourceVersion":"1273788",
"generation":1,
"creationTimestamp":"2020-07-24T14:27:58Z",
"annotations":{

"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-0\",\"kind\":
\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},
\"spec\":{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-
operator:1.5.0-backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-operator\",
\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",
\"mongod\":{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":
100,\"slowOpThresholdMs\":100},\"security\":{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",
\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-key\",\"redactClientLogData\":false},\"setParameter\":
{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},
\"storage\":{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":{\"nsSize\":
16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":
{\"prefixCompression\":true}}}},\"pmm\":{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-

9.4.3 List Percona Server for MongoDB clusters

327 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":
{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":{\"enabled\":false,\"exposeType\":
\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":{\"limits\":null},\"size\":
3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":{\"storage\":
\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-secrets\"},\"updateStrategy\":
\"SmartUpdate\"}}\n"

},
"managedFields":[

{
"manager":"kubectl",
"operation":"Update",
"apiVersion":"psmdb.percona.com/v1-5-0",
"time":"2020-07-24T14:27:58Z",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:metadata":{
"f:annotations":{

".":{

},
"f:kubectl.kubernetes.io/last-applied-configuration":{

}
}

},
"f:spec":{

".":{

},
"f:allowUnsafeConfigurations":{

},
"f:backup":{

".":{

},
"f:enabled":{

},
"f:image":{

},
"f:serviceAccountName":{

}
},
"f:image":{

},
"f:imagePullPolicy":{

},
"f:mongod":{

".":{

},
"f:net":{

".":{

},
"f:port":{

}
},
"f:operationProfiling":{

".":{

},
"f:mode":{

9.4.3 List Percona Server for MongoDB clusters

328 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



},
"f:rateLimit":{

},
"f:slowOpThresholdMs":{

}
},
"f:security":{

".":{

},
"f:enableEncryption":{

},
"f:encryptionCipherMode":{

},
"f:encryptionKeySecret":{

}
},
"f:setParameter":{

".":{

},
"f:ttlMonitorSleepSecs":{

},
"f:wiredTigerConcurrentReadTransactions":{

},
"f:wiredTigerConcurrentWriteTransactions":{

}
},
"f:storage":{

".":{

},
"f:engine":{

},
"f:inMemory":{

".":{

},
"f:engineConfig":{

".":{

},
"f:inMemorySizeRatio":{

}
}

},
"f:mmapv1":{

".":{

},
"f:nsSize":{

}
},
"f:wiredTiger":{

".":{

},

9.4.3 List Percona Server for MongoDB clusters

329 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"f:collectionConfig":{
".":{

},
"f:blockCompressor":{

}
},
"f:engineConfig":{

".":{

},
"f:cacheSizeRatio":{

},
"f:journalCompressor":{

}
},
"f:indexConfig":{

".":{

},
"f:prefixCompression":{

}
}

}
}

},
"f:pmm":{

".":{

},
"f:image":{

},
"f:serverHost":{

}
},
"f:secrets":{

".":{

},
"f:users":{

}
},
"f:updateStrategy":{

}
}

}
},
{

"manager":"percona-server-mongodb-operator",
"operation":"Update",
"apiVersion":"psmdb.percona.com/v1",
"time":"2020-07-24T15:04:55Z",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:spec":{
"f:backup":{

"f:containerSecurityContext":{
".":{

},
"f:runAsNonRoot":{

9.4.3 List Percona Server for MongoDB clusters

330 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



},
"f:runAsUser":{

}
},
"f:podSecurityContext":{

".":{

},
"f:fsGroup":{

}
}

},
"f:clusterServiceDNSSuffix":{

},
"f:replsets":{

},
"f:runUid":{

},
"f:secrets":{

"f:ssl":{

},
"f:sslInternal":{

}
}

},
"f:status":{

".":{

},
"f:conditions":{

},
"f:observedGeneration":{

},
"f:replsets":{

".":{

},
"f:rs0":{

".":{

},
"f:ready":{

},
"f:size":{

},
"f:status":{

}
}

},
"f:state":{

}
}

}
}

]

9.4.3 List Percona Server for MongoDB clusters

331 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.4.4 Get status of Percona Server for MongoDB cluster

Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

Response:

}
}

}
]

}

Gets all information about specified Percona Server for MongoDB cluster

$ kubectl get psmdb/my-cluster-name -o json

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XGET "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-
cluster-name" \

-H "Accept: application/json" \
-H "Authorization: Bearer $KUBE_TOKEN"

None

9.4.4 Get status of Percona Server for MongoDB cluster

332 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Example

{
"apiVersion":"psmdb.percona.com/v1",
"kind":"PerconaServerMongoDB",
"metadata":{

"annotations":{
"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-0\",\"kind\":

\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},
\"spec\":{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-
operator:1.5.0-backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-operator\",
\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",
\"mongod\":{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":
100,\"slowOpThresholdMs\":100},\"security\":{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",
\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-key\",\"redactClientLogData\":false},\"setParameter\":
{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},
\"storage\":{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":{\"nsSize\":
16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":
{\"prefixCompression\":true}}}},\"pmm\":{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-
pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":
{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":{\"enabled\":false,\"exposeType\":
\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":{\"limits\":null},\"size\":
3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":{\"storage\":
\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-secrets\"},\"updateStrategy\":
\"SmartUpdate\"}}\n"

},
"creationTimestamp":"2020-07-24T14:27:58Z",
"generation":1,
"managedFields":[

{
"apiVersion":"psmdb.percona.com/v1-5-0",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:metadata":{
"f:annotations":{

".":{

},
"f:kubectl.kubernetes.io/last-applied-configuration":{

}
}

},
"f:spec":{

".":{

},
"f:allowUnsafeConfigurations":{

},
"f:backup":{

".":{

},
"f:enabled":{

},
"f:image":{

},
"f:serviceAccountName":{

}
},
"f:image":{

9.4.4 Get status of Percona Server for MongoDB cluster

333 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



},
"f:imagePullPolicy":{

},
"f:mongod":{

".":{

},
"f:net":{

".":{

},
"f:port":{

}
},
"f:operationProfiling":{

".":{

},
"f:mode":{

},
"f:rateLimit":{

},
"f:slowOpThresholdMs":{

}
},
"f:security":{

".":{

},
"f:enableEncryption":{

},
"f:encryptionCipherMode":{

},
"f:encryptionKeySecret":{

}
},
"f:setParameter":{

".":{

},
"f:ttlMonitorSleepSecs":{

},
"f:wiredTigerConcurrentReadTransactions":{

},
"f:wiredTigerConcurrentWriteTransactions":{

}
},
"f:storage":{

".":{

},
"f:engine":{

},
"f:inMemory":{

".":{

},

9.4.4 Get status of Percona Server for MongoDB cluster

334 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"f:engineConfig":{
".":{

},
"f:inMemorySizeRatio":{

}
}

},
"f:mmapv1":{

".":{

},
"f:nsSize":{

}
},
"f:wiredTiger":{

".":{

},
"f:collectionConfig":{

".":{

},
"f:blockCompressor":{

}
},
"f:engineConfig":{

".":{

},
"f:cacheSizeRatio":{

},
"f:journalCompressor":{

}
},
"f:indexConfig":{

".":{

},
"f:prefixCompression":{

}
}

}
}

},
"f:pmm":{

".":{

},
"f:image":{

},
"f:serverHost":{

}
},
"f:secrets":{

".":{

},
"f:users":{

}

9.4.4 Get status of Percona Server for MongoDB cluster

335 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



},
"f:updateStrategy":{

}
}

},
"manager":"kubectl",
"operation":"Update",
"time":"2020-07-24T14:27:58Z"

},
{

"apiVersion":"psmdb.percona.com/v1",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:spec":{
"f:backup":{

"f:containerSecurityContext":{
".":{

},
"f:runAsNonRoot":{

},
"f:runAsUser":{

}
},
"f:podSecurityContext":{

".":{

},
"f:fsGroup":{

}
}

},
"f:clusterServiceDNSSuffix":{

},
"f:replsets":{

},
"f:runUid":{

},
"f:secrets":{

"f:ssl":{

},
"f:sslInternal":{

}
}

},
"f:status":{

".":{

},
"f:conditions":{

},
"f:observedGeneration":{

},
"f:replsets":{

".":{

},
"f:rs0":{

9.4.4 Get status of Percona Server for MongoDB cluster

336 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



".":{

},
"f:ready":{

},
"f:size":{

},
"f:status":{

}
}

},
"f:state":{

}
}

},
"manager":"percona-server-mongodb-operator",
"operation":"Update",
"time":"2020-07-24T15:09:40Z"

}
],
"name":"my-cluster-name",
"namespace":"default",
"resourceVersion":"1274523",
"selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name",
"uid":"5207e71a-c83f-4707-b892-63aa93fb615c"

},
"spec":{

"allowUnsafeConfigurations":false,
"backup":{

"enabled":true,
"image":"percona/percona-server-mongodb-operator:1.5.0-backup",
"restartOnFailure":true,
"serviceAccountName":"percona-server-mongodb-operator",
"storages":null,
"tasks":null

},
"image":"percona/percona-server-mongodb:4.2.8-8",
"imagePullPolicy":"Always",
"mongod":{

"net":{
"hostPort":0,
"port":27017

},
"operationProfiling":{

"mode":"slowOp",
"rateLimit":100,
"slowOpThresholdMs":100

},
"security":{

"enableEncryption":true,
"encryptionCipherMode":"AES256-CBC",
"encryptionKeySecret":"my-cluster-name-mongodb-encryption-key",
"redactClientLogData":false

},
"setParameter":{

"ttlMonitorSleepSecs":60,
"wiredTigerConcurrentReadTransactions":128,
"wiredTigerConcurrentWriteTransactions":128

},
"storage":{

"engine":"wiredTiger",
"inMemory":{

"engineConfig":{
"inMemorySizeRatio":0.9

}

9.4.4 Get status of Percona Server for MongoDB cluster

337 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



},
"mmapv1":{

"nsSize":16,
"smallfiles":false

},
"wiredTiger":{

"collectionConfig":{
"blockCompressor":"snappy"

},
"engineConfig":{

"cacheSizeRatio":0.5,
"directoryForIndexes":false,
"journalCompressor":"snappy"

},
"indexConfig":{

"prefixCompression":true
}

}
}

},
"pmm":{

"enabled":false,
"image":"percona/percona-server-mongodb-operator:1.5.0-pmm",
"serverHost":"monitoring-service"

},
"replsets":[

{
"affinity":{

"antiAffinityTopologyKey":"none"
},
"arbiter":{

"affinity":{
"antiAffinityTopologyKey":"none"

},
"enabled":false,
"size":1

},
"expose":{

"enabled":false,
"exposeType":"LoadBalancer"

},
"name":"rs0",
"podDisruptionBudget":{

"maxUnavailable":1
},
"resources":{

"limits":null
},
"size":3,
"volumeSpec":{

"persistentVolumeClaim":{
"accessModes":[

"ReadWriteOnce"
],
"resources":{

"requests":{
"storage":"3Gi"

}
},
"storageClassName":"standard"

}
}

}
],
"secrets":{

"users":"my-cluster-name-secrets"
},
"updateStrategy":"SmartUpdate"

},

9.4.4 Get status of Percona Server for MongoDB cluster

338 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"status":{
"conditions":[

{
"lastTransitionTime":"2020-07-24T14:28:03Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:28:39Z",
"status":"True",
"type":"Error"

},
{

"lastTransitionTime":"2020-07-24T14:28:41Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:28:41Z",
"status":"True",
"type":"Error"

},
{

"lastTransitionTime":"2020-07-24T14:29:10Z",
"status":"True",
"type":"ClusterReady"

},
{

"lastTransitionTime":"2020-07-24T14:49:46Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:50:00Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:52:31Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:52:43Z",
"status":"True",
"type":"Error"

},
{

"lastTransitionTime":"2020-07-24T14:53:01Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:53:05Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:53:05Z",
"status":"True",
"type":"ClusterReady"

}
],
"observedGeneration":1,
"replsets":{

"rs0":{
"ready":3,
"size":3,
"status":"ready"

9.4.4 Get status of Percona Server for MongoDB cluster

339 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.4.5 Scale up/down Percona Server for MongoDB cluster

Description:

Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body:

Input:

spec:

replsets

size (Int or String, Defaults: 3): Specifiy the sie of the replsets cluster to scale up or down to

Response:

}
},
"state":"ready"

}
}

Increase or decrease the size of the Percona Server for MongoDB cluster nodes to fit the current high availability needs

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
"spec": {"replsets":{ "size": "5" }
}}'

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPATCH "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/
my-cluster-name" \

-H "Authorization: Bearer $KUBE_TOKEN" \
-H "Content-Type: application/merge-patch+json"
-H "Accept: application/json" \
-d '{

                  "spec": {"replsets":{ "size": "5" }
                  }}'

Example

{
"spec": {"replsets":{ "size": "5" }
}}

1. 

9.4.5 Scale up/down Percona Server for MongoDB cluster

340 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Example

{
"apiVersion":"psmdb.percona.com/v1",
"kind":"PerconaServerMongoDB",
"metadata":{

"annotations":{
"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-0\",\"kind\":

\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},
\"spec\":{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-
operator:1.5.0-backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-operator\",
\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",
\"mongod\":{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":
100,\"slowOpThresholdMs\":100},\"security\":{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",
\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-key\",\"redactClientLogData\":false},\"setParameter\":
{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},
\"storage\":{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":{\"nsSize\":
16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":
{\"prefixCompression\":true}}}},\"pmm\":{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-
pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":
{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":{\"enabled\":false,\"exposeType\":
\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":{\"limits\":null},\"size\":
3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":{\"storage\":
\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-secrets\"},\"updateStrategy\":
\"SmartUpdate\"}}\n"

},
"creationTimestamp":"2020-07-24T14:27:58Z",
"generation":4,
"managedFields":[

{
"apiVersion":"psmdb.percona.com/v1-5-0",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:metadata":{
"f:annotations":{

".":{

},
"f:kubectl.kubernetes.io/last-applied-configuration":{

}
}

},
"f:spec":{

".":{

},
"f:allowUnsafeConfigurations":{

},
"f:backup":{

".":{

},
"f:enabled":{

},
"f:image":{

},
"f:serviceAccountName":{

}
},
"f:image":{

9.4.5 Scale up/down Percona Server for MongoDB cluster

341 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



},
"f:imagePullPolicy":{

},
"f:mongod":{

".":{

},
"f:net":{

".":{

},
"f:port":{

}
},
"f:operationProfiling":{

".":{

},
"f:mode":{

},
"f:rateLimit":{

},
"f:slowOpThresholdMs":{

}
},
"f:security":{

".":{

},
"f:enableEncryption":{

},
"f:encryptionCipherMode":{

},
"f:encryptionKeySecret":{

}
},
"f:setParameter":{

".":{

},
"f:ttlMonitorSleepSecs":{

},
"f:wiredTigerConcurrentReadTransactions":{

},
"f:wiredTigerConcurrentWriteTransactions":{

}
},
"f:storage":{

".":{

},
"f:engine":{

},
"f:inMemory":{

".":{

},

9.4.5 Scale up/down Percona Server for MongoDB cluster

342 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"f:engineConfig":{
".":{

},
"f:inMemorySizeRatio":{

}
}

},
"f:mmapv1":{

".":{

},
"f:nsSize":{

}
},
"f:wiredTiger":{

".":{

},
"f:collectionConfig":{

".":{

},
"f:blockCompressor":{

}
},
"f:engineConfig":{

".":{

},
"f:cacheSizeRatio":{

},
"f:journalCompressor":{

}
},
"f:indexConfig":{

".":{

},
"f:prefixCompression":{

}
}

}
}

},
"f:pmm":{

".":{

},
"f:image":{

},
"f:serverHost":{

}
},
"f:secrets":{

".":{

},
"f:users":{

}

9.4.5 Scale up/down Percona Server for MongoDB cluster

343 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



},
"f:updateStrategy":{

}
}

},
"manager":"kubectl",
"operation":"Update",
"time":"2020-07-24T14:27:58Z"

},
{

"apiVersion":"psmdb.percona.com/v1",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:spec":{
"f:backup":{

"f:containerSecurityContext":{
".":{

},
"f:runAsNonRoot":{

},
"f:runAsUser":{

}
},
"f:podSecurityContext":{

".":{

},
"f:fsGroup":{

}
}

},
"f:clusterServiceDNSSuffix":{

},
"f:runUid":{

},
"f:secrets":{

"f:ssl":{

},
"f:sslInternal":{

}
}

},
"f:status":{

".":{

},
"f:conditions":{

},
"f:observedGeneration":{

},
"f:replsets":{

".":{

},
"f:rs0":{

".":{

},

9.4.5 Scale up/down Percona Server for MongoDB cluster

344 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"f:ready":{

},
"f:size":{

},
"f:status":{

}
}

},
"f:state":{

}
}

},
"manager":"percona-server-mongodb-operator",
"operation":"Update",
"time":"2020-07-24T15:35:14Z"

},
{

"apiVersion":"psmdb.percona.com/v1",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:spec":{
"f:replsets":{

".":{

},
"f:size":{

}
}

}
},
"manager":"kubectl",
"operation":"Update",
"time":"2020-07-24T15:43:19Z"

}
],
"name":"my-cluster-name",
"namespace":"default",
"resourceVersion":"1279009",
"selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name",
"uid":"5207e71a-c83f-4707-b892-63aa93fb615c"

},
"spec":{

"allowUnsafeConfigurations":false,
"backup":{

"enabled":true,
"image":"percona/percona-server-mongodb-operator:1.5.0-backup",
"restartOnFailure":true,
"serviceAccountName":"percona-server-mongodb-operator",
"storages":null,
"tasks":null

},
"image":"percona/percona-server-mongodb:4.2.8-8",
"imagePullPolicy":"Always",
"mongod":{

"net":{
"hostPort":0,
"port":27017

},
"operationProfiling":{

"mode":"slowOp",
"rateLimit":100,
"slowOpThresholdMs":100

},
"security":{

9.4.5 Scale up/down Percona Server for MongoDB cluster

345 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"enableEncryption":true,
"encryptionCipherMode":"AES256-CBC",
"encryptionKeySecret":"my-cluster-name-mongodb-encryption-key",
"redactClientLogData":false

},
"setParameter":{

"ttlMonitorSleepSecs":60,
"wiredTigerConcurrentReadTransactions":128,
"wiredTigerConcurrentWriteTransactions":128

},
"storage":{

"engine":"wiredTiger",
"inMemory":{

"engineConfig":{
"inMemorySizeRatio":0.9

}
},
"mmapv1":{

"nsSize":16,
"smallfiles":false

},
"wiredTiger":{

"collectionConfig":{
"blockCompressor":"snappy"

},
"engineConfig":{

"cacheSizeRatio":0.5,
"directoryForIndexes":false,
"journalCompressor":"snappy"

},
"indexConfig":{

"prefixCompression":true
}

}
}

},
"pmm":{

"enabled":false,
"image":"percona/percona-server-mongodb-operator:1.5.0-pmm",
"serverHost":"monitoring-service"

},
"replsets":{

"size":"5"
},
"secrets":{

"users":"my-cluster-name-secrets"
},
"updateStrategy":"SmartUpdate"

},
"status":{

"conditions":[
{

"lastTransitionTime":"2020-07-24T14:28:03Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:28:39Z",
"status":"True",
"type":"Error"

},
{

"lastTransitionTime":"2020-07-24T14:28:41Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:28:41Z",
"status":"True",

9.4.5 Scale up/down Percona Server for MongoDB cluster

346 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.4.6 Update Percona Server for MongoDB cluster image

Description:

Kubectl Command:

"type":"Error"
},
{

"lastTransitionTime":"2020-07-24T14:29:10Z",
"status":"True",
"type":"ClusterReady"

},
{

"lastTransitionTime":"2020-07-24T14:49:46Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:50:00Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:52:31Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:52:43Z",
"status":"True",
"type":"Error"

},
{

"lastTransitionTime":"2020-07-24T14:53:01Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:53:05Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:53:05Z",
"status":"True",
"type":"ClusterReady"

}
],
"observedGeneration":1,
"replsets":{

"rs0":{
"ready":3,
"size":3,
"status":"ready"

}
},
"state":"ready"

}
}

Change the image of Percona Server for MongoDB containers inside the cluster

9.4.6 Update Percona Server for MongoDB cluster image

347 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



URL:

Authentication:

cURL Request:

Request Body:

Input:

spec:

psmdb:

image (String, min-length: 1) : name of the image to update for Percona Server for MongoDB

Response:

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{
"spec": {"psmdb":{ "image": "percona/percona-server-mongodb-operator:1.4.0-mongod4.2" }
}}'

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPATCH "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/
my-cluster-name" \

-H "Authorization: Bearer $KUBE_TOKEN" \
-H "Accept: application/json" \
-H "Content-Type: application/merge-patch+json"
-d '{

              "spec": {"psmdb":{ "image": "percona/percona-server-mongodb-operator:1.4.0-mongod4.2" }
              }}'

Example

{
"spec": { "image ": "percona/percona-server-mongodb:4.2.8-8" }
}

1. 

9.4.6 Update Percona Server for MongoDB cluster image

348 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Example

{
"apiVersion":"psmdb.percona.com/v1",
"kind":"PerconaServerMongoDB",
"metadata":{

"annotations":{
"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1-5-0\",\"kind\":

\"PerconaServerMongoDB\",\"metadata\":{\"annotations\":{},\"name\":\"my-cluster-name\",\"namespace\":\"default\"},
\"spec\":{\"allowUnsafeConfigurations\":false,\"backup\":{\"enabled\":true,\"image\":\"percona/percona-server-mongodb-
operator:1.5.0-backup\",\"restartOnFailure\":true,\"serviceAccountName\":\"percona-server-mongodb-operator\",
\"storages\":null,\"tasks\":null},\"image\":\"percona/percona-server-mongodb:4.2.8-8\",\"imagePullPolicy\":\"Always\",
\"mongod\":{\"net\":{\"hostPort\":0,\"port\":27017},\"operationProfiling\":{\"mode\":\"slowOp\",\"rateLimit\":
100,\"slowOpThresholdMs\":100},\"security\":{\"enableEncryption\":true,\"encryptionCipherMode\":\"AES256-CBC\",
\"encryptionKeySecret\":\"my-cluster-name-mongodb-encryption-key\",\"redactClientLogData\":false},\"setParameter\":
{\"ttlMonitorSleepSecs\":60,\"wiredTigerConcurrentReadTransactions\":128,\"wiredTigerConcurrentWriteTransactions\":128},
\"storage\":{\"engine\":\"wiredTiger\",\"inMemory\":{\"engineConfig\":{\"inMemorySizeRatio\":0.9}},\"mmapv1\":{\"nsSize\":
16,\"smallfiles\":false},\"wiredTiger\":{\"collectionConfig\":{\"blockCompressor\":\"snappy\"},\"engineConfig\":
{\"cacheSizeRatio\":0.5,\"directoryForIndexes\":false,\"journalCompressor\":\"snappy\"},\"indexConfig\":
{\"prefixCompression\":true}}}},\"pmm\":{\"enabled\":false,\"image\":\"percona/percona-server-mongodb-operator:1.5.0-
pmm\",\"serverHost\":\"monitoring-service\"},\"replsets\":[{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"arbiter\":
{\"affinity\":{\"antiAffinityTopologyKey\":\"none\"},\"enabled\":false,\"size\":1},\"expose\":{\"enabled\":false,\"exposeType\":
\"LoadBalancer\"},\"name\":\"rs0\",\"podDisruptionBudget\":{\"maxUnavailable\":1},\"resources\":{\"limits\":null},\"size\":
3,\"volumeSpec\":{\"persistentVolumeClaim\":{\"accessModes\":[\"ReadWriteOnce\"],\"resources\":{\"requests\":{\"storage\":
\"3Gi\"}},\"storageClassName\":\"standard\"}}}],\"secrets\":{\"users\":\"my-cluster-name-secrets\"},\"updateStrategy\":
\"SmartUpdate\"}}\n"

},
"creationTimestamp":"2020-07-24T14:27:58Z",
"generation":5,
"managedFields":[

{
"apiVersion":"psmdb.percona.com/v1-5-0",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:metadata":{
"f:annotations":{

".":{

},
"f:kubectl.kubernetes.io/last-applied-configuration":{

}
}

},
"f:spec":{

".":{

},
"f:allowUnsafeConfigurations":{

},
"f:backup":{

".":{

},
"f:enabled":{

},
"f:image":{

},
"f:serviceAccountName":{

}
},
"f:image":{

9.4.6 Update Percona Server for MongoDB cluster image

349 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



},
"f:imagePullPolicy":{

},
"f:mongod":{

".":{

},
"f:net":{

".":{

},
"f:port":{

}
},
"f:operationProfiling":{

".":{

},
"f:mode":{

},
"f:rateLimit":{

},
"f:slowOpThresholdMs":{

}
},
"f:security":{

".":{

},
"f:enableEncryption":{

},
"f:encryptionCipherMode":{

},
"f:encryptionKeySecret":{

}
},
"f:setParameter":{

".":{

},
"f:ttlMonitorSleepSecs":{

},
"f:wiredTigerConcurrentReadTransactions":{

},
"f:wiredTigerConcurrentWriteTransactions":{

}
},
"f:storage":{

".":{

},
"f:engine":{

},
"f:inMemory":{

".":{

},

9.4.6 Update Percona Server for MongoDB cluster image

350 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"f:engineConfig":{
".":{

},
"f:inMemorySizeRatio":{

}
}

},
"f:mmapv1":{

".":{

},
"f:nsSize":{

}
},
"f:wiredTiger":{

".":{

},
"f:collectionConfig":{

".":{

},
"f:blockCompressor":{

}
},
"f:engineConfig":{

".":{

},
"f:cacheSizeRatio":{

},
"f:journalCompressor":{

}
},
"f:indexConfig":{

".":{

},
"f:prefixCompression":{

}
}

}
}

},
"f:pmm":{

".":{

},
"f:image":{

},
"f:serverHost":{

}
},
"f:secrets":{

".":{

},
"f:users":{

}

9.4.6 Update Percona Server for MongoDB cluster image

351 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



},
"f:updateStrategy":{

}
}

},
"manager":"kubectl",
"operation":"Update",
"time":"2020-07-24T14:27:58Z"

},
{

"apiVersion":"psmdb.percona.com/v1",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:spec":{
"f:backup":{

"f:containerSecurityContext":{
".":{

},
"f:runAsNonRoot":{

},
"f:runAsUser":{

}
},
"f:podSecurityContext":{

".":{

},
"f:fsGroup":{

}
}

},
"f:clusterServiceDNSSuffix":{

},
"f:runUid":{

},
"f:secrets":{

"f:ssl":{

},
"f:sslInternal":{

}
}

},
"f:status":{

".":{

},
"f:conditions":{

},
"f:observedGeneration":{

},
"f:replsets":{

".":{

},
"f:rs0":{

".":{

},

9.4.6 Update Percona Server for MongoDB cluster image

352 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"f:ready":{

},
"f:size":{

},
"f:status":{

}
}

},
"f:state":{

}
}

},
"manager":"percona-server-mongodb-operator",
"operation":"Update",
"time":"2020-07-24T15:35:14Z"

},
{

"apiVersion":"psmdb.percona.com/v1",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:spec":{
"f:image ":{

},
"f:replsets":{

".":{

},
"f:size":{

}
}

}
},
"manager":"kubectl",
"operation":"Update",
"time":"2020-07-27T12:21:39Z"

}
],
"name":"my-cluster-name",
"namespace":"default",
"resourceVersion":"1279853",
"selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbs/my-cluster-name",
"uid":"5207e71a-c83f-4707-b892-63aa93fb615c"

},
"spec":{

"allowUnsafeConfigurations":false,
"backup":{

"enabled":true,
"image":"percona/percona-server-mongodb-operator:1.5.0-backup",
"restartOnFailure":true,
"serviceAccountName":"percona-server-mongodb-operator",
"storages":null,
"tasks":null

},
"image ":"percona/percona-server-mongodb:4.2.8-8",
"imagePullPolicy":"Always",
"mongod":{

"net":{
"hostPort":0,
"port":27017

},
"operationProfiling":{

"mode":"slowOp",
"rateLimit":100,

9.4.6 Update Percona Server for MongoDB cluster image

353 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



"slowOpThresholdMs":100
},
"security":{

"enableEncryption":true,
"encryptionCipherMode":"AES256-CBC",
"encryptionKeySecret":"my-cluster-name-mongodb-encryption-key",
"redactClientLogData":false

},
"setParameter":{

"ttlMonitorSleepSecs":60,
"wiredTigerConcurrentReadTransactions":128,
"wiredTigerConcurrentWriteTransactions":128

},
"storage":{

"engine":"wiredTiger",
"inMemory":{

"engineConfig":{
"inMemorySizeRatio":0.9

}
},
"mmapv1":{

"nsSize":16,
"smallfiles":false

},
"wiredTiger":{

"collectionConfig":{
"blockCompressor":"snappy"

},
"engineConfig":{

"cacheSizeRatio":0.5,
"directoryForIndexes":false,
"journalCompressor":"snappy"

},
"indexConfig":{

"prefixCompression":true
}

}
}

},
"pmm":{

"enabled":false,
"image":"percona/percona-server-mongodb-operator:1.5.0-pmm",
"serverHost":"monitoring-service"

},
"replsets":{

"size":"5"
},
"secrets":{

"users":"my-cluster-name-secrets"
},
"updateStrategy":"SmartUpdate"

},
"status":{

"conditions":[
{

"lastTransitionTime":"2020-07-24T14:28:03Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:28:39Z",
"status":"True",
"type":"Error"

},
{

"lastTransitionTime":"2020-07-24T14:28:41Z",
"status":"True",
"type":"ClusterInitializing"

},

9.4.6 Update Percona Server for MongoDB cluster image

354 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.4.7 Backup Percona Server for MongoDB cluster

Description:

{
"lastTransitionTime":"2020-07-24T14:28:41Z",
"status":"True",
"type":"Error"

},
{

"lastTransitionTime":"2020-07-24T14:29:10Z",
"status":"True",
"type":"ClusterReady"

},
{

"lastTransitionTime":"2020-07-24T14:49:46Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:50:00Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:52:31Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:52:43Z",
"status":"True",
"type":"Error"

},
{

"lastTransitionTime":"2020-07-24T14:53:01Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:53:05Z",
"status":"True",
"type":"ClusterInitializing"

},
{

"lastTransitionTime":"2020-07-24T14:53:05Z",
"status":"True",
"type":"ClusterReady"

}
],
"observedGeneration":1,
"replsets":{

"rs0":{
"ready":3,
"size":3,
"status":"ready"

}
},
"state":"ready"

}
}

Takes a backup of the Percona Server for MongoDB cluster containers data to be able to recover from disasters or make a 
roll-back later

9.4.7 Backup Percona Server for MongoDB cluster

355 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body (backup.json):

Input:

metadata:

name(String, min-length:1) : name of backup to create

spec:

Response:

$ kubectl apply -f percona-server-mongodb-operator/deploy/backup/backup.yaml

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbbackups

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPOST "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/
perconaservermongodbbackups" \

-H "Accept: application/json" \
-H "Content-Type: application/json" \
-d "@backup.json" -H "Authorization: Bearer $KUBE_TOKEN"

Example

{
"apiVersion":"psmdb.percona.com/v1",
"kind":"PerconaServerMongoDBBackup",
"metadata":{

"name":"backup1",
"namespace":"default"

},
"spec":{

"psmdbCluster":"my-cluster-name",
"storageName":"s3-us-west"

}
}

1. 

1. 

1. psmdbCluster(String, min-length:1) : `name of Percona Server for MongoDB cluster`

2. storageName(String, min-length:1) : `name of storage claim to use`

9.4.7 Backup Percona Server for MongoDB cluster

356 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.4.8 Restore Percona Server for MongoDB cluster

Description:

Example

{
"apiVersion":"psmdb.percona.com/v1",
"kind":"PerconaServerMongoDBBackup",
"metadata":{

"annotations":{
"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1\",\"kind\":

\"PerconaServerMongoDBBackup\",\"metadata\":{\"annotations\":{},\"name\":\"backup1\",\"namespace\":\"default\"},
\"spec\":{\"psmdbCluster\":\"my-cluster-name\",\"storageName\":\"s3-us-west\"}}\n"

},
"creationTimestamp":"2020-07-27T13:45:43Z",
"generation":1,
"managedFields":[

{
"apiVersion":"psmdb.percona.com/v1",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:metadata":{
"f:annotations":{

".":{

},
"f:kubectl.kubernetes.io/last-applied-configuration":{

}
}

},
"f:spec":{

".":{

},
"f:psmdbCluster":{

},
"f:storageName":{

}
}

},
"manager":"kubectl",
"operation":"Update",
"time":"2020-07-27T13:45:43Z"

}
],
"name":"backup1",
"namespace":"default",
"resourceVersion":"1290243",
"selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbbackups/backup1",
"uid":"e695d1c7-898e-44b0-b356-537284f6c046"

},
"spec":{

"psmdbCluster":"my-cluster-name",
"storageName":"s3-us-west"

}
}

Restores Percona Server for MongoDB cluster data to an earlier version to recover from a problem or to make a roll-back

9.4.8 Restore Percona Server for MongoDB cluster

357 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Kubectl Command:

URL:

Authentication:

cURL Request:

Request Body (restore.json):

Input:

metadata:

name(String, min-length:1): name of restore to create

spec:

Response:

$ kubectl apply -f percona-server-mongodb-operator/deploy/backup/restore.yaml

https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbrestores

Authorization: Bearer $KUBE_TOKEN

$ curl -k -v -XPOST "https://$API_SERVER/apis/psmdb.percona.com/v1/namespaces/default/
perconaservermongodbrestores" \

-H "Accept: application/json" \
-H "Content-Type: application/json" \
-d "@restore.json" \
-H "Authorization: Bearer $KUBE_TOKEN"

Example

{
"apiVersion":"psmdb.percona.com/v1",
"kind":"PerconaServerMongoDBRestore",
"metadata":{

"name":"restore1",
"namespace":"default"

},
"spec":{

"backupName":"backup1",
"clusterName":"my-cluster-name"

}
}

1. 

1. 

1. clusterName(String, min-length:1) : `name of Percona Server for MongoDB cluster`

2. backupName(String, min-length:1) : `name of backup to restore from`

9.4.8 Restore Percona Server for MongoDB cluster

358 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Example

{
"apiVersion":"psmdb.percona.com/v1",
"kind":"PerconaServerMongoDBRestore",
"metadata":{

"annotations":{
"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"psmdb.percona.com/v1\",\"kind\":

\"PerconaServerMongoDBRestore\",\"metadata\":{\"annotations\":{},\"name\":\"restore1\",\"namespace\":\"default\"},
\"spec\":{\"backupName\":\"backup1\",\"clusterName\":\"my-cluster-name\"}}\n"

},
"creationTimestamp":"2020-07-27T13:52:56Z",
"generation":1,
"managedFields":[

{
"apiVersion":"psmdb.percona.com/v1",
"fieldsType":"FieldsV1",
"fieldsV1":{

"f:metadata":{
"f:annotations":{

".":{

},
"f:kubectl.kubernetes.io/last-applied-configuration":{

}
}

},
"f:spec":{

".":{

},
"f:backupName":{

},
"f:clusterName":{

}
}

},
"manager":"kubectl",
"operation":"Update",
"time":"2020-07-27T13:52:56Z"

}
],
"name":"restore1",
"namespace":"default",
"resourceVersion":"1291198",
"selfLink":"/apis/psmdb.percona.com/v1/namespaces/default/perconaservermongodbrestores/restore1",
"uid":"17e982fe-ac41-47f4-afba-fea380b0c76e"

},
"spec":{

"backupName":"backup1",
"clusterName":"my-cluster-name"

}
}

9.4.8 Restore Percona Server for MongoDB cluster

359 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.4.9 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-04-09 

9.4.9 Get expert help

360 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.5 Frequently Asked Questions

9.5.1 Why do we need to follow “the Kubernetes way” when Kubernetes was never intended to run

databases?

As it is well known, the Kubernetes approach is targeted at stateless applications but provides ways to store state (in
Persistent Volumes, etc.) if the application needs it. Generally, a stateless mode of operation is supposed to provide
better safety, sustainability, and scalability, it makes the already-deployed components interchangeable. You can find
more about substantial benefits brought by Kubernetes to databases in this blog post .

The architecture of state-centric applications (like databases) should be composed in a right way to avoid crashes, data
loss,  or  data  inconsistencies  during  hardware  failure.  Percona  Operator  for  MongoDB  provides  out-of-the-box
functionality  to  automate  provisioning  and  management  of  highly  available  MongoDB  database  clusters  on
Kubernetes.

9.5.2 How can I contact the developers?

The best place to discuss Percona Operator for MongoDB with developers and other community members is the
community forum .

If you would like to report a bug, use the Percona Operator for MongoDB project in JIRA .

9.5.3 What is the difference between the Operator quickstart and advanced installation ways?

As you have noticed, the installation section of docs contains both quickstart and advanced installation guides.

The quickstart guide is simpler. It has fewer installation steps in favor of predefined default choices. Particularly, in
advanced installation guides, you separately apply the Custom Resource Definition and Role-based Access Control
configuration files with possible edits in them. At the same time, quickstart guides rely on the all-inclusive bundle
configuration.

At  another  point,  quickstart  guides  are  related  to  specific  platforms  you  are  going  to  use  (Minikube,  Google
Kubernetes Engine, etc.) and therefore include some additional steps needed for these platforms.

Generally, rely on the quickstart guide if you are a beginner user of the specific platform and/or you are new to the
Percona Operator for MongoDB as a whole.

9.5.4 Which versions of MongoDB does the Operator support?

Percona Operator for MongoDB works with Percona Server for MongoDB 5.0, 6.0, and 7.0, and the exact version is
determined by the Docker image in use.

Percona-certified Docker images that can be used by the Operator are listed  here. For example, Percona Server for
MongoDB 6.0 is supported with the following recommended version: 6.0.18-15. More details on the exact Percona
Server for MongoDB version can be found in the release notes (5.0 , 6.0 , and 7.0 ).

9.5.5 How can I add custom sidecar containers to my cluster?

The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this feature to run
debugging  tools,  some  specific  monitoring  solutions,  etc.  Add  such  sidecar  container  to  the  deploy/cr.yaml

configuration file, specifying its name and image, and possibly a command to run:

spec:
replsets:

9.5 Frequently Asked Questions

361 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



You can add sidecars  subsection to replsets , sharding.configsvrReplSet , and sharding.mongos  sections.

Custom sidecar  containers  can easily  access  other  components  of  your  cluster  .  Therefore they should be used

carefully and by experienced users only.

Find more information on sidecar containers in the appropriate documentation page.

9.5.6 How to provoke the initial sync of a Pod?

There are certain situations where it might be necessary to delete all MongoDB instance data to force the resync. For
example, there may be the following reasons:

rebuilding the node to defragment the database,

recreating the member failing to sync due to some bug.

In the case of a “regular” MongoDB, wiping the dbpath would trigger such resync. In the case of a MongoDB cluster
controlled by the Operator, you will need to do the following steps:

Find out the names of the Persistent Volume Claim and Pod you are going to delete (use kubectl get pvc  command for
PVC and kubectl get pod  one for Pods).

Delete the appropriate PVC and Pod. For example, wiping out the my-cluster-name-rs0-2  Pod should look as follows:

The Operator will automatically recreate the needed Pod and PVC after deletion.

9.5.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

- name: rs0
....
sidecars:
- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: rs-sidecar-1

....

Note

• 

• 

1. 

2. 

$ kubectl delete pod/my-cluster-name-rs0-2 pvc/mongod-data-my-cluster-name-rs0-2

Last update: 2024-05-24 

9.5.6 How to provoke the initial sync of a Pod?

362 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.6 Copyright and licensing information

9.6.1 Documentation licensing

Percona Operator for MongoDB documentation is (C)2009-2023 Percona LLC and/or its affiliates and is distributed
under the Creative Commons Attribution 4.0 International License .

9.6.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-04-09 

9.6 Copyright and licensing information

363 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.7 Trademark policy

This Trademark Policy  is to ensure that users of Percona-branded products or services know that what they receive

has really been developed, approved, tested and maintained by Percona. Trademarks help to prevent confusion in the
marketplace, by distinguishing one company’s or person’s products and services from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB, XtraBackup, Percona
XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons and logos associated with these marks.
Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service, website, or
other use is not permitted without Percona’s written permission with the following three limited exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona fide Percona
product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”), you may use
the appropriate Percona mark when distributing a verbatim copy of that product in accordance with the terms and
conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona software that has
been modified with minor changes for the sole purpose of allowing the software to operate on an operating system or
hardware platform for which Percona has not yet released the software, provided that those third party changes do
not affect the behavior, functionality, features, design or performance of the software. Users who acquire this Percona-
branded software receive substantially exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example,  if  Percona
believes that your modification is beyond the scope of the limited license granted in this Policy or that your use of the
Percona  mark  is  detrimental  to  Percona,  Percona  will  revoke  this  authorization.  Upon  revocation,  you  must
immediately cease using the applicable Percona mark. If you do not immediately cease using the Percona mark upon
revocation, Percona may take action to protect its rights and interests in the Percona mark. Percona does not grant
any license to use any Percona mark for any other modified versions of Percona software; such use will require our
prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate, modify or
otherwise use any Percona mark as part of your own brand. For example, if XYZ creates a modified version of the
Percona Server, XYZ may not brand that modification as “XYZ Percona Server” or “Percona XYZ Server”, even if that
modification otherwise complies with the third exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as amended from
time to time. For instance, any mention of Percona trademarks should include the full trademarked name, with proper
spelling and capitalization, along with attribution of ownership to Percona Inc. For example, the full proper name for
XtraBackup is Percona XtraBackup. However, it is acceptable to omit the word “Percona” for brevity on the second and
subsequent uses, where such omission does not cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy,  please contact
trademarks@percona.com for assistance and we will do our very best to be helpful.

9.7 Trademark policy

364 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



9.7.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-04-09 

9.7.1 Get expert help

365 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10. Release notes

10.1 Percona Operator for MongoDB Release Notes

Percona Operator for MongoDB 1.18.0 (2024-11-14)

Percona Operator for MongoDB 1.17.0 (2024-09-09)

Percona Operator for MongoDB 1.16.2 (2024-07-23)

Percona Operator for MongoDB 1.16.1 (2024-06-24)

Percona Operator for MongoDB 1.16.0 (2024-05-24)

Percona Operator for MongoDB 1.15.0 (2023-10-09)

Percona Operator for MongoDB 1.14.0 (2023-03-13)

Percona Operator for MongoDB 1.13.0 (2022-09-08)

Percona Operator for MongoDB 1.12.0 (2022-05-05)

Percona Distribution for MongoDB Operator 1.11.0 (2021-12-21)

Percona Distribution for MongoDB Operator 1.10.0 (2021-09-30)

Percona Distribution for MongoDB Operator 1.9.0 (2021-07-29)

Percona Kubernetes Operator for Percona Server for MongoDB 1.8.0 (2021-05-06)

Percona Kubernetes Operator for Percona Server for MongoDB 1.7.0 (2021-03-08)

Percona Kubernetes Operator for Percona Server for MongoDB 1.6.0 (2020-12-22)

Percona Kubernetes Operator for Percona Server for MongoDB 1.5.0 (2020-09-07)

Percona Kubernetes Operator for Percona Server for MongoDB 1.4.0 (2020-03-31)

Percona Kubernetes Operator for Percona Server for MongoDB 1.3.0 (2019-12-11)

Percona Kubernetes Operator for Percona Server for MongoDB 1.2.0 (2019-09-20)

Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0 (2019-07-15)

Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0 (2019-05-29)

10.1.1 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2024-11-14 

10. Release notes

366 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.2 Percona Operator for MongoDB 1.18.0

Date

November 14, 2024

Installation

Installing Percona Operator for MongoDB

10.2.1 Release Highlights

Enhancements of the declarative user management

The declarative management of custom MongoDB users was improved compared to its initial implementation in the
previous release, where the Operator did not track and sync user-related changes in the Custom Resource and the
database. Also, starting from now you can create custom MongoDB roles on various databases just like users in the
deploy/cr.yaml  manifest:

See the documentation to find more details about this feature.

Support for selective restores

Percona Backup for MongoDB 2.0.0 has introduced a new functionality  that  allows partial  restores,  which means
selectively restoring only with the desired subset of data. Now the Operator also supports this feature, allowing you to
restore a specific database or a collection from a backup. You can achieve this by using an additional selective  section
in the PerconaServerMongoDBRestore  Custom Resource:

You can find more on selective restores and their limitations in our documentation.

Splitting the replica set of the database cluster over multiple Kubernetes clusters

Recent improvements in cross-site  replication made it  possible to  keep the replica set  of  the database cluster  in
different data centers. The Operator itself cannot deploy MongoDB replicas to other data centers, but this still can be
achieved with a number of Operator deployments, equal to the size of your replica set: one Operator to control the
replica set  via  cross-site  replication,  and at  least  two Operators  to bootstrap the unmanaged clusters  with other
MongoDB replica set instances. Splitting the replica set of the database cluster over multiple Kubernetes clusters can
be useful to get a fault-tolerant system in which all replicas are in different data centers. You can find more about
configuring  such  a  multi-datacenter  MongoDB  cluster  and  the  limitations  of  this  solution  on  the  dedicated
documentation page.

• 

• 

...
roles:
- name: clusterAdmin
db: admin

- name: userAdminAnyDatabase
db: admin

spec:
selective:
withUsersAndRoles: true
namespaces:
- "db.collection"

10.2 Percona Operator for MongoDB 1.18.0

367 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.2.2 New Features

K8SPSMDB-894: It is now possible to restore a subset of data (a specific database or a collection) from a backup
which is useful to reduce time on restore operations when fixing corrupted data fragment

K8SPSMDB-1113: The new percona.com/delete-pitr-chunks  finalizer allows the deletion of PITR log files from the backup
storage when deleting a cluster so that leftover data does not continue to take up space in the cloud

K8SPSMDB-1124 and K8SPSMDB-1146: Declarative user management now covers creating and managing user roles,
and syncs user-related changes between the Custom Resource and the database

K8SPSMDB-1140 and K8SPSMDB-1141: Multi-datacenter cluster deployment is now possible

10.2.3 Improvements

K8SPSMDB-739: A number of Service exposure options in the replsets , sharding.configsvrReplSet , and sharding.mongos

were renamed for unification with other Percona Operators

K8SPSMDB-1002:  New  Custom  Resource  options  under  the  replsets.primaryPreferTagSelector` subsection  allow
providing Primary instance selection preferences based on specific zone and region, which may be especially useful
within the planned zone switchover process (Thanks to sergelogvinov for contribution)

K8SPSMDB-1096: Restore logs were improved to contain pbm-agent logs in mongod containers, useful to debug
failures in the backup restoration process

K8SPSMDB-1135:  Split-horizon  DNS  for  external  (unmanaged)  nodes  is  now  configurable via  the
replsets.externalNodes  subsection in Custom Resource

K8SPSMDB-1152: Starting from now, the Operator uses multi-architecture images of Percona Server for MongoDB
and Percona Backup for MongoDB, making it easier to deploy a cluster on ARM

K8SPSMDB-1160: The  PVC resize feature introduced in previous release can now be enabled or disabled via the
enableVolumeExpansion  Custom Resource option ( false  by default),  which protects the cluster from storage resize
triggered by mistake 

K8SPSMDB-1132: A new secrets.keyFile  Custom Resource option allows to configure custom name for the Secret with
the MongoDB internal auth key file 

10.2.4 Bugs Fixed

K8SPSMDB-912: Fix a bug where the full backup connection string including the password was visible in logs in case
of the Percona Backup for MongoDB errors

K8SPSMDB-1047: Fix a bug where the Operator was changing writeConcernMajorityJournalDefault to “true” during
the replica set reconfiguring, ignoring the value set by user

K8SPSMDB-1168: Fix a bug where successful backups could obtain a failed state in case of the Operator configured
with watchAllNamespaces: true  and having the same name for MongoDB clusters across multiple namespaces (Thanks
to Markus Küffner for contribution)

K8SPSMDB-1170: Fix a bug that prevented deletion of a cluster with the active percona.com/delete-psmdb-pods-in-order

finalizer in case of the cluster error state (e.g. when mongo replset failed to reconcile)

K8SPSMDB-1184: Fix a bug where the Operator failed to reconcile when using the container security context with
readOnlyRootFilesystem  set to true  (Thanks to applejag for contribution)

10.2.5 Deprecation, Rename and Removal

The new enableVolumeExpansion  Custom Resource option allows users to disable the automated storage scaling with
Volume Expansion capability. The default value of this option is  false , which means that the automated scaling is
turned off by default.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.2.2 New Features

368 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



A  number  of  Service  exposure  Custom  Resource  options  in  the  replsets ,  sharding.configsvrReplSet ,  and
sharding.mongos  subsections were renamed to provide a unified experience with other Percona Operators:

expose.serviceAnnotations  option renamed to expose.annotations

expose.serviceLabels  option renamed to expose.labels

expose.exposeType  option renamed to expose.type

10.2.6 Supported Platforms

The Operator was developed and tested with Percona Server for MongoDB 5.0.29-25, 6.0.18-15, and 7.0.14-8. Other
options may also work but have not been tested. The Operator also uses Percona Backup for MongoDB 2.7.0.

The following platforms were tested and are officially supported by the Operator 1.18.0:

Google Kubernetes Engine (GKE)  1.28-1.30

Amazon Elastic Container Service for Kubernetes (EKS)  1.28-1.31

OpenShift Container Platform  4.13.52 - 4.17.3

Azure Kubernetes Service (AKS)  1.28-1.31

Minikube  1.34.0 based on Kubernetes 1.31.0

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

10.2.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2024-11-14 

10.2.6 Supported Platforms

369 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.3 Percona Operator for MongoDB 1.17.0

Date

September 09, 2024

Installation

Installing Percona Operator for MongoDB

10.3.1 Release Highlights

Declarative user management (technical preview)

Before the Operator version 1.17.0 custom MongoDB users had to be created manually. Now the declarative creation
of custom MongoDB users is supported via the users  subsection in the Custom Resource. You can specify a new user
in  deploy/cr.yaml  manifest, setting the user’s login name and database, PasswordSecretRef (a reference to a key in a
Secret resource containing user’s password) and as well as MongoDB roles on various databases which should be
assigned to this user:

See  documentation to  find  more  details  about  this  feature  with  additional  explanations  and  the  list  of  current
limitations.

Liveness check improvements

Several improvements in logging were made related to the liveness checks, to allow getting more information for
debugging, and to make these logs persist on failures to allow further examination.

Liveness check logs are stored in the /data/db/mongod-data/logs/mongodb-healthcheck.log  file, which can be accessed in the
corresponding Pod if needed. Starting from now, Liveness check generates more log messages, and the default log
level is set to DEBUG .

Each time the health  check  fails,  the  current  log is  saved to  a  gzip  compressed file  named  mongodb-healthcheck-

<timestamp>.log.gz , and the mongodb-healthcheck.log  log file is reset. Logs older than 24 hours are automatically deleted.

10.3.2 New Features

K8SPSMDB-253: It is now possible to create and manage users via the Custom Resource 

10.3.3 Improvements

K8SPSMDB-899: Add Labels for all  Kubernetes objects created by Operator (backups/restores, Secrets,  Volumes,
etc.) to make them clearly distinguishable

• 

• 

...
users:
- name: my-user
db: admin
passwordSecretRef:
name: my-user-password
key: my-user-password-key

roles:
- name: clusterAdmin
db: admin

- name: userAdminAnyDatabase
db: admin

• 

• 

10.3 Percona Operator for MongoDB 1.17.0

370 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



K8SPSMDB-919: The Operator now checks if the needed Secrets exist and connects to the storage to check the
validity of credentials and the existence of a backup before starting the restore process

K8SPSMDB-934: Liveness checks are providing more debug information and keeping separate log archives for each
failure with the 24 hours retention

K8SPSMDB-1057:  Finalizers  were renamed to  contain  fully  qualified domain names (FQDNs),  avoiding potential
conflicts with other finalizer names in the same Kubernetes environment

K8SPSMDB-1108:  The  new  Custom  Resource  option  allows  setting  custom  containerSecurityContext  for  PMM
containers

K8SPSMDB-994: Remove a limitation where it wasn’t possible to create a new cluster with splitHorizon enabled,
leaving the only way to enable it later on the running cluster

10.3.4 Bugs Fixed

K8SPSMDB-925:  Fix  a  bug where  the  Operator  generated “failed  to  start  balancer”  and “failed  to  get  mongos
connection” log messages when using Mongos with servicePerPod and LoadBalancer services, while the cluster was
operating properly

K8SPSMDB-1105: The memory requests and limits for backups were increased in the deploy/cr.yaml  configuration file
example to reflect the Percona Backup for MongoDB minimal pbm-agents requirement of 1 Gb RAM needed for
stable operation

K8SPSMDB-1074: Fix a bug where MongoDB Cluster could not failover in case of all Pods downtime and exposeType

Custom Resource option set to either NodePort  or LoadBalancer

K8SPSMDB-1089: Fix a bug where it was impossible to delete a cluster in error state with finalizers present

K8SPSMDB-1092: Fix a bug where Percona Backup for MongoDB log messages during physical restore were not
accessible with the kubectl logs  command

K8SPSMDB-1094:  Fix  a  bug where it  wasn’t  possible  to create a  new cluster  with  upgradeOptions.setFCV  Custom
Resource option set to true

K8SPSMDB-1110: Fix a bug where nil Custom Resource annotations were causing the Operator panic

10.3.5 Deprecation, Rename and Removal

Finalizers were renamed to contain fully qualified domain names to comply with the Kubernetes standards.

PerconaServerMongoDB  Custom Resource:

delete-psmdb-pods-in-order  finalizer renamed to percona.com/delete-psmdb-pods-in-order

delete-psmdb-pvc  finalizer renamed to percona.com/delete-psmdb-pvc

PerconaServerMongoDBBackup  Custom Resource:

delete-backup  finalizer renamed to percona.com/delete-backup

Key change in psmdb-db  Helm chart: the parameter for defining system users is renamed from users  to systemUsers .
The  users  parameter  now  handles  the  new  Declarative  user  management feature.  This  change  impacts  users
upgrading to this version via Helm: make sure that values manifests are changed accordingly.

10.3.6 Supported Platforms

The Operator was developed and tested with Percona Server for MongoDB 5.0.28-24, 6.0.16-13, and 7.0.12-7. Other
options may also work but have not been tested. The Operator also uses Percona Backup for MongoDB 2.5.0.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.3.4 Bugs Fixed

371 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



The following platforms were tested and are officially supported by the Operator 1.17.0:

Google Kubernetes Engine (GKE)  1.27-1.30

Amazon Elastic Container Service for Kubernetes (EKS)  1.28-1.30

OpenShift Container Platform  4.13.48 - 4.16.9

Azure Kubernetes Service (AKS)  1.28-1.30

Minikube  1.33.1

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

10.3.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

Last update: 2024-09-12 

10.3.7 Get expert help

372 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.4 Percona Operator for MongoDB 1.16.2

Date

July 23, 2024

Installation

Installing Percona Operator for MongoDB

10.4.1 Bugs Fixed

K8SPSMDB-1117: Fix a bug where the Operator incorrectly compares G  with Gi  and and tries to downscale PVC size
after upgrade

10.4.2 Supported Platforms

The Operator was developed and tested with Percona Server for MongoDB 5.0.26-22, 6.0.15-12, and 7.0.8-5. Other
options may also work but have not been tested. The Operator also uses Percona Backup for MongoDB 2.4.1.

The following platforms were tested and are officially supported by the Operator 1.16.2:

Google Kubernetes Engine (GKE)  1.26-1.29

Amazon Elastic Container Service for Kubernetes (EKS)  1.26-1.29

OpenShift Container Platform  4.12.56 - 4.15.11

Azure Kubernetes Service (AKS)  1.27-1.29

Minikube  1.33.0

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

10.4.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2024-07-23 

10.4 Percona Operator for MongoDB 1.16.2

373 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.5 Percona Operator for MongoDB 1.16.1

Date

June 24, 2024

Installation

Installing Percona Operator for MongoDB

10.5.1 Bugs Fixed

K8SPSMDB-1101: Fix a bug where manually generated TLS certificates couldn’t be applied because Operator was
replacing them with auto-generated ones

10.5.2 Supported Platforms

The Operator was developed and tested with Percona Server for MongoDB 5.0.26-22, 6.0.15-12, and 7.0.8-5. Other
options may also work but have not been tested. The Operator also uses Percona Backup for MongoDB 2.4.1.

The following platforms were tested and are officially supported by the Operator 1.16.1:

Google Kubernetes Engine (GKE)  1.26-1.29

Amazon Elastic Container Service for Kubernetes (EKS)  1.26-1.29

OpenShift Container Platform  4.12.56 - 4.15.11

Azure Kubernetes Service (AKS)  1.27-1.29

Minikube  1.33.0

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

10.5.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2024-06-24 

10.5 Percona Operator for MongoDB 1.16.1

374 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.6 Percona Operator for MongoDB 1.16.0

Date

May 24, 2024

Installation

Installing Percona Operator for MongoDB

10.6.1 Release Highlights

General availability of Physical Backups

Two releases ago we added experimental support for Physical Backups and Restores to significantly reduce Recovery
Time Objective (RTO ), especially for big data sets. With this release Percona announces the general availability of

physical backups and restores for Percona Server for MongoDB with the Operator.

Automated volume expansion

Kubernetes supports the Persistent Volume expansion as a stable feature since v1.24.  Using it  with the Operator
previously involved manual operations. Now this is automated, and users can resize their PVCs by just changing the
value of  the  resources.requests.storage  option in  the  PerconaServerMongoDB custom resource.  This  feature  is  in  a
technical preview stage and is not recommended for production environments.

Support for MongoDB 7

Starting from this release, MongoDB 7.0 is now supported. Read our take on top-5 changes in MongoDB version 7 in
this blog post .

Support for ARM architecture (technical preview)

ARM architecture meets the intensive growth of  its  usage nowadays,  both in a segment of  highly efficient cloud
computing based on systems like AWS Graviton, and the Internet of Things or Edge. Officially certified images for ARM
are now available for the Operator, as well as Percona Server for MongoDB and Percona Backup for MongoDB, while
database monitoring based on PMM Client is yet to follow.

Fixing the overloaded allowUnsafeConfigurations flag

In the previous Operator versions allowUnsafeConfigurations  Custom Resource option was used to allow configuring a
cluster with unsafe parameters, such as starting it with less than 3 replica set instances. In fact, setting this option to
true  resulted in a wide range of reduced safety features without the user’s explicit intent: disabling TLS, allowing
backups in unhealthy clusters, etc.

With this release, a separate  unsafeFlags  Custom Resource section is introduced for the fine-grained control of the
safety loosening features:

• 

• 

unsafeFlags:
tls: false
replsetSize: false
mongosSize: false
terminationGracePeriod: false
backupIfUnhealthy: false

10.6 Percona Operator for MongoDB 1.16.0

375 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Also, TLS configuration is now enabled or disabled by a special tls.mode  Custom Resource option, which can be set to
disabled , allowTLS , preferTLS , or requireTLS  values.

10.6.2 New Features

K8SPSMDB-1000: Users who store backups on Azure Blob Storage can now use private endpoints

K8SPSMDB-1055: The kubectl get psmdb-backup  command now shows latest restorable time to make it easier to pick a
point-in-time recovery target

K8SPSMDB-491: It is now possible to specify the existing cert-manager issuer which should be used by the Operator

K8SPSMDB-733:  It  is  now possible  to  resize  Persistent  Volume Claims by patching the PerconaServerMongoDB
custom resource: change persistentVolumeClaim.resources.requests.storage  and let the Operator do the scaling

10.6.3 Improvements

K8SPSMDB-1004:  Exposing  replica  set  with  split-horizon  DNS allows  to  specify  URIs  with  non-standard  port
numbers, which are particularly useful with the NodePort service type

K8SPSMDB-1013: MongoDB 7.0 is now supported.

K8SPSMDB-1015: Information about backup and restore operations is now included in the Operator’s logs

K8SPSMDB-951,  K8SPSMDB-979 and  K8SPSMDB-1021: The Operator now allows setting custom configuration for
Percona  Backup  for  MongoDB  through  the  set  of  new  Custom  Resource  options  under
backup.configuration.backupOptions , backup.configuration.restoreOptions , and backup.storages.s3.retryer  subsections

K8SPSMDB-1029: Mongod is now run in quiet mode  by default to reduce the amount of log messages

K8SPSMDB-1032: It is now possible to define TCP port for mongos Service when it is exposed through a NodePort
(thanks to Mike Devresse for contribution)

K8SPSMDB-1062: The Operator now sets appProtocol  to mongo  for Service objects, which is useful for service

mesh implementations (thanks to Søren Mathiasen for contribution)

K8SPSMDB-732: Integration of the Operator with OpenLDAP can now be secured by using TLS connections

K8SPSMDB-755: New allowInvalidCertificates  option allows to enable or disable bypassing MongoDB Shell checks for
the certificates presented by the mongod/mongos instance, useful for self-signed certificates

K8SPSMDB-948:  Officially  certified  images  for  ARM architecture  are  now available  for  the  Operator,  as  well  as
Percona Server for MongoDB and Percona Backup for MongoDB

K8SPSMDB-993: To avoid backup fail on clusters where Percona Backup for MongoDB resync process takes too long,
the Operator now checks, if there is still a resync operation working, with exponentially increasing interval and total
wait time until failure equal to 8715 seconds

K8SPSMDB-995:  The Operator  now allows storing key for  backups server-side AWS KMS encryption in  a  Secret
configurable with the secrets.sse  Custom Resource option

K8SPSMDB-780: Removing allowUnsafeConfigurations  Custom Resource option in favor of fine-grained safety control
in the unsafeFlags  subsection

K8SPSMDB-1042: Helm chart for Percona Server for MongoDB now accepts replica set options as the map argument
instead of the array one used in previous releases; this simplifies how arguments are specified in the command line
and allows to specify only part of the replica set parameters, relying on the default values for the other part. Take
this change into account if  you are installing database via helm and want to use set of custom options from
previous releases

10.6.4 Bugs Fixed

K8SPSMDB-1011: Fix a bug where custom logins for system users stopped working after deleting and recreating
back the users Secret (thanks for Patrick Wolleb for report)

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.6.2 New Features

376 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



K8SPSMDB-1014: Fix a bug that certificate rotation was bringing the sharded MongoDB cluster down for clusters
originally created with the Operator version prior to 1.15.0 (thanks to Stiliyan Stefanov for reporting)

K8SPSMDB-1018:  Fix  a  bug  where  MongoDB  container  startup  would  fail  if  the  MongoDB  image  being  used
contained the numactl package

K8SPSMDB-1024:  Fix  a  bug  where  environment  variable  wasn’t  properly  updated  in  the  Percona  Backup  for
MongoDB container entry script (thanks to Rockawear for contribution)

K8SPSMDB-1035: Fixed a bug where the empty  secretName  field was not allowed for backup jobs that might not
need it when accessing AWS S3 buckets based on IAM roles (thanks to Sergey Zelenov for contribution)

K8SPSMDB-1036: Fix a bug due to which restoring backup to a new cluster was broken by incompatibility with
Percona Backup for MongoDB 2.3.0

K8SPSMDB-1038: Fix a bug where mongos Services were deleted if the cluster was set to paused state

K8SPSMDB-1039:  Fix  a  bug  which  prevented  deleting  PMM  agent  from  the  PMM  Server  inventory  on  Pod
termination

K8SPSMDB-1058: A minor missing privileges issue caused flooding MongoDB logs with “Checking authorization
failed” errors

K8SPSMDB-1070:  Fix  a  bug where panic  was happening in  delete-psmdb-pods-in-order  finalizer  if  the cluster  was
deleted prior to creating Pods

K8SPSMDB-940: Fix a bug due to which the Operator didn’t allow to set serviceAccount for mongos Pods

K8SPSMDB-985: Fix a bug where pbmPod  key in backup object was only showing one replica/pod

10.6.5 Deprecation and removal

Starting from now, allowUnsafeConfigurations  Custom Resource option is deprecated in favor of a number of options
under the unsafeFlags  subsection. Setting allowUnsafeConfigurations  won’t have any effect; upgrading existing clusters
with  allowUnsafeConfigurations=true  will  cause  everything  under  unsafeFlags set  to  true  and  TLS  funuctionality
disabled

MongoDB 4.4  support  in  the Operator  has  reached its  end-of-life.  Starting from now Percona will  not  provide
officially  certified images for it.  Make sure that you have a supported MongoDB version before upgrading the
Operator to 1.16.0. You can use major version upgrade functionality.

10.6.6 Supported Platforms

The Operator was developed and tested with Percona Server for MongoDB 5.0.26-22, 6.0.15-12, and 7.0.8-5. Other
options may also work but have not been tested. The Operator also uses Percona Backup for MongoDB 2.4.1.

The following platforms were tested and are officially supported by the Operator 1.16.0:

Google Kubernetes Engine (GKE)  1.26-1.29

Amazon Elastic Container Service for Kubernetes (EKS)  1.26-1.29

OpenShift Container Platform  4.12.56 - 4.15.11

Azure Kubernetes Service (AKS)  1.27-1.29

Minikube  1.33.0

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.6.5 Deprecation and removal

377 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.6.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-05-25 

10.6.7 Get expert help

378 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.7 Percona Operator for MongoDB 1.15.0

Date

October 9, 2023

Installation

Installing Percona Operator for MongoDB

10.7.1 Release Highlights

Physical Backups now support Point-in-time Recovery (in tech preview)

In the previous 1.14.0 release we added support for  Physical Backups and Restores to significantly reduce Recovery
Time Objective (RTO .)), especially for big data sets. But the problem with losing data between backups - in other

words Recovery Point Objective (RPO) - for physical backups was not solved. With this release users can greatly reduce
RPO by leveraging the Point-in-time Recovery feature in the Operators. Under the hood we store logical oplogs along
with physical backups into the object storage. Read more about this feature in our documentation.

Encrypted backups with Server Side Encryption (SSE)

Backups stored on S3 compatible storage  can now be encrypted with Server Side Encryption (SSE) to pass certain
compliance or security requirements. Users can leverage integration with AWS KMS or just encrypt/decrypt backups
with AES-256 encryption algorithm. It is important to remember that Operator does not store keys and users can
choose which key storage to use.

10.7.2 New Features

K8SPSMDB-227 The  new  topologySpreadConstraints  Custom  Resource  option  allows  to  use  Pod  Topology  Spread
Constraints  to achieve even distribution of Pods across the Kubernetes cluster

K8SPSMDB-792 and K8SPSMDB-974 The new “sleep infinity” mode available for replset and config server containers
allows running the Pod without starting mongod useful to examine a problematic Pod that is constantly restarting

K8SPSMDB-801 It is now possible to delete a backup with its PITR data on retention period or with  delete-backup

finalizer (there were no PITR files deletion in previous versions )

K8SPSMDB-926 Point-in-time recovery  is  now supported with physical  backups to  significantly  reduce Recovery
Point Objective (RPO)

K8SPSMDB-961 The new  sharding.balancer.enabled  Custom Resource option allows to disable Load Balancer on a
cross-site replication managed cluster

10.7.3 Improvements

K8SPSMDB-662 Restoring a backup with point-in-time recovery can now be easily done to a latest available position
by setting pitr.type  PerconaServerMongoDBRestore Custom Resource option to latest

K8SPSMDB-774 The Transport encryption documentation now includes details on updating TLS certificates

K8SPSMDB-807 A custom name for a Replica Set config server instead of the default  cfg  one  can be set in the
custom configuration, which can be useful for migration purposes

K8SPSMDB-814 and  K8SPSMDB-927 The new  terminationGracePeriodSeconds  Custom Resource option allows to set
termination period for Replica Set containers, useful to cleanly shutdown clusters with big data sets

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.7 Percona Operator for MongoDB 1.15.0

379 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



K8SPSMDB-850 Server Side Encryption for backups with for S3 and S3-compatible storage is now supported (thanks
to Mert Gönül for contribution)

K8SPSMDB-903 The backup destination URI now includes bucket/container name, allowing the user to specify the
full path to the backup as an easy to read string

K8SPSMDB-924 The token associated with the operator’s ServiceAccount is no longer printed in the log when a
scheduled backup is running; this improves security and avoids logging uninformative elements

K8SPSMDB-938 Configuring Kubernetes host aliases is now possible for replica set, config server, and mongos Pods

K8SPSMDB-946 The psmdb-backup object now includes the name of the Pod that made the backup, to save users
from searching for the correct Pod to examine the Percona Backup for MongoDB logs (previously it was necessary
to check replica set Pods one by one until logs were found)

K8SPSMDB-976 The Operator now does not start backups if storages or credentials are not set, avoiding fruitless
attempts to configure Percona Backup for MongoDB and cluster state repeatedly changing between ready and
error

K8SPSMDB-929 Using split-horizon DNS for the external access to MongoDB Replica Set Pods of the exposed cluster
is now possible

10.7.4 Bugs Fixed

K8SPSMDB-913 Fix a bug due to which restoring a backup on a cluster with mongos exposed via LoabBalancer
resulted in recreating mongos Service with a new IP address

K8SPSMDB-956 Fix  a  bug that  certificate rotation was bringing the sharded MongoDB cluster  down (thanks to
Stiliyan for reporting)

K8SPSMDB-854 Backup stucks after cluster was exposed

K8SPSMDB-977 The out of memory problem could cause cluster got stuck in the “initializing” state at reconciliation

K8SPSMDB-778 Fix a bug due to which the Operator did not delete arbiter instances during replica set deletion

K8SPSMDB-791 Fix  a  bug  which  prevented  setting  LoadBalancerSourceRanges  Custom  Resource  option  when
replsets.expose.exposeType  is set to Loadbalancer

K8SPSMDB-813 Fix a bug due to which secure connection was not used for MongoDB Liveness check (thanks to t-
yrka for contribution)

K8SPSMDB-818 Fix a bug where clusterMonitor  user had not enough permissions for PMM monitoring with --enable-

all-collectors  flag turned on

K8SPSMDB-872 The Operator didn’t prevent attempts to restore a backup with “error” status, which could cause the
cluster got stuck in the “initializing” state

K8SPSMDB-876 Fix a bug due to which delete-psmdb-pods-in-order  finalizer, intended to shutdown primary Pod last,
affected only shards and did not affect config replica set 

K8SPSMDB-911 Fix a bug where connection string with credentials was included in the backup-agent container logs

K8SPSMDB-958 Fix  insufficient  permissions  issue  that  didn’t  allow  to  monitor  mongos  instances  with  Percona
Monitoring and Management (PMM)

K8SPSMDB-962 Fix a memory leak due to which the Operator’s Pod continually increased both CPU and memory
usage in cluster-wide mode (with an unmanaged cluster)

K8SPSMDB-968 Fix a bug due to which the endpoints list returned by kubectl get psmdb  command contained fully
qualified domain names (FQDN) instead of IP addresses when the replset was exposed as a LoadBalancer and the
clusterServiceDNSMode was set to Internal

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.7.4 Bugs Fixed

380 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.7.5 Deprecation and removal

K8SPSMDB-883 The  spec.mongod  section deprecated in the Operator version 1.12.0 is  finally removed from the
Custom  Resource  configuration.  If  you  have  encryption  disabled  using  the  deprecated
mongod.security.enableEncryption  option,  you  need  to  set  encryption  disabled  with  custom  configuration before
removing mongod  section (and before upgrade):

10.7.6 Supported Platforms

The Operator was developed and tested with Percona Server for MongoDB 4.4.24, 5.0.20, and 6.0.9. Other options may
also work but have not been tested. The Operator also uses Percona Backup for MongoDB 2.3.0.

The following platforms were tested and are officially supported by the Operator 1.15.0:

Google Kubernetes Engine (GKE)  1.24-1.28

Amazon Elastic Container Service for Kubernetes (EKS)  1.24-1.28

OpenShift Container Platform  4.11 - 4.13

Azure Kubernetes Service (AKS)  1.25-1.28

Minikube  1.31.2 (based on Kubernetes 1.28)

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

10.7.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

spec:
...
replsets:
- name: rs0
...
configuration: |
security:
enableEncryption: false

...

• 

• 

• 

• 

• 

Last update: 2024-05-24 

10.7.5 Deprecation and removal

381 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.8 Percona Operator for MongoDB 1.14.0

Date

March 13, 2023

Installation

Installing Percona Operator for MongoDB

10.8.1 Release Highlights

Backups  and  Restores  are  critical  for  business  continuity.  With  this  release  you  can  significantly  reduce  your
Recovery  Time Objective  (RTO)  with  Physical  backups support  in  the Operator.  The feature  is  now in  technical
preview.

MongoDB  6.0  comes  with  a  variety   of  improvements  and  new  features.  It  is  now  fully  supported  by  the

Operator. See our documentation to learn how to upgrade.

10.8.2 New Features

K8SPSMDB-713 Physical backups are now supported by the Operator to recover big data sets faster

K8SPSMDB-737 MongoDB 6.0 is  now officially  supported in addition to 4.x  and 5.x  versions.  Read more about
version 6 in our blog post 

K8SPSMDB-824 New ignoreAnnotations  and ignoreLabels  Custom Resource options allow to list  specific annotations
and labels for Kubernetes Service objects, which the Operator should ignore (useful with various Kubernetes flavors
which add annotations to the objects managed by the Operator)

10.8.3 Improvements

K8SPSMDB-658 The Operator log messages appearing during the pause/unpause of the cluster were improved to
more clearly indicate this event

K8SPSMDB-708 The new  initContainerSecurityContext  option allows to  configure securityContext  for  the  container
which can be used instead of the official image during the initial Operator installation

K8SPSMDB-721 The backup subsystem was improved so that database is not crashing in case if the backup agent is
not able to connect to MongoDB (e.g. due to misconfigured password)

K8SPSMDB-758 The ServiceMesh fully qualified domain names (FQDNs) for config servers are now prioritized if
DNSMode is set to ServiceMesh (thanks to Jo Lyshoel for contribution)

K8SPSMDB-793 It is now possible to set annotations and labels for Persistent Volume Claims for better integration
with Cloud Native tools

K8SPSMDB-803 The Operator now does not attempt to start Percona Monitoring and Management (PMM) client
sidecar if the corresponding secret does not contain the pmmserver  or pmmserverkey  key

K8SPSMDB-817 Adding external nodes to the cluster is now allowed even when the replica set is not exposed. This
unblocks the creation of complex multi-cluster topologies

K8SPSMDB-844 Update the RuntimeClass API version to v1  from the v1beta1 , which was already deprecated since
the Kubernetes version 1.22

K8SPSMDB-848 Remove formatted strings from log messages to avoid confronting with structured logging based
on key-value pairs

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.8 Percona Operator for MongoDB 1.14.0

382 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



K8SPSMDB-882 Percona Server for MongoDB Helm chart now persists data by default instead of deleting Persistent
Volumes after the cluster deletion

CLOUD-768 Helm charts now use random passwords generated by the Operator by default instead of providing pre-
configured passwords specified in the values file

K8SPSMDB-853 To improve the operator we capture anonymous telemetry and usage data. In this release we add
more data points to it

K8SPSMDB-867 The Operator now  configures replset members using local fully-qualified domain names (FQDN)
resolvable and available only from inside the cluster instead of using IP addresses; the old behavior can be restored
by setting the clusterServiceDNSMode  option to External

10.8.4 Bugs Fixed

K8SPSMDB-784 Fix a bug due to which the  enableEncryption  MongoDB configuration option was always activated
when using psmdb-db Helm Chart

K8SPSMDB-796 Fix a bug due to which backup failed if replica set was exposed

K8SPSMDB-854 Fix a bug due to which backup got stuck after the cluster was exposed

K8SPSMDB-471 Fix a bug due to which in case of scheduled backups with error status delete-backup  finalizer didn’t
allow to delete the appropriate failed resources and the Kubernetes namespace (thanks to Aliaksandr Karavai for
reporting)

K8SPSMDB-674 Fix a bug that caused the Operator not deleting unneeded Services after the replica set exposing is
turned off

K8SPSMDB-742 Fix  a  bug  that  caused  the  updates  of  the  sharding.mongos.expose.serviceAnnotations  option  to  be
silently rejected

K8SPSMDB-766 and K8SPSMDB-767 Fix a bug where the combination of delete-psmdb-pods-in-order  and delete-psmdb-

pvc  finalizers was not working

K8SPSMDB-770 We now mention the namespace name in the log message to ease debugging when the cluster-
wide mode is used

K8SPSMDB-797 Fix the backup/restore documentation not clearly mentioning that user should specify the bucket
for the S3 storage

K8SPSMDB-820 Fix a bug which prevented the parallel backup jobs execution for different MongoDB clusters in the
cluster-wide mode

K8SPSMDB-823 Fix a bug where backups were not working in case of ReplicaSet exposed with NodePort

K8SPSMDB-836 Fix backups being incorrectly marked as error while still being in starting status

K8SPSMDB-841 Fix  a  bug which turned the cluster  into  unready status  after  switching from the LoadBalancer
expose to ClusterIP

K8SPSMDB-843 Fix a bug which made the cluster unable to start if it was recreated with the same Custom Resource
after delete without deleting PVCs and Secrets

K8SPSMDB-846 Fix a bug due to which scaling the replica set down to 1 instance caused the last Pod to remain
Secondary instead of becoming Primary

K8SPSMDB-866 Fix the bug due to which the Operator was continuously flooding the log with error messages if the
PMM server credentials were missing

10.8.5 Known Issues and Limitations

K8SPSMDB-875 Physical  backups  cannot  be  restored  on  the  clusters  with  arbiter,  non-voting,  or  delayed  

members due to current Percona Backup for MongoDB limitations

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.8.4 Bugs Fixed

383 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



K8SPSMDB-846 After switching the cluster to unsafe mode by setting allowUnsafeConfig: true, it is not possible to
switch back into safe mode. The user can still scale the cluster safely, but the flag is ignored

10.8.6 Supported Platforms

The Operator was developed and tested with Percona Server for MongoDB 4.4.18, 5.0.14, and 6.0.4. Other options may
also work but have not been tested.

The following platforms were tested and are officially supported by the Operator 1.14.0:

Google Kubernetes Engine (GKE)  1.22 - 1.25

Amazon Elastic Container Service for Kubernetes (EKS)  1.22 - 1.24

OpenShift Container Platform  4.10 - 4.12

Azure Kubernetes Service (AKS)  1.23 - 1.25

Minikube  1.29

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

10.8.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

Last update: 2024-05-24 

10.8.6 Supported Platforms

384 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.9 Percona Operator for MongoDB 1.13.0

Date

September 15, 2022

Installation

Installing Percona Operator for MongoDB

10.9.1 Release Highlights

Azure Kubernetes Service (AKS) is now officially supported platform, so developers and vendors of the solutions
based on the Azure platform can take advantage of the official support from Percona or just use officially certified
Percona Operator for MongoDB images 

Starting from now, the Operator can be installed in multi-namespace (so-called “cluster-wide”) mode, when a single
Operator can be given a list of namespaces in which to manage Percona Server for MongoDB clusters

10.9.2 New Features

K8SPSMDB-203 Support for the cluster-wide operator mode allowing one Operator to watch for Percona Server for
MongoDB Custom Resources in several namespaces

K8SPSMDB-287 Support for the HashiCorp Vault for encryption keys as a universal, secure and reliable way to store
and distribute secrets without depending on the operating system, platform or cloud provider

K8SPSMDB-704 Support for the Azure Kubernetes Service (AKS)

10.9.3 Improvements

K8SPSMDB-515 Allow setting requireTLS mode for MongoDB through the Operator to enforce security by restricting
each MongoDB server to use TLS/SSL encrypted connections only

K8SPSMDB-636 An additional  databaseAdmin  user was added to the list of system users which are automatically
created by the Operator. This user is intended to provision databases, collections and perform data modifications

K8SPSMDB-699 Disable automated upgrade by default to prevent an unplanned downtime for user applications and
to provide defaults more focused on strict user’s control over the cluster

K8SPSMDB-725 Configuring  the  log  structuring  and leveling  is  now supported using  the  LOG_STRUCTURED  and
LOG_LEVEL  environment  variables.  This  reduces  the  information overload in  logs,  still  leaving the  possibility  of
getting more details when needed, for example, for debugging

K8SPSMDB-719 Details about using sharding, Hashicorp Vault and cluster-wide mode were added to telemetry

K8SPSMDB-715 Starting from now, the Opearator changed its API version to v1 instead of having a separate API
version for each release. Three last API version are supported in addition to v1 , which substantially reduces the size
of Custom Resource Definition to prevent reaching the etcd limit

K8SPSMDB-709 Make it possible to use API Key to authorize within Percona Monitoring and Management Server as
a more convenient and modern alternative password-based authentication

K8SPSMDB-707 Allow to set Service labels for replica set, config servers and mongos in Custom Resource to enable
various integrations with cloud providers or service meshes

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.9 Percona Operator for MongoDB 1.13.0

385 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.9.4 Bugs Fixed

K8SPSMDB-702 Fix a bug which resulted in always using the force  option when reconfiguring MongoDB member,
which is normally recommended only for special scenarios such as crash recovery

K8SPSMDB-730 Fix a bug due to which point-in-time recovery was enabled and consequently disabled when setting
Percona  Backup  for  MongoDB  compression  options  without  checking  whether  it  was  enabled  in  the  Custom
Resource

K8SPSMDB-660 Fix a bug due to which a successful backup could be erroneously marked as failed due to exceeding
the start deadline in case of big number of nodes, especially on sharded clusters

K8SPSMDB-686 Fix a bug that prevented downscaling sharded MongoDB cluster to a non-sharded replica set variant

K8SPSMDB-691 Fix a bug that produced an error in the Operator log in case of the empty SSL Secret name in
Custom Resource

K8SPSMDB-696 Fix  a  bug  that  prevented  removing  additional  annotations  previously  added  under  the
spec.replsets.annotations  field

K8SPSMDB-724 Fix a bug which caused the delete-backup finalizer not working causing backups being not deleted
from buckets

K8SPSMDB-746 Fix a bug due to which the Operator was unable to initialize a three-member replica set with a
primary-secondary-arbiter (PSA) architecture

K8SPSMDB-762 Fix a bug due to which the Operator was running the replSetReconfig MongoDB command at every
reconciliation if arbiter was enabled

10.9.5 Deprecation, Rename and Removal

K8SPSMDB-690 CCustom Resource options under the sharding.mongos.auditLog subsection, deprecated since the
Operator version 1.9.0 in favor of using replsets.configuration, were finally removed and cannot be used with the
Operator

K8SPSMDB-709 Password-based authorization to Percona Monitoring and Management Server is now deprecated
and will be removed in future releases in favor of a token-based one. Password-based authorization was used by the
Operator before this release to provide MongoDB monitoring, but now using the API Key  is the recommended
authorization method

10.9.6 Supported Platforms

The Operator was developed and tested with Percona Server for MongoDB 4.2.22, 4.4.8, 4.4.10, 4.4.13, 4.4.16, 5.0.2,
5.0.4, and 5.0.11. Other options may also work but have not been tested.

The following platforms were tested and are officially supported by the Operator 1.13.0:

Google Kubernetes Engine (GKE)  1.21 - 1.23

Amazon Elastic Container Service for Kubernetes (EKS)  1.21 - 1.23

OpenShift Container Platform  4.10 - 4.11

Azure Kubernetes Service (AKS)  1.22 - 1.24

Minikube  1.26

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.9.4 Bugs Fixed

386 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.9.7 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-06-24 

10.9.7 Get expert help

387 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.10 Percona Operator for MongoDB 1.12.0

Date

May 5, 2022

Installation

Installing Percona Operator for MongoDB

10.10.1 Release Highlights

With this release, the Operator turns to a simplified naming convention and changes its official name to Percona
Operator for MongoDB

The Operator is able now to use the Amazon Web Services feature of authenticating applications running on EC2
instances based on Identity and Access Management (IAM) roles assigned to the instance; this makes it possible to
configure S3 backup on AWS without using IAM keys saved in Secrets

This release brings support for the Multi Cluster Services (MCS). This allows users to deploy MongoDB with Percona
Operator across multiple Kubernetes clusters using MCS, which extends the reach of the Service object beyond one
cluster, so one Service can be used across multiple clusters. It can be used to provide disaster recovery or perform a
migration for MongoDB clusters.

The OpenAPI schema is now generated for the Operator , which allows Kubernetes to perform Custom Resource
validation and saves user from occasionally applying deploy/cr.yaml  with syntax typos

10.10.2 New Features

K8SPSMDB-185: Allow using AWS EC2 instances for backups with IAM roles assigned to the instance instead of using
stored IAM credentials (Thanks to Oleksii for reporting this issue)

K8SPSMDB-625: Integrate the Operator with Multi Cluster Services (MCS)

K8SPSMDB-668: Adding support for enabling replication over a service mesh (Thanks to Jo Lyshoel for contribution)

10.10.3 Improvements

K8SPSMDB-473: Allow to skip TLS verification for backup storage, useful for self-hosted S3-compatible storage with
a self-issued certificate

K8SPSMDB-644: Make cacheSizeRatio  parameter available as a custom value in psmdb-db-1.11.0 helm chart (Thanks
to Richard CARRE for reporting this issue)

K8SPSMDB-574: Allow user to choose the validity duration of the external certificate for cert manager

K8SPSMDB-634:  Support  point-in-time recovery  compression  levels for  backups  (Thanks  to  Damiano Albani  for
reporting this issue)

K8SPSMDB-570: The Operator documentation now includes a How-To on using Percona Server for MongoDB with
LDAP authentication and authorization

K8SPSMDB-537: PMM container does not cause the crash of the whole database Pod if pmm-agent is not working
properly

K8SPSMDB-684: Generate OpenAPI schema for and validate Custom Resource

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.10 Percona Operator for MongoDB 1.12.0

388 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.10.4 Bugs Fixed

K8SPSMDB-597: Fix a bug in the Operator helm chart which caused deleting the watched Namespace on uninstall
(Thanks to Andrei Nistor for reporting this issue)

K8SPSMDB-640: Fix a regression which prevented labels from being applied to Pods after the Custom Resource
change

K8SPSMDB-583: Fix a bug which caused backup crashing if spec.mongod.net.port  not set or set to zero

K8SPSMDB-540 and  K8SPSMDB-563: Fix a bug which could cause a cluster crash when reducing the configured
Replicaset size between deletion and re-creation of the cluster

K8SPSMDB-608: Fix a bug due to which the password of backup user was printed in backup agent logs (Thanks to
Antoine Ozenne for reporting this issue)

K8SPSMDB-599: A new mongos.expose.servicePerPod option allows deploying a separate ClusterIP Service for each
mongos instance, which prevents the failure of a multi-threaded transaction executed with the same driver instance
and ended up on a different mongos. Starting from this release, mongos is deployed by StatefulSet instead of
Deployment object

K8SPSMDB-656: Fix a bug which caused cluster name being not displayed in the backup Custom Resource output
with psmdbCluster  set in the backup spec

K8SPSMDB-653: Fix a bug due to which spec.ImagePullPolicy  options from deploy/cr.yaml  wasn’t applied to backup and
pmm-client images

K8SPSMDB-632: Fix a bug which caused the Operator to perform Smart Update on the initial deployment

K8SPSMDB-624: Fix a bug due to which the Operator didn’t grant enough permissions to the Cluster Monitor user
necessary for Percona Monitoring and Management (PMM) (Thanks to Richard CARRE for reporting this issue)

K8SPSMDB-618: Improve security and meet compliance requirements by building MongoDB Operator based on Red
Hat Universal Base Image (UBI) 8 instead of UBI 7

K8SPSMDB-602: Fix a thread leak in a mongod container of the Replica Set Pods, which occurred when setting
setFCV  flag to true  in Custom Resource

K8SPSMDB-560: Fix a bug due to which serviceName  tag was not set to all members in the Replica Set

K8SPSMDB-533: Fix a bug due to which setting password with a special character for a system user was breaking
the cluster

10.10.5 Known Issues

K8SPSMDB-686: The Operator versions 1.11.0 and 1.12.0 can not be downscaled from a sharding to non-sharding/
Replica Set configuration on Google Kubernetes Engine (GKE) 1.19-1.21 (GKE 1.22 is not affected)

10.10.6 Deprecation, Rename and Removal

K8SPSMDB-596: The spec.mongod  section is removed from the Custom Resource configuration. Starting from now,
mongod options  should  be  passed to  Replica  Sets  using  spec.replsets.[].configuration  key,  except  the  following 3
options:

mongod.security.encryptionKeySecret  key was left in a deprecated state in favor of the new  spec.secrets.encryptionKey

option

mongod.storage.wiredTiger.engineConfig.cacheSizeRatio  and mongod.storage.inMemory.engineConfig.inMemorySizeRatio  options
are now only available from the replsets.storage  section

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.10.4 Bugs Fixed

389 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Before the upgrade, please ensure that you have moved all custom MongoDB parameters to proper places!

K8SPSMDB-228:  The  spec.psmdbCluster  option  in  the  example  on-demand  backup  configuration  file  backup/

backup.yaml  was renamed to spec.clusterName  ( psmdbCluster  will be valid till 1.15 version)

10.10.7 Supported Platforms

The following platforms were tested and are officially supported by the Operator 1.12.0:

OpenShift 4.7 - 4.10

Google Kubernetes Engine (GKE) 1.19 - 1.22

Amazon Elastic Container Service for Kubernetes (EKS) 1.19 - 1.22

Minikube 1.23

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

10.10.8 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

Last update: 2024-06-24 

10.10.7 Supported Platforms

390 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.11 Percona Distribution for MongoDB Operator 1.11.0

Date

December 21, 2021

Installation

For installation please refer to the documentation page

10.11.1 Release Highlights

In addition to S3-compatible storage, you can now configure backups  to use Microsoft Azure Blob storage. This
feature makes the Operator fully compatible with Azure Cloud.

Custom  sidecar  containers allow  users  to  customize  Percona  Distribution  for  MongoDB  and  other  Operator
components  without  changing  the  container  images.  In  this  release,  we  enable  even  more  customization,  by
allowing users to mount volumes into the sidecar containers.

10.11.2 New Features

K8SPSMDB-513: Add support of Microsoft Azure Blob storage for backups

10.11.3 Improvements

K8SPSMDB-422:  It  is  now  possible  to  set  annotations  to  backup  cron  jobs  (Thanks  to  Aliaksandr  Karavai  for
contribution)

K8SPSMDB-534:  mongos readiness  probe now avoids  running listDatabases  command for  all  databases  in  the
cluster to avoid unneeded delays on clusters with an extremely large amount of databases

K8SPSMDB-527: Timeout parameters for liveness and readiness probes can be customized to avoid false-positives
for heavy-loaded clusters

K8SPSMDB-520: Mount volumes into sidecar containers to enable customization

K8SPSMDB-463: Update backup status as error if it’s not started for a long time

K8SPSMDB-388: New backup.pitr.oplogSpanMin  option controls how often oplogs are uploaded to the cloud storage

10.11.4 Bugs Fixed

K8SPSMDB-603: Fixed a bug where the Operator checked the presence of CPU limit and not memory limit when
deciding whether to set the size of cache memory for WiredTiger

K8SPSMDB-511 and  K8SPSMDB-558: Fixed a bug where Operator changed NodePort port every 20 seconds for a
Replica Set service (Thanks to Rajshekar Reddy for reporting this issue)

K8SPSMDB-608: Fix a bug that resulted in printing the password of backup user the in backup agent logs (Thanks to
Antoine Ozenne for reporting this issue)

K8SPSMDB-592:  Fixed  a  bug  where  helm  chart  was  incorrectly  setting  the  serviceAnnotations  and
loadBalancerSourceRanges  for mongos exposure

K8SPSMDB-568: Fixed a bug where upgrading to MongoDB 5.0 failed when using the upgradeOptions:apply  option

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.11 Percona Distribution for MongoDB Operator 1.11.0

391 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.11.5 Supported Platforms

The following platforms were tested and are officially supported by the Operator 1.11.0:

OpenShift 4.7 - 4.9

Google Kubernetes Engine (GKE) 1.19 - 1.22

Amazon Elastic Container Service for Kubernetes (EKS) 1.18 - 1.22

Minikube 1.22

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

10.11.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

Last update: 2024-06-24 

10.11.5 Supported Platforms

392 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.12 Percona Distribution for MongoDB Operator 1.10.0

Date

September 30, 2021

Installation

For installation please refer to the documentation page

10.12.1 Release Highlights

Starting from this release, the Operator implements as a technical preview the possibility to  include non-voting
replica set members into the cluster, which do not participate in the primary election process. This feature enables
users  to  deploy  non-voting  members  with  the  Operator  through  a  Custom  Resource  object  without  manual
configuration.

The technical preview of the  cross-site replication feature allows users to add external replica set nodes into the
cluster  managed  by  the  Operator,  including  scenarios  when  one  of  the  clusters  is  outside  of  the  Kubernetes
environment. External nodes can be run by another Operator or can be regular MongoDB deployment. The feature
is intended for the following use cases:

provide migrations  of  your  regular  MongoDB database to  the Percona Server  for  MongoDB cluster  under  the
Operator control, or carry on backward migration,

deploy cross-regional clusters for Disaster Recovery.

10.12.2 New Features

K8SPSMDB-479: Allow users to add non-voting members to MongoDB replica, needed to have more than 7 nodes or
to create a node in the edge location

K8SPSMDB-265:  Cross  region  replication feature  simplifies  the  migrations  and  enables  Disaster  Recovery
capabilities for MongoDB on Kubernetes

10.12.3 Improvements

K8SPSMDB-537: PMM container should not cause the crash of the whole database Pod if pmm-agent is not working
properly

K8SPSMDB-517: Users can now run Percona Server for MongoDB 5 with the Operator. Version 5 support is added as
a technical preview and is not recommended for Production.

K8SPSMDB-490: Add validation for the Custom Resource name so that cluster name and replica set name do not
exceed 51 characters in total

10.12.4 Bugs Fixed

K8SPSMDB-504:  Fixed  a  race  condition  that  could  prevent  the  cluster  with  LoadBalancer-exposed  replica  set
members from becoming ready

K8SPSMDB-470:  Fix  a  bug  where  ServiceAnnotation  and  LoadBalancerSourceRanges  fields  didn’t  propagate  to
Kubernetes service (Thanks to Aliaksandr Karavai for reporting this issue)

K8SPSMDB-531: Fix compatibility issues between Percona Kubernetes Operator for MongoDB and Calico (Thanks to
Mykola Kruliv for reporting this issue)

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.12 Percona Distribution for MongoDB Operator 1.10.0

393 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



K8SPSMDB-514:  Fix  a bug where backup cronJob created by the Operator did not include resources limits  and
requests, which prevented it to run in the namespaces with resource quotas (Thanks to George Asenov for reporting
this issue)

K8SPSMDB-512: Fix a bug where configuring getLastErrorModes in the replica set causes the Operator to fail to
reconcile (Thanks to Adam Watson for contribution)

K8SPSMDB-553: Fix a bug where wrong S3 credentials caused backup to keep running despite the actual failure

K8SPSMDB-496: Fix a bug where Pods did not restart if custom MongoDB config was updated with a secret or a
configmap

10.12.5 Supported Platforms

The following platforms were tested and are officially supported by the Operator 1.10.0:

OpenShift 4.6 - 4.8

Google Kubernetes Engine (GKE) 1.17 - 1.21

Amazon Elastic Container Service for Kubernetes (EKS) 1.16 - 1.21

Minikube 1.22

This  list  only  includes the platforms that  the Percona Operators  are  specifically  tested on as  part  of  the release
process. Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

10.12.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2024-05-25 

10.12.5 Supported Platforms

394 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.13 Percona Distribution for MongoDB Operator 1.9.0

Date

June 29, 2021

Installation

For installation please refer to the documentation page

10.13.1 Release Highlights

Starting from this release, the Operator changes its official name to Percona Distribution for MongoDB Operator.
This new name emphasizes graduate changes which incorporated a collection of Percona’s solutions to run and
operate MongoDB Server, available separately as Percona Distribution for MongoDB.

It is now possible to restore backups from S3-compatible storage to a new Kubernetes-based environment with no
existing Backup Custom Resources

You can now customize Percona Server for MongoDB by storing custom configuration for Replica Set, mongos, and
Config Server instances in ConfigMaps or in Secrets

10.13.2 New Features

K8SPSMDB-276:  Restore  backups  to  a  new  Kubernetes-based  environment  with  no  existing  Backup  Custom
Resource

K8SPSMDB-444, K8SPSMDB-445: Allow storing custom configuration in ConfigMaps and Secrets

10.13.3 Improvements

K8SPSMDB-365:  Unblock  backups  even  if  just  a  single  Replica  Set  node  is  available  by  setting
allowUnsafeConfigurations  flag to true

K8SPSMDB-453: It is now possible to see the overall progress of the provisioning of MongoDB cluster resources and
dependent components in Custom Resource status

K8SPSMDB-451,  K8SPSMDB-398: MongoDB cluster resource statuses in Custom Resource output (e.g. returned by
kubectl get psmdb  command) have been improved and now provide more precise reporting

K8SPSMDB-425: Remove mongos.expose.enabled  option from Custom Resource and always expose mongos (with the
ClusterIP exposeType by default)

K8SPSMDB-421: Secret object containing system users passwords is now deleted along with the Cluster if delete-
psmdb-pvc finalizer is enabled

K8SPSMDB-411: Added options to specify custom memory and CPU requirements for Arbiter instances

K8SPSMDB-329: Reduced the number of various etcd and k8s object updates from the operator to minimize the
pressure on the Kubernetes cluster

10.13.4 Bugs Fixed

K8SPSMDB-437:  Fixed  a  bug  where  Labels  were  not  set  on  Persistent  Volume Claim objects  when set  on  the
respective Pods

K8SPSMDB-435: Fixed a bug that prevented adding custom Labels to mongos Pods

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.13 Percona Distribution for MongoDB Operator 1.9.0

395 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



K8SPSMDB-423: Fixed a bug where unpause of a cluster did not work when replsets.expose = LoadBalancer  because of
provisioning new Load Balancers with different names (Thanks to Aliaksandr Karavai for reporting this issue)

K8SPSMDB-494: When upgrading MongoDB clusters with Smart Update, the statuses reported in Custom Resource
are now reflecting the real state

K8SPSMDB-489: Fixed a bug where the status of successful backups could be set to error in case of a cluster crash

K8SPSMDB-462: Fixed a bug where psmdb-backup object could not be deleted if the backup was not successful

K8SPSMDB-456: Fixed a bug where Smart Update was not upgrading a MongoDB deployment with a replica set
consisting of one node

K8SPSMDB-455:  Fixed  a  bug  that  prevented  major  version  downgrade  to  a  specific  version  number  when
upgradeOptions.setFCV  Custom Resource option was not updated to the new version

K8SPSMDB-485: Fixed TLS documentation that referenced incorrect Secrets names from the cr.yaml configuration
file

10.13.5 Deprecation and Removal

We are simplifying the way the user can customize MongoDB components such as mongod and mongos. It is now
possible to set custom configuration through ConfigMaps and Secrets Kubernetes resources. The following options
will be deprecated in Percona Distribution for MongoDB Operator v1.9.0+, and completely removed in v1.12.0+:

sharding.mongos.auditLog.\*

mongod.security.redactClientLogData

mongod.security.\*

mongod.setParameter.\*

mongod.storage.\*

mongod.operationProfiling.mode

mongod.auditLog.\*

The mongos.expose.enabled option has been completely removed from the Custom Resource as it was causing
confusion for the users

10.13.6 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2024-05-25 

10.13.5 Deprecation and Removal

396 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.14 Percona Kubernetes Operator for Percona Server for MongoDB 1.8.0

Date

May 6, 2021

Installation

Installing Percona Kubernetes Operator for Percona Server for MongoDB

10.14.1 Release Highlights

The support for Point-in-time recovery added in this release. Users can now recover to a specific date and time from
operations logs stored on S3

It is now possible to perform a major version upgrade for MongoDB (for example, upgrade 4.2 version to 4.4) with
no manual steps

10.14.2 New Features

K8SPSMDB-387: Add support for point-in-time recovery to recover to a specific date and time

K8SPSMDB-284: Add support for automated major version MongoDB upgrades

10.14.3 Improvements

K8SPSMDB-436: The imagePullPolicy option in the deploy/cr.yaml  configuration file now is applied to init container as
well

K8SPSMDB-400: Simplify secret change logic to avoid Pod restarts when user changes the credentials

K8SPSMDB-381:  Get credentials  directly from Secrets instead of the environment variables when initializing the
Replica Set

K8SPSMDB-352:  Restrict  running  run  less  than  5  Pods  of  Replica  Sets  with  enabled  arbiter  unless  the
allowUnsafeConfigurations  option is set to true

K8SPSMDB-332: Restrict running less than 3 Pods of Config Servers unless the allowUnsafeConfigurations  option is set
to true

K8SPSMDB-331: Restrict running less than 3 mongos Pods unless the allowUnsafeConfigurations  option is set to true

10.14.4 Bugs Fixed

K8SPSMDB-384: Fix a bug due to which mongos Pods were failing readiness probes for some period of time during
the cluster initialization

K8SPSMDB-434:  Fix  a  bug  due  to  which  nil  pointer  dereference  error  was  occurring  when  switching  the
sharding.enabled  option from false to true (thanks to srteam2020 for contributing)

K8SPSMDB-430: Fix a bug due to which a stale apiserver could trigger undesired StatefulSet and PVC deletion when
recreating the cluster with the same name (thanks to srteam2020 for contributing)

K8SPSMDB-428: Fix a bug which caused mongos to fail in case of the empty name field in configsvrReplSet section
of the Custom Resource

K8SPSMDB-418: Fix a bug due to which serviceAnnotations  changes in the deploy/cr.yaml  file were not applied to the
running cluster

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.14 Percona Kubernetes Operator for Percona Server for MongoDB 1.8.0

397 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



K8SPSMDB-364: Fix a bug where liveness probe of a mongo container was always failing if the userAdmin password
contained special characters

K8SPSMDB-43: Fix a bug due to which renaming Replica Set in the Custom Resource caused creating new Replica
Set without deleting the old one

10.14.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

Last update: 2024-05-25 

10.14.5 Get expert help

398 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.15 Percona Kubernetes Operator for Percona Server for MongoDB 1.7.0

Date

March 8, 2021

Installation

Installing Percona Kubernetes Operator for Percona Server for MongoDB

10.15.1 Release Highlights

This  release  brings  full  support  for  the  Percona  Server  for  MongoDB  Sharding.  Sharding  allows  you  to  scale
databases horizontally, distributing data across multiple MongoDB Pods, and so it is extremely useful for large data
sets. By default of the deploy/cr.yaml  configuration file contains only one replica set, but when you turn sharding on,
you can add more replica sets with different names to the replsets  section.

It is now possible to clean up Persistent Volume Claims automatically after the cluster deletion event. This feature is
off by default. Particularly it is useful to avoid leftovers in testing environments, where the cluster can be re-created
and deleted many times. Support for  custom sidecar containers. The Operator makes it possible now to deploy
additional  (sidecar)  containers  to  the Pod.  This  feature can be useful  to  run debugging tools  or  some specific
monitoring  solutions,  etc.  The  sidecar  container  can  be  added  to  replsets,  sharding.configsvrReplSet,  and
sharding.mongos sections of the deploy/cr.yaml  configuration file.

10.15.2 New Features

K8SPSMDB-121: Add support for sharding to scale MongoDB cluster horizontally

K8SPSMDB-294: Support for custom sidecar container to extend the Operator capabilities

K8SPSMDB-260: Persistent Volume Claims can now be automatically removed after MongoDB cluster deletion

10.15.3 Improvements

K8SPSMDB-335: Operator can now automatically remove old backups from S3 if retention period is set

K8SPSMDB-330: Add support for runtimeClassName Kubernetes feature for selecting the container runtime

K8SPSMDB-306: It is now possible to explicitly set the version of MongoDB for newly provisioned clusters. Before
that, all new clusters were started with the latest MongoDB version if Version Service was enabled

K8SPSMDB-370: Fix confusing log messages about no backup / restore found which were caused by Percona Backup
for MongoDB waiting for the backup metadata

K8SPSMDB-342: MongoDB container liveness probe will now use TLS to follow best practices and remove noisy log
messages from mongod log

10.15.4 Bugs Fixed

K8SPSMDB-346: Fix a bug which prevented adding/removing labels to Pods without downtime

K8SPSMDB-366: Fix a bug which prevented enabling Percona Monitoring and Management (PMM) due to incorrect
request for the recommended PMM Client image version to the Version Service

K8SPSMDB-402: running multiple replica sets without sharding enabled should be prohibited

K8SPSMDB-382: Fix a bug which caused mongos process to fail when using allowUnsafeConfigurations=true

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.15 Percona Kubernetes Operator for Percona Server for MongoDB 1.7.0

399 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



K8SPSMDB-362: Fix a bug due to which changing secrets in a single-shard mode caused mongos Pods to fail

10.15.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

Last update: 2024-05-25 

10.15.5 Get expert help

400 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.16 Percona Kubernetes Operator for Percona Server for MongoDB 1.6.0

Date

December 22, 2020

Installation

Installing Percona Kubernetes Operator for Percona Server for MongoDB

10.16.1 New Features

K8SPSMDB-273: Add support for mongos  service to expose a single shard of a MongoDB cluster through one entry
point instead of provisioning a load-balancer per replica set node. In the following release, we will add support for
multiple shards.

K8SPSMDB-282: Official support for Percona Monitoring and Management (PMM) v.2

Monitoring with PMM v.1 configured according to the unofficial instruction  will not work after the upgrade. Please

switch to PMM v.2.

10.16.2 Improvements

K8SPSMDB-258: Add support for Percona Server for MongoDB version 4.4

K8SPSMDB-319: Show Endpoint in the kubectl get psmdb  command output to connect to a MongoDB cluster easily

K8SPSMDB-257: Store the Operator version as a crVersion  field in the deploy/cr.yaml  configuration file

K8SPSMDB-266: Use plain-text passwords instead of base64-encoded ones when creating System Users secrets for
simplicity

10.16.3 Bugs Fixed

K8SPSMDB-268: Fix a bug affecting the support of TLS certificates issued by cert-manager , due to which proper

rights were not set for the role-based access control,  and Kubernetes versions newer than 1.15 required other
certificate issuing sources

K8SPSMDB-261: Fix a bug due to which cluster pause/resume functionality didn’t work in previous releases

K8SPSMDB-292: Fix a bug due to which not all clusters managed by the Operator were upgraded by the automatic
update

10.16.4 Removal

The MMAPv1 storage engine  is no longer supported for all MongoDB versions starting from this version of the

Operator. MMAPv1 was already deprecated by MongoDB for a long time. WiredTiger is the default storage engine
since MongoDB 3.2, and MMAPv1 was completely removed in MongoDB 4.2.

• 

• 

• 

• 

Note

• 

• 

• 

• 

• 

• 

• 

• 

10.16 Percona Kubernetes Operator for Percona Server for MongoDB 1.6.0

401 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Upgrade of the Operator from 1.5.0 to 1.6.0 will fail if MMAPv1 is used, but MongoDB cluster will continue to run. It is
recommended to migrate your clusters to WiredTiger engine before the upgrade.

10.16.5 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Note

Last update: 2024-05-25 

10.16.5 Get expert help

402 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.17 Percona Kubernetes Operator for Percona Server for MongoDB 1.5.0

Date

September 7, 2020

Installation

Installing Percona Kubernetes Operator for Percona Server for MongoDB

10.17.1 New Features

K8SPSMDB-233: Automatic management of system users for MongoDB on password rotation via Secret

K8SPSMDB-226: Official Helm chart for the Operator

K8SPSMDB-199: Support multiple PSMDB minor versions by the Operator

K8SPSMDB-198: Fully Automate Minor Version Updates (Smart Update)

10.17.2 Improvements

K8SPSMDB-192: The ability to set the mongod cursorTimeoutMillis parameter in YAML (Thanks to user xprt64 for
the contribution)

K8SPSMDB-234: OpenShift 4.5 support

K8SPSMDB-197:  Additional  certificate  SANs  useful  for  reverse  DNS  lookups  (Thanks  to  user  phin1x  for  the
contribution)

K8SPSMDB-190: Direct API quering with “curl” instead of using “kubectl” tool in scheduled backup jobs (Thanks to
user phin1x for the contribution)

K8SPSMDB-133: A special Percona Server for MongoDB debug image which avoids restarting on fail and contains
additional tools useful for debugging

CLOUD-556: Kubernetes 1.17 / Google Kubernetes Engine 1.17 support

10.17.3 Bugs Fixed

K8SPSMDB-213:  Installation  instruction  not  reflecting  recent  changes  in  git  tags  (Thanks  to  user  geraintj  for
reporting this issue)

K8SPSMDB-210: Backup documentation not reflecting changes in Percona Backup for MongoDB

K8SPSMDB-180:  Replset  and  cluster  having  “ready”  status  set  before  mongo  initialization  and  replicasets
configuration finished

K8SPSMDB-179: The “error” cluster status instead of the “initializing” one during the replset initialization

CLOUD-531: Wrong usage of strings.TrimLeft  when processing apiVersion

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.17 Percona Kubernetes Operator for Percona Server for MongoDB 1.5.0

403 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.17.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2022-08-08 

10.17.4 Get expert help

404 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.18 Percona Kubernetes Operator for Percona Server for MongoDB 1.4.0

Date

March 31, 2020

Installation

Installing Percona Kubernetes Operator for PSMDB

10.18.1 New Features

K8SPSMDB-89:  Amazon  Elastic  Container  Service  for  Kubernetes  (EKS)  was  added  to  the  list  of  the  officially
supported platforms

K8SPSMDB-113: Percona Server for MongoDB 4.2 is now supported

OpenShift Container Platform 4.3 is now supported

10.18.2 Improvements

K8SPSMDB-79: The health check algorithm improvements have increased the overall stability of the Operator

K8SPSMDB-176: The Operator was updated to use Percona Backup for MongoDB version 1.2

K8SPSMDB-153: Now the user can adjust securityContext, replacing the automatically generated securityContext
with the customized one

K8SPSMDB-175:  Operator  now updates  observedGeneration  status  message  to  allow better  monitoring  of  the
cluster rollout or backups/restore process

10.18.3 Bugs Fixed

K8SPSMDB-182: Setting the updateStrategy: OnDelete  didn’t work if was not specified from scratch in CR

K8SPSMDB-174: The inability to update or delete existing CRD was possible because of too large records in etcd,
resulting in “request is too large” errors. Only 20 last status changes are now stored in etcd to avoid this problem.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

10.18.4 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Last update: 2024-04-09 

10.18 Percona Kubernetes Operator for Percona Server for MongoDB 1.4.0

405 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.19 Percona Kubernetes Operator for Percona Server for MongoDB 1.3.0

Percona announces the  Percona Kubernetes Operator for Percona Server for MongoDB 1.3.0 release on December 11,
2019. This release is now the current GA release in the 1.3 series. Install the Kubernetes Operator for Percona Server
for MongoDB by following the instructions.

The Operator simplifies the deployment and management of the  Percona Server for MongoDB   in Kubernetes-

based environments.  It  extends  the  Kubernetes  API  with  a  new custom resource  for  deploying,  configuring and
managing the application through the whole life cycle.

The Operator source code is available in our Github repository . All of Percona’s software is open-source and free.

10.19.1 New Features and Improvements

CLOUD-415: Non-default cluster domain can now be specified with the new ClusterServiceDNSSuffix  Operator option.

CLOUD-395: The Percona Server for MongoDB images size decrease by 42% was achieved by removing unnecessary
dependencies and modules to reduce the cluster deployment time.

CLOUD-390: Helm chart for Percona Monitoring and Management (PMM) 2.0 have been provided.

Percona Server for MongoDB  is an enhanced, open source and highly-scalable database that is a fully-compatible,

drop-in replacement for MongoDB Community Edition. It supports MongoDB protocols and drivers. Percona Server for
MongoDB extends MongoDB Community Edition functionality by including the Percona Memory Engine, as well as
several enterprise-grade features. It requires no changes to MongoDB applications or code.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

10.19.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

Last update: 2024-04-09 

10.19 Percona Kubernetes Operator for Percona Server for MongoDB 1.3.0

406 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.20 Percona Kubernetes Operator for Percona Server for MongoDB 1.2.0

Percona announces the  Percona Kubernetes Operator for Percona Server for MongoDB 1.2.0 release on September 20,
2019. This release is now the current GA release in the 1.2 series. Install the Kubernetes Operator for Percona Server
for MongoDB by following the instructions.

The Operator simplifies the deployment and management of the  Percona Server for MongoDB   in Kubernetes-

based environments.  It  extends  the  Kubernetes  API  with  a  new custom resource  for  deploying,  configuring and
managing the application through the whole life cycle.

The Operator source code is available in our Github repository . All of Percona’s software is open-source and free.

10.20.1 New Features and Improvements

A Service Broker was implemented for  the Operator,  allowing a user  to deploy Percona XtraDB Cluster  on the
OpenShift Platform, configuring it with a standard GUI, following the Open Service Broker API.

Now the Operator supports  Percona Monitoring and Management 2  , which means being able to detect and

register to PMM Server of both 1.x and 2.0 versions.

Data-at-rest encryption is now enabled by default unless  EnableEncryption=false  is explicitly specified in the deploy/

cr.yaml  configuration file.

Now it is possible to set the  schedulerName  option in the operator parameters. This allows using storage which
depends on a custom scheduler, or a cloud provider which optimizes scheduling to run workloads in a cost-effective
way.

The resource constraint values were refined for all containers to eliminate the possibility of an out of memory error.

10.20.2 Fixed Bugs

Oscillations of the cluster status between “initializing” and “ready” took place after an update.

The Operator was removing other cron jobs in case of the enabled backups without defined tasks (contributed by
Marcel Heers ).

Percona Server for MongoDB  is an enhanced, open source and highly-scalable database that is a fully-compatible,

drop-in replacement for MongoDB Community Edition. It supports MongoDB protocols and drivers. Percona Server for
MongoDB extends MongoDB Community Edition functionality by including the Percona Memory Engine, as well as
several enterprise-grade features. It requires no changes to MongoDB applications or code.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

10.20.3 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

• 

• 

• 

• 

• 

• 

• 

10.20 Percona Kubernetes Operator for Percona Server for MongoDB 1.2.0

407 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



Last update: 2024-05-24 

10.20.3 Get expert help

408 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.21 Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0

Percona announces the general availability of Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0 on July
15, 2019. This release is now the current GA release in the 1.1 series.  Install the Kubernetes Operator for Percona
Server for MongoDB by following the instructions. Please see the GA release announcement .

The Operator simplifies the deployment and management of the  Percona Server for MongoDB   in Kubernetes-

based environments.  It  extends  the  Kubernetes  API  with  a  new custom resource  for  deploying,  configuring and
managing the application through the whole life cycle.

The Operator source code is available in our Github repository . All of Percona’s software is open-source and free.

10.21.1 New Features and Improvements

Now the Percona Kubernetes Operator allows upgrading Percona Server for MongoDB to newer versions, either in
semi-automatic or in manual mode.

Also, two modes are implemented for updating the Percona Server for MongoDB mongod.conf  configuration file: in
automatic configuration update mode Percona Server for MongoDB Pods are immediately re-created to populate
changed options from the Operator YAML file, while in  manual mode changes are held until  Percona Server for
MongoDB Pods are re-created manually.

Percona  Server  for  MongoDB  data-at-rest  encryption   is  now  supported  by  the  Operator  to  ensure  that

encrypted data files cannot be decrypted by anyone except those with the decryption key.

A separate service account is now used by the Operator’s containers which need special privileges, and all other
Pods run on default service account with limited permissions.

User secrets are now generated automatically if don’t exist: this feature especially helps reduce work in repeated
development  environment  testing  and  reduces  the  chance  of  accidentally  pushing  predefined  development
passwords to production environments.

The  Operator  is  now  able  to  generate  TLS  certificates  itself which  removes  the  need  in  manual  certificate
generation.

The  list  of  officially  supported  platforms  now  includes  the  Minikube,  which  provides  an  easy  way  to  test  the
Operator locally on your own machine before deploying it on a cloud.

Also, Google Kubernetes Engine 1.14 and OpenShift Platform 4.1 are now supported.

Percona Server for MongoDB  is an enhanced, open source and highly-scalable database that is a fully-compatible,

drop-in replacement for MongoDB Community Edition. It supports MongoDB protocols and drivers. Percona Server for
MongoDB extends MongoDB Community Edition functionality by including the Percona Memory Engine, as well as
several enterprise-grade features. It requires no changes to MongoDB applications or code.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system .

10.21.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

• 

• 

• 

• 

• 

• 

• 

• 

10.21 Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0

409 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-04-09 

10.21.2 Get expert help

410 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.22 Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0

Percona announces the general availability of Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0 on May
29, 2019. This release is now the current GA release in the 1.0 series.  Install the Kubernetes Operator for Percona
Server for MongoDB by following the instructions.  Please see the  GA release announcement  .  All  of Percona’s

software is open-source and free.

The Percona Kubernetes Operator for Percona Server for MongoDB automates the lifecycle of your Percona Server for
MongoDB environment. The Operator can be used to create a Percona Server for MongoDB replica set, or scale an
existing replica set.

The Operator creates a Percona Server for MongoDB replica set with the needed settings and provides a consistent
Percona  Server  for  MongoDB  instance.  The  Percona  Kubernetes  Operators  are  based  on  best  practices  for
configuration and setup of the Percona Server for MongoDB.

The Kubernetes Operators provide a consistent way to package, deploy, manage, and perform a backup and a restore
for a Kubernetes application. Operators deliver automation advantages in cloud-native applications and may save time
while providing a consistent environment.

The advantages are the following:

Deploy a Percona Server for  MongoDB environment with no single point  of  failure and environment can span
multiple availability zones (AZs).

Deployment takes about six minutes with the default configuration.

Modify the Percona Server for MongoDB size parameter to add or remove Percona Server for MongoDB replica set
members

Integrate  with  Percona  Monitoring  and  Management  (PMM)  to  seamlessly  monitor  your  Percona  Server  for
MongoDB

Automate backups or perform on-demand backups as needed with support for performing an automatic restore

Supports using Cloud storage with S3-compatible APIs for backups

Automate the recovery from failure of a Percona Server for MongoDB replica set member

TLS is enabled by default for replication and client traffic using Cert-Manager

Access private registries to enhance security

Supports advanced Kubernetes features such as pod disruption budgets, node selector,  constraints,  tolerations,
priority classes, and affinity/anti-affinity

You can use either PersistentVolumeClaims or local storage with hostPath to store your database

Supports a replica set Arbiter member

Supports Percona Server for MongoDB versions 3.6 and 4.0

10.22.1 Installation

Installation is performed by following the documentation installation instructions for Kubernetes and OpenShift.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

10.22 Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0

411 of 412 Percona LLC and/or its affiliates, © 2009 - 2024



10.22.2 Get expert help

If you need assistance, visit the community forum for comprehensive and free database knowledge, or contact our
Percona Database Experts  for  professional  support  and services.  Join  K8S Squad to  benefit  from early  access  to
features and “ask me anything” sessions with the Experts. 

 Community Forum  Get a Percona Expert  Join K8S Squad

Last update: 2024-04-09 

10.22.2 Get expert help

412 of 412 Percona LLC and/or its affiliates, © 2009 - 2024


