Percona Operator for
MongoDB
documentation

1.15.0 (October 09, 2023)

Percona Technical Documentation Team

LLC and/or its affiliates, © 2009 - 2023

Table of contents

Table of contents

1. Percona Operator for MongoDB 5
2. Features 5
3. Quickstart 5
4. Installation 5
5. Configuration 5
6. Management 6
7. HOWTOs 6
8. Reference 6
9. Features 8

9.1 Design overview 8

9.2 Compare various solutions to deploy MongoDB in Kubernetes 1

10. Quickstart 14
10.1 Install Percona Server for MongoDB using Helm 14
10.2 Install Percona Server for MongoDB using kubectl 16

1. Installation 21
1.1 System Requirements 2]
11.2 Install Percona Server for MongoDB on Minikube 22
1.3 Install Percona Server for MongoDB on Google Kubernetes Engine (GKE) 27
1.4 Install Percona Server for MongoDB on Amazon Elastic Kubernetes Service (EKS) 34
11.5 Install Percona Server for MongoDB on Azure Kubernetes Service (AKS) 39
11.6 Install the Operator and deploy your MongoDB cluster 39
1.7 Install Percona server for MongoDB on Kubernetes 44
11.8 Install Percona Server for MongoDB on OpensShift 47

12. Configuration 52
121 Users 52
12.2 Changing MongoDB Options 57
12.3 Binding Percona Server for MongoDB components to Specific Kubernetes/Openshift Nodes 61
124 Labels and annotations 65
125 Exposing cluster 67
12.6 Local Storage support for the Percona Operator for MongoDB 7
12.7 Using Replica Set Arbiter nodes and non-voting nodes 72
12.8 Percona Server for MongoDB Sharding 74
12.9 Transport Layer Security (TLS) 77
1210 Data at rest encryption 84
1211 Telemetry 89

2 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

Table of contents

13. Management 91
13.1 Backup and restore 91
13.2 Update Database and Operator 109
13.3 Scale Percona Server for MongoDB on Kubernetes and Openshift 118
13.4 Set up Percona Server for MongoDB cross-site replication 19
13.5 Monitoring 126
13.6 Using sidecar containers 131
13.7 Pause/resume Percona Server for MongoDB 135

14. Troubleshooting 136
14.1 Initial troubleshooting 136
14.2 Exec into the containers 139
14.3 Check the Logs 141
14.4 Special debug images 143

15. HOWTOs 144
15.1 How to integrate Percona Operator for MongoDB with OpenLDAP 144
15.2 Use Docker images from a custom registry 150
15.3 Creating a private S3-compatible cloud for backups 154
15.4 How to restore backup to a new Kubernetes-based environment 158
15.5 How to use backups to move the external database to Kubernetes 162
15.6 Install Percona Operator for MongoDB in multi-namespace (cluster-wide) mode 165
15.7 How to carry on low-level manual upgrades of Percona Server for MongoDB 169
15.8 Monitor Kubernetes 174

16. Reference 183
16.1 Custom Resource options 183
16.2 Percona certified images 224
16.3 Versions compatibility 227
16.4 Percona Operator for MongoDB APl Documentation 229
16.5 Frequently Asked Questions 276
16.6 Copyright and licensing information 278
16.7 Trademark policy 279

17. Release notes 281
17.1 Percona Operator for MongoDB Release Notes 281
17.2 Percona Operator for MongoDB 1.15.0 282
17.3 Percona Operator for MongoDB 1.14.0 285
17.4 Percona Operator for MongoDB 1.13.0 288
17.5 Percona Operator for MongoDB 1.12.0 291
17.6 Percona Distribution for MongoDB Operator 1.11.0 294
17.7 Percona Distribution for MongoDB Operator 1.10.0 296

3 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

17.8

17.9

17.10

171

1712

17.13

1714

1715

17.16

1717

Percona Distribution for MongoDB Operator 1.9.0

Percona Kubernetes Operator for Percona Server for MongoDB 1.8.0
Percona Kubernetes Operator for Percona Server for MongoDB 1.7.0
Percona Kubernetes Operator for Percona Server for MongoDB 1.6.0
Percona Kubernetes Operator for Percona Server for MongoDB 1.5.0
Percona Kubernetes Operator for Percona Server for MongoDB 1.4.0
Percona Kubernetes Operator for Percona Server for MongoDB 1.3.0
Percona Kubernetes Operator for Percona Server for MongoDB 1.2.0
Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0

Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0

4 of 313

Table of contents

298
300
302
304
306
307
308
309
310

312

Percona LLC and/or its affiliates, © 2009 - 2023

1. Percona Operator for MongoDB

1. Percona Operator for MongoDB

The Percona Operator for MongoDB automates the creation, modification, or deletion of items in your
Percona Server for MongoDB environment. The Operator contains the necessary Kubernetes settings to
maintain a consistent Percona Server for MongoDB instance.

The Percona Kubernetes Operators are based on best practices for the configuration of a Percona Server for
MongoDB replica set. The Operator provides many benefits but saving time, a consistent environment are
the most important.

2. Features

« Design and architecture

« Comparison with other solutions
3. Quickstart

« Install with Helm

« Install with kubectl
4. Installation

 System Requirements

« Install on Minikube

« Install on Google Kubernetes Engine (GKE)

« Install on Amazon Elastic Kubernetes Service (AWS EKS)
« Install on Microsoft Azure Kubernetes Service (AKS)

» Generic Kubernetes installation

« Install on OpensShift
5. Configuration

+ Application and system users
» Changing MongoDB options

+ Anti-affinity and tolerations

+ Labels and annotations

* Exposing the cluster

+ Local storage support

+ Arbiter and non-voting nodes
* MongoDB sharding

« Transport encryption (TLS/SSL)
 Data at rest encryption

* Telemetry

5 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-server-mongodb-operator

6. Management

6. Management

» Backup and restore
» About backups
« Configure storage for backups
» Making scheduled backups
« Making on-demand backup
« Storing operations logs for point-in-time recovery
« Restore from a previously saved backup
« Delete the unneeded backup
» Upgrade MongoDB and the Operator
« Horizontal and vertical scaling
 Multi-cluster and multi-region deployment
« Monitor with Percona Monitoring and Management (PMM)
+ Add sidecar containers
* Restart or pause the cluster

» Debug and troubleshoot

7. HOWTOs

» OpenLDAP integration

» How to use private registry

« Creating a private S3-compatible cloud for backups

* Restore backup to a new Kubernetes-based environment

» How to use backups to move the external database to Kubernetes

« Install Percona Server for MongoDB in multi-namespace (cluster-wide) mode

» Upgrading Percona Server for MongoDB manually
8. Reference

« Custom Resource options

« Percona certified images

- Operator API

« Frequently asked questions

» Release notes

6 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

8. Reference

Contact Us
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-31

7 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

9. Features

9. Features

9.1 Design overview

The design of the Operator is tighly bound to the Percona Server for MongoDB replica set or sharded cluster.
Replica set cluster is briefly described in the following diagram.

Client Application

MongoDB driver

DB Pod 1 DB Pod 2 DB Pod 3

Writa

A replica set consists of one primary server and several secondary ones (two in the picture), and the client
application accesses the servers via a driver.

In the case of a sharded cluster, each shard is a replica set which contains a subset of data stored in the
database, and the mongos query router acts as an entry point for client applications. You can find out more
details about sharding on a dedicated documentation page, and a simplified diagram is as follows:

8 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

9.1 Design overview

Client Application
& 1 >

e

—

DB Pod 1

DB Pod 2 DB Pod 3

o J
Werita

To provide high availability the Operator uses node affinity to run MongoDB instances on separate worker
nodes if possible, and the database cluster is deployed as a single Replica Set with at least three nodes. If a
node fails, the pod with the mongod process is automatically re-created on another node. If the failed node
was hosting the primary server, the replica set initiates elections to select a new primary. If the failed node
was running the Operator, Kubernetes will restart the Operator on another node, so normal operation will not
be interrupted.

Client applications should use a mongo+srv URI for the connection. This allows the drivers (4.2 and up) to
retrieve the list of replica set members from DNS SRV entries without having to list hostnames for the
dynamically assigned nodes.

/" Note

The Operator uses security settings which are more secure than the default Percona Server for MongoDB setup.
The initial configuration contains default passwords for all needed user accounts, which should be changed in the
production environment, as stated in the installation instructions.

9 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

9.1 Design overview

-

Kubernetes API
4)
Operator
_> o0 0
DB Pod 1 DB Pod 2 DB Pod N
Percona Server for MongoDB
_ J

Storage

Area
Network eee

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A
PersistentVolumeClaim (PVC) is used to implement the automatic storage provisioning to pods. If a failure
occurs, the Container Storage Interface (CSI) should be able to re-mount storage on a different node. The

PVC StorageClass must support this feature (Kubernetes and OpenShift support this in versions 1.9 and 3.9
respectively).

The Operator functionality extends the Kubernetes APl with PerconaServerMongoDB object, and it is
implemented as a golang application. Each PerconaServerMongoDB object maps to one separate Percona
Server for MongoDB setup. The Operator listens to all events on the created objects. When a new
PerconaServerMongoDB object is created, or an existing one undergoes some changes or deletion, the
operator automatically creates/changes/deletes all needed Kubernetes objects with the appropriate
settings to provide a properly operating replica set.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-02-16

10 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

9.2 Compare various solutions to deploy MongoDB in Kubernetes

9.2 Compare various solutions to deploy MongoDB in Kubernetes

There are multiple ways to deploy and manage MongoDB in Kubernetes. Here we will focus on comparing

the following open source solutions:

« Bitnami Helm chart

» KubeDB

» MongoDB Community Operator

« Percona Operator for MongoDB

9.2.1 Generic

Here is the review of generic features, such as supported MongoDB versions, open source models and more.

Feature/
Product

Open source
model

MongoDB
versions

Kubernetes
conformance

Cluster-wide
mode

Network
exposure

9.2.2 Maintenance

Upgrade and scaling are the two most common maintenance tasks that are executed by database

Percona
Operator for
MongoDB

Apache 2.0

PSMDB 4.4, 5.0,
6.0

Various
versions are
tested

Yes

Yes

administrators and developers.

Feature/
Product

Operator
upgrade

Database
upgrade

Compute
scaling

Storage
scaling

Percona Operator
for MongoDB

Yes

Automated minor,
manual major

Horizontal and
vertical

Manual

Bitnami
Helm Chart

Apache 2.0

MongoDB
5.0

No
guarantee

Not an
operator

Yes

Bitnami Helm
Chart

Helm
upgrade

No
Horizontal

and vertical

Manual

11 of 313

KubeDB for
MongoDB

Open core

MongoDB 3.4,
3.6.4.0,41,4.2

No guarantee

Enterprise only

No, only
through
manual config

KubeDB for
MongoDB

Image
change

Manual minor

Enterprise
only

Enterprise
only

Percona LLC and/or its affiliates, © 2009 - 2023

MongoDB
Community
Edtion Operator

Open core

MongoDB 4.2, 4.4,
5.0

No guarantee

Yes

Enterprise only

MongoDB
Community
Operator

Yes
Manual mintor and
major

Horizontal only

Enterprise only

https://github.com/bitnami/charts/tree/master/bitnami/mongodb
https://github.com/kubedb
https://github.com/mongodb/mongodb-kubernetes-operator
https://github.com/percona/percona-server-mongodb-operator/

9.2.3 MongoDB topologies

9.2.3 MongoDB topologies

The next comparison is focused on replica sets, arbiters, sharding and other node types.

Feature/ Percona
Product Operator for
MongoDB
Multi-cluster Yes
deployment
Sharding Yes
Arbiter Yes
Non-voting Yes
nodes
Hidden nodes No
Network Yes
exposure

9.2.4 Backups

Here are the backup and restore capabilities of each solution.

Feature/ Percona

Product Operator for
MongoDB

Scheduled Yes

backups

Incremental No

backups

Point-in-time Yes

recovery

Logical Yes

backups

Physical Yes

backups

Bitnami
Helm Chart

No

Yes,
another
chart

Yes

No

Yes

Yes

Bitnami
Helm Chart

No

No

No

No

No

12 of 313

KubeDB
MongoDB

No

Yes

Yes

No

Yes

Manual

KubeDB
MongoDB

Enterprise
only

Enterprise
only
No

No

No

for

for

MongoDB
Community
Operator

No

No

Yes

No

Yes

Enterprise only

MongoDB
Community
Operator
Enterprise only
No

Enterprise only

Enterprise only

Enterprise only

Percona LLC and/or its affiliates, © 2009 - 2023

9.2.5 Monitoring

Monitoring is crucial for any operations team.

Feature/Product

Custom exporters

Percona
Monitoring and
Management
(PMM)

9.2.6 Miscellaneous

Percona
Operator for
MongoDB

Yes, through
sidecars

Yes

Bitnami Helm
Chart

mongodb-
exporter as a
sidecar

No

KubeDB for
MongoDB

mongodb-
exporter as a
sidecar

No

Finally, let's compare various features that are not a good fit for other categories.

Feature/Product

Customize
MongoDB
configuration

Helm

SSL/TLS

Create users/roles

CONTACT US

Percona
Operator for
MongoDB

Yes

Yes

Yes

No, only some
params

Bitnami
Helm
Chart

Yes

Yes

Yes

Yes

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

KubeDB for
MongoDB

Yes

Yes, for
operator
only

Enterprise
only

No

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-23

13 of 313

9.2.5 Monitoring

MongoDB
Community
Operator

Integrate with
prometheus
operator

No

MongoDB
Community
Operator

No, only some

params

Yes, for operator
only

Yes

Yes

Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

10. Quickstart

10. Quickstart

10.1 Install Percona Server for MongoDB using Helm

Helm is the package manager for Kubernetes. Percona Helm charts can be found in percona/percona-
helm-charts repository on Github.

10.1.1 Pre-requisites

Install Helm following its official installation instructions.

/" Note

Helm v3 is needed to run the following steps.

10.1.2 Installation

1. Add the Percona’s Helm charts repository and make your Helm client up to date with it:

$ helm repo add percona https://percona.github.io/percona-helm-charts/
$ helm repo update

2. Install Percona Operator for MongoDB:
$ helm install my-op percona/psmdb-operator

The my-op parameter in the above example is the name of a new release object which is created for the
Operator when you install its Helm chart (use any name you like).

/" Note

If nothing explicitly specified, helm install command will work with the default namespace and the latest
version of the Helm chart.

+ To use different namespace, provide its name with the following additional parameter: --namespace my-
namespace .

« To use different Helm chart version, provide it as follows: --version 1.15.0

3. Install Percona Server for MongoDB:
$ helm install my-db percona/psmdb-db --namespace my-namespace

The my-db parameter in the above example is the name of a new release object which is created for the
Percona Server for MongoDB when you install its Helm chart (use any name you like).
10.1.3 Installing Percona Server for MongoDB with customized parameters

The command above installs Percona Server for MongoDB with default parameters. Custom options can be
passed to a helm install command as a --set key=value[,key=value] argument. The options passed with
a chart can be any of the Operator's Custom Resource options.

14 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/helm/helm
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://github.com/percona/percona-helm-charts/tree/main/charts/psmdb-db#installing-the-chart

10.1.3 Installing Percona Server for MongoDB with customized parameters

/7" Note

Parameters from the Replica Set section are treated differently: if you specify any parameter from replsets, the
Operator will not use default values for this Replica Set. So do not specify Replica Set options at all or specify all
needed options for the Replica Set.

The following example will deploy a Percona Server for MongoDB Cluster in the psmdb namespace, with
disabled backups and 20 Gi storage:

$ helm install my-db percona/psmdb-db --version 1.15.0 --namespace psmdb \
--set "replsets[0].name=rs0@" --set "replsets[0].size=3" \
--set "replsets[0].volumeSpec.pvc.resources.requests.storage=20Gi" \
--set backup.enabled=false --set sharding.enabled=false

Also it can be more convenient in some cases to specify customized options in a YAML file instead of using
separate command line parameters. The resulting file similar to the above example looks as follows:

allowUnsafeConfigurations: true
sharding:
enabled: false
replsets:
- name: rsoO
size: 3
volumeSpec:
pvc:
resources:
requests:
storage: 2Gi
backup:
enabled: false

Apply the resulting YAML file as follows:

$ helm install my-db percona/psmdb-db --namespace psmdb -f values.yaml
CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-09

15 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

10.2 Install Percona Server for MongoDB using kubectl

10.2 Install Percona Server for MongoDB using kubectl

The kubectl command line utility is a tool used before anything else to interact with Kubernetes and
containerized applications running on it. Users can run kubectl to deploy applications, manage cluster
resources, check logs, etc.

10.2.1 Pre-requisites

The following tools are used in this guide and therefore should be preinstalled:

1. The Git distributed version control system. You can install it following the official installation instructions.

2. The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes
distributions. Install it, if not present, following the official installation instructions.

16 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/tasks/tools/
https://github.com/git-guides/install-git
https://kubernetes.io/docs/tasks/tools/install-kubectl/

10.2.2 Install the Operator and Percona Server for MongoDB

10.2.2 Install the Operator and Percona Server for MongoDB

The following steps are needed to deploy the Operator and Percona Server for MongoDB in your Kubernetes
environment:

17 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

10.2.2 Install the Operator and Percona Server for MongoDB

1. Deploy the Operator using the following command:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-
mongodb-operator/vl1.15.0/deploy/bundle.yaml

i= Expected output Z
customresourcedefinition.apiextensions.k8s.1io/perconaservermongodbs.psmdb.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.1io/perconaservermongodbrestores.psmdb.percona.com
serverside-applied
role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator
serverside-applied
deployment.apps/percona-server-mongodb-operator serverside-applied

As the result you will have the Operator Pod up and running.
2. Deploy Percona Server for MongoDB:
$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.15.0/deploy/cr.yaml
v

i= Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

/" Note

This deploys default MongoDB cluster configuration, three mongod, three mongos, and three config server
instances. Please see deploy/cryaml and Custom Resource Options for the configuration options. You can
clone the repository with all manifests and source code by executing the following command:

$ git clone -b v1.15.0 https://github.com/percona/percona-server-mongodb-operator
After editing the needed options, apply your modified deploy/cr.yamt file as follows:
$ kubectl apply -f deploy/cr.yaml
The creation process may take some time. When the process is over your cluster will obtain the ready

status. You can check it with the following command:

$ kubectl get psmdb

18 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.15.0/deploy/cr.yaml

10.2.3 Verifying the cluster operation

i= Expected output Z
NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

10.2.3 Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get psmdb command finally shows you the
cluster status as ready, you can try to connect to the cluster.

1. You will need the login and password for the admin user to access the cluster. Use kubectl get secrets
command to see the list of Secrets objects (by default the Secrets object you are interested in has my-
cluster-name-secrets name). Then kubectl get secret my-cluster-name-secrets -o yaml command will
return the YAML file with generated Secrets, including the MONGODB DATABASE ADMIN USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

data:
MONGODB_DATABASE ADMIN PASSWORD: aDAzQOpCY3NSWEZ2ZUIzS1I=
MONGODB DATABASE ADMIN USER: ZGFOYWJhc2VBZGlpbg==

Here the actual login name and password are base64-encoded. Use echo 'aDAzQOpCY3NSWEZ2ZUIzS1I=' |
base64 --decode command to bring it back to a human-readable form.

2.Run a container with a MongoDB client and connect its console output to your terminal. The following
command will do this, naming the new Pod percona-client:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:
4.4.24-23 --restart=Never -- bash -il

Executing it may require some time to deploy the correspondent Pod.

3.Now run mongo tool in the percona-client command shell using the login (which is normally
databaseAdmin), a proper password obtained from the Secret, and a proper namespace name instead of
the <namespace name> placeholder. The command will look different depending on whether sharding is on
(the default behavior) or off:

if sharding is on

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-
mongos.<namespace name>.svc.cluster.local/admin?ssl=false"

if sharding is off

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-
rs0.<namespace name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

/" Note

If using MongoDB versions earler than 6.x (such as 4.4.24-23 or 5.0.20-17 instead of the default 6.0.9-7 variant),
substitute mongosh command with mongo in the above example.

CONTACT US

For free technical help, visit the Percona Community Forum.

19 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages

10.2.3 Verifying the cluster operation

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-13

20 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11. Installation

11. Installation

11.1 System Requirements

The Operator was developed and tested with Percona Server for MongoDB 4.4.24-23, 5.0.20-17, and 6.0.9-7.
Other options may also work but have not been tested. The Operator 1.15.0 also uses Percona Backup for
MongoDB 2.3.0.

11.1.1 Officially supported platforms
The following platforms were tested and are officially supported by the Operator 1.15.0:

« Google Kubernetes Engine (GKE) 1.24-1.28

- Amazon Elastic Container Service for Kubernetes (EKS) 1.24-1.28
» OpenShift Container Platform 4.11 - 4.13

- Azure Kubernetes Service (AKS) 1.25-1.28

« Minikube 1.31.2 (based on Kubernetes 1.28)

Other Kubernetes platforms may also work but have not been tested.

11.1.2 Resource Limits

A cluster running an officially supported platform contains at least 3 Nodes and the following resources (if
sharding is turned off):

+ 2GB of RAM,
2 CPU threads per Node for Pods provisioning,

- at least 60GB of available storage for Private Volumes provisioning.
Consider using 4 CPU and 6 GB of RAM if sharding is turned on (the default behavior).

Also, the number of Replica Set Nodes should not be odd if Arbiter is not enabled.

f Note

Use Storage Class with XFS as the default filesystem if possible to achieve better MongoDB performance.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

21 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://dba.stackexchange.com/questions/190578/is-xfs-still-the-best-choice-for-mongodb
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11.2 Install Percona Server for MongoDB on Minikube

11.2 Install Percona Server for MongoDB on Minikube

Installing the Percona Operator for MongoDB on Minikube is the easiest way to try it locally without a cloud
provider. Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide
hypervisor, such as VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test
Kubernetes application locally prior to deploying it on a cloud.

22 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/kubernetes/minikube

11.2 Install Percona Server for MongoDB on Minikube

The following steps are needed to run Percona Operator for MongoDB on minikube:

23 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

11.2 Install Percona Server for MongoDB on Minikube

1. Install minikube, using a way recommended for your system. This includes the installation of the following
three components:

a. kubectl tool,
b. a hypervisor, if it is not already installed,
c. actual minikube package

After the installation, run minikube start --memory=5120 --cpus=4 --disk-size=30g (parameters increase the
virtual machine limits for the CPU cores, memory, and disk, to ensure stable work of the Operctor). Being
executed, this command will download needed virtualized images, then initialize and run the cluster. After
Minikube is successfully started, you can optionally run the Kubernetes dashboard, which visually
represents the state of your cluster. Executing minikube dashboard will start the dashboard and open it in
your default web browser.

2. Deploy the operator using the following command:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-
mongodb-operator/v1.15.0/deploy/bundle.yaml

3. Deploy MongoDB cluster with:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.15.0/deploy/cr-minimal.yaml

/7" Note

This deploys a one-shard MongoDB cluster with one replica set with one node, one mongos node and one
config server node. The deploy/cr-minimalyaml is for minimal non-production deployment. For more
configuration options please see deploy/cryaml and Custom Resource Options. You can clone the repository
with all manifests and source code by executing the following command:

$ git clone -b v1.15.0 https://github.com/percona/percona-server-mongodb-operator
After editing the needed options, apply your modified deploy/cr.yamt file as follows:

$ kubectl apply -f deploy/cr.yaml

The creation process may take some time.

The process is over when both operator and replica set pod have reached their Running status. kubectl
get pods output should look like this:

NAME READY STATUS RESTARTS AGE
percona-server-mongodb-operator-d859b69b6-t44vk 1/1 Running 0 50s
minimal-cluster-cfg-0 1/1 Running 0 41s
minimal-cluster-mongos-0 1/1 Running 0 36s
minimal-cluster-rs0-0 1/1 Running 0 39s

You can also track the progress via the Kubernetes dashboard:

24 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.15.0/deploy/cr-minimal.yaml
https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.15.0/deploy/cr.yaml

11.2 Install Percona Server for MongoDB on Minikube

Workloads

Workload Status

Deployments Pods Replica Sets Stateful Sets
Deployments
Name Images Labels Pods Created 4
percona-server-mongodb-operator godb :1.13.0 - 1/1 3 minutes ago
Pods
Name Images Labels Node Status Restarts CPU Usage (cores) ?ﬁ;gg;y Usage Created 4
app.kubernetes.io/compon
ent: cfg
app.kubernetes.iofinstanc
& e
minimal-cluster-cfg-0 ongodb:5.0.11-10 minikube: Running 0 - - 2 minutes ago

app.kubernetes.io/manage
d-by: percona-server-mong
odb-operator

Show all

app.kubernetes.io/compon
ent: mongos

4. During previous steps, the Operator has generated several secrets, including the password for the admin
user, which you will need to access the cluster. Use kubectl get secrets to see the list of Secrets objects
(by default Secrets object you are interested in has minimal-cluster-name-secrets name). Then kubectl
get secret minimal-cluster-name-secrets -o yaml Will return the YAML file with generated secrets, including
the MONGODB_USER ADMIN and MONGODB_USER ADMIN_ PASSWORD strings, which should look as follows:

data:
MONGODB_USER ADMIN PASSWORD: aDAzQOpCY3NSWEZ2ZUIzS1I=
MONGODB USER ADMIN USER: dXNlckFkbWlu

Here the actual login name and password are base64-encoded, and echo 'aDAzQOpCY3NSWEZ2ZUIzS1I=' |
base64 --decode will bring it back to a human-readable form.

5. Check connectivity to a newly created cluster.

First of all, run a container with a MongoDB client and connect its console output to your terminal. The
following command will do this, naming the new Pod percona-client :

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:
4.4.24-23 --restart=Never -- bash -il

Executing it may require some time to deploy the correspondent Pod. Now run mongo tool in the percona-
client command shell using the login (which is userAdmin) and password obtained from the secret:

$ mongo "mongodb://userAdmin:userAdminl23456@minimal-cluster-name-
mongos.default.svc.cluster.local/admin?ssl=false"

CONTACT US

For free technical help, visit the Percona Community Forum.

25 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages

11.2 Install Percona Server for MongoDB on Minikube

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-30

26 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11.3 Install Percona Server for MongoDB on Google Kubernetes Engine (GKE)

11.3 Install Percona Server for MongoDB on Google Kubernetes Engine
(GKE)

This guide shows you how to deploy Percona Operator for MongoDB on Google Kubernetes Engine (GKE). The
document assumes some experience with the platform. For more information on the GKE, see the

Kubernetes Engine Quickstart.

11.3.1 Prerequisites
All commands from this guide can be run either in the Google Cloud shell or in your local shell.
To use Google Cloud shell, you need nothing but a modern web browser.
If you would like to use your local shell, install the following:

1. gcloud. This tool is part of the Google Cloud SDK. To install it, select your operating system on the official
Google Cloud SDK documentation page and then follow the instructions.

2. kubectl. It is the Kubernetes command-line tool you will use to manage and deploy applications. To install
the tool, run the following command:

$ gcloud auth login
$ gcloud components install kubectl

11.3.2 Create and configure the GKE cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local
shell (if you have installed Google Cloud SDK locally on the previous step). The following command will
create a cluster named my-cluster-name:

$ gcloud container clusters create my-cluster-name --project <project name> --zone us-
centrall-a --cluster-version 1.25 --machine-type nl-standard-4 --num-nodes=3

/7" Note
You must edit the following command and other command-line statements to replace the <project name>
placeholder with your project name. You may also be required to edit the zone location, which is set to us-

centrall in the above example. Other parameters specify that we are creating a cluster with 3 nodes and with
machine type of 4 vCPUs.

You may wait a few minutes for the cluster to be generated.

/" Whenthe process is over, you can see it listed in the Google Cloud console

Select Kubernetes Engine — Clusters in the left menu panel:

0O e my-cluster-name us-centrall-a 3 12 45 GB — H
/" Edit
< Connect

@ Delete

27 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart

11.3.3 Install the Operator and deploy your MongoDB cluster

Now you should configure the command-line access to your newly created cluster to make kubectl be able
to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You
will see the connect statement which configures the command-line access. After you have edited the
statement, you may run the command in your local shell:

$ gcloud container clusters get-credentials my-cluster-name --zone us-centrall-a --project
<project name>

Finally, use your Cloud Identity and Access Management (Cloud 1AM) to control access to the cluster. The
following command will give you the ability to create Roles and RoleBindings:

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --
user $(gcloud config get-value core/account)

i= Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

11.3.3 Install the Operator and deploy your MongoDB cluster

1. Deploy the Operator. By default deployment will be done in the default namespace. If that's not the
desired one, you can create a new namespace and/or set the context for the namespace as follows
(replace the <namespace name> placeholder with some descriptive name):

$ kubectl create namespace <namespace name>
$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace
name>

At success, you will see the message that namespace/<namespace name> was created, and the context
(gke <project name> <zone location> <cluster name>) was modified.

Deploy the Operator using the following command:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-
mongodb-operator/vl.15.0/deploy/bundle.yaml

1 —
2m—

i= Expected output

customresourcedefinition.apiextensions.k8s.io/perconaservermongodbs.psmdb.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.1io/perconaservermongodbbackups.psmdb.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com
serverside-applied

role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator
serverside-applied

deployment.apps/percona-server-mongodb-operator serverside-applied

28 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/iam
https://kubernetes.io/docs/reference/using-api/server-side-apply/

11.3.3 Install the Operator and deploy your MongoDB cluster

92 The operator has been started, and you can deploy your MongoDB cluster:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.15.0/deploy/cr.yaml

i= Expected output v

perconaservermongodb.psmdb.percona.com/my-cluster-name created

/7" Note

This deploys default MongoDB cluster configuration, three mongod, three mongos, and three config server
instances. Please see deploy/cryaml and Custom Resource Options for the configuration options. You can
clone the repository with all manifests and source code by executing the following command:

$ git clone -b v1.15.0 https://github.com/percona/percona-server-mongodb-operator
After editing the needed options, apply your modified deploy/cr.yamt file as follows:

$ kubectl apply -f deploy/cr.yaml

The creation process may take some time. When the process is over your cluster will obtain the ready
status. You can check it with the following command:

$ kubectl get psmdb

= Expected output v

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

29 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.15.0/deploy/cr.yaml

11.3.3 Install the Operator and deploy your MongoDB cluster

/" Youcan also track the creation process in Google Cloud console via the Object Browser

When the creation process is finished, it will look as follows:

Name Status Type Namespace Cluster
w core API Group
v Pod Kind

my-cluster-name-cfg-0 @ Running Pod default my-cluster-name
my-cluster-name-cfg-1 @& Running Pod default my-cluster-name
my-cluster-name-cfg-2 @ Running Pod default my-cluster-name
my-cluster-name-mongos-0 @& Running Pod default my-cluster-name
my-cluster-name-mongos-1 @ Running Pod default my-cluster-name
my-cluster-name-mongos-2 @ Running Pod default my-cluster-name
my-cluster-name-rs0-0 @ Running Pod default my-cluster-name
my-cluster-name-rs0-1 @ Running Pod default my-cluster-name
my-cluster-name-rs0-2 @ Running Pod default my-cluster-name
percona-server-mongodb-operator-665cd69f9b-xg5d! @ Running Pod default my-cluster-name

30 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

11.3.4 Verifying the cluster operation

11.3.4 Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get psmdb command finally shows you the
cluster status as ready, you can try to connect to the cluster.

1. You will need the login and password for the admin user to access the cluster. Use kubectl get secrets
command to see the list of Secrets objects (by default the Secrets object you are interested in has my-
cluster-name-secrets name). Then kubectl get secret my-cluster-name-secrets -o yaml command will
return the YAML file with generated Secrets, including the MONGODB DATABASE ADMIN USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

data:
MONGODB_DATABASE ADMIN PASSWORD: aDAzQOpCY3NSWEZ2ZUIzS1I=
MONGODB DATABASE ADMIN USER: ZGFOYWJhc2VBZGlpbg==

Here the actual login name and password are base64-encoded. Use echo 'aDAzQOpCY3NSWEZ2ZUIzS1I=' |
base64 --decode command to bring it back to a human-readable form.

2.Run a container with a MongoDB client and connect its console output to your terminal. The following
command will do this, naming the new Pod percona-client:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:
4.4.24-23 --restart=Never -- bash -il

Executing it may require some time to deploy the correspondent Pod.

3.Now run mongo tool in the percona-client command shell using the login (which is normally
databaseAdmin), a proper password obtained from the Secret, and a proper namespace name instead of
the <namespace name> placeholder. The command will look different depending on whether sharding is on
(the default behavior) or off:

if sharding is on

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-
mongos.<namespace name>.svc.cluster.local/admin?ssl=false"

if sharding is off

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-
rs@.<namespace name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

/7" Note

If using MongoDB versions earler than 6.x (such as 4.4.24-23 or 5.0.20-17 instead of the default 6.0.9-7 variant),
substitute mongosh command with mongo in the above example.

11.3.5 Troubleshooting

If kubectl get psmdb command doesn’t show ready status too long, you can check the creation process
with the kubectl get pods command:

$ kubectl get pods

31 0of 313 Percona LLC and/or its affiliates, © 2009 - 2023

11.3.6 Removing the GKE cluster

i= Expected output
NAME READY STATUS RESTARTS AGE
my-cluster-name-cfg-0 2/2 Running © 11m
my-cluster-name-cfg-1 2/2 Running 1 10m
my-cluster-name-cfg-2 2/2 Running 1 9m
my-cluster-name-mongos-0 1/1 Running 0 11m
my-cluster-name-mongos-1 1/1 Running 0 11m
my-cluster-name-mongos-2 1/1 Running 0 11m
my-cluster-name-rs0-0 2/2 Running 0 11m
my-cluster-name-rs0-1 2/2 Running 0 10m
my-cluster-name-rs0-2 2/2 Running © om
percona-server-mongodb-operator-665cd69f9b-xg5dl 1/1 Running 0 37m

If the command output had shown some errors, you can examine the problematic Pod with the kubectl
describe <pod name> command as follows:

$ kubectl describe pod my-cluster-name-rs0-2

Review the detailed information for Warning statements and then correct the configuration. An example of a
warning is as follows:

Warning FailedScheduling 68s (x4 over 2m22s) default-scheduler 0/1 nodes are available: 1 node(s)
didn’t match pod affinity/anti-affinity, 1 node(s) didn’t satisfy existing pods anti-affinity rules.

/" Alternatively, you can examine your Pods via the object browser

The errors will look as follows:

Name Status Type Namespace Cluster
w core API Group
v Pod Kind

my-cluster-name-cfg-0 @ Running Pod default my-cluster-name
my-cluster-name-cfg-1 @& Running Pod default my-cluster-name
my-cluster-name-cfg-2 @ Running Pod default my-cluster-name
my-cluster-name-mongos-0 @& Running Pod default my-cluster-name
my-cluster-name-mongos-1 @ Running Pod default my-cluster-name
my-cluster-name-mongos-2 & Running Pod default my-cluster-name
my-cluster-name-rs0-0 @ Running Pod default my-cluster-name
my-cluster-name-rs0-1 & Running Pod default my-cluster-name
my-cluster-name-rs0-2 @ Unschedulable Pod default my-cluster-name
percona-server-mongodb-operator-665cd69f9b-xg5d| & Running Pod default my-cluster-name

Clicking the problematic Pod will bring you to the details page with the same warning:

(1) 0/3 nodes are available: 3 node(s) didn't match Pod's node affinity/selector. SHOW DETAILS

11.3.6 Removing the GKE cluster

There are several ways that you can delete the cluster.

32 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

11.3.6 Removing the GKE cluster

You can clean up the cluster with the gcloud command as follows:
$ gcloud container clusters delete <cluster name>

The return statement requests your confirmation of the deletion. Type y to confirm.

/7" Also, you can delete your cluster via the Google Cloud console

Just click the Delete popup menu item in the clusters list:
0O e my-cluster-name us-centrall-a 3 12 45 GB — H
/" Edit
< Connect

W Delete

The cluster deletion may take time.

Warning

After deleting the cluster, all data stored in it will be lost!

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-13

33 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

114 Install Percona Server for MongoDB on Amazon Elastic Kubernetes Service (EKS)

11.4 Install Percona Server for MongoDB on Amazon Elastic Kubernetes
Service (EKS)

This guide shows you how to deploy Percona Operator for MongoDB on Amazon Elastic Kubernetes Service
(EKS). The document assumes some experience with the platform. For more information on the EKS, see the
Amazon EKS official documentation.

11.4.1 Prerequisites

The following tools are used in this guide and therefore should be preinstalled:

1. AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can install it
following the official installation instructions for your system.

2. eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on GitHub.

3. kubectl to manage and deploy applications on Kubernetes. Install it following the official installation

instructions.

Also, you need to configure AWS CLI with your credentials according to the official guide.

11.4.2 Create the EKS cluster

1. To create your cluster, you will need the following data:
» name of your EKS cluster,
« AWS region in which you wish to deploy your cluster,
- the amount of nodes you would like tho have,

- the desired ratio between on-demand and spot instances in the total number of nodes.

/7" Note

spot instances are not recommended for production environment, but may be useful e.g. for testing purposes.

After you have settled all the needed details, create your EKS cluster following the official cluster creation
instructions.

2. After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver on your cluster.
See the official documentation on adding it as an Amazon EKS add-on.

11.4.3 Install the Operator and deploy your MongoDB cluster

1. Deploy the Operator. By default deployment will be done in the default namespace. If that's not the
desired one, you can create a new namespace and/or set the context for the namespace as follows
(replace the <namespace name> placeholder with some descriptive name):

$ kubectl create namespace <namespace name>

$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace
name>

At success, you will see the message that namespace/<namespace name> was created, and the context was

modified.

Deploy the Operator using the following command:

34 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://aws.amazon.com/eks/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/weaveworks/eksctl#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://kubernetes.io/docs/reference/using-api/server-side-apply/

11.4.3 Install the Operator and deploy your MongoDB cluster

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-
mongodb-operator/vl.15.0/deploy/bundle.yaml

i= Expected output

customresourcedefinition.apiextensions.k8s.1io/perconaservermongodbs.psmdb.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbbackups.psmdb.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.1io/perconaservermongodbrestores.psmdb.percona.com
serverside-applied

role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator
serverside-applied

deployment.apps/percona-server-mongodb-operator serverside-applied

2. The operator has been started, and you can deploy your MongoDB cluster:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.15.0/deploy/cr.yaml

i= Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

/7" Note

This deploys default MongoDB cluster configuration, three mongod, three mongos, and three config server
instances. Please see deploy/cryaml and Custom Resource Options for the configuration options. You can
clone the repository with all manifests and source code by executing the following command:

$ git clone -b v1.15.0 https://github.com/percona/percona-server-mongodb-operator
After editing the needed options, apply your modified deploy/cr.yamt file as follows:

$ kubectl apply -f deploy/cr.yaml

The creation process may take some time. When the process is over your cluster will obtain the ready
status. You can check it with the following command:

$ kubectl get psmdb

i= Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

35 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.15.0/deploy/cr.yaml

11.4.4 Verifying the cluster operation

11.4.4 Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get psmdb command finally shows you the
cluster status as ready, you can try to connect to the cluster.

1. You will need the login and password for the admin user to access the cluster. Use kubectl get secrets
command to see the list of Secrets objects (by default the Secrets object you are interested in has my-
cluster-name-secrets name). Then kubectl get secret my-cluster-name-secrets -o yaml command will
return the YAML file with generated Secrets, including the MONGODB DATABASE ADMIN USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

data:
MONGODB_DATABASE ADMIN PASSWORD: aDAzQOpCY3NSWEZ2ZUIzS1I=
MONGODB DATABASE ADMIN USER: ZGFOYWJhc2VBZGlpbg==

Here the actual login name and password are base64-encoded. Use echo 'aDAzQOpCY3NSWEZ2ZUIzS1I=' |
base64 --decode command to bring it back to a human-readable form.

2.Run a container with a MongoDB client and connect its console output to your terminal. The following
command will do this, naming the new Pod percona-client:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:
4.4.24-23 --restart=Never -- bash -il

Executing it may require some time to deploy the correspondent Pod.

3.Now run mongo tool in the percona-client command shell using the login (which is normally
databaseAdmin), a proper password obtained from the Secret, and a proper namespace name instead of
the <namespace name> placeholder. The command will look different depending on whether sharding is on
(the default behavior) or off:

if sharding is on

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-
mongos.<namespace name>.svc.cluster.local/admin?ssl=false"

if sharding is off

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-
rs@.<namespace name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

/7" Note

If using MongoDB versions earler than 6.x (such as 4.4.24-23 or 5.0.20-17 instead of the default 6.0.9-7 variant),
substitute mongosh command with mongo in the above example.

11.4.5 Troubleshooting

If kubectl get psmdb command doesn’t show ready status too long, you can check the creation process
with the kubectl get pods command:

$ kubectl get pods

36 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

i= Expected output

NAME
my-cluster-name-cfg-0
my-cluster-name-cfg-1
my-cluster-name-cfg-2
my-cluster-name-mongos-0
my-cluster-name-mongos-1
my-cluster-name-mongos -2
my-cluster-name-rs0-0
my-cluster-name-rs0-1
my-cluster-name-rs0-2
percona-server-mongodb-operator-665cd69f9b-xg5dl

READY
2/2
2/2
2/2
1/1
1/1
1/1
2/2
2/2
2/2
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

11.4.6 Removing the EKS cluster

RESTARTS AGE

ool ol oNoNo NN N o)

1lm
10m
9m

11m
1lm
1lm
1lm
10m
9m

37m

If the command output had shown some errors, you can examine the problematic Pod with the kubectl

describe <pod name> command as follows:

$ kubectl describe pod my-cluster-name-rs0-2

Review the detailed information for Warning statements and then correct the configuration. An example of a

warning is as follows:

Warning FailedScheduling 68s (x4 over 2m22s) default-scheduler

0/1 nodes are available: 1 node(s)

didn’t match pod affinity/anti-affinity, 1 node(s) didn’t satisfy existing pods anti-affinity rules.

11.4.6 Removing the EKS cluster
To delete your cluster, you will need the following data:

+ name of your EKS cluster,

» AWS region in which you have deployed your cluster.

You can clean up the cluster with the eksctl command as follows (with real names instead of <region>

and <cluster name> placeholders):

$ eksctl delete cluster --region=<region> --name="<cluster name>"

The cluster deletion may take time.

Warning

After deleting the cluster, all data stored in it will be lost!

CONTACT US

For free technical help, visit the Percona Community Fo

To report bugs or submit feature requests, open a JIRA ticket.

rum.

For paid support and managed or consulting services , contact Percona Sales.

37 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11.4.6 Removing the EKS cluster

Last update: 2023-07-06

38 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

11.5 Install Percona Server for MongoDB on Azure Kubernetes Service (AKS)

11.5 Install Percona Server for MongoDB on Azure Kubernetes Service (AKS)

This guide shows you how to deploy Percona Operator for MongoDB on Microsoft Azure Kubernetes Service
(AKS). The document assumes some experience with the platform. For more information on the AKS, see the
Microsoft AKS official documentation.

11.5.1 Prerequisites
The following tools are used in this guide and therefore should be preinstalled:

1. Azure Command Line Interface (Azure CLI) for interacting with the different parts of AKS. You can install it
following the official installation instructions for your system.

2. kubectl to manage and deploy applications on Kubernetes. Install it following the official installation
instructions.

Also, you need to sign in with Azure CLI using your credentials according to the official guide.

11.5.2 Create and configure the AKS cluster
To create your cluster, you will need the following data:

* name of your AKS cluster,
» an Azure resource group, in which resources of your cluster will be deployed and managed.
- the amount of nodes you would like tho have.
You can create your cluster via command line using az aks create command. The following command will

create a 3-node cluster named my-cluster-name within some already existing resource group named my-
resource-group :

$ az aks create --resource-group my-resource-group --name my-cluster-name --enable-managed-
identity --node-count 3 --node-vm-size Standard B4ms --node-osdisk-size 30 --network-plugin
kubenet --generate-ssh-keys --outbound-type loadbalancer

Other parameters in the above example specify that we are creating a cluster with machine type of
Standard _B4ms and OS disk size reduced to 30 GiB. You can see detailed information about cluster creation
options in the AKS official documentation.

You may wait a few minutes for the cluster to be generated.

Now you should configure the command-line access to your newly created cluster to make kubectl be able
to use it.

az aks get-credentials --resource-group my-resource-group --name my-cluster-name

11.6 Install the Operator and deploy your MongoDB cluster

1. Deploy the Operator. By default deployment will be done in the default namespace. If that's not the
desired one, you can create a new namespace and/or set the context for the namespace as follows
(replace the <namespace name> placeholder with some descriptive name):

$ kubectl create namespace <namespace name>

$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace
name>

39 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://azureprice.net/vm/Standard_B4ms
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest

11.6 Install the Operator and deploy your MongoDB cluster

At success, you will see the message that namespace/<namespace name> was created, and the context
(<cluster name>) was modified.

Deploy the Operator using the following command:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-
mongodb-operator/v1.15.0/deploy/bundle.yaml

i= Expected output

customresourcedefinition.apiextensions.k8s.1io/perconaservermongodbs.psmdb.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.1io/perconaservermongodbbackups.psmdb.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconaservermongodbrestores.psmdb.percona.com
serverside-applied

role.rbac.authorization.k8s.io/percona-server-mongodb-operator serverside-applied
serviceaccount/percona-server-mongodb-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-server-mongodb-operator
serverside-applied

deployment.apps/percona-server-mongodb-operator serverside-applied

2. The operator has been started, and you can deploy your MongoDB cluster:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.15.0/deploy/cr.yaml

i= Expected output

perconaservermongodb.psmdb.percona.com/my-cluster-name created

/" Note

This deploys default MongoDB cluster configuration, three mongod, three mongos, and three config server
instances. Please see deploy/cryaml and Custom Resource Options for the configuration options. You can
clone the repository with all manifests and source code by executing the following command:

$ git clone -b v1.15.0 https://github.com/percona/percona-server-mongodb-operator
After editing the needed options, apply your modified deploy/cr.yamt file as follows:
$ kubectl apply -f deploy/cr.yaml

The creation process may take some time. When the process is over your cluster will obtain the ready
status. You can check it with the following command:

$ kubectl get psmdb

40 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.15.0/deploy/cr.yaml

11.6.1 Verifying the cluster operation

i= Expected output Z
NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

11.6.1 \Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get psmdb command finally shows you the
cluster status as ready, you can try to connect to the cluster.

1. You will need the login and password for the admin user to access the cluster. Use kubectl get secrets
command to see the list of Secrets objects (by default the Secrets object you are interested in has my-
cluster-name-secrets name). Then kubectl get secret my-cluster-name-secrets -o yaml command will
return the YAML file with generated Secrets, including the MONGODB DATABASE ADMIN USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

data:
MONGODB_DATABASE ADMIN PASSWORD: aDAzQOpCY3NSWEZ2ZUIzS1I=
MONGODB DATABASE ADMIN USER: ZGFOYWJhc2VBZGlpbg==

Here the actual login name and password are base64-encoded. Use echo 'aDAzQOpCY3NSWEZ2ZUIzS1I=' |
base64 --decode command to bring it back to a human-readable form.

2.Run a container with a MongoDB client and connect its console output to your terminal. The following
command will do this, naming the new Pod percona-client:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:
4.4.24-23 --restart=Never -- bash -il

Executing it may require some time to deploy the correspondent Pod.

3.Now run mongo tool in the percona-client command shell using the login (which is normally
databaseAdmin), a proper password obtained from the Secret, and a proper namespace name instead of
the <namespace name> placeholder. The command will look different depending on whether sharding is on
(the default behavior) or off:

if sharding is on

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-
mongos.<namespace name>.svc.cluster.local/admin?ssl=false"

if sharding is off

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-
rs0.<namespace name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

/" Note

If using MongoDB versions earler than 6.x (such as 4.4.24-23 or 5.0.20-17 instead of the default 6.0.9-7 variant),
substitute mongosh command with mongo in the above example.

41 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

11.6.2 Troubleshooting

11.6.2 Troubleshooting

If kubectl get psmdb command doesn’t show ready status too long, you can check the creation process

with the kubectl get pods command:

$ kubectl get pods

= Expected output
NAME READY
my-cluster-name-cfg-0 2/2
my-cluster-name-cfg-1 2/2
my-cluster-name-cfg-2 2/2
my-cluster-name-mongos-0 1/1
my-cluster-name-mongos-1 1/1
my-cluster-name-mongos-2 1/1
my-cluster-name-rs0-0 2/2
my-cluster-name-rs0-1 2/2
my-cluster-name-rs0-2 2/2
percona-server-mongodb-operator-665cd69f9b-xg5dl 1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS AGE

[cloNoNoNoNoNo N o]

1lm
10m
9m

1lm
1lm
1lm
1lm
10m
9m

37m

If the command output had shown some errors, you can examine the problematic Pod with the kubectl

describe <pod name> command as follows:

$ kubectl describe pod my-cluster-name-rs0-2

Review the detailed information for Warning statements and then correct the configuration. An example of a

warning is as follows:

Warning FailedScheduling 68s (x4 over 2m22s) default-scheduler

0/1 nodes are available: 1 node(s)

didn’t match pod affinity/anti-affinity, 1 node(s) didn’t satisfy existing pods anti-affinity rules.

11.6.3 Removing the AKS cluster
To delete your cluster, you will need the following data:

* name of your AKS cluster,

« AWS region in which you have deployed your cluster.

You can clean up the cluster with the az aks delete command as follows (with real names instead of

<resource group> and <cluster name> plqceholders):

$ az aks delete --name <cluster name> --resource-group <resource group> --yes --no-wait

It may take ten minutes to get the cluster actually deleted after executing this command.

Warning

After deleting the cluster, all data stored in it will be lost!

CONTACT US

For free technical help, visit the Percona Community Forum.

42 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages

11.6.3 Removing the AKS cluster

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-13

43 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11.7 Install Percona server for MongoDB on Kubernetes

11.7 Install Percona server for MongoDB on Kubernetes

1. Clone the percona-server-mongodb-operator repository:

$ git clone -b v1.15.0 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

/7" Note

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

2. The Custom Resource Definition for Percona Server for MongoDB should be created from the deploy/
crd.yaml file. The Custom Resource Definition extends the standard set of resources which Kubernetes
“knows” about with the new items, in our case these items are the core of the operator. Apply it as follows:

$ kubectl apply --server-side -f deploy/crd.yaml

This step should be done only once; the step does not need to be repeated with any other Operator
deployments.

3. Create a namespace and set the context for the namespace. The resource names must be unique within
the namespace and provide a way to divide cluster resources between users spread across multiple
projects.

So, create the namespace and save it in the namespace context for subsequent commands as follows
(replace the <namespace name> placeholder with some descriptive name):

$ kubectl create namespace <namespace name>
$ kubectl config set-context $(kubectl config current-context) --namespace=<namespace
name>

At success, you will see the message that namespace/<namespace name> was created, and the context was
modified.

4.The role-based access control (RBAC) for Percona Server for MongoDB is configured with the deploy/
rbac.yaml file. Role-based access is based on defined roles and the available actions which correspond
to each role. The role and actions are defined for Kubernetes resources in the yaml file. Further details
about users and roles can be found in Kubernetes documentation.

$ kubectl apply -f deploy/rbac.yaml

/" Note

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
Kubernetes Engine can grant user needed privileges with the following command:

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --
user=$(gcloud config get-value core/account)

5. Start the operator within Kubernetes:

$ kubectl apply -f deploy/operator.yaml

44 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

11.7 Install Percona server for MongoDB on Kubernetes

g Add the MongoDB Users secrets to Kubernetes. These secrets should be placed as plain text in the
stringData section of the deploy/secrets.yaml file as login name and passwords for the user accounts (see
Kubernetes documentation for details).

After editing the yaml file, MongoDB Users secrets should be created using the following command:
$ kubectl create -f deploy/secrets.yaml

More details about secrets can be found in Users.

7. Now certificates should be generated. By default, the Operator generates certificates automatically, and
no actions are required at this step. Still, you can generate and apply your own certificates as secrets
according to the TLS instructions.

8. After the operator is started, Percona Server for MongoDB cluster can be created with the following
command:

$ kubectl apply -f deploy/cr.yaml

The creation process may take some time. The process is over when all Pods have reached their Running
status. You can check it with the following command:

$ kubectl get pods

The result should look as follows:

NAME READY STATUS RESTARTS AGE
my-cluster-name-cfg-0 2/2 Running 0 11m
my-cluster-name-cfg-1 2/2 Running 1 10m
my-cluster-name-cfg-2 2/2 Running 1 9m
my-cluster-name-mongos-0 1/1 Running 0 11m
my-cluster-name-mongos-1 1/1 Running 0 11m
my-cluster-name-mongos-2 1/1 Running 0 11lm
my-cluster-name-rs0-0 2/2 Running 0 11m
my-cluster-name-rs0-1 2/2 Running 0 10m
my-cluster-name-rs0-2 2/2 Running 0 9m
percona-server-mongodb-operator-665cd69f9b-xg5dl 1/1 Running 0 37m

9. Check connectivity to a newly created cluster.

First of all, run a container with a MongoDB client and connect its console output to your terminal. The
following command will do this, naming the new Pod percona-client :

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:
4.4.24-23 --restart=Never -- bash -il

Executing it may require some time to deploy the correspondent Pod. Now run mongo tool in the percona-
client command shell using the login (which is userAdmin) with a proper password obtained from the
Secret, and a proper namespace name instead of the <namespace name> placeholder:

percona-client:/$ mongo "mongodb://userAdmin:userAdminl123456@my-cluster-name-
mongos.<namespace name>.svc.cluster.local/admin?ssl=false"

CONTACT US
For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

45 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/

11.7 Install Percona server for MongoDB on Kubernetes

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-14

46 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

11.8 Install Percona Server for MongoDB on OpenShift

11.8 Install Percona Server for MongoDB on OpenShift

Percona Operator for Percona Server for MongoDB is a Red Hat Certified Operator. This means that Percona
Operator is portable across hybrid clouds and fully supports the Red Hat Openshift lifecycle.

Installing Percona Server for MongoDB on OpensShift includes two steps:

- Installing the Percona Operator for MongoDB,

- Install Percona Server for MongoDB using the Operator.

11.8.1 Install the Operator

You can install Percona Operator for MongoDB on OpenShift using the Red Hat Marketplace web interface or
using the command line interface.

Install the Operator via the Red Hat Marketplace

1. login to the Red Hat Marketplace and register your cluster following the official instructions.

2. Go to the Percona Operator for MongoDB page and click the Free trial button:

Here you can “purchase” the Operator for 0.0 USD.

3. When finished, chose Workspace->Software in the system menu on the top and choose the Operator:

47 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://marketplace.redhat.com
https://marketplace.redhat.com/en-us/workspace/clusters/add/register
https://marketplace.redhat.com/en-us/products/percona-server-for-mongodb

11.8.1 Install the Operator

Click the Install Operator button.

Install the Operator via the command-line interface

1. Clone the percona-server-mongodb-operator repository:

$ git clone -b v1.15.0 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

/7" Note

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

2. The Custom Resource Definition for Percona Server for MongoDB should be created from the deploy/
crd.yaml file. The Custom Resource Definition extends the standard set of resources which Kubernetes
“knows” about with the new items, in our case these items are the core of the operator.

This step should be done only once; it does not need to be repeated with other deployments.

Apply it as follows:

$ oc apply --server-side -f deploy/crd.yaml

48 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/reference/using-api/server-side-apply/

11.8.2 Install Percona Server for MongoDB

/" Note

Setting Custom Resource Definition requires your user to have cluster-admin role privileges.

If you want to manage Percona Server for MongoDB cluster with a non-privileged user, the necessary
permissions can be granted by applying the next clusterrole:

$ oc create clusterrole psmdb-admin --verb="*"
resource=perconaservermongodbs.psmdb.percona.com, perconaservermongodbs.psmdb.percona.com/
status, perconaservermongodbbackups.psmdb.percona.com, perconaservermongodbbackups.psmdb.percor
status, perconaservermongodbrestores.psmdb.percona.com,perconaservermongodbrestores.psmdb.perc
status

$ oc adm policy add-cluster-role-to-user psmdb-admin <some-user>

If you have a cert-manager installed, then you have to execute two more commands to be able to
manage certificates with a non-privileged user:

$ oc create clusterrole cert-admin --verb="*"
resource=iissuers.certmanager.k8s.io,certificates.certmanager.k8s.io
$ oc adm policy add-cluster-role-to-user cert-admin <some-user>

3. Create a new psmdb project:
$ oc new-project psmdb

4. Add role-based access control (RBAC) for Percona Server for MongoDB is configured with the deploy/
rbac.yaml file. RBAC is based on clearly defined roles and corresponding allowed actions. These actions
are allowed on specific Kubernetes resources. The details about users and roles can be found in Openshift
documentation.

$ oc apply -f deploy/rbac.yaml
5. Start the Operator within Openshift:

$ oc apply -f deploy/operator.yaml

11.8.2 Install Percona Server for MongoDB

1. Add the MongoDB Users secrets to OpensShift. These secrets should be placed as plain text in the
stringData section of the deploy/secrets.yaml file as login name and passwords for the user accounts (see
Kubernetes documentation for details).

After editing the yaml file, the secrets should be created with the following command:
$ oc create -f deploy/secrets.yaml

More details about secrets can be found in Users.

2. Now certificates should be generated. By default, the Operator generates certificates automatically, and
no actions are required at this step. Still, you can generate and apply your own certificates as secrets
according to the TLS instructions.

49 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.cert-manager.io/en/release-0.8/getting-started/install/openshift.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://kubernetes.io/docs/concepts/configuration/secret/

11.8.2 Install Percona Server for MongoDB

3. Percona Server for MongoDB cluster can be created at any time with the following steps:

a. Uncomment the deploy/cr.yaml field #platform: and edit the field to platform: openshift. The result
should be like this:

apiVersion: psmdb.percona.com/vlalphal
kind: PerconaServerMongoDB
metadata:
name: my-cluster-name
spec:
platform: openshift

b. (optional) In you're using minishift, please adjust antiaffinity policy to none

affinity:
antiAffinityTopologyKey: "none"

c. Create/apply the Custom Resource file:
$ oc apply -f deploy/cr.yaml

The creation process will take time. The process is complete when all Pods have reached their Running
status. You can check it with the following command:

$ oc get pods

The result should look as follows:

NAME READY STATUS RESTARTS AGE
my-cluster-name-cfg-0 2/2 Running 0 11m
my-cluster-name-cfg-1 2/2 Running 1 10m
my-cluster-name-cfg-2 2/2 Running 1 9m
my-cluster-name-mongos-0 1/1 Running 0 11m
my-cluster-name-mongos-1 1/1 Running 0 11m
my-cluster-name-mongos-2 1/1 Running 0 11m
my-cluster-name-rs0-0 2/2 Running 0 11m
my-cluster-name-rs0-1 2/2 Running 0 10m
my-cluster-name-rs0@-2 2/2 Running 0 9m
percona-server-mongodb-operator-665cd69f9b-xg5dl 1/1 Running 0 37m

4. Check connectivity to newly created cluster.

First of all, run a container with a MongoDB client and connect its console output to your terminal. The
following command will do this, naming the new Pod percona-client :

$ oc run -i --rm --tty percona-client --image=percona/percona-server-mongodb:4.4.24-23 --
restart=Never -- bash -il

Executing it may require some time to deploy the correspondent Pod. Now run mongo tool in the percona-
client command shell using the login (which is userAdmin) with a proper password obtained from the
Secret:

percona-client:/$ mongo "mongodb://userAdmin:userAdminl23456@my-cluster-name-
mongos.psmdb.svc.cluster.local/admin?ssl=false"

50 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

11.8.2 Install Percona Server for MongoDB

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-14

51 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12. Configuration

12. Configuration

12.1 Users

MongoDB user accounts within the Cluster can be divided into two different groups:

- application-level users: the unprivileged user accounts,

« system-level users: the accounts needed to automate the cluster deployment and management tasks,
such as MongoDB Health checks.

As these two groups of user accounts serve different purposes, they are considered separately in the
following sections.

12.1.1 Unprivileged users

There are no unprivileged (general purpose) user accounts created by default. If you need general purpose
users, please run commands below:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:4.4.24-23
--restart=Never -- bash -il

mongodb@percona-client:/$ mongo "mongodb+srv://userAdmin:userAdminl123456@my-cluster-name-
rs@.psmdb.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

rs0:PRIMARY> db.createUser({

user: "myApp",
pwd: "myAppPassword",
roles: [

{ db: "myApp", role: "readWrite" }
] ’
mechanisms: [

"SCRAM-SHA-1"

1)
Now check the newly created user:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:4.4.24-23
--restart=Never -- bash -il

mongodb@percona-client:/$ mongo "mongodb+srv://myApp:myAppPassword@my-cluster-name-
rs0.psmdb.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

rs0:PRIMARY> use myApp

rs0:PRIMARY> db.test.insert({ x: 1 })

rs@:PRIMARY> db.test.findOne()

12.1.2 System Users

To automate the deployment and management of the cluster components, the Operator requires system-
level MongoDB users.

Credentials for these users are stored as a Kubernetes Secrets object. The Operator requires Kubernetes
Secret before the database cluster is started. It will either use existing Secret or create a new Secret with
randomly generated passwords if it didn't exist. The name of the required Secret should be set in the
spec.secrets.users option of the deploy/cr.yaml configuration file

Default Secret name: my-cluster-name-secrets

52 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/

Secret name field: spec.secrets.users

Warning

These users should not be used to run an application.

User Purpose

Backup/
Restore

Cluster Admin

Cluster
Monitor

Database
Admin

User Admin

PMM Server

Username Secret Key

MONGODB_BACKUP_USER

MONGODB_CLUSTER _ADMIN_USER

MONGODB_CLUSTER_MONITOR_USER

MONGODB_DATABASE _ADMIN_USER

MONGODB_USER_ADMIN_USER

PMM_SERVER_USER

12.1.2 System Users

Password Secret Key

MONGODB_BACKUP_PASSWORD

MONGODB_CLUSTER _ADMIN_PASSWORD

MONGODB_CLUSTER _MONITOR_PASSWORD

MONGODB_DATABASE _ADMIN_PASSWORD

MONGODB _USER_ADMIN_PASSWORD

PMM_SERVER_PASSWORD

Password-based authorization method for PMM is deprecated since the Operator 1.13.0. Use token-based

authorization instead.

. Bockup/Restore - MongoDB Role: backup, restore, clusterMonitor

« Cluster Admin - MongoDB Roles: clusterAdmin

+ Cluster Monitor - MongoDB Role: clusterMonitor

« Database Admin - MongoDB Roles: readWriteAnyDatabase, readAnyDatabase, dbAdminAnyDatabase,
backup, restore, clusterMonitor

» User Admin - MongoDB Role: userAdmin

If you change credentials for the MONGODB CLUSTER MONITOR user, the cluster Pods will go into restart cycle, and
the cluster can be not accessible through the mongos service until this cycle finishes.

53 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-backup
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-restore
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-clusterMonitor
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterAdmin
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-clusterMonitor
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-readWriteAnyDatabase
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-readAnyDatabase
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-dbAdminAnyDatabase
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-backup
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-restore
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-clusterMonitor
https://www.mongodb.com/docs/manual/reference/built-in-roles/#mongodb-authrole-userAdmin

/" Note

12.1.2 System Users

In some situations it can be needed to reproduce system users in a bare-bone MongoDB. For example, that's a
required step in the migration scenarios to move existing on-prem MongoDB database to Kubernetes-based
MongoDB cluster managed by the Operator. You can use the following example script which produces a text file
with mongo shell commands to create needed system users with appropriate roles:

1 —

i= gen_users.sh

clusterAdminPass="clusterAdmin"
userAdminPass="userAdmin"
clusterMonitorPass="clusterMonitor"
backupPass="backup"

mongo shell
cat <<EOF > user-mongo-shell.txt

use admin
db.createRole(
{
"roles": [1,
role: "pbmAnyAction",
"privileges" : [
{
"resource" : {
"anyResource" : true
}s
"actions" : [
"anyAction"
]
}
P
1)

["clusterMonitor"] })
["userAdminAnyDatabase" 1 })
["clusterAdmin" 1 })

"clusterMonitor", "restore", "pbmAnyAction"] })
EOF

YAML Object Format

db.createUser({ user: "clusterMonitor", pwd: "$clusterMonitorPass",
db.createUser({ user: "userAdmin", pwd: "$userAdminPass",
db.createUser({ user: "clusterAdmin", pwd: "$clusterAdminPass",

db.createUser({ user: "backup", pwd: "$backupPass", roles:

roles:

roles:

["readWrite", "backup",

The default name of the Secrets object for these users is my-cluster-name-secrets and can be set in the CR
for your cluster in spec.secrets.users to something different. When you create the object yourself, the

corresponding YAML file should match the following simple format:

apiVersion: vl

kind: Secret

metadata:
name: my-cluster-name-secrets

type: Opaque

stringData:
MONGODB BACKUP USER: backup
MONGODB BACKUP PASSWORD: backupl23456
MONGODB DATABASE ADMIN USER: databaseAdmin
MONGODB DATABASE ADMIN PASSWORD: databaseAdminl23456
MONGODB CLUSTER ADMIN USER: clusterAdmin

54 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/blog/migrating-mongodb-to-kubernetes

12.1.3 Development Mode

MONGODB CLUSTER ADMIN PASSWORD: clusterAdminl123456
MONGODB CLUSTER MONITOR USER: clusterMonitor

MONGODB CLUSTER MONITOR PASSWORD: clusterMonitorl23456
MONGODB USER ADMIN USER: userAdmin
MONGODB USER ADMIN PASSWORD: userAdminl123456

PMM SERVER USER: admin

PMM SERVER PASSWORD: admin

PMM SERVER API KEY: apikey

The example above matches what is shipped in deploy/secrets.yaml which contains default passwords and
default API key. You should NOT use these in production, but they are present to assist in automated testing
or simple use in a development environment.

As you can see, because we use the stringbata type when creating the Secrets object, all values for each
key/value pair are stated in plain text format convenient from the user's point of view. But the resulting
Secrets object contains passwords stored as data - i.e, base64-encoded strings. If you want to update any
field, you'll need to encode the value into base64 format. To do this, you can run echo -n "password" |
base64 --wrap=0 (Orjust echo -n "password" | base64 in case of Apple macOS) in your local shell to get valid
values. For example, setting the Database Admin user’'s password to new_password in the my-cluster-name-
secrets object can be done with the following command:

in Linux

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":
{"MONGODB_DATABASE ADMIN PASSWORD": "'$(echo -n new password | base64 --wrap=0)'"}}'

in macOS

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":
{"MONGODB_DATABASE ADMIN PASSWORD": "'$(echo -n new password | base64)'"}}'

/7" Note

The operator creates and updates an additional Secrets object named based on the cluster name, like internal-
my-cluster-name-users. It is used only by the Operator and should undergo no manual changes by the user. This
object contains secrets with the same passwords as the one specified in spec.secrets.users (e.g. my-cluster-
name-secrets). When the user updates my-cluster-name-secrets, the Operator propagates these changes to the
internal internal-my-cluster-name-users Secrets object.

Password Rotation Policies and Timing

When there is a change in user secrets, the Operator creates the necessary transaction to change
passwords. This rotation happens almost instantly (the delay can be up to a few seconds), and it's not
needed to take any action beyond changing the password.

/7" Note

Please don't change secrets.users option in CR, make changes inside the secrets object itself.

12.1.3 Development Mode

To make development and testing easier, deploy/secrets.yaml secrets file contains default passwords for
MongoDB system users.

55 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

12.1.4 MongoDB Internal Authentication Key (optional)

These development-mode credentials from deploy/secrets.yaml are:

Secret Key

MONGODB_BACKUP _USER
MONGODB_BACKUP_PASSWORD
MONGODB_DATABASE _ADMIN _USER
MONGODB_DATABASE _ADMIN_PASSWORD
MONGODB_CLUSTER_ADMIN _USER
MONGODB_CLUSTER _ADMIN_PASSWORD
MONGODB_CLUSTER _MONITOR_USER
MONGODB_CLUSTER_MONITOR_PASSWORD
MONGODB_USER_ADMIN_USER
MONGODB_USER_ADMIN_PASSWORD
PMM_SERVER_USER
PMM_SERVER_PASSWORD

PMM_SERVER _API_KEY

Warning

Secret Value
backup
backup123456
databaseAdmin
databaseAdmin123456
clusterAdmin
clusterAdmini23456
clusterMonitor
clusterMonitor123456
userAdmin
userAdminl23456
admin

admin

apikey

Do not use the default MongoDB Users and/or default PMM API key in production!

12.1.4 MongoDB Internal Authentication Key (optional)

Default Secret name: my-cluster-name-mongodb-key

Secret name field: spec.secrets.key

By default, the operator will create a random, 1024-byte key for MongoDB Internal Authentication if it does
not already exist. If you would like to deploy a different key, create the secret manually before starting the

operator.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

56 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.mongodb.com/manual/core/security-internal-authentication/
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.2 Changing MongoDB Options

12.2 Changing MongoDB Options

You may require a configuration change for your application. MongoDB allows configuring the database
with a configuration file, as many other database management systems do. You can pass options to
MongoDB instances in the cluster in one of the following ways:

- edit the deploy/cr.yaml file,

- use a ConfigMap,

- use a Secret object.
You can pass configuration settings separately for mongod Pods, mongos Pods, and Config Server Pods.

Often there’s no need to add custom options, as the Operator takes care of providing MongoDB with
reasonable defaults. Also, attempt to change some MongoDB options will be ignored: you can’t change TLS/
SSL options, as it would break the behavior of the Operator.

12.2.1 Edit the deploy/cr.yaml file

You can add MongoDB configuration options to the replsets.configuration, sharding.mongos.configuration,
and sharding-configsvrreplset-configuration keys of the deploy/cr.yaml . Here is an example:

spec:

replsets:
- name: rsoO
size: 3
configuration: |
operationProfiling:
mode: slowOp
systemLog:
verbosity: 1

See the official manual for the compilete list of options, as well as specific Percona Server for MongoDB
documentation pages.
12.2.2 Use a ConfigMap

You can use a ConfigMap and the cluster restart to reset configuration options. A ConfigMap allows
Kubernetes to pass or update configuration data inside a containerized application.

You should give the ConfigMap a specific name, which is composed of your cluster name and a specific
suffix:

» my-cluster-name-rs@-mongod for the Replica Set (mongod) Pods,
» my-cluster-name-cfg-mongod for the Config Server Pods,

» my-cluster-name-mongos for the mongos Pods,

/" Note
To find the cluster name, you can use the following command:

$ kubectl get psmdb

57 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.mongodb.com/manual/reference/configuration-options/
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/rate-limit.html
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/inmemory.html
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/data_at_rest_encryption.html
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/log-redaction.html
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/audit-logging.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

12.2.3 Use a Secret Object

For example, let’'s define a mongod.conf configuration file and put there several MongoDB options we used in
the previous example:

operationProfiling:
mode: slowOp

systemLog:
verbosity: 1

You can create a ConfigMap from the mongod.conf file with the kubectl create configmap command. It has
the following syntax:

$ kubectl create configmap <configmap-name> <resource-type=resource-name>

The following example defines my-cluster-name-rs0-mongod as the ConfigMap name and the mongod. conf file
as the data source:

$ kubectl create configmap my-cluster-name-rs@-mongod --from-file=mongod.conf=mongod.conf
To view the created ConfigMap, use the following command:

$ kubectl describe configmaps my-cluster-name-rs0-mongod

/7" Note

Do not forget to restart Percona Server for MongoDB to ensure the cluster has updated the configuration (see
details on how to connect in the Install Percona Server for MongoDB on Kubernetes page).

12.2.3 Use a Secret Object

The Operator can also store configuration options in Kubernetes Secrets. This can be useful if you need
additional protection for some sensitive data.

You should create a Secret object with a specific name, composed of your cluster name and a specific
suffix:

» my-cluster-name-rs@-mongod for the Replica Set Pods,
 my-cluster-name-cfg-mongod for the Config Server Pods,
 my-cluster-name-mongos for the mongos Pods,

/7" Note

To find the cluster name, you can use the following command:

$ kubectl get psmdb

Configuration options should be put inside a specific key:

« data.mongod key for Replica Set (mongod) and Config Server Pods,

« data.mongos key for mongos Pods.

Actual options should be encoded with Base64.

58 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/
https://en.wikipedia.org/wiki/Base64

12.2.3 Use a Secret Object

For example, let’'s define a mongod.conf configuration file and put there several MongoDB options we used in
the previous example:

operationProfiling:
mode: slowOp

systemLog:
verbosity: 1

You can get a Base64 encoded string from your options via the command line as follows:
in Linux
$ cat mongod.conf | base64 --wrap=0
in macOS

$ cat mongod.conf | base64

/" Note
Similarly, you can read the list of options from a Base64 encoded string:

$ echo "ICAgICAgb3BlcmFOaW9uUHJIvZmlsaW5n0gogICAgICAgIG1vZGU6IHNSb3dPc\
AogICAgICBzeXNOZW1Mb2c6CiAgICAgICAgdmVyYm9zaXR50iAxCg==" | base64 --decode

Finally, use a yaml file to create the Secret object. For example, you can create a deploy/my-mongod-
secret.yaml file with the following contents:

apiVersion: vl

kind: Secret

metadata:
name: my-cluster-name-rs0-mongod

data:
mongod.conf: "ICAgICAgb3BlcmFOaW9uUHIvZmlsaW5n0gogICAgICAgIG1vZGU6IHNSb3dPc\
AogICAgICBzeXNOZWIMb2c6CiAgICAgICAgdmVyYm9zaXR50iAxCg=="

When ready, apply it with the following command:

$ kubectl create -f deploy/my-mongod-secret.yaml

/7" Note

Do not forget to restart Percona Server for MongoDB to ensure the cluster has updated the configuration (see
details on how to connect in the Install Percona Server for MongoDB on Kubernetes page).

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

59 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.2.3 Use a Secret Object

Last update: 2023-10-03

60 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

12.3 Binding Percona Server for MongoDB components to Specific Kubernetes/Openshift Nodes

12.3 Binding Percona Server for MongoDB components to Specific
Kubernetes/OpenShift Nodes

The operator does a good job of automatically assigning new pods to nodes to achieve balanced
distribution across the cluster. There are situations when you must ensure that pods land on specific nodes:
for example, for the advantage of speed on an SSD-equipped machine, or reduce costs by choosing nodes
in the same availability zone.

The appropriate (sub)sections (replsets, replsets.arbiter, backup, etc.) of the deploy/cryaml file contain

the keys which can be used to do assign pods to nodes.

12.3.1 Node selector

The nodeSelector contains one or more key-value pairs. If the node is not labeled with each key-value pair
from the Pod’s nodeSelector, the Pod will not be able to land on it.

The following example binds the Pod to any node having a self-explanatory disktype: ssd label:

nodeSelector:
disktype: ssd

12.3.2 Affinity and anti-affinity

Affinity defines eligible pods that can be scheduled on the node which already has pods with specific labels.
Anti-affinity defines pods that are not eligible. This approach is reduces costs by ensuring several pods with
intensive data exchange occupy the same availability zone or even the same node or, on the contrary, to
spread the pods on different nodes or even different availability zones for high availability and balancing
purposes.

Percona Operator for MongoDB provides two approaches for doing this:

- simple way to set anti-affinity for Pods, built-in into the Operator,

» more advanced approach based on using standard Kubernetes constraints.

Simple approach - use antiAffinityTopologyKey of the Percona Operator for MongoDB

Percona Operator for MongoDB provides an antiAffinityTopologyKey option, which may have one of the
following values:

* kubernetes.io/hostname - Pods will avoid residing within the same host,
+ failure-domain.beta.kubernetes.io/zone - Pods will avoid residing within the same zone,
+ failure-domain.beta.kubernetes.io/region - Pods will avoid residing within the same region,

» none - no constraints are applied.

The following example forces Percona Server for MongoDB Pods to avoid occupying the same node:

affinity:
antiAffinityTopologyKey: "kubernetes.io/hostname"

Advanced approach - use standard Kubernetes constraints

The previous method can be used without special knowledge of the Kubernetes way of assigning Pods to
specific nodes. Still, in some cases, more complex tuning may be needed. In this case, the advanced option

61 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

12.3.3 Topology Spread Constraints

placed in the deploy/cr.yoml file turns off the effect of the antiAffinityTopologyKey and allows the use of the
standard Kubernetes affinity constraints of any complexity:

affinity:
advanced:
podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: security
operator: In
values:
- S1
topologyKey: failure-domain.beta.kubernetes.io/zone
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: security
operator: In
values:
- S2
topologyKey: kubernetes.io/hostname
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/e2e-az-name
operator: In
values:
- e2e-azl
- e2e-az2
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: another-node-label-key
operator: In
values:
- another-node-label-value

See explanation of the advanced affinity options in Kubernetes documentation.

12.3.3 Topology Spread Constraints

Topology Spread Constraints allow you to control how Pods are distributed across the cluster based on
regions, zones, hodes, and other topology specifics. This can be useful for both high availability and resource
efficiency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection, which can be
put into replsets, sharding.configsvrReplSet, and sharding.mongos sections of the deploy/cr.yaml
configuration file as follows:

topologySpreadConstraints:
- labelSelector:
matchLabels:
app.kubernetes.io/name: percona-server-mongodb
maxSkew: 1

62 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature

12.3.4 Tolerations

topologyKey: kubernetes.io/hostname
whenUnsatisfiable: DoNotSchedule

You can see the explanation of these affinity options in Kubernetes documentation.

12.3.4 Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is
expressed as a key with and operator, which is either exists or equal (the equal variant requires a
corresponding value for comparison).

Toleration should have a specified effect, such as the following:

* NoSchedule - less strict
* PreferNoSchedule

* NoExecute

When a taint with the NoExecute effect is assigned to a Node, any Pod configured to not tolerating this taint
is removed from the node. This removal can be immediate or after the tolerationSeconds interval. The
following example defines this effect and the removal interval:

tolerations:

- key: "node.alpha.kubernetes.io/unreachable"
operator: "Exists"
effect: "NoExecute"
tolerationSeconds: 6000

The Kubernetes Taints and Toleratins contains more examples on this topic.

12.3.5 Priority Classes

Pods may belong to some priority classes. This flexibility allows the scheduler to distinguish more and less
important Pods when needed, such as the situation when a higher priority Pod cannot be scheduled without
evicting a lower priority one. This ability can be accomplished by adding one or more PriorityClasses in your
Kubernetes cluster, and specifying the PriorityClassName in the deploy/cr.yaml file:

priorityClassName: high-priority

See the Kubernetes Pods Priority and Preemption documentation to find out how to define and use priority
classes in your cluster.

12.3.6 Pod Disruption Budgets

Creating the Pod Disruption Budget is the Kubernetes method to limit the number of Pods of an application
that can go down simultaneously due to voluntary disruptions such as the cluster administrator’s actions
during a deployment update. Distribution Budgets allow large applications to retain their high availability
during maintenance and other administrative activities. The maxUnavailable and minAvailable optionsin the
deploy/cr.yami file can be used to set these limits. The recommended variant is the following:

podDisruptionBudget:
maxUnavailable: 1

63 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

12.3.6 Pod Disruption Budgets

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-05

64 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.4 Labels and annotations

12.4 Labels and annotations
Labels and annotations are used to attach additional metadata information to Kubernetes resources.

Labels and annotations are rather similar. The difference between them is that labels are used by
Kubernetes to identify and select objects, while annotations are assigning additional non-identifying
information to resources. Therefore, typical role of Annotations is facilitating integration with some external
tools.

12.4.1 Setting labels and annotations in the Custom Resource

You can set labels and/or annotations as key/value string pairs in the Custom Resource metadata section
of the deploy/cr.yaml as follows:

apiVersion: psmdb.percona.com/vl
kind: PerconaServerMongoDB
metadata:
name: my-cluster-name
annotations:
percona.com/issue-vault-token: "true"
labels:

The easiest way to check which labels are attached to a specific object with is using the additional - -show-
labels option of the kubectl get command. Checking the annotations is not much more difficult: it can be
done as in the following example:

$ kubectl get pod my-cluster-name-rs0-0 -o jsonpath='{.metadata.annotations}'

12.4.2 Using labels and annotations with objects created by the Operator

You can assign labels and annotations to various objects created by the Operator (e.g. Services used to
expose components of the cluster, Persistent Volume Claims, etc.) with labels and annotations options in the
appropriate subsections of the Custom Resource, as seen in the Custom Resource options reference and
the deploy/cr.yaml configuration file.

Sometimes various Kubernetes flavors can add their own annotations to the objects managed by the
Operator.

The Operator keeps track of all changes to its objects and can remove annotations that appeared without
its participation.

If there are no annotations or labels in the Custom Resource expose subsections, the Operator does nothing
if a new label or annotation is added to the object.

If the Service per Pod mode is not used, the Operator won’t remove any annotations and labels from any
Services related to this expose subsection. Though, it is still possible to add annotations and labels via the
Custom Resource in this case. Use the appropriate expose.serviceAnnotations and expose.servicelabels
fields.

Else, if the Service per Pod mode is active, the Operator removes unknown annotations and labels from
Services created by the Operator for Pods. Yet it is still possible to specify which annotations and labels
should be preserved (not wiped out) by the Operator. List them in the spec.ignoreAnnotations or
spec.ignoreLabels fields of the deploy/cr.yaml, as follows:

65 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

12.4.2 Using labels and annotations with objects created by the Operator

spec:
ignoreAnnotations:
- some.custom.cloud.annotation/smth
ignorelLabels:
- some.custom.cloud.label/smth

The Operator will keep any Service annotation or label, key of which starts with the specified string. For
example, the following annotations and labels will be not removed after applying the above cr.yaml
fragment:

kind: Service
apiVersion: vl
metadata:
name: my-cluster-name-cfg
labels:
some.custom.cloud. label/smth: somethinghere

annotations:
some.custom.cloud.annotation/smth: somethinghere

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-08

66 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.5 Exposing cluster

12.5 Exposing cluster

The Operator provides entry points for accessing the database by client applications in several scenarios. In
either way the cluster is exposed with regular Kubernetes Service objects, configured by the Operator.

This document describes the usage of Custom Resource manifest options to expose the clusters deployed
with the Operator.

12.5.1 Using single entry point in a sharded cluster

If Percona Server for MongoDB Sharding mode is turned on (default behavior), then database cluster runs
special mongos Pods - query routers, which acts as an entry point for client applications,

If this feature is enabled, the URI looks like follows (taking into account the need in a proper password
obtained from the Secret, and a proper namespace name instead of the <namespace name> placeholder):

$ mongo "mongodb://userAdmin:userAdminPassword@my-cluster-name-mongos.<namespace
name>.svc.cluster.local/admin?ssl=false"

You can find more on sharding in the official MongoDB documentation.

12.5.2 Accessing replica set Pods

If Percona Server for MongoDB Sharding mode is turned off, the application needs access to all MongoDB
Pods of the replica set:

67 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.mongodb.com/manual/reference/glossary/#term-sharding

12.5.3 Service per Pod

When Kubernetes creates Pods, each Pod has an IP address in the internal virtual network of the cluster.
Creating and destroying Pods is a dynamic process, therefore binding communication between Pods to
specific IP addresses would cause problems as things change over time as a result of the cluster scaling,
maintenance, etc. Due to this changing environment, you should connect to Percona Server for MongoDB via
Kubernetes internal DNS names in URI (e.g. using mongodb+srv://userAdmin:userAdnin123456@<cluster-name>-
rs0.<namespace>.svc.cluster.local/admin?replicaSet=rs0&ssl=false to access one of the Replica Set Pods).

In this case, the URI looks like follows (taking into account the need in a proper password obtained from the
Secret, and a proper namespace name instead of the <namespace name> placeholder):

$ mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-rs0.<namespace
name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

12.5.3 Service per Pod
URI-based access is strictly recommended.

Still sometimes you cannot communicate with the Pods using the Kubernetes internal DNS names. To make
Pods of the Replica Set accessible, Percona Operator for MongoDB can assign a Kubernetes Service to each
Pod.

This feature can be configured in the replsets (for MondgoDB instances Pod) and sharding (for mongos
Pod) sections of the deploy/cr.yaml file:

« set expose.enabled optionto true to allow exposing Pods via services,

* set expose.exposeType option specifying the IP address type to be used:

« ClusterIP - expose the Pod’s service with an internal static IP address. This variant makes MongoDB
Pod only reachable from within the Kubernetes cluster.

+ NodePort - expose the Pod'’s service on each Kubernetes node’s IP address at a static port. ClusterIP
service, to which the node port will be routed, is automatically created in this variant. As an
advantage, the service will be reachable from outside the cluster by node address and port
number, but the address will be bound to a specific Kubernetes node.

 LoadBalancer - expose the Pod's service externally using a cloud provider's load balancer. Both
ClusterIlP and NodePort services are automatically created in this variant.

68 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/services-networking/service/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

12.5.4 Controlling hostnames in replset configuration

If this feature is enabled, URI looks like mongodb://
databaseAdmin:databaseAdminPassword@<ipl>:<portl>,<ip2>:<port2>,<ip3>:<port3>/admin?
replicaSet=rs0&ssl=false All IP adresses should be directly reachable by application.

12.5.4 Controlling hostnames in replset configuration

Starting from v1.14, the Operator configures replica set members using local fully-qualified domain names
(FQDN), which are resolvable and available only from inside the Kubernetes cluster. Exposing the replica set
using the options described above will not affect hostname usage in the replica set configuration.

/" Note

Before v1.14, the Operator used the exposed IP addresses in the replica set configuration in the case of the exposed
replica set.

It is still possible to restore the old behavior. For example, it may be useful to have the replica set configured
with external IP addresses for multi-cluster deployments. The clusterServiceDNSMode field in the Custom
Resource controls this Operator behavior. You can set clusterServiceDNSMode to one of the following values:

1. Internal: Use local FQDNs (ie, clusterl-rs0-0.clusterl-rs@.psmdb.svc.cluster.local) in replica set
configuration even if the replica set is exposed. This is the default value.

2. ServiceMesh: Use a special FQDN using the Pod name (i.e., clusterl-rs0-0.psmdb.svc.cluster.local),
assuming it's resolvable and available in all clusters.

3. External: Use exposed IP in replica set configuration if replica set is exposed; else, use local FQDN. This
copies the behavior of the Operator v1.13.

If backups are enabled in your cluster, you need to restart replset and config servers after changing
clusterServiceDNSMode . This option changes the hostnames inside the replset configuration and running
pbm-agents don't discover the change until they're restarted. You may have errors in backup-agent
container logs and your backups may not work until you restarted the agents.

Restart can be done manually with the kubectl rollout restart sts

<clusterName>-<replsetName> command executed for each replica set in the spec.replsets; also, if sharding
enabled, do the same for config servers with kubectl rollout restart sts <clusterName>-cfg. Alternatively,
you can simply restart your cluster.

Warning

You should be careful with the clusterServiceDNSMode=External variant. Using IP addresses instead of DNS
hostnames is discouraged in MongoDB. IP addresses make configuration changes and recovery more
complicated. Also, they are particularly problematic in scenarios where IP addresses change (i.e., deleting and
recreating the cluster).

12.5.5 Exposing replica set with split-horizon DNS

Split-horizon DNS provides each replica set Pod with a set of DNS URIs for external usage. This allows to
communicate with replica set Pods both from inside the Kubernetes cluster and from outside of Kubernetes.

Split-horizon can be configured via the replset.horizons subsection in the Custom Resource options. Set it
inthe deploy/cr.yaml configuration file as follows:

replsets:
- name: rso

69 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://en.wikipedia.org/wiki/Split-horizon_DNS

expose:
enabled: true
exposeType: LoadBalancer
horizons:
clusterl-rs0-0:
external: rs0-0.mycluster.xyz
external-2: rs0-0.mycluster2.xyz
clusterl-rs0-1:
external: rsO-1.mycluster.xyz
external-2: rs0-1.mycluster2.xyz
clusterl-rs0-2:
external: rs0-2.mycluster.xyz
external-2: rs0-2.mycluster2.xyz

12.5.5 Exposing replica set with split-horizon DNS

URIs for external usage are specified as key-value pairs, where the key is an arbitrary name and the value is

the actual URI.

Split horizon has following limitations:

 connecting with horizon domains is only supported if client connects using TLS certificates

« duplicating domain names in horizons is not allowed by MongoDB
- using IP addresses in horizons is not allowed by MongoDB

« horizons should be set for all Pods of a replica set or not set at all

- horizons should be configured on an existing cluster (creating a new cluster with pre-configured

horizons is currently not supported)

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

70 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.6 Local Storage support for the Percona Operator for MongoDB

12.6 Local Storage support for the Percona Operator for MongoDB

Among the wide rage of volume types, supported by Kubernetes, there are two volume types which allow
Pod containers to access part of the local filesystem on the node the emptyDir and hostPath.

12.6.1 emptyDir

A Pod emptyDir volume is created when the Pod is assigned to a Node. The volume is initially empty and is
erased when the Pod is removed from the Node. The containers in the Pod can read and write the files in the
emptyDir volume.

The emptyDir options in the deploy/cr.yaml file can be used to turn the emptyDir volume on by setting the
directory name.

The emptyDir is useful when you use Percona Memory Engine.

12.6.2 hostPath

A hostPath volume mounts an existing file or directory from the host node’s filesystem into the Pod. If the
pod is removed, the data persists in the host node’s filesystem.

The volumeSpec.hostPath subsection in the deploy/cr‘yoml file may include path and type keys to set the
node's filesystem object path and to specify whether it is a file, a directory, or something else (e.g. a socket):

volumeSpec:
hostPath:
path: /data
type: Directory

Please note, you must created the hostPath manually and should have following attributes:

* access permissions,
» ownership,

* SELinux security context.

The hostPath volume is useful when you perform manual actions during the first run and require improved
disk performance. Consider using the tolerations settings to avoid a cluster migration to different hardware
in case of a reboot or a hardware failure.

More details can be found in the official hostPath Kubernetes documentation.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-08-18

71 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/inmemory.html
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.7 Using Replica Set Arbiter nodes and non-voting nodes

12.7 Using Replica Set Arbiter nodes and non-voting nodes

Percona Server for MongoDB replication model is based on elections, when nodes of the Replica Set choose
which node becomes the primary node.

The need for elections influences the choice of the number of nodes in the cluster. Elections are the reason
to avoid even number of nodes, and to have at least three and not more than seven participating nodes.

Still, sometimes there is a contradiction between the number of nodes suitable for elections and the number
of nodes needed to store data. You can solve this contradiction in two ways:

« Add Arbiter nodes, which participate in elections, but do not store data,

« Add non-voting nodes, which store data but do not participate in elections.

12.7.1 Adding Arbiter nodes

Normally, each node stores a complete copy of the data, but there is also a possibility, to reduce disk 10 and
space used by the database, to add an arbiter node. An arbiter cannot become a primary and does not
have a complete copy of the data. The arbiter does have one election vote and can be the odd number for
elections. The arbiter does not demand a persistent volume.

Percona Operator for MongoDB has the ability to create Replica Set Arbiter nodes if needed. This feature can
be configured in the Replica Set section of the deploy/cr.yaml file:

« set arbiter.enabled optionto true to allow Arbiter instances,

e use arbiter.size option to set the desired amount of Arbiter instances.

For example, the following keys in deploy/cr.yaml will create a cluster with 4 data instances and 1 Arbiter:

replsets:
size: 4
arbiter:
enabled: true
size: 1

7" Note
You can find description of other possible options in the replsets.arbiter section of the Custom Resource options

reference.

12.7.2 Adding non-voting nodes

Non-voting member is a Replica Set node which does not participate in the primary election process. This
feature is required to have more than 7 nodes, or if there is a node in the edge location, which obviously
should not participate in the voting process.

/7" Note

Non-voting nodes support has technical preview status and is not recommended for production environments.

72 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/blog/2018/05/17/mongodb-replica-set-transport-encryption-part-1/
https://docs.mongodb.com/manual/core/replica-set-elections/#replica-set-elections
https://docs.mongodb.com/manual/core/replica-set-elections/#replica-set-elections
https://docs.mongodb.com/manual/core/replica-set-arbiter/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://docs.mongodb.com/manual/tutorial/configure-a-non-voting-replica-set-member/
https://en.wikipedia.org/wiki/Edge_computing

12.7.2 Adding non-voting nodes

/7" Note

It is possible to add a non-voting node in the edge location through the externalNodes option. Please see cross-
site replication documentation for details.

Percona Operator for MongoDB has the ability to configure non-voting nodes in the Replica Set section of
the deploy/cr.yaml file:

« set nonvoting.enabled optionto true to allow non-voting instances,

e use nonvoting.size option to set the desired amount of non-voting instances.

For example, the following keys in deploy/cr.yaml will create a cluster with 3 data instances and 1 non-
voting instance:

replsets:
size: 3
nonvoting:
enabled: true
size: 1

/7" Note

You can find description of other possible options in the replsets.nonvoting section of the Custom Resource
options reference.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-08-18

73 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.8 Percona Server for MongoDB Sharding

12.8 Percona Server for MongoDB Sharding

12.8.1 About sharding

Sharding provides horizontal database scaling, distributing data across multiple MongoDB Pods. It is useful
for large data sets when a single machine’s overall processing speed or storage capacity turns out to be
not enough. Sharding allows splitting data across several machines with a special routing of each request
to the necessary subset of data (so-called shard).

A MongoDB Sharding involves the following components:
« shard - a replica set which contains a subset of data stored in the database (similar to a traditional
MongoDB replica set),
» mongos - a query router, which acts as an entry point for client applications,

» config servers - areplica set to store metadata and configuration settings for the sharded database
cluster.

/7" Note

Percona Operator for MongoDB 1.6.0 supported only one shard of a MongoDB cluster; still, this limited sharding
support allowed using mongos as an entry point instead of provisioning a load-balancer per replica set node.
Multiple shards are supported starting from the Operator 1.7.0. Also, before the Operator 1.12.0 mongos were
deployed by the Deployment object, and starting from 1.12.0 they are deployed by the StatefulSet one.

12.8.2 Turning sharding on and off

Sharding is controlled by the sharding section of the deploy/cr.yaml configuration file and is turned on by
default.

To enable sharding, set the sharding.enabled key to true (this will turn existing MongoDB replica set nodes
into sharded ones). To disable sharding, set the sharding.enabled key to false.

When sharding is turned on, the Operator runs replica sets with config servers and mongos instances. Their
number is controlled by configsvrReplSet.size and mongos.size keys, respectively.

Config servers have cfg replica set name by default, which is used by the Operator in StatefulSet and
Service names. If this name needs to be customized (for example when migrating MongoDB cluster from
barebone installation to Kubernetes), you can override the default cfg variant using replsets.configuration
Custom Resource option in deploy/cr.yaml as follows:

configuration: |
replication:
replSetName: customCfgRS

/" Note

Config servers for now can properly work only with WiredTiger engine, and sharded MongoDB nodes can use
either WiredTiger or InMemory one.

74 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.mongodb.com/manual/reference/glossary/#term-sharding
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

12.8.3 Checking connectivity to sharded and non-sharded cluster

By default replsets section of the deploy/cr.yaml configuration file contains only one replica set, rso. You
can add more replica sets with different names to the replsets section in a similar way. Please take into
account that having more than one replica set is possible only with the sharding turned on.

/" Note

The Operator will be able to remove a shard only when it contains no application (non-system) collections.

12.8.3 Checking connectivity to sharded and non-sharded cluster

With sharding turned on, you have mongos service as an entry point to access your database. If you do not
use sharding, you have to access mongod processes of your replica set.

1. You will need the login and password for the admin user to access the cluster. Use kubectl get secrets
command to see the list of Secrets objects (by default the Secrets object you are interested in has my-
cluster-name-secrets name). Then kubectl get secret my-cluster-name-secrets -o yaml command will
return the YAML file with generated Secrets, including the MONGODB DATABASE ADMIN USER and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

data:
MONGODB_DATABASE ADMIN PASSWORD: aDAzQOpCY3NSWEZ2ZUIzS1I=
MONGODB DATABASE ADMIN USER: ZGFOYWJhc2VBZGlpbg==

Here the actual login name and password are base64-encoded. Use echo 'aDAzQOpCY3NSWEZ2ZUIzS1I=' |
base64 --decode command to bring it back to a human-readable form.

2.Run a container with a MongoDB client and connect its console output to your terminal. The following
command will do this, naming the new Pod percona-client:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:
4.4.24-23 --restart=Never -- bash -il

Executing it may require some time to deploy the correspondent Pod.

3.Now run mongo tool in the percona-client command shell using the login (which is normally
databaseAdmin), a proper password obtained from the Secret, and a proper namespace name instead of
the <namespace name> placeholder. The command will look different depending on whether sharding is on
(the default behavior) or off:

if sharding is on

$ mongosh "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-
mongos.<namespace name>.svc.cluster.local/admin?ssl=false"

if sharding is off

$ mongosh "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-
rs0.<namespace name>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

/7" Note

If using MongoDB versions earler than 6.x (such as 4.4.24-23 or 5.0.20-17 instead of the default 6.0.9-7 variant),
substitute mongosh command with mongo in the above example.

75 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

12.8.3 Checking connectivity to sharded and non-sharded cluster

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

76 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.9 Transport Layer Security (TLS)

12.9 Transport Layer Security (TLS)

The Percona Operator for MongoDB uses Transport Layer Security (TLS) cryptographic protocol for the
following types of communication:

« Internal - communication between Percona Server for MongoDB instances in the cluster

- External - communication between the client application and the cluster
The internal certificate is also used as an authorization method.

Certificates for TLS security can be generated in several ways. By default, the Operator generates long-term
certificates automatically if there are no certificate secrets available. Other options are the following ones:

- the Operator can use a specifically installed cert-manager, which will automatically generate and
renew short-term TLS certificates,

- certificates can be generated manually.

You can also use pre-generated certificates available in the deploy/ssl-secrets.yaml file for test purposes,
but we strongly recommend avoiding their usage on any production system!

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to
temporarily disable it if needed.

12.9.1 Install and use the cert-manager
About the cert-manager

The cert-manager is a Kubernetes certificate management controller which widely used to automate the
management and issuance of TLS certificates. It is community-driven, and open source.

When you have already installed cert-manager and deploy the operator, the operator requests a certificate
from the cert-manager. The cert-manager acts as a self-signed issuer and generates certificates. The
Percona Operator self-signed issuer is local to the operator namespace. This self-signed issuer is created
because Percona Server for MongoDB requires all certificates issued by the same CA (Certificate authority).

Self-signed issuer allows you to deploy and use the Percona Operator without creating a cluster issuer
separately.

Installation of the cert-manager
The steps to install the cert-manager are the following:

- create a namespace,
« disable resource validations on the cert-manager namespace,

« install the cert-manager.

The following commands perform all the needed actions:

$ kubectl apply -f https://github.com/jetstack/cert-manager/releases/download/v1.12.4/cert-
manager.yaml --validate=false

After the installation, you can verify the cert-manager by running the following command:

$ kubectl get pods -n cert-manager

77 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://cert-manager.io/docs/

12.9.2 Generate certificates manually

The result should display the cert-manager and webhook active and running:

NAME READY STATUS RESTARTS AGE
cert-manager-7d59dd4888-tmjqq 1/1 Running 0 3m8s
cert-manager-cainjector-85899d45d9-8ncw9 1/1 Running 0 3m8s
cert-manager-webhook-84fcdcd5d-697k4 1/1 Running 0 3m8s

Once you create the database with the Operator, it will automatically trigger cert-manager to create
certificates. Whenever you check certificates for expiration, you will find that they are valid and short-term.

12.9.2 Generate certificates manually
To generate certificates manually, follow these steps:

1. Provision a Certificate Authority (CA) to generate TLS certificates,
2. Generate a CA key and certificate file with the server details,

3. Create the server TLS certificates using the CA keys, certs, and server details.
The set of commands generate certificates with the following attributes:

» Server-pem - Certificate

» Server-key.pem - the private key

« ca.pem - Certificate Authority
You should generate certificates twice: one set is for external communications, and another set is for
internal ones. A secret created for the external use must be added to the spec.secrets.ssl key of the

deploy/cr.yaml file. A certificate generated for internal communications must be added to the
spec.secrets.sslInternal key of the deploy/cr.yaml file.

/7" Note

If you only create the external certificate, then the Operator will not generate the internal one, but instead use
certificate you have provided for both external and internal communications.

Supposing that your cluster name is my-cluster-name, the instructions to generate certificates manually are
as follows:

$ CLUSTER NAME=my-cluster-name
$ NAMESPACE=default

$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
{
"CN": "Root CA",
"names": [
{
"0": "PSMDB"
}
[P
"key": {
"algo": "rsa",
"size": 2048
}
}
EOF

$ cat <<EOF > ca-config.json

{

78 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

"signing": {
"default": {
"expiry": "87600h",

12.9.2 Generate certificates manually

"usages": ["signing", "key encipherment", "server auth", "client auth"]

}
}

}
EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - |

cfssljson -bare server
{

"hosts": [
"localhost",
"${CLUSTER NAME}-rso0",
"${CLUSTER NAME}-rs0.${NAMESPACE}",
"${CLUSTER NAME}-rs0.${NAMESPACE}.svc.cluster.local",
"* ${CLUSTER NAME}-rs0",
"* ${CLUSTER NAME}-rs0.${NAMESPACE}",
"*,${CLUSTER NAME}-rs0.${NAMESPACE}.svc.cluster.local"

P

"names": [
{

"0": "PSMDB"

}

5

"CN": "${CLUSTER NAME/-rs0}",

"key": {
"algo": "rsa",
"size": 2048

}

}
EOF

$ cfssl bundle -ca-bundle=ca.pem -cert=server.pem | cfssljson -bare server

$ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem
--from-file=tls.key=server-key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - |

cfssljson -bare client
{
"hosts": [
"${CLUSTER NAME}-rs0",
"${CLUSTER NAME}-rs0.${NAMESPACE}",
"${CLUSTER NAME}-rs0.${NAMESPACE}.svc.cluster.local",
"* ${CLUSTER NAME}-rs0",
"* ${CLUSTER NAME}-rs0.${NAMESPACE}",
"*,${CLUSTER NAME}-rs0.${NAMESPACE}.svc.cluster.local"
P
"names": [
{
"0": "PSMDB"
}
P
"CN": "${CLUSTER NAME/-rs0}",
"key": {
"algo": "rsa",
"size": 2048

EOF

79 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

12.9.3 Update certificates

$ kubectl create secret generic my-cluster-name-ssl --from-file=tls.crt=client.pem --from-
file=tls.key=client-key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls

12.9.3 Update certificates
If a cert-manager is used, it should take care of updating the certificates. If you generate certificates

manually, you should take care of updating them in proper time.
TLS certificates issued by cert-manager are short-term ones, valid for 3 months. They are reissued

automatically on schedule and without downtime.

s ™

cert-manager

; y

my-cluster-name-ca-cert | @ TLS
(root certificate) certificates

| €
my-cluster-name-ssl my-cluster-name-ssl-internal

\ Secret Secret)

Versions of the Operator prior 1.9.0 have used 3 month root certificate, which caused issues with the
automatic TLS certificates update. If that's your case, you can make the Operator update along with the

official instruction.

/" Note

If you use the cert-manager version earlier than 1.9.0, and you would like to avoid downtime while updating the
certificates after the Operator update to 1.9.0 or newer version, force the certificates regeneration by a cert-

manager.

80 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

12.9.3 Update certificates

Check your certificates for expiration

1. First, check the necessary secrets names (my-cluster-name-ssl and my-cluster-name-ssl-internal by
default):

$ kubectl get certificate

You will have the following response:

NAME READY SECRET AGE
my-cluster-name-ssl True my-cluster-name-ssl 49m
my-cluster-name-ssl-internal True my-cluster-name-ssl-internal 49m

2. Optionally you can also check that the certificates issuer is up and running:
$ kubectl get issuer

The response should be as follows:

NAME READY AGE
my-cluster-name-psmdb-issuer True 61m
my-cluster-name-psmdb-ca-issuer True 61m
/" Note

The presence of two issuers has the following meaning. The my-cluster-name-psmdb-ca-issuer issuer is used to
create a self signed CA certificate (my-cluster-name-ca-cert), and then the my-cluster-name-psmdb-issuer issuer
is used to create SSL certificates (my-cluster-name-ssl and my-cluster-name-ssl-internal) signed by the my-
cluster-name-ca-cert CA certificate.

3. Now use the following command to find out the certificates validity dates, substituting Secrets names if
necessary:

$ A

kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64
--decode | openssl x509 -noout -dates

kubectl get secret/my-cluster-name-ssl -o jsonpath='{.data.ca\.crt}' | base64 --decode |
openssl x509 -noout -dates

}

The resulting output will be self-explanatory:

notBefore=Apr 25 12:09:38 2022 GMT notAfter=Jul 24 12:09:38 2022 GMT
notBefore=Apr 25 12:09:38 2022 GMT notAfter=Jul 24 12:09:38 2022 GMT

Update certificates without downtime

If you don't use cert-manager and have created certificates manually, you can follow the next steps to
perform a no-downtime update of these certificates if they are still valid.

f Note

For already expired certificates, follow the alternative way.

81 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

12.9.3 Update certificates

Having non-expired certificates, you can roll out new certificates (both CA and TLS) with the Operator as
follows.

1. Generate a new CA certificate (ca.pen). Optionally you can also generate a new TLS certificate and a key
for it, but those can be generated later on step 6.

2.Get the current CA (ca.pem.old) and TLS (tls.pem.old) certificates and the TLS certificate key
(tls.key.old):

$ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.ca\.crt}' | base64
--decode > ca.pem.old
$ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64
--decode > tls.pem.old
$ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.key}' | base64
--decode > tls.key.old

3. Combine new and current ca.pem into a ca.pem.combined file:
$ cat ca.pem ca.pem.old >> ca.pem.combined

4.Create a new Secrets object with old TLS certificate (tls.pem.old) and key (tls.key.old), but a new
combined ca.pem (ca.pem.combined):

$ kubectl delete secret/my-cluster-name-ssl-internal

$ kubectl create secret generic my-cluster-name-ssl-internal --from-
file=tls.crt=tls.pem.old --from-file=tls.key=tls.key.old --from-
file=ca.crt=ca.pem.combined --type=kubernetes.io/tls

5. The cluster will go through a rolling reconciliation, but it will do it without problems, as every node has old
TLS certificote/key, and both new and old CA certificates.

6. If new TLS certificate and key weren't generated on step 1, do that now.

7. Create a new Secrets object for the second time: use new TLS certificate ('server.pem in the exomple) and
its key (server-key.pem), and again the combined CA certificate (ca.pem.combined):

$ kubectl delete secret/my-cluster-name-ssl-internal

$ kubectl create secret generic my-cluster-name-ssl-internal --from-
file=tls.crt=server.pem --from-file=tls.key=server-key.pem --from-
file=ca.crt=ca.pem.combined --type=kubernetes.io/tls

8. The cluster will go through a rolling reconciliation, but it will do it without problems, as every node already
has a new CA certificate (as a part of the combined CA certificate), and can successfully allow joiners with
new TLS certificate to join. Joiner node also has a combined CA certificate, so it can authenticate against
older TLS certificate.

9. Create a final Secrets object: use new TLS certificate (server.pmn) and its key (server-key.pen), and just
the new CA certificate (ca.pem):

$ kubectl delete secret/my-cluster-name-ssl-internal

$ kubectl create secret generic my-cluster-name-ssl-internal --from-
file=tls.crt=server.pem --from-file=tls.key=server-key.pem --from-file=ca.crt=ca.pem --
type=kubernetes.io/tls

10. The cluster will go through a rolling reconciliation, but it will do it without problems: the old CA certificate is
removed, and every node is already using new TLS certificate and no nodes rely on the old CA certificate
any more.

82 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

12.9.4 Run Percona Server for MongoDB without TLS

Update certificates with downtime

If your certificates have been already expired (or if you continue to use the Operator version prior to 1.9.0),
you should move through the pause - update Secrets - unpause route as follows.

1. Pause the cluster in a standard way, and make sure it has reached its paused state.

2. If cert-manager is used, delete issuer and TLS certificates:

$ A
kubectl delete issuer/my-cluster-name-psmdb-ca-issuer issuer/my-cluster-name-psmdb-
issuer
kubectl delete certificate/my-cluster-name-ssl certificate/my-cluster-name-ssl-internal
}

3. Delete Secrets to force the SSL reconciliation:

$ kubectl delete secret/my-cluster-name-ssl secret/my-cluster-name-ssl-internal

4. Check certificates to make sure reconciliation have succeeded.

5. Unpause the cluster in a standard way, and make sure it has reached its running state.

12.9.4 Run Percona Server for MongoDB without TLS
Omitting TLS is also possible, but we recommend that you run your cluster with the TLS protocol enabled.

To disable TLS protocol (e.g. for demonstration purposes) set the spec.allowUnsafeConfigurations key to
true inthe deploy/cr.yaml file and and make sure that there are no certificate secrets available. This is the

only condition under which the cluster will work without TLS.

Warning

Normally, the Operator prevents users from configuring a cluster with unsafe parameters (starting it with less than
3 replica set instances or without TLS, etc.), automatically changing such unsafe parameters to safe defaults. If
you switch the cluster to the unsafe configurations permissive mode, you will not be able to switch it back by
setting spec.allowUnsafeConfigurations key to false, the flag will be ignored.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

83 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

12.10 Data at rest encryption

12.10 Data at rest encryption

Data at rest encryption in Percona Server for MongoDB is supported by the Operator since version 1.1.0.

/7" Note

Data at rest means inactive data stored as files, database records, etc.

Data at rest encryption is turned on by default. The Operator implements it by either using encryption key
stored in a Secret, or obtaining encryption key from the HashiCorp Vault key storage.
12.10.1 Using encryption key Secret

1. The secrets.encryptionkey key in the deploy/cr.yaml file should specify the name of the encryption key
Secret:

secrets:

encryptionKey: my-cluster-name-mongodb-encryption-key

Encryption key Secret will be created automatically by the Operator if it doesn't exist. If you would like to
create it yourself, take into account that the key must be a 32 character string encoded in base64.

2.The replsets.configuration, replsets.nonvoting.configuration, and
sharding.configsvrReplSet.configuration keys should include the following two MongoDB encryption-
specific options:

configuration: |
security:
enableEncryption: true
encryptionCipherMode: "AES256-CBC"

The enableEncryption option should be set to true (the default value). The security.encryptionCipherMode
option should specify a proper cipher mode for decryption: either AES256-CBC (the default value) or
AES256-GCM .

Don't forget to apply the modified cr.yaml configuration file as usual:

$ kubectl deploy -f deploy/cr.yaml

12.10.2 Using HashiCorp Vault storage for encryption keys

Starting from the version 113, the Operator supports using HashiCorp Vault storage for encryption keys - a
universal, secure and reliable way to store and distribute secrets without depending on the operating
system, platform or cloud provider.

Warning

Vault integration has technical preview status and is not yet recommmended for production environments.

84 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.percona.com/percona-server-for-mongodb/latest/data-at-rest-encryption.html
https://en.wikipedia.org/wiki/Data_at_rest
https://docs.mongodb.com/manual/tutorial/configure-encryption/#local-key-management
https://www.vaultproject.io/

12.10.2 Using HashiCorp Vault storage for encryption keys

The Operator will use Vault if the deploy/cr.yaml configuration file contains the following items:

» a secrets.vault key equal to the name of a specially created Secret,

» configuration keys for mongod and config servers with a number of Vault-specific options.
The Operator itself neither installs Vault, nor configures it; both operations should be done manually, as
described in the following parts.
Installing Vault

The following steps will deploy Vault on Kubernetes with the Helm 3 package manager. Other Vault
installation methods should also work, so the instruction placed here is not obligatory and is for illustration
purposes. Read more about installation in Vault’s documentation.

1. Add helm repo and install:

$ helm repo add hashicorp https://helm.releases.hashicorp.com
"hashicorp" has been added to your repositories

$ helm install vault hashicorp/vault

2. After installation, Vault should be first initialized and then unsealed. Initializing Vault is done with the
following commands:

$ kubectl exec -it pod/vault-0 -- vault operator init -key-shares=1 -key-threshold=1 -
format=json > /tmp/vault-init
$ unsealKey=$(jq -r ".unseal keys b64[]" < /tmp/vault-init)

To unseal Vault, execute the following command for each Pod of Vault running:

$ kubectl exec -it pod/vault-0 -- vault operator unseal "$unsealKey"

Configuring Vault

1. First, you should enable secrets within Vault. For this you will need a Vault token. Percona Server for
MongoDB can use any regular token which allows all operations inside the secrets mount point. In the
following example we are using the root token to be sure the permissions requirement is met, but actually
there is no need in root permissions. We don't recommend using the root token on the production system.

$ cat /tmp/vault-init | jq -r ".root token"
The output will show you the token:
s.VgQvaX18xGFO1RUxAPbPbs N
Now login to Vault with this token to enable the key-value secret engine:

$ kubectl exec -it vault-0 -- /bin/sh
$ vault login s.VgQvaX18xGFO1RUxAPbPbsfN

85 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://helm.sh/
https://www.vaultproject.io/docs/platform/k8s
https://www.vaultproject.io/docs/concepts/tokens

12.10.2 Using HashiCorp Vault storage for encryption keys

i= Expected output v

Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key Value

token s.VgQvaX18xGFO1RUxAPbPbs N
token accessor iMGp477aReYkPBWrR42Z3L6R
token duration ©

token renewable false

token policies ["root"]

identity policies [1]

policies ["root"]"

Now enable the key-value secret engine with the following command:

$ vault secrets enable -path secret kv-v2

= Expected output v

Success! Enabled the kv-v2 secrets engine at: secret/

/7" Note

You can also enable audit, which is not mandatory, but useful:

$ vault audit enable file file path=/vault/vault-audit.log

i= Expected output v

Success! Enabled the file audit device at: file/

86 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

12.10.2 Using HashiCorp Vault storage for encryption keys

o Now generate Secret with the Vault root token using kubectl command (don't forget to substitute the token
from the example with your real root token) and add necessary options to configuration keys in your
deploy/cr.yaml:

without TLS, to access the Vault server via HTTP

Generate Secret:

$ kubectl create secret generic vault-secret --from-
literal=token="s.VgQvaX18xGFO1RUxAPbPbsfN"

Now modify your deploy/cr.yaml:

First set the secrets.encryptionKey key to the name of your Secret created on the previous step. Then Add
Vault-specific options to the replsets.configuration, replsets.nonvoting.configuration, and
sharding.configsvrReplSet.configuration keys, using the following template:

configuration:

security:

enableEncryption: true

vault:
serverName: vault
port: 8200
tokenFile: /etc/mongodb-vault/token
secret: secret/data/dc/<cluster name>/<path>
disableTLSForTesting: true

with TLS, to access the Vault server via HTTPS

Generate Secret, using the path to your ca.crt certificate instead of the <path to CA> placeholder (see
the Operator TLS guide, if needed):

kubectl create secret generic vault-secret --from-
literal=token="s.VgQvaX18xGFO1RUxAPbPbsfN" --from-file=ca.crt=<path to CA>/ca.crt

Now modify your deploy/cr.yaml:

First set the secrets.encryptionkKey key to the name of your Secret created on the previous step. Then Add
Vault-specific options to the replsets.configuration, replsets.nonvoting.configuration, and
sharding.configsvrReplSet.configuration keys, using the following template:

configuration:

security:

enableEncryption: true

vault:
serverName: vault
port: 8200
tokenFile: /etc/mongodb-vault/token
secret: secret/data/dc/<cluster name>/<path>
serverCAFile: /etc/mongodb-vault/ca.crt

While adding options, modify this template as follows: * substitute the <cluster name> placeholder with
your real cluster name, * substitute the placeholder with rs6 when adding options to

87 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

12.10.2 Using HashiCorp Vault storage for encryption keys

replsets.configuration and replsets.nonvoting.configuration, * substitute the placeholder with cfg when
adding options to sharding.configsvrReplSet.configuration.

Finally, apply your modified cr.yaml as usual:
$ kubectl deploy -f deploy/cr.yaml

3. To verify that everything was configured properly, use the following log filtering command (substitute the
<cluster name> and <namespace> placeholders with your real cluster name and hamespace):

$ kubectl logs <cluster name>-rs0-0 -c mongod -n <namespace> | grep -i "Encryption keys
DB is initialized successfully"

More details on how to install and configure Vault can be found in the official documentation.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-12-20

88 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://learn.hashicorp.com/vault?track=getting-started-k8s#getting-started-k8s
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

1211 Telemetry

12.11 Telemetry

The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona,
which helps us to determine where to focus the development and what is the uptake for each release of
Operator.

The following information is gathered:

- ID of the Custom Resource (the metadata.uid field)

* Kubernetes version

« Platform (is it Kubernetes or Openshift)

« Is PMM enabled, and the PMM Version

 Operator version

« Mongo version

« Percona Backup for MongoDB (PBM) version

« Is sharding enabled (starting from the Operator version 1.13)

« Is Hashicorp Vault enabled (starting from the Operator version 1.13)

- Is the Operator deployed in a cluster-wide mode (starting from the Operator version 1.13)
« Is the Operator deployed with Helm

« Are sidecar containers used

« Are backups used, are point-in-time recovery and/or scheduled physical backup features used, if so
« How large is the cluster

We do not gather anything that identify a system, but the following thing should be mentioned: Custom
Resource ID is a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it at
scheduled times to obtain fresh information about version numbers and valid image paths needed for the
upgrade.

The landing page for this service, check.percona.com, explains what this service is.
You can disable telemetry with a special option when installing the Operator:

« if you install the Operator with helm, use the following installation command:

$ helm install my-db percona/psmdb-db --version 1.15.0 --namespace my-namespace --set
disable telemetry="true"

- if you don't use helm for installation, you have to edit the operator.yaml before applying it with the
kubectl apply -f deploy/operator.yaml command. Open the operator.yaml file with your text editor, find
the value of the DISABLE TELEMETRY environment variable and setitto true:

env:

- name: DISABLE TELEMETRY
value: "true"

CONTACT US

For free technical help, visit the Percona Community Forum.

89 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://check.percona.com/
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages

1211 Telemetry

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-13

90 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13. Management

13. Management
13.1 Backup and restore

13.1.1 About backups

The Operator usually stores Server for MongoDB backups outside the Kubernetes cluster: on Amazon S3 or
S3-compatible storage, or on Azure Blob Storage.

_> 4
Kubernetes API l
(. \
Operator
-0 @ - 0 0O E
DB Pod 1 DB Pod 2 DB Pod N Backup Pod
Percona Server for MongoDB Namespace Cloud storage
& J
L » (0437

Storage

oo]
O g -

Backups are done by the Operator using the Percona Backup for MongoDB tool.

The Operator allows doing cluster backup in two ways. Scheduled backups are configured in the deploy/
cryaml file to be executed automatically in proper time. On-demand backups can be done manually at
any moment.

The Operator can do either logical or physical backups.

« Logical backup means querying the Percona Server for MongoDB for the database data and writing the
retrieved data to the remote backup storage.

* Physical backup means copying physical files from the Percona Server for MongoDB dbPath data
directory to the remote backup storage.

Logical backups use less storage, but are much slower than physical backup/restore.

91 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://azure.microsoft.com/en-us/services/storage/blobs/
https://github.com/percona/percona-backup-mongodb
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

13.1.1 About backups

Also, logical backups are stable, while physical backups are available since the Operator version 1.14.0 and
still have the technical preview stauts.

Warning

Logical backups made with the Operator versions before 1.9.0 are incompatible for restore with the Operator 1.9.0
and later. That is because Percona Backup for MongoDB 1.5.0 used by the newer Operator versions processes
system collections Users and Roles differently. The recommended approach is to make a fresh backup after
upgrading the Operator to version 1.9.0.

Contact Us
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-03

92 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/doc/percona-backup-mongodb/running.html#pbm-running-backup-restoring
https://www.percona.com/doc/percona-backup-mongodb/running.html#pbm-running-backup-restoring
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.1.2 Configure storage for backups

13.1.2 Configure storage for backups

You can configure storage for backups in the backup.storages subsection of the Custom Resource, using the
deploy/cr.yaml configuration file.

93 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

13.1.2 Configure storage for backups

You should also create the Kubernetes Secret object with credentials needed to access the storage.

94 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/configuration/secret/

13.1.2 Configure storage for backups

Amazon S3 or S3-compatible storage

1. To store backups on the Amazon S3, you need to create a Secret with the following values:
- the metadata.name key is the name which you will further use to refer your Kubernetes Secret,

« the data.AwS_ACCESS KEY ID and data.AWS SECRET ACCESS KEY keys are base64-encoded credentials
used to access the storage (obviously these keys should contain proper values to make the access
possible).

Create the Secrets file with these base64-encoded keys following the deploy/backup-s3.yaml example:

apiVersion: vl
kind: Secret
metadata:
name: my-cluster-name-backup-s3
type: Opaque
data:
AWS ACCESS KEY ID: UkVQTEFDRS1XSVRILUFXUy1BQONFU1MtS6OVZ
AWS SECRET ACCESS KEY: UKVQTEFDRS1XSVRILUFXUy1lTRUNSRVQtSOVZ

/7" Note

You can use the following command to get a base64-encoded string from a plain text one:

in Linux

$ echo -n 'plain-text-string' | base64 --wrap=0
in macOS

$ echo -n 'plain-text-string' | base64

Once the editing is over, create the Kubernetes Secret object as follows:
$ kubectl apply -f deploy/backup-s3.yaml

2. Put the data needed to access the S3-compatible cloud into the backup.storages subsection of the
Custom Resource.

« storages.<NAME>.type should be set to s3 (substitute the part with some arbitrary name you will
later use to refer this storage when making backups and restores).

 storages.<NAME>.s3.credentialsSecret key should be set to the name used to refer your Kubernetes
Secret (my-cluster-name-backup-s3 in the last eXGmpIe).

+ storages.<NAME>.s3.bucket and storages.<NAME>.s3.region should contain the S3 bucket and region.
Also you can use storages.<NAME>.s3.prefix option to specify the path (sub-folder) to the backups
inside the S3 bucket. If prefix is not set, backups are stored in the root directory.

« if you use some S3-compatible storage instead of the original Amazon S3, add the endpointURL key
in the s3 subsection, which should point to the actual cloud used for backups. This value and is
specific to the cloud provider. For example, using Google Cloud involves the following endpointUrl:

endpointUrl: https://storage.googleapis.com

The options within the storages.<NAME>.s3 subsection are further explained in the Operator Custom
Resource options.

Here is an example of the deploy/cr.yaml configuration file which configures Amazon S3 storage for
backups:

backup:
C 95 of 313 Percona LLC and/or its affiliates, © 2009 - 2023
storages:
s3-us-west:
tvpe: s3

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup-s3.yaml
https://docs.min.io/docs/aws-cli-with-minio.html
https://cloud.google.com
https://storage.googleapis.com
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

13.1.2 Configure storage for backups

Contact Us
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-13

96 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.1.3 Making scheduled backups

13.1.3 Making scheduled backups

Backups schedule is defined in the backup section of the Custom Resource and can be configured via the
deploy/cr.yami file.

1. The backup.enabled key should be setto true,

2. The backup.storages subsection should contain at least one configured storage.

3. The backup.tasks subsection allows to actually schedule backups:
« set the name key to some arbitray backup name (this name will be needed later to restore the bakup).
- specify the schedule option with the desired backup schedule in crontab format).

+ set the enabled key to true (this enables making the <backup name> backup along with the specified
schedule.

* set the storageName key to the name of your already configured storage.
« you can optionally set the keep key to the number of backups which should be kept in the storage.

« you can optionally set the type key to physical if you would like to make physical backups instead of
logical ones (please see the physical backups limitations). Otherwise set this key to logical, or just
omit it.

Here is an example of the deploy/cr.yaml with a scheduled Saturday night backup kept on the Amazon S3
storage:

backup:
enabled: true
storages:
s3-us-west:
type: s3
s3:
bucket: S3-BACKUP-BUCKET-NAME-HERE
region: us-west-2
credentialsSecret: my-cluster-name-backup-s3
tasks:
- name: "sat-night-backup"
enabled: true
schedule: "0 0@ * * 6"
keep: 3
type: logical
storageName: s3-us-west

f Note

If you plan to restore backup to a new Kubernetes-based environment, make sure you will be able to create there
a Secrets object with the same user passwords as in the original cluster. More details about secrets can be found
in System Users. The name of the current Secrets object you will need to recreate can be found out from the
spec.secrets key in the deploy/cr.yaml (my-cluster-name-secrets by default).

Contact Us
For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

97 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://en.wikipedia.org/wiki/Cron
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/

13.1.3 Making scheduled backups

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

98 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.1.4 Making on-demand backup

13.1.4 Making on-demand backup

1. To make an on-demand backup, you should first check your Custom Resource for the necessary options
and make changes, if needed, using the deploy/cr.yaml configuration file:

« the backup.enabled key should be setto true,
* backup.storages subsection should contain at least one configured storage.

You can apply changes in the deploy/cr.yaml file with the usual kubectl apply -f deploy/cr.yaml
command.

2. Now use a special backup configuration YAML file with the following keys:

« metadata.name key should be set to the backup name (this name will be needed later to restore the
bakup),

« spec.clusterName key should be set to the name of your cluster (prior to the Operator version 1.12.0 this
key was named spec.psmdbCluster),

* spec.storageName key should be set to the name of your already configured storage.

- optionally you can set the spec.type key to physical if you would like to make physical backups
instead of logical ones (please see the physical backups limitations). Otherwise set this key to logical,
or just omit it.

You can find the example of such file in deploy/backup/backup.yami:

apiVersion: psmdb.percona.com/vl
kind: PerconaServerMongoDBBackup
metadata:

finalizers:

- delete-backup

name: backupl
spec:

clusterName: my-cluster-name

storageName: s3-us-west

type: logical

3. Run the actual backup command using this file:

$ kubectl apply -f deploy/backup/backup.yaml

99 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/backup.yaml

13.1.4 Making on-demand backup

/7" Note

If you plan to restore backup to a new Kubernetes-based environment, make sure you will be able to create there
a Secrets object with the same user passwords as in the original cluster. More details about secrets can be found
in System Users. The name of the current Secrets object you will need to recreate can be found out from the
spec.secrets key in the deploy/cr.yaml (my-cluster-name-secrets by default).

1. You can track the backup process with the PerconaServerMongobBBackup Custom Resource as follows:

$ kubectl get psmdb-backup

i= Expected output v
NAME CLUSTER STORAGE DESTINATION STATUS COMPLETED AGE
backupl my-cluster-name s3-us-west 2022-09-08T03:22:19Z running 49s

It should show the status as READY when the backup process is over.

If you have any issues with the backup, you can view logs from the backup-agent container of the
appropriate Pod as follows:

$ kubectl logs pod/my-cluster-name-rs0 -c backup-agent

Alternatively, getting ssh access to the same container will allow you to carry on Percona Backup for
MongoDB diagnostics.

/" Note

In both cases you will need the name of the Pod that made the backup. You can find the pbmPodName field in the
output of the kubectl get psmdb-backup <backup_name> -o yaml command.

Contact Us
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

100 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.percona.com/percona-backup-mongodb/manage/troubleshooting.html
https://docs.percona.com/percona-backup-mongodb/manage/troubleshooting.html
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.1.5 Storing operations logs for point-in-time recovery

13.1.5 Storing operations logs for point-in-time recovery

Point-in-time recovery functionality allows users to roll back the cluster to a specific date and time.
Technically, this feature involves saving operations log updates to the cloud storage.

Currently, point-in-time recovery functionality can be used with logical backups only.

To be used, it requires setting the backup.pitr.enabled key in the deploy/cr.yaml configuration file:

backup:
pitr:

enabled: true

/7" Note

It is necessary to have at least one full backup to use point-in-time recovery. Percona Backup for MongoDB will
not upload operations logs if there is no full backup. This is true for new clusters and also true for clusters which
have been just recovered from backup.

Percona Backup for MongoDB uploads operations logs to the same bucket/container, where full backup is
stored. This makes point-in-time recovery functionality available only if there is a single bucket/container in
spec.backup.storages. Otherwise point-in-time recovery will not be enabled and there will be an error
message in the operator logs.

/7" Note

Adding a new bucket or container when point-in-time recovery is enabled will not break it, but put error message
about the additional bucket in the Operator logs as well.

Contact Us
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-13

101 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.1.6 Enable server-side encryption for backups

13.1.6 Enable server-side encryption for backups

Encrypting database backups is done separately for physical and logical backups. Physical backups are
encrypted if data-at-rest encryption is turned on. Logical backups need to be encrypted on the cloud.

There is a possibility to enable server-side encryption for backups stored on S3. Starting from the version
115.0, the Operator supports Server Side Encryption either with AWS Key Management Service (KMS), or just
encrypt/decrypt backups with AES-256 encryption algorithm with any $3-compatible storage.

To enable server-side encryption for backups, use backup.storages.backup.storages.<storage-
name>.s3.serverSideEncryption section in the deploy/cr.yaml configuration file.
Encryption with keys stored in AWS KMS

To use the server-side AWS KMS encryption, specify the following Custom Resource options in the deploy/
cr.yaml configuration file:

backup:
storages:
my-s3:
type: s3
s3:
bucket: my-backup-bucket
serverSideEncryption:

kmsKeyID: <kms key ID>
sseAlgorithm: aws:kms

Here <kms_key ID> should be substituted with the ID of your customer-managed key stored in the AWS KMS.
It should look similar to the following example value: 128887dd-d583-43f2-b3f9-d12036d32b12 .

Encryption with localy-stored keys on any S3-compatible storage

The Operator also supports server-side encryption with customer-provided keys that are stored on the
client side. During the backup/restore process, encryption key will be provided by the Operator as part of the
requests to the S3 storage, and the S3 storage will them to encrypt/decrypt the data using the AES-256
encryption algorithm. This allows to use server-side encryption on S3-compatible storages different from
AWS KMS (the feature was tested with the AWS and MinlO storages).

To use the server-side encryption wit locally-stored keys, specify the following Custom Resource options in
the deploy/cr.yaml configuration file:

backup:
storages:
my-s3:
type: s3
s3:
bucket: my-backup-bucket
serverSideEncryption:

sseCustomerAlgorithm: AES256
sseCustomerKey: <your encryption key in base64>

Here <your_encryption_key in_base64> should be substituted with the actual encryption key encoded in
base64.

102 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.percona.com/percona-backup-mongodb/details/storage-configuration.html#server-side-encryption
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html
https://aws.amazon.com/
https://min.io/

13.1.6 Enable server-side encryption for backups

/" Note

You can use the following command to get a base64-encoded string from a plain text one:

in Linux
$ echo -n 'plain-text-string' | base64 --wrap=0
in macOS
$ echo -n 'plain-text-string' | base64
Contact Us

For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

103 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.1.7 Restore the cluster from a previously saved backup

13.1.7 Restore the cluster from a previously saved backup

The backup is normally restored on the Kubernetes cluster where it was made, but restoring it on a different
Kubernetes-based environment with the installed Operator is also possible.

Following things are needed to restore a previously saved backup:

» Make sure that the cluster is running.

 Find out correct names for the backup and the cluster. Available backups can be listed with the
following command:

$ kubectl get psmdb-backup
And the following command will list available clusters:

$ kubectl get psmdb

/" Note

If you have configured storing operations logs for point-in-time recovery, you will have possibility to roll back the
cluster to a specific date and time. Otherwise, restoring backups without point-in-time recovery is the only option.

104 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

13.1.7 Restore the cluster from a previously saved backup

When the correct names for the backup and the cluster are known, backup restoration can be done in the
following way.

105 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

13.1.7 Restore the cluster from a previously saved backup

Without point-in-time recovery

1. Set appropriate keys in the deploy/backup/restore.yaml file.
* set spec.clusterName key to the name of the target cluster to restore the backup on,

« set spec.backupName key to the name of your backup,

apiVersion: psmdb.percona.com/vl
kind: PerconaServerMongoDBRestore
metadata:
name: restorel
spec:
clusterName: my-cluster-name
backupName: backupl

2. After that, the actual restoration process can be started as follows:

$ kubectl apply -f deploy/backup/restore.yaml

/7" Note

Storing backup settings in a separate file can be replaced by passing its content to the kubectl apply
command as follows:

$ cat <<EOF | kubectl apply -f-
apiVersion: psmdb.percona.com/vl
kind: PerconaServerMongoDBRestore
metadata:
name: restorel
spec:
clusterName: my-cluster-name
backupName: backupl
EOF

With point-in-time recovery

1. Set appropriate keys in the deploy/backup/restore.yaml file.
* set spec.clusterName key to the name of the target cluster to restore the backup on
« set spec.backupName key to the name of your backup
« put additional restoration parameters to the pitr section:
» type key can be equal to one of the following options
- date - roll back to specific date
- latest - recover to the latest possible transaction
- date key is used with type=date option and contains value in datetime format

The resulting restore.yaml file may look as follows:

apiVersion: psmdb.percona.com/vl
kind: PerconaServerMongoDBRestore
metadata:
name: restorel
spec:
clusterName: my-cluster-name
backupName: backupl
pitr:
type: date
date: YYYY-MM-DD hh:mm:ss

2. Run the actual restoration process:
106 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

$ kubectl apply -f deploy/backup/restore.yaml

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml

13.1.7 Restore the cluster from a previously saved backup

Contact Us
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

107 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.1.8 Delete the unneeded backup

13.1.8 Delete the unneeded backup

The maximum amount of stored backups is controlled by the backup.tasks.keep option (only successful
backups are counted). Older backups are automatically deleted, so that amount of stored backups do not
exceed this number. Setting keep=0 or removing this option from deploy/cr.yaml disables automatic
deletion of backups.

Manual deleting of a previously saved backup requires not more than the backup name. This name can be
taken from the list of available backups returned by the following command:

$ kubectl get psmdb-backup
When the name is known, backup can be deleted as follows:

$ kubectl delete psmdb-backup/<backup-name>

f Note

Deleting a backup used as a base for point-in-time recovery (PITR) is possible only starting from the Operator
version 115.0. Also, deleting such a backup will delete the stored operations log updates based on this backup.

Contact Us
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-05

108 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.2 Update Database and Operator

13.2 Update Database and Operator

Starting from the version 1.1.0 the Percona Operator for MongoDB allows upgrades to newer versions. The
upgradable components of the cluster are the following ones:

- the Operator;

« Custom Resource Definition (CRD),

- Database Management System (Percona Server for MongoDB).
The list of recommended upgrade scenarios includes two variants:

« Upgrade to the new versions of the Operator and Percona Server for MongoDB,

« Minor Percona Server for MongoDB version upgrade without the Operator upgrade.
13.2.1 Upgrading the Operator and CRD

/" Note

The Operator supports last 3 versions of the CRD, so it is technically possible to skip upgrading the CRD and just
upgrade the Operator. If the CRD is older than the new Operator version by no more than three releases, you will
be able to continue using the old CRD and even carry on Percona Server for MongoDB minor version upgrades
with it. But the recommended way is to update the Operator and CRD.

Only the incremental update to a nearest version of the Operator is supported (for example, update from
1.5.0 to 1.6.0). To update to a newer version, which differs from the current version by more than one, make
several incremental updates sequentially.

/7" Note

Starting from version 114.0, the Operator configures replica set members using local fully-qualified domain names
(FQDN). Before this version, it used exposed IP addresses in the replica set configuration in case of the exposed
replica set. If you have your replica set exposed and upgrade to 1.14.0, the replica set configuration will change to
use FQDN. If you don’t want such reconfiguration to happen, set clusterServiceDNSMode Custom Resource option to
External before the upgrade.

Warning

Starting from the Operator version 1.15.0 the spec.mongod section (deprecoted since 112.0) is finally removed from
the Custom Resource configuration. If you have encryption disabled using the deprecated
mongod.security.enableEncryption option, you need to set encryption disabled via the custom configuration
before upgrade:

spec:
replsets:
- name: rsoO
configuration: |
security:

enableEncryption: false

109 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

13.2.1 Upgrading the Operator and CRD

Manual upgrade
The upgrade includes the following steps.
1. Update the Custom Resource Definition for the Operator, taking it from the official repository on Github,

and do the same for the Role-based access control:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-
mongodb-operator/v1.15.0/deploy/crd.yaml

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.15.0/deploy/rbac.yaml

2.Now you should apply a patch to your deployment, supplying necessary image name with a newer
version tag. You can find the proper image name for the current Operator release in the list of certified
images. updating to the 1.15.0 version should look as follows:

$ kubectl patch deployment percona-server-mongodb-operator \
-p'{"spec":{"template":{"spec":{"containers":[{"name": "percona-server-mongodb-

operator","image":"percona/percona-server-mongodb-operator:1.15.0"}1}}}}'

3. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout
process in real time with the kubectl rollout status command with the name of your cluster:

$ kubectl rollout status deployments percona-server-mongodb-operator

/7" Note

Labels set on the Operator Pod will not be updated during upgrade.

10 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

13.2.2 Upgrading Percona Server for MongoDB

Upgrade via helm

If you have installed the Operator using Helm, you can upgrade the Operator with the helm upgrade
command.

1. In case if you installed the Operator with no customized parameters, the upgrade can be done as follows:
$ helm upgrade my-op percona/psmdb-operator --version 1.15.0

The my-op parameter in the above example is the name of a release object which which you have chosen
for the Operator when installing its Helm chart.

If the Operator was installed with some customized parameters, you should list these options in the
upgrade command.

/" Note

You can get list of used options in YAML format with the helm get values my-op -a > my-values.yaml command,
and this file can be directly passed to the upgrade command as follows:

$ helm upgrade my-op percona/psmdb-operator --version 1.15.0 -f my-values.yaml

2. Update the Custom Resource Definition for the Operator, taking it from the official repository on Github,
and do the same for the Role-based access control:

$ kubectl apply --server-side -f https://raw.githubusercontent.com/percona/percona-server-
mongodb-operator/v1.15.0/deploy/crd.yaml

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-server-mongodb-
operator/v1.15.0/deploy/rbac.yaml

/7" Note
You can use helm upgrade to upgrade the Operator only. The Database (Percona Server for MongoDB) should be

upgraded in the same way whether you used helm to install it or not.

13.2.2 Upgrading Percona Server for MongoDB

The following section presumes that you are upgrading your cluster within the Smart Update strategy, when
the Operator controls how the objects are updated. Smart Update strategy is on when the updateStrategy
key in the Custom Resource configuration file is set to SmartUpdate (this is the default value and the
recommended way for upgrades).

f Note

As an alternative, the updateStrategy key can be used to turn off Smart Update strategy. You can find out more on
this in the appropriate section.

M of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-helm-charts/tree/main/charts/psmdb-operator#installing-the-chart
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://github.com/percona/percona-helm-charts/tree/main/charts/psmdb-operator#installing-the-chart
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

13.2.2 Upgrading Percona Server for MongoDB

Manual upgrade
Manual update of Percona Server for MongoDB can be done as follows:

1.Make sure that spec.updateStrategy option in the Custom Resource is set to SmartUpdate,
spec.upgradeOptions.apply option is set to Never or Disabled (this means that the Operator will not carry
on upgrades automatically).

spec:
updateStrategy: SmartUpdate
upgradeOptions:
apply: Disabled

2.Now apply a patch to your Custom Resource, setting necessary Custom Resource version and image
names with a newer version tag.

/7" Note

Check the version of the Operator you have in your Kubernetes environment. Please refer to the Operator
upgrade guide to upgrade the Operator and CRD, if needed.

Patching Custom Resource is done with the kubectl patch psmdb command. Actual image names can be
found in the list of certified images. For example, updating my-cluster-name cluster to the 1.15.0 version
should look as follows:

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{

"spec": {
"crVersion":"1.15.0",
"image": "percona/percona-server-mongodb:4.4.24-23",

"backup": { "image": "percona/percona-backup-mongodb:2.3.0" },
"pmm { "image": "percona/pmm-client:2.39.0" }

I3

Warning

The above command upgrades various components of the cluster including PMM Client. It is highly
recommended to upgrade PMM Server before upgrading PMM Client. If it wasn't done and you would like to
avoid PMM Client upgrade, remove it from the list of images, reducing the last of two patch commands as
follows:

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{

"spec": {
"crVersion":"1.15.0",
"image": "percona/percona-server-mongodb:4.4.24-23",
"backup": { "image": "percona/percona-backup-mongodb:2.3.0" }
!

3. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout
process in real time using the kubectl rollout status command with the name of your cluster:

$ kubectl rollout status sts my-cluster-name-rs0

The update process is successfully finished when all Pods have been restarted (including the mongos and
Config Server nodes, if Percona Server for MongoDB Sharding is on).

12 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html

13.2.2 Upgrading Percona Server for MongoDB

Automated upgrade

Smart Update strategy allows you to automate upgrades even more. In this case the Operator can either
detect the availability of the new Percona Server for MongoDB version, or rely on the user’'s choice of the
version. To check the availability of the new version, the Operator will query a special Version Service server
at scheduled times to obtain fresh information about version numbers and valid image paths.

If the current version should be upgraded, the Operator updates the Custom Resource to reflect the new
image paths and carries on sequential Pods deletion, allowing StatefulSet to redeploy the cluster Pods with

13 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

13.2.2 Upgrading Percona Server for MongoDB

the new image. You can configure Percona Server for MongoDB upgrade via the deploy/cr.yaml
configuration file as follows:

114 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

13.2.2 Upgrading Percona Server for MongoDB

1 Make sure that spec.updateStrategy option is setto SmartUpdate.

2.Change spec.crVersion option to match the version of the Custom Resource Definition upgrade you have
done while upgrading the Operator:

spec:
crVersion: 1.15.0

/" Note

If you don’t update crVersion, minor version upgrade is the only one to occur. For example, the image percona-
server-mongodb:5.0.7-6 can be upgraded to percona-server-mongodb:5.0.11-16 .

3. Set the upgradeOptions.apply option from Disabled to one of the following values:

« Recommended - automatic upgrade will choose the most recent version of software flagged as
Recommended (for clusters created from scratch, the Percona Server for MongoDB 6.0 version will be
selected instead of the Percona Server for MongoDB 5.0 or 4.4 version regardless of the image path; for
already existing clusters, the 6.0 vs. 5.0 or 4.4 branch choice will be preserved),

* 6.0-recommended, 5.0-recommended, 4.4-recommended - same as above, but preserves specific major
MongoDB version for newly provisioned clusters (ex. 6.0 will not be automatically used instead of 5.0),

- Latest - automatic upgrade will choose the most recent version of the software available (for clusters
created from scratch, the Percona Server for MongoDB 6.0 version will be selected instead of the
Percona Server for MongoDB 5.0 or 4.4 version regardless of the image path; for already existing
clusters, the 6.0 vs. 5.0 or 4.4 branch choice will be preserved),

* 6.0-latest, 5.0-latest, 4.4-latest - same as above, but preserves specific major MongoDB version
for newly provisioned clusters (ex. 6.0 will not be automatically used instead of 5.0),

« version number - specify the desired version explicitly (version numbers are specified as 6.0.9-7,
5.0.20-17, etc.). Actual versions can be found in the list of certified images.

4. Make sure the versionServiceEndpoint key is set to a valid Version Server URL (otherwise Smart Updates will
not occur).
Percona’s Version Service (default)

You can wuse the URL of the official Percona’s Version Service (default). Set
upgradeOptions.versionServiceEndpoint tO https://check.percona.com.

Version Service inside your cluster

Alternatively, you can run Version Service inside your cluster. This can be done with the kubectl command
as follows:

$ kubectl run version-service --image=perconalab/version-service --env="SERVE HTTP=true"
--port 11000 --expose

/" Note

Version Service is never checked if automatic updates are disabled in the upgradeOptions.apply option. If
automatic updates are enabled, but the Version Service URL can not be reached, no updgrades will be
performed.

5. Use the upgradeOptions.schedule option to specify the update check time in CRON formait.

15 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

13.2.2 Upgrading Percona Server for MongoDB

The following example sets the midnight update checks with the official Percona’s Version Service:

spec:
updateStrategy: SmartUpdate
upgradeOptions:
apply: Recommended
versionServiceEndpoint: https://check.percona.com
schedule: "0 @ * * **

7" Note
You can force an immediate upgrade by changing the schedule to * * * * * (continuously check and

upgrade) and changing it back to another more conservative schedule when the upgrade is complete.

6. Don't forget to apply your changes to the Custom Resource in the usual way:

$ kubectl apply -f deploy/cr.yaml

/" Note

When automatic upgrades are disabled by the apply option, Smart Update functionality will continue working
for changes triggered by other events, such as rotating a password, or changing resource values.

Major version automated upgrades

Normally automatic upgrade takes place within minor versions (for example, from 4.4.16-16 to 4.4.18-18)
of MongoDB. Major versions upgrade (for example moving from 5.0-recommended to 6.0-recommended) is
more complicated task which might potentially affect how data is stored and how applications interacts
with the database (in case of some API changes).

Such upgrade is supported by the Operator within one major version at a time: for example, to change
Percona Server for MongoDB maijor version from 4.4 to 6.0, you should first upgrade it to 5.0, and later make
a separate upgrade from 5.0 to 6.0. The same is true for major version downgrades.

/" Note

It is recommended to take a backup before upgrade, as well as to perform upgrade on staging environment.

Major version upgrade can be initiated using the upgradeOptions.apply key in the deploy/cr.yaml
configuration file:

spec:
upgradeOptions:
apply: 5.0-recommended

/" Note

When making downgrades (e.g. changing version from 5.0 to 4.4), make sure to remove incompatible features
that are persisted and/or update incompatible configuration settings. Compatibility issues between major
MongoDB versions can be found in upstream documentation.

116 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.mongodb.com/manual/release-notes/4.4-downgrade-standalone/#prerequisites

13.2.3 More on upgrade strategies

By default the Operator doesn't set FeatureCompatibilityVersion (FCV) to match the new version, thus
making sure that backwards-incompatible features are not automatically enabled with the major version
upgrade (which is recommended and safe behavior). You can turn this backward compatibility off at any
moment (after the upgrade or even before it) by setting the upgradeOptions.setFCV flag in the deploy/
cr.yaml configuration file to true.

/" Note

With setFeatureCompatibilityVersion set major version rollback is not currently supported by the Operator.
Therefore it is recommended to stay without enabling this flag for some time after the major upgrade to ensure
the likelihood of downgrade is minimal. Setting setFcv flag to true simultaneously with the apply flag should be
done only if the whole procedure is tested on staging and you are 100% sure about it.

13.2.3 More on upgrade strategies

The recommended way to upgrade your cluster is to use the Smart Update strategy, when the Operator
controls how the objects are updated. Smart Update strategy is on when the updateStrategy key in the
Custom Resource configuration file is set to SmartUpdate (this is the default value and the recommended
way for upgrades).

Alternatively, you can set this key to RollingUpdate or OnDelete, which means that you will have to follow the
low-level Kubernetes way of database upgrades. But take into account, that SmartUpdate strategy is not just
for simplifying upgrades. Being turned on, it allows to disable automatic upgrades, and still controls
restarting Pods in a proper order for changes triggered by other events, such as updating a ConfigMap,
rotating a password, or changing resource values. That's why SmartUpdate strategy is useful even when you
have no plans to automate upgrades at all.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-22

17 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.mongodb.com/manual/reference/command/setFeatureCompatibilityVersion/
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.3 Scale Percona Server for MongoDB on Kubernetes and Openshift

13.3 Scale Percona Server for MongoDB on Kubernetes and OpenShift

One of the great advantages brought by Kubernetes and the Openshift platform is the ease of an
application scaling. Scaling a Deployment up or down ensures new Pods are created and set to available
Kubernetes nodes.

The size of the cluster is controlled by the size key in the Custom Resource options configuration.

f Note

The Operator will not allow to scale Percona Server for MongoDB with the kubectl scale statefulset <StatefulSet
name> command as it puts size configuration options out of sync.

You can change size separately for different components of your cluster by setting this option in the
appropriate subsections:

« replsets.size allows to set the size of the MongoDB Replica Set,
* replsets.arbiter.size allows to set the number of Replica Set Arbiter instances,
« sharding.configsvrReplSet.size allows to set the number of Config Server instances,

« sharding.mongos.size allows to set the number of mongos instances.

For example, the following update in deploy/cr.yaml will set the size of the MongoDB Replica Set to 5 nodes:

replsets:

size: 5
Don't forget to apply changes as usual, running the kubectl apply -f deploy/cr.yaml command.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-08-18

118 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.4 Set up Percona Server for MongoDB cross-site replication

13.4 Set up Percona Server for MongoDB cross-site replication

The cross-site replication involves configuring one MongoDB site as Main, and another MongoDB site as
Replica to allow replication between them:

-

Operator

&

mongos

-

Main site

®

Config Server
ReplicaSet

~

-

C

Data
replication

o’

ReplicaSet

C

J

-

o’

Config Server
ReplicaSet

Replica site

~

Operator

&

mongos

J

The Operator automates configuration of Main and Replica MongoDB sites, but the feature itself is not bound
to Kubernetes. Either Main or Replica can run outside of Kubernetes, be regular MongoDB and be out of the

Operators’ control.

This feature can be useful in several cases:

- simplify the migration of the MongoDB cluster to and from Kubernetes

- add remote nodes to the replica set for disaster recovery

Configuring the cross-site replication for the cluster controlled by the Operator is explained in the following

subsections.

13.4.1 Exposing instances of the MongoDB cluster

You need to expose all Replica Set nodes (including Config Servers) through a dedicated service to ensure

that Main and Replica can reach each other, like in a full mesh:

119 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

13.4.1 Exposing instances of the MongoDB cluster

. .
ReplicaSet ReplicaSet
Config Server Config Server
ReplicaSet ReplicaSet

Main site Replica site
. J . J

/" Note

Starting from v1.14, the operator configures the replset using local DNS hostnames even if the replset is exposed. If
you want to have IP addresses in the replset configuration to achieve a multi-cluster deployment, you need to set
clusterServiceDNSMode to External.

This is done through the replsets.expose, sharding.configsvrReplSet.expose, and sharding.mongos.expose
sections in the deploy/cr.yaml configuration file as follows.

spec:
replsets:
- rso:
expose:
enabled: true
exposeType: LoadBalancer

sharding:
configsvrReplSet:
expose:
enabled: true
exposeType: LoadBalancer

The above example is using the LoadBalancer Kubernetes Service object, but there are other options
(ClusterlIP, NodePort, etc.).

120 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

13.4.2 Configuring cross-site replication on Main site

/7" Note

The above example will create a LoadBalancer per each Replica Set Pod. In most cases, this Load Balancer should
be internet-facing for cross-region replication to work.

To list the endpoints assigned to Pods, list the Kubernetes Service objects by executing
kubectl get services -1 "app.kubernetes.io/instance=CLUSTER NAME" command.

13.4.2 Configuring cross-site replication on Main site

The cluster managed by the Operator should be able to reach external nodes of the Replica Sets. You can
provide needed information in the replsets.externalNodes and sharding.configsvrReplset.externalNodes
subsections of the deploy/cr.yaml configuration file. Following keys can be set to specify each external
Replica, both for its Replica Set and Config Server instances:

« set host to URL or IP address of the external replset instance,
« set port to the port number of the external node (orrely onthe 27017 default value),

« set priority to define the priority of the external node (2 is default for all local members of the cluster;
external nodes should have lower priority to avoid unmanaged node being elected as a primary; 0
adds the node as a non-voting member),

« set votes to the number of votes an external node can cast in a replica set election (0 is default and
should be used for non-voting members of the cluster).

Here is an example:

spec:
unmanaged: false
replsets:
- name: rs@
externalNodes:
- host: rs0-1.percona.com
port: 27017
priority: O
votes: 0
- host: rs0-2.percona.com

sharding:
configsvrReplSet:
size: 3
externalNodes:
- host: cfg-1.percona.com
port: 27017
priority: 0
votes: 0
- host: cfg-2.percona.com

The Main site will be ready for replication when you apply changes as usual:

$ kubectl apply -f deploy/cr.yaml

Getting the cluster secrets and certificates to be copied from Main to Replica

Main and Replica should have same Secrets objects (to have same users credentials) and certificates. So
you may need to copy them from Main. Names of the corresponding objects are set in the users, ssl, and

121 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.mongodb.com/manual/reference/replica-configuration/#mongodb-rsconf-rsconf.members-n-.priority
https://docs.mongodb.com/manual/reference/replica-configuration/#mongodb-rsconf-rsconf.members-n-.votes

13.4.3 Configuring cross-site replication on Replica instances

sslInternal keys of the Custom Resource secrets subsection (‘my-cluster-name-secrets, my-cluster-name-
ssl,and my-cluster-name-ssl-internal by default).

If you can get Secrets from an existing cluster by executing the kubectl get secret command for each
Secrets object you want to acquire:

$ kubectl get secret my-cluster-name-secrets -o yaml > my-cluster-secrets.yaml

Next remove the annotations, creationTimestamp, resourceVersion, selfLink, and uid metadata fields from
the resulting file to make it ready for the Replica.

You will need to further apply these secrets on Replica.

13.4.3 Configuring cross-site replication on Replica instances

When the Operator creates a new cluster, a lot of things are happening, such as electing the Primary,
generating certificates, and picking specific names. This should not happen if we want the Operator to run
the Replica site, so first of all the cluster should be put into unmanaged state by setting the unmanaged key in
the deploy/cr.yaml configuration file to true. Also you should set updateStrategy key to oOnDelete and
backup.enabled to false, because Smart Updates and backups are not allowed on unmanaged clusters.

/7" Note

Setting unmanaged to true will not only prevent the Operator from controlling the Replica Set configuration, but it
will also result in not generating certificates and users credentials for new clusters.

Here is an example:

spec:
unmanaged: true
updateStrategy: OnDelete

replsets:

- name: rs0
size: 3

backup:

enabled: false

Main and Replica sites should have same Secrets objects, so don't forget to apply Secrets from your Main
site. Names of the corresponding objects are set in the users, ssl, and sslInternal keys of the Custom
Resource secrets subsection (my-cluster-name-secrets, my-cluster-name-ssl, and my-cluster-name-ssl-
internal by default).

Copy your secrets from an existing cluster and apply each of them on your Replica site as follows:
$ kubectl apply -f my-cluster-secrets.yaml
The Replica site will be ready for replication when you apply changes as usual:

$ kubectl apply -f deploy/cr.yaml

122 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

13.4.4 Enabling multi-cluster Services

13.4.4 Enabling multi-cluster Services

Kubernetes multi-cluster Services (MCS) is a cross-cluster discovery and invocation of Services. MCS-
enabled Services become discoverable and accessible across clusters with a virtual IP address.

This feature allows splitting applications into multiple clusters combined in one fleet, which can be useful to
separate logically standalone parts (i.e. stateful and stateless ones), or to address privacy and scalability
requirements, etc.

Multi-cluster Services should be supported by the cloud provider. It is supported by Google Kubernetes
Engine (GKE), and by Amazon Elastic Kubernetes Service (EKS).

Configuring your cluster for multi-cluster Services includes two parts:

« configure MCS with your cloud provider,

» make needed preparations with the Operator.

To set up MCS for a specific cloud provider you should follow official guides, for example ones from Google
Kubernetes Engine (GKE), or from Amazon Elastic Kubernetes Service (EKS).

Warning
For EKS, you also need to create ClusterProperty objects prior to enabling multi-cluster services.

apiVersion: about.k8s.io/vlalphal
kind: ClusterProperty
metadata:
name: cluster.clusterset.k8s.io
spec:
value: [Your Cluster identifier]

apiVersion: about.k8s.io/vlalphal
kind: ClusterProperty
metadata:
name: clusterset.k8s.io
spec:
value: [Your ClusterSet identifier]

Check AWS MCS controller repository for more information.

Setting up the Operator for MCS results in registering Services for export to other clusters using the
ServiceExport object, and using Servicelmport one to import external services. Set the following options in
the multiCluster subsection of the deploy/cr.yaml configuration file to make it happen:

e multiCluster.enabled should be setto true,

e multiCluster.DNSSuffix string should be equal to the cluster domain suffix for multi-cluster Services
used by Kubernetes (svc.clusterset.local by default).

The following example in the deploy/cr.yaml configuration file is rather straightforward:

multiCluster:
enabled: true
DNSSuffix: svc.clusterset.local

Apply changes as usual with the kubectl apply -f deploy/cr.yaml command.

123 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/kubernetes-engine/docs/concepts/multi-cluster-services
https://cloud.google.com/kubernetes-engine/docs/concepts/multi-cluster-services
https://cloud.google.com/kubernetes-engine/docs/concepts/multi-cluster-services
https://aws.amazon.com/blogs/opensource/introducing-the-aws-cloud-map-multicluster-service-controller-for-k8s-for-kubernetes-multicluster-service-discovery/
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-services
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-services
https://aws.amazon.com/blogs/opensource/introducing-the-aws-cloud-map-multicluster-service-controller-for-k8s-for-kubernetes-multicluster-service-discovery/
https://github.com/aws/aws-cloud-map-mcs-controller-for-k8s#usage
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-services
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-services
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-services

/7" Note

13.4.4 Enabling multi-cluster Services

If you want to enable multi-cluster services in a new cluster, we recommended deploying the cluster first with
multiCluster.enabled set to false and enable it after replset is initialized. Having MCS enabled from the start is
prone to errors on replset initialization.

The initial ServiceExport creation and sync with the clusters of the fleet takes approximately five minutes.
You can check the list of services for export and import with the following commands:

$ kubectl get serviceexport

i= Expected output

NAME
my-cluster-name-cfg
my-cluster-name-cfg-0
my-cluster-name-cfg-1
my-cluster-name-cfg-2
my-cluster-name-mongos
my-cluster-name-rs0@
my-cluster-name-rs0-0
my-cluster-name-rs0-1
my-cluster-name-rs0-2

AGE
22m
22m
22m
22m
22m
22m
22m
22m
22m

$ kubectl get serviceimport

i= Expected output

NAME
my-cluster-name-cfg
my-cluster-name-cfg-0
my-cluster-name-cfg-1
my-cluster-name-cfg-2
my-cluster-name-mongos
my-cluster-name-rs@
my-cluster-name-rs0-0
my-cluster-name-rs0-1
my-cluster-name-rs0-2

/" Note

TYPE
Headless
ClusterSetIP
ClusterSetIP
ClusterSetIP
ClusterSetIP
Headless
ClusterSetIP
ClusterSetIP
ClusterSetIP

["10.73.200.89"]

["10.73.192.104"]
["10.73.207.254"]
["10.73.196.213"]

["10.73.206.24"]
["10.73.207.20"]
["10.73.193.92"]

AGE
22m
22m
22m
22m
22m
22m
22m
22m
22m

ServiceExport objects are created automatically by the Percona Server for MongoDB Operator. Servicelmport
objects, on the other hand, are not controlled by the operator. If you need to troubleshoot Servicelmport objects

you must check the MCS controller installed by your cloud provider.

After ServiceExport object is created, exported Services can be resolved from any Pod in any fleet cluster as
SERVICE_EXPORT_NAME.NAMESPACE.svc.clusterset.local.

124 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

13.4.4 Enabling multi-cluster Services

/7" Note

This means that ServiceExports with the same name and namespace will be recognized as a single combined
Service.

MCS can charge cross-site replication with additional limitations specific to the cloud provider. For example,
GKE demands all participating Pods to be in the same project. Also, default Namespace should be used
with caution: your cloud provider may not allow exporting Services from it to other clusters.

Applying MCS to an existing cluster

Additional actions are needed to turn on MCS for the already-existing non-MCS cluster.

* You need to restart the Operator after editing the multiCluster subsection keys and applying deploy/
cr.yaml. Find the Operator's Pod name in the output of the kubectl get pods command (it will be
something like percona-server-mongodb-operator-d859b69b6-t44vk) and delete it as follows:

$ kubectl delete percona-server-mongodb-operator-d859b69b6-t44vk

« If you are enabling MCS for a running cluster after upgrading from the Operator version 1.11.0 or

below, you need rotating multi-domain (SAN) certificates. Do this by pausing the cluster and deleting
TLS Secrets.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-03

125 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/kubernetes-engine/docs/how-to/multi-cluster-services
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.5 Monitoring

13.5 Monitoring

Percona Monitoring and Management (PMM) provides an excellent solution of monitoring Percona Server for
MongoDB.
7" Note

Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. PMM Client runs on each node with the database you wish to monitor: it
collects needed metrics and sends gathered data to PMM Server. As a user, you connect to PMM Server to
see database metrics on a number of dashboards.

That's why PMM Server and PMM Client need to be installed separately.

13.5.1 Installing PMM Server

PMM Server runs as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the official
PMM documentation for the installation instructions.

126 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html

13.5.2 Installing PMM Client

13.5.2 Installing PMM Client

The following steps are needed for the PMM client installation in your Kubernetes-based environment:

127 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

13.5.2 Installing PMM Client

1. The PMM client installation is initiated by updating the pmm section in the deploy/cr.yaml file.

128 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml

13.5.2 Installing PMM Client

* set pmm.enabled=true
- set the pmm.serverHost key to your PMM Server hostname or IP address (it should be resolvable and
reachable from within your cluster)

« authorize PMM Client within PMM Server in one of two ways:

with token-based authorization (recommended)
Acquire the API Key from your PMM Server and set PMM_SERVER API KEY in the deploy/secrets.yaml

secrets file to this obtained API Key value. Keep in mind that you need an API Key with the “Admin” role.
The API Key won't be rotated automatically.

with password-based authorization

check that the PMM_SERVER USER key in the deploy/secrets.yaml secrets file contains your PMM Server
user name (admin by default), and make sure the PMM SERVER PASSWORD key in the deploy/secrets.yoml
secrets file contains the password specified for the PMM Server during its installation.

Password-based authorization method is deprecated since the Operator 1.13.0.

/" Note

You use deploy/secrets.yaml file to create Secrets Object. The file contains all values for each key/vclue pair
in a convenient plain text format. But the resulting Secrets contain passwords stored as base64-encoded
strings. If you want to update password field, you'll need to encode the value into base64 format. To do this,
you can run echo -n "password" | base64 --wrap=0 (Or just echo -n "password" | base64 in case of Apple
macOS) in your local shell to get valid values. For example, setting the PMM Server APl Key to new key in the
my-cluster-name-secrets object can be done with the following command:

in Linux

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"PMM SERVER API KEY": '$(echo -
n new key | base64 --wrap=0)'}}"'

in macOS

$ kubectl patch secret/my-cluster-name-secrets -p '{"data":{"PMM SERVER API KEY": '$(echo -
n new key | base64)'}}’

Apply changes with the kubectl apply -f deploy/secrets.yaml command.

« Starting from the Operator version 112.0, MongoDB operation profiling is disabled by default, and you
should enable it to make PMM Query Analytics work. You can pass options to MongoDB in several ways,
for example in the configuration subsection of the deploy/cr.yaml:

spec:
replsets:
- name: rs0
31z@3 3
configuration: |
operationProfiling:

slowOpThresholdMs: 200
mode: slowOp
rateLimit: 100

+ you can also use pmm.mongodParams and pmm.mongosParams keys to specify additional parameters for the
pmm-admin add mongodb command for mongod and mongos Pods respectively, if needed.

129 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/secrets.yaml
https://docs.percona.com/percona-monitoring-and-management/setting-up/client/mongodb.html#set-profiling-in-the-configuration-file
https://docs.percona.com/percona-monitoring-and-management/using/query-analytics.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/mongodb.html#adding-mongodb-service-monitoring

13.5.2 Installing PMM Client

/7" Note

Please take into account that Operator automatically manages common MongoDB Service Monitoring
parameters mentioned in the officiall pmm-admin add mongodb documentation, such like username, password,
service-name, host, etc. Assigning values to these parameters is not recommended and can negatively

affect the functionality of the PMM setup carried out by the Operator.

When done, apply the edited deploy/cr.yamt file:

$ kubectl apply -f deploy/cr.yaml

2. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are

errors on the previous steps:

$ kubectl get pods
$ kubectl logs my-cluster-name-rs0-0 -c pmm-client

CONTACT US

For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-19

130 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/mongodb.html#adding-mongodb-service-monitoring
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.6 Using sidecar containers

13.6 Using sidecar containers
The Operator allows you to deploy additional (so-called sidecar) containers to the Pod. You can use this

feature to run debugging tools, some specific monitoring solutions, etc.

f Note

Custom sidecar containers can easily access other components of your cluster. Therefore they should be used
carefully and by experienced users only.

13.6.1 Adding a sidecar container

You can add sidecar containers to Percona Distribution for MongoDB Replica Set, Config Servers, and
mongos Pods. Just use sidecars subsection in the replsets, sharding.configsvrReplSet, and
sharding.mongos of the deploy/cr.yaml configuration file. In this subsection, you should specify the name
and image of your container and possibly a command to run:

spec:
replsets:
sidecars:
- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]

name: rs-sidecar-0

Apply your modifications as usual:

$ kubectl apply -f deploy/cr.yaml

Running kubectl describe command for the appropriate Pod can bring you the information about the newly
created container:

$ kubectl describe pod my-cluster-name-rs0-0

131 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

13.6.2 Getting shell access to a sidecar container

i= Expected output

Containers:

rs-sidecar-0:
Container ID: docker://f0c3437295d0ec819753c581aael74a0b8d06233780897144eb8148249ba742

Image: busybox

Image ID: docker-pullable://
busybox@sha256:139abcf41943b8bcd4bc5c42ee71ddc9402c7ad69ad9e177b0a%bc4541114924

Port: <none>

Host Port: <none>

Command:

/bin/sh
Args:

-C
while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done

State: Running
Started: Thu, 11 Nov 2021 10:38:15 +0300
Ready: True
Restart Count: 0
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fbrbn (ro)

13.6.2 Getting shell access to a sidecar container

You can login to your sidecar container as follows:

$ kubectl exec -it my-cluster-name-rs0-0 -c rs-sidecar-0 -- sh
/ #

13.6.3 Mount volumes into sidecar containers

It is possible to mount volumes into sidecar containers.

Following subsections describe different volume types, which were tested with sidecar containers and are
known to work.

Persistent Volume

You can use Persistent volumes when you need dynamically provisioned storage which doesn't depend on
the Pod lifecycle. To use such volume, you should claim durable storage with persistentVolumeClaim
without specifying any non-important details.

The following example requests 1G storage with sidecar-volume-claim PersistentVolumeClaim, and mounts
the correspondent Persistent Volume to the rs-sidecar-0 container's filesystem under the /volume0
directory:

sidecars:
- image: busybox
command: ["/bin/sh"]

args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: rs-sidecar-0
volumeMounts:

- mountPath: /volume®

132 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/storage/volumes/#volume-types
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim

13.6.3 Mount volumes into sidecar containers

name: sidecar-volume-claim
sidecarPVCs:
- apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: sidecar-volume-claim
spec:
resources:
requests:
storage: 1Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce

/7" Note

Sidecar containers for mongos Pods have limited Persistent volumes support: sharding.mongos.sidecarPVCs option
can be used if there is a single mongos in deployment or when ReadWriteMany/ReadOnlyMany access modes are
used (but these modes are available not in every storage).

Secret

You can use a secret volume to pass the information which needs additional protection (e.g. passwords), to
the container. Secrets are stored with the Kubernetes APl and mounted to the container as RAM-stored files.

You can mount a secret volume as follows:

sidecars:

- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: rs-sidecar-0
volumeMounts:

- mountPath: /secret
name: sidecar-secret
sidecarVolumes:

- name: sidecar-secret
secret:

secretName: mysecret

The above example creates a sidecar-secret volume (based on already existing mysecret Secret object)
and mounts it to the rs-sidecar-0 container’s filesystem under the /secret directory.

/7" Note

Don't forget you need to create a Secret Object before you can use it.

configMap

You can use a configMap volume to pass some configuration data to the container. Secrets are stored with
the Kubernetes APl and mounted to the container as RAM-stored files.

You can mount a configMap volume as follows:

133 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/volumes/#configmap

13.6.3 Mount volumes into sidecar containers

sidecars:

- image: busybox
command: ["/bin/sh"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep 5; done"]
name: rs-sidecar-0
volumeMounts:

- mountPath: /config
name: sidecar-config
sidecarVolumes:

- name: sidecar-config
configMap:

name: myconfigmap

The above example creates a sidecar-config volume (based on already existing myconfigmap configMap
object) and mounts it to the rs-sidecar-0 container’s filesystem under the /config directory.
/7" Note

Don't forget you need to create a configMap Object before you can use it.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-12-20

134 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

13.7 Pause/resume Percona Server for MongoDB

13.7 Pause/resume Percona Server for MongoDB

There may be external situations when it is needed to shutdown the cluster for a while and then start it back
up (some works related to the maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully stops the
cluster:

pause: true
To start the cluster after it was shut down just revert the spec.pause key to false.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-13

135 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14. Troubleshooting

14. Troubleshooting

14.1 Initial troubleshooting

Percona Operator for MongoDB uses Custom Resources to manage options for the various components of
the cluster.

« PerconaServerMongoDB Custom Resource with Percona Server for MongoDB options (it has handy psmdb
shortname also),

* PerconaServerMongoDBBackup and PerconaServerMongoDBRestore Custom Resources contain options for
Percona Backup for MongoDB used to backup Percona Server for MongoDB and to restore it from
backups (psmdb-backup and psmdb-restore shorthames are available for them).

The first thing you can check for the Custom Resource is to query it with kubectl get command:

$ kubectl get psmdb

i= Expected output

NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.default.svc.cluster.local ready 5m26s

The Custom Resource should have Ready status.

/7" Note

You can check which Percona’s Custom Resources are present and get some information about them as follows:

$ kubectl api-resources | grep -i percona

i= Expected output

perconaservermongodbbackups psmdb-backup psmdb.percona.com/vl
true PerconaServerMongoDBBackup

perconaservermongodbrestores psmdb-restore psmdb.percona.com/vl
true PerconaServerMongoDBRestore

perconaservermongodbs psmdb psmdb.percona.com/vl
true PerconaServerMongoDB

14.1.1 Check the Pods

If Custom Resource is not getting Ready status, it makes sense to check individual Pods. You can do it as
follows:

$ kubectl get pods

136 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

i= Expected output

NAME READY
my-cluster-name-cfg-0 2/2
my-cluster-name-cfg-1 2/2
my-cluster-name-cfg-2 2/2
my-cluster-name-mongos-0 1/1
my-cluster-name-mongos-1 1/1
my-cluster-name-mongos-2 1/1
my-cluster-name-rs0-0 2/2
my-cluster-name-rs0-1 2/2
my-cluster-name-rs0-2 2/2

percona-server-mongodb-operator-665cd69f9b-xg5dl 1/1

The above command provides the following insights:

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

14.1.1 Check the Pods

RESTARTS AGE

ool ol oNoNo NN N o)

1lm
10m
9m

11m
1lm
1lm
1lm
10m
9m

37m

» READY indicates how many containers in the Pod are ready to serve the traffic. In the above example,
my-cluster-name-rs@-0 Pod has all two containers ready (2/2). For an application to work properly, all

containers of the Pod should be ready.

« STATUS indicates the current status of the Pod. The Pod should be in a Running state to confirm that the
application is working as expected. You can find out other possible states in the official Kubernetes

documentation.

* RESTARTS indicates how many times containers of Pod were restarted. This is impacted by the
Container Restart Policy. In an ideal world, the restart count would be zero, meaning no issues from the
beginning. If the restart count exceeds zero, it may be reasonable to check why it happens.

 AGE: Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

You can find more details about a specific Pod using the kubectl describe pods <pod-name> command.

$ kubectl describe pods my-cluster-name-rs0-0

137 of 313

Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy

14.1.1 Check the Pods

i= Expected output

Name: my-cluster-name-rs0-0
Namespace: default

Controlled By: StatefulSet/my-cluster-name-rs0
Init Containers:

mongo-init:

Containers:
mongod:

Restart Count: ©

Limits:
cpu: 300m
memory: 500M
Requests:
cpu: 300m
memory: 500M
Liveness: exec [/opt/percona/mongodb-healthcheck k8s liveness --ssl --sslInsecure --

ss1CAFile /etc/mongodb-ssl/ca.crt --sslPEMKeyFile /tmp/tls.pem --startupDelaySeconds 7200]
delay=60s timeout=10s period=30s #success=1 #failure=4
Readiness: tcp-socket :27017 delay=10s timeout=2s period=3s #success=1 #failure=8
Environment Variables from:
internal-my-cluster-name-users Secret Optional: false
Environment:

Mounts:
Volumes:

Events: <none>

This gives a lot of information about containers, resources, container status and also events. So, describe
output should be checked to see any abnormailities.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-09-25

138 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14.2 Exec into the containers

14.2 Exec into the containers

If you want to examine the contents of a container “in place” using remote access to it, you can use the
kubectl exec command. It allows you to run any commmand or just open an interactive shell session in the
container. Of course, you can have shell access to the container only if container supports it and has a
“Running” state.

In the following examples we will access the container mongod of the my-cluster-name-rs@-0 Pod.

* Run date command:

$ kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- date

i= Expected output v

Thu Nov 24 10:01:17 UTC 2022

You will see an error if the command is not present in a container. For example, trying to run the time
command, which is not present in the container, by executing
kubectl exec -ti my-cluster-name-rs@-0 -c mongod -- time would show the following result:

O0CI runtime exec failed: exec failed: unable to start container process: exec: "time":
executable file not found in $PATH: unknown command terminated with exit code 126

 Print /var/log/mongo/mongod.log file to aterminal:
$ kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- cat /var/log/mongo/mongod.log

« Similarly, opening an Interactive terminal, executing a pair of commands in the container, and exiting it
may look as follows:

$ kubectl exec -ti my-cluster-name-rs0-0 -c mongod -- bash
[mongodb@my-cluster-name-rs0-0 db]$ cat /etc/hostname
my-cluster-name-rs0-0

[mongodb@my-cluster-name-rs0-0 db]$ ls /var/log/mongo/mongod.log
/var/log/mongo/mongod. log

[mongodb@my-cluster-name-rs0-0 db]$ exit

exit

$

14.2.1 Avoid the restart-on-fail loop for Percona Server for MongoDB containers

The restart-on-fail loop takes place when the container entry point fails (e.g. mongod crashes). In such a
situation, Pod is continuously restarting. Continuous restarts prevent to get console access to the container,
and so a special approach is needed to make fixes.

You can prevent such infinite boot loop by putting the Percona Server for MongoDB containers into the
“infinite sleep” without starting mongod. This behavior of the container entry point is triggered by the
presence of the /data/db/sleep-forever file. The feature is available for both replica set and confg server
Pods.

139 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

14.2.1 Avoid the restart-on-fail loop for Percona Server for MongoDB containers

For example, you can do it for the mongod container of an appropriate Percona Server for MongoDB Pod as
follows:

$ kubectl exec -it my-cluster-name-cfg-0 -c mongod -- sh -c 'touch /data/db/sleep-forever'
If mongod container can't start, you can use backup-agent container instead:

$ kubectl exec -it my-cluster-name-cfg-0 -c backup-agent -- sh -c 'touch /data/db/sleep-
forever'

The instance will restart automatically and run in its usual way as soon as you remove this file (you can do it
with a command similar to the one you have used to create the file, just substitute touch to rm in it).

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

140 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14.3 Check the Logs

14.3 Check the Logs

Logs provide valuable information. It makes sense to check the logs of the database Pods and the Operator
Pod. Following flags are helpful for checking the logs with the kubectl logs command:

Flag Description

--container=<container- Print log of a specific container in case of multiple containers in a Pod

name>

--follow Follows the logs for a live output

--since=<time> Print logs newer than the specified time, for example: --since="160s"
--timestamps Print timestamp in the logs (timezone is taken from the container)
--previous Print previous instantiation of a container. This is extremely useful in case of

container restart, where there is a need to check the logs on why the container
restarted. Logs of previous instantiation might not be available in all the cases.

In the following examples we will access containers of the my-cluster-name-rs0-0 Pod.

» Check logs of the mongod container:
$ kubectl logs my-cluster-name-rs0-0 -c mongod
» Check logs of the pmm-client container:
$ kubectl logs my-cluster-name-rs0-0 -c pmm-client
« Filter logs of the mongod container which are not older than 600 seconds:
$ kubectl logs my-cluster-name-rs@-0 -c mongod --since=600s
» Check logs of a previous instantiation of the mongod container, if any:
$ kubectl logs my-cluster-name-rs0-0 -c mongod --previous
» Check logs of the mongod container, parsing the output with jg JSON processor:

$ kubectl logs my-cluster-name-rs@-0 -c mongod -f | jg -R 'fromjson?'

14.3.1 Changing logs representation

You can also change the representation of logs: either use structured representation, which produces a
parcing-friendly JSON, or use traditional console-frienldy logging with specific level. Changing
representation of logs is possible by editing the deploy/operator.yml file, which sets the following
environment variables with self-speaking names and values:

env:
name: LOG_STRUCTURED

value: 'false'
name: LOG LEVEL

141 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://stedolan.github.io/jq/

14.3.1 Changing logs representation

value: INFO

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-09-25

142 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

14.4 Special debug images

14.4 Special debug images

For the cases when Pods are failing for some reason or just show abnormal behavior, the Operator can be
used with a special debug image of the Percona Server for MongoDB, which has the following specifics:

- it avoids restarting on fail,
« it contains additional tools useful for debugging (sudo, telnet, gdb, mongodb-debuginfo package, etc.),

- extra verbosity is added to the mongodb daemon.

Particularly, using this image is useful if the container entry point fails (mongod crashes). In such a situation,
Pod is continuously restarting. Continuous restarts prevent to get console access to the container, and so a
special approach is needed to make fixes.

To use the debug image instead of the normal one, set the following image name for the image key in the
deploy/cr.yaml configuration file:

percona/percona-server-mongodb:6.0.9-7-debug

The Pod should be restarted to get the new image.
/7" Note

When the Pod is continuously restarting, you may have to delete it to apply image changes.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-09-25

143 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15. HOWTOs

15. HOWTOs

15.1 How to integrate Percona Operator for MongoDB with OpenLDAP

LDAP services provided by software like OpenlLDAP, Microsoft Active Directory, etc. are widely used by
enterprises to control information about users, systems, networks, services and applications and the
corresponding access rights for the authentication/authorization process in a centralized way.

The following guide covers a simple integration of the already-installed OpenLDAP server with Percona
Distribution for MongoDB and the Operator. You can know more about LDAP concepts and LDIF files used to
configure it, and find how to install and configure OpenLDAP in the official OpenLDAP and Percona Server for
MongoDB documentation.

15.1.1 The OpenLDAP side

You can add needed OpenLDAP settings will the following LDIF portions:

0-percona-ous.ldif: |-
dn: ou=perconadba,dc=1dap,dc=1local
objectClass: organizationalUnit
ou: perconadba
l-percona-users.ldif: |-
dn: uid=percona,ou=perconadba,dc=1ldap,dc=1local
objectClass: top
objectClass: account
objectClass: posixAccount
objectClass: shadowAccount
cn: percona
uid: percona
uidNumber: 1100
gidNumber: 100
homeDirectory: /home/percona
loginShell: /bin/bash
gecos: percona
userPassword: {crypt}x
shadowLastChange: -1
shadowMax: -1
shadowWarning: -1
2-group-cn.ldif: |-
dn: cn=admin,ou=perconadba,dc=1dap,dc=1local
cn: admin
objectClass: groupOfUniqueNames
objectClass: top
ou: perconadba
uniqueMember: uid=percona,ou=perconadba,dc=1dap,dc=1local

Also a read-only user should be created for the database-issued user lookups. If everything is done
correctly, the following command should work, resetting he percona user password:

$ ldappasswd -s percona -D "cn=admin,dc=ldap,dc=local" -w password -x
"uid=percona,ou=perconadba,dc=1ldap,dc=1local"

144 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://en.wikipedia.org/wiki/LDAP_Data_Interchange_Format
https://www.openldap.org/doc/admin26/
https://docs.percona.com/percona-server-for-mongodb/latest/authentication.html
https://docs.percona.com/percona-server-for-mongodb/latest/authentication.html
https://en.wikipedia.org/wiki/LDAP_Data_Interchange_Format

15.1.1 The OpenlLDAP side

/7" Note

If you are not sure about the approach to make references between user and group objects, OpenDAP overlays
provide one of the possible ways to go.

145 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.openldap.org/doc/admin24/overlays.html

15.1.2 The MongoDB and Operator side

15.1.2 The MongoDB and Operator side

The following steps will ook different depending on whether sharding is on (the default behavior) or off.

146 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.1.2 The MongoDB and Operator side

if sharding is off

In order to get MongoDB connected with OpenLDAP in case of a a non-sharded (ReplicaSet) MongoDB
cluster we need to configure two things:

» Mongod

« Internal mongodb role

Create configuration Secrets for mongod (in my mongod. conf file):

security:
authorization: "enabled"
ldap:
authz:
queryTemplate: '{USER}?memberOf?base'’
servers: "openldap"
transportSecurity: none
bind:
queryUser: "cn=readonly,dc=1dap,dc=1local"
queryPassword: "password"

userToDNMapping:
[
{
match : "(.+)",
ldapQuery: "OU=perconadba,DC=1ldap,DC=local??sub?(uid={0})"
)
K
setParameter:

authenticationMechanisms: 'PLAIN,SCRAM-SHA-1'

/" Note

This fragment provides mongod with LDAP-specific parameters, such as FQDN of the LDAP server (server), explicit
lookup user, domain rules, etc.

Put the snippet on you local machine and create a Kubernetes Secret object named based on your
MongoDB cluster name:

$ kubectl create secret generic <your cluster name>-rs@-mongod --from-
file=mongod.conf=my mongod.conf

Next step is to start the MongoDB cluster up as it's described in Install Percona server for MongoDB on
Kubernetes. On successful completion of the steps from this doc, we are to proceed with setting the roles for
the ‘external’ (managed by LDAP) user inside the MongoDB. For this, log into MongoDB as administrator:

$ mongo "mongodb+srv://userAdmin:<userAdmin password>@<your cluster name>-
rs0.<your namespace>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

/" Note

LDAP over TLS is not yet supproted by the Operator.

When logged in, execute the following:

mongos> db.getSiblingDB("admin").createRole(

{

role: "cn=admin,ou=perconadba,dc=ldap,dc=local",

privileges: [],

ro}es l 147 of 313 Percona LLC and/or its affiliates, © 2009 - 2023
"role" : "readAnyDatabase",
"db" : "admin"

https://www.openldap.org/faq/data/cache/185.html
https://www.openldap.org/faq/data/cache/185.html

When logged in, execute the following:

mongos> db.runCommand({connectionStatus:1})

The output should be like follows:

{
"authInfo" : {
"authenticatedUsers" : [
{
"user" : "percona",
"db" : "$external"
}
s
"authenticatedUserRoles" : [
{
"role" : "restore",
"db" : "admin"
}
{
"role" : "readAnyDatabase",
"db" : "admin"
g
{
"role" : "clusterMonitor",
"db" : "admin"
o
{
"role" : "dbAdminAnyDatabase",
"db" : "admin"
B
{
"role" : "backup",
"db" : "admin"
}
{
"role" : "cn=admin,ou=perconadba,dc=1dap,dc=local",
"db" : "admin"
o
{
"role" : "readWriteAnyDatabase",
"db" : "admin"
}
1
e
"ok" : 1,
"$clusterTime" : {
"clusterTime" : Timestamp (1663067287, 4),
"signature" : {
"hash" : BinData(0,"ZaLGSVj4ZwZrngXZS0gXB5rx+oo="),
"keyId" : NumberLong("7142816031004688408")
}
b

"operationTime" : Timestamp (1663067287, 4)
}

mongos>

CONTACT US

For free technical help, visit the Percona Community Forum.

148 of 313

15.1.2 The MongoDB and Operator side

Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages

15.1.2 The MongoDB and Operator side

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-13

149 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15.2 Use Docker images from a custom registry

15.2 Use Docker images from a custom registry

Using images from a private Docker registry may required for privacy, security or other reasons. In these
cases, Percona Operator for MongoDB allows the use of a custom registry This following example of the
Operator deployed in the OpenShift environment demonstrates the process:

150 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.2 Use Docker images from a custom registry

1. Log into the OpensShift and create a project.

$ oc login

i= Expected output v

Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin

Password:

Login successful.

$ oc new-project psmdb

1 —
Z—

i= Expected output v

Now using project "psmdb" on server "https://192.168.1.100:8443".

2. You need obtain the following objects to configure your custom registry access:
* A user token
« the registry IP address

You can view the token with the following command:

$ oc whoami -t

1 —
2 —

i= Expected output v

AD08CqCDappWR4hxjfDqwijEHei31yXAvWg613g210s

The following command returns the registry IP address:

$ kubectl get services/docker-registry -n default

= Expected output v
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

3. Use the user token and the registry IP address to login to the registry:

$ docker login -u admin -p AD08CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s 172.30.162.173:5000

151 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.2 Use Docker images from a custom registry

i= Expected output v

Login Succeeded

4. Use the Docker commands to pull the needed image by its SHA digest:

$ docker pull docker.io/perconalab/percona-server-
mongodb@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fdele67b2f46f26bf0

1 —
2 —

i= Expected output v

Trying to pull repository docker.io/perconalab/percona-server-mongodb ...
sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fdele67b2f46f26bf0: Pulling from
docker.io/perconalab/percona-server-mongodb

Digest: sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fdele67b2f46126bf0
Status: Image is up to date for docker.io/perconalab/percona-server-
mongodb@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fdele67b2f4626bT0

You can find correct names and SHA digests in the current list of the Operator-related images officially
certified by Percona.

5. The following method can push an image to the custom registry for the example OpensShift psmdb project:
$ docker tag \
docker.io/perconalab/percona-server-
mongodb@sha256:991d6049059e5eb1a74981290d829a5th4ab0554993748fdele67b2f46126bf0 \

172.30.162.173:5000/psmdb/percona-server-mongodb:4.4.24-23
$ docker push 172.30.162.173:5000/psmdb/percona-server-mongodb:4.4.24-23

6. Verify the image is available in the OpenShift registry with the following command:

$ oc get is

i= Expected output v
NAME DOCKER
REPO TAGS UPDATED
percona-server-mongodb docker-registry.default.svc:5000/psmdb/percona-server-
mongodb 4.4.24-23 2 hours ago

7.When the custom registry image is available, edit the the image: option in deploy/operator.yaml
configuration file with a Docker Repo + Tag string (it should look like docker-registry.default.svc:5000/
psmdb/percona-server-mongodb:4.4.24-23)

/" Note

If the registry requires authentication, you can specify the imagePullSecrets option for all images.

8. Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml file.

152 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.2 Use Docker images from a custom registry

/7" Note
Don't forget to set upgradeoptions.apply option to Disabled. Otherwise Smart Upgrade functionality will try

using the image recommended by the Version Service instead of the custom one.

9. Now follow the standard Percona Operator for MongoDB installation instruction.

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2022-12-20

153 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15.3 Creating a private S3-compatible cloud for backups

15.3 Creating a private S3-compatible cloud for backups

As it is mentioned in backups, any cloud storage which implements the S3 API can be used for backups. The
one way to setup and implement the S3 API storage on Kubernetes or OpensShift is Minio - the S3-
compatible object storage server deployed via Docker on your own infrastructure.

154 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://www.minio.io/

15.3 Creating a private S3-compatible cloud for backups

Setting up Minio to be used with Percona Operator for MongoDB backups involves the following steps:

155 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.3 Creating a private S3-compatible cloud for backups

1. Install Minio in your Kubernetes or OpenShift environment and create the correspondent Kubernetes
Service as follows:

$ helm install \
--name minio-service \
--version 8.0.5 \
--set accessKey=some-access-key \
--set secretKey=some-secret-key \
--set service.type=ClusterIP \
--set configPath=/tmp/.minio/ \
--set persistence.size=2G \
--set environment.MINIO REGION=us-east-1 \
stable/minio

Don't forget to substitute default some-access-key and some-secret-key strings in this command with
actual unique key values. The values can be used later for access control. The storageClass option is
needed if you are using the special Kubernetes Storage Class for backups. Otherwise, this setting may be
omitted. You may also notice the MINIO REGION value which is may not be used within a private cloud. Use
the same region value here and on later steps (us-east-1 is a good default choice).

2. Create an S3 bucket for backups:

$ kubectl run -i --rm aws-cli --image=perconalab/awscli --restart=Never -- \
bash -c 'AWS ACCESS KEY ID=some-access-key \
AWS SECRET ACCESS KEY=some-secret-key \
AWS DEFAULT REGION=us-east-1 \
/usr/bin/aws \
--endpoint-url http://minio-service:9000 \
s3 mb s3://operator-testing’

This command creates the bucket nhamed operator-testing with the selected access and secret keys
(substitute some-access-key and some-secret-key with the values used on the previous step).

3. Now edit the backup section of the deploy/cr.yaml file to set proper values for the bucket (the $3 bucket
for backups created on the previous step), region, credentialsSecret and the endpointUrl (which should
point to the previously created Minio Service).

backup:
enabled: true
version: 0.3.0

storages:
minio:
type: s3
s3:
bucket: operator-testing
region: us-east-1
credentialsSecret: my-cluster-name-backup-minio
endpointUrl: http://minio-service:9000

The option which should be specially mentioned is credentialsSecret which is a Kubernetes secret for
backups. Sample backup-s3.yaml can be used to create this secret object. Check that the object contains
the proper name value and is equal to the one specified for credentialsSecret, i.e. my-cluster-name-backup-
minio in the backup to Minio example, and also contains the proper AWS_ACCESS KEY ID and
AWS_SECRET ACCESS_KEY keys. After you have finished editing the file, the secrets object are created or
updated when you run the following command:

156 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup-s3.yaml

15.3 Creating a private S3-compatible cloud for backups

$ kubectl apply -f deploy/backup-s3.yaml

4. When the setup process is completed, making the backup is based on a script. Following example
illustrates how to make an on-demand backup:

$ kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-
backup-pbmctl --restart=Never -- \

run backup \

--server-address=<cluster-name>-backup-coordinator:10001 \

--storage <storage> \

--compression-algorithm=gzip \

--description=my-backup

Don't forget to specify the name of your cluster instead of the <cluster-name> part of the Backup
Coordinator URL (the cluster name is specified in the deploy/cr.yaml file). Also substitute <storage> with
the actual storage name located in a subsection inside of the backups in the deploy/cryaml file. In the
earlier example this value is minio .

5.To restore a previously saved backup you must specify the backup name. With the proper Backup
Coordinator URL and storage name, you can obtain a list of the available backups:

$ kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-
backup-pbmctl --restart=Never -- list backups --server-address=<cluster-name>-backup-
coordinator:10001

Now, restore the backup, using backup name instead of the backup-name parameter:

$ kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-
backup-pbmctl --restart=Never -- \

run restore \

--server-address=<cluster-name>-backup-coordinator:10001 \

--storage <storage> \

backup-name

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-31

157 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/cr.yaml
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15.4 How to restore backup to a new Kubernetes-based environment

15.4 How to restore backup to a new Kubernetes-based environment

The Operator allows restoring a backup not only on the Kubernetes cluster where it was made, but also on
any Kubernetes-based environment with the installed Operator.

When restoring to a new Kubernetes-based environment, make sure it has a Secrets object with the same
user passwords as in the original cluster. More details about secrets can be found in System Users. The
name of the required Secrets object can be found out from the spec.secrets key in the deploy/cr.yaml (my-
cluster-name-secrets by default).

You will need correct names for the backup and the cluster. If you have access to the original cluster,
available backups can be listed with the following command:

$ kubectl get psmdb-backup
And the following command will list available clusters:

$ kubectl get psmdb
/7" Note

If you have configured storing operations logs for point-in-time recovery, you will have possibility to roll back the
cluster to a specific date and time. Otherwise, restoring backups without point-in-time recovery is the only option.

158 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.4 How to restore backup to a new Kubernetes-based environment

When the correct names for the backup and the cluster are known, backup restoration can be done in the
following way.

159 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.4 How to restore backup to a new Kubernetes-based environment

Without point-in-time recovery

1. Set appropriate keys in the deploy/backup/restore.yaml file.
* set spec.clusterName key to the name of the target cluster to restore the backup on,

« set spec.backupSource subsection to point on the appropriate cloud storage. This backupSource
subsection should contain the backup type (either logical or physical), and a destination key,
followed by necessary storage configuration keys, same as in the deploy/cr.yaml file:

backupSource:
type: logical
destination: s3://S3-BUCKET-NAME/BACKUP-NAME
s3:
credentialsSecret: my-cluster-name-backup-s3
region: us-west-2
endpointUrl: https://URL-OF-THE-S3-COMPATIBLE-STORAGE

As you have noticed, destination value is composed of three parts in case of S3-compatible storage:
the s3:// prefix, the s3 bucket name, and the actual backup name, which you have already found out
using the kubectl get psmdb-backup command). For Azure Blob storage, you don't put the prefix, and use
your container name as an equivalent of a bucket.

«you can also use a storageName key to specify the exact name of the storage (the actual storage
should be already defined in the backup.storages subsection of the deploy/cr.yaml file):

storageName: s3-us-west
backupSource:
destination: s3://S3-BUCKET-NAME/BACKUP-NAME

2. After that, the actual restoration process can be started as follows:
$ kubectl apply -f deploy/backup/restore.yaml

With point-in-time recovery

1. Set appropriate keys in the deploy/backup/restore.yaml file.
* set spec.clusterName key to the name of the target cluster to restore the backup on
« put additional restoration parameters to the pitr section:
» type key can be equal to one of the following options
- date - roll back to specific date
- latest - recover to the latest possible transaction
- date key is used with type=date option and contains value in datetime format

» set spec.backupSource subsection to point on the appropriate cloud storage. For S3-compatible
storage this backupSource subsection should contain a destination key equal to the s3 bucket with a
special s3:// prefix, followed by necessary S3 configuration keys, same as in deploy/cr.yaml file:

apiVersion: psmdb.percona.com/vl
kind: PerconaServerMongoDBRestore

metadata:
name: restorel
spec:
clusterName: my-cluster-name
pitr:
type: date
date: YYYY-MM-DD hh:mm:ss
backupSource:
destination: s3://S3-BUCKET-NAME/BACKUP-NAME
s3: 160 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

credentialsSecret: my-cluster-name-backup-s3

region: us-west-2
m~rmAmATs - l1l-~T . it F+mess 7 711D1 NnNeE TUE CO CFAMDATTDIEE CTNADACLE

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/backup/restore.yaml

15.4 How to restore backup to a new Kubernetes-based environment

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-10-09

161 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15.5 How to use backups to move the external database to Kubernetes

15.5 How to use backups to move the external database to Kubernetes

The Operator allows restoring a backup not only on the Kubernetes cluster where it was made, but also on
any Kubernetes-based environment with the installed Operator, and the backup/restore tool actually used

by the Operator is the Percona Backup for MongoDB. That makes it possible to move external MongoDB
Cluster to Kubernetes with Percona Backup for MongoDB.

f Note

There are other scenarios for migrating MongoDB database to Kubernetes as well. For example, this blogpost
covers migration based on the regular MongoDB replication capabilities.

162 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/percona/percona-backup-mongodb
https://www.percona.com/blog/migrating-mongodb-to-kubernetes

15.5 How to use backups to move the external database to Kubernetes

Backups can be stored either locally, or remotely (on Amazon S3 or S3-compatible storage, or on Azure Blob
Storage). S3-compatible storage to be used for backups.

1. Make sure the following prerequisite requirements are satisfied within your setup:

 Percona Backup for MongoDB packages are installed on the replica set nodes of the source cluster
following the official installation instructions, and the authentication of the pbm-agent is configured to
allow it accessing your database.

 The Operator and the destination cluster should be installed in the Kuberentes-based environment. For
simplicity, it's reasonable to have the same topology of the source and destination clusters, although
Percona Backup for MongoDB allows replset-remapping as well.
2. Configure the cloud storage for backups on your source cluster following the official guide. For example,
using the Amazon S3 storage can be configured with the following YAML file:

 yaml title="pbm_config.yaml” type: s3 s3: region: us-west-2 bucket: pbm-test-bucket credentials:
access-key-id: secret-access-key:

After putting all needed details into the file (" AWS ACCESS KEY ID",
"AWS SECRET ACCESS KEY', the S3 bucket and region in the above example),
provide the config file to the pbm-agent on all nodes as follows:

{.bash data-prompt="$" }
$ pbm config --file pbm config.yaml

3. Start the pbm-agent:
$ sudo systemctl start pbm-agent
4. Now you can make backup as follows:
$ pbm backup --wait
The command output will contain the backup name, which you will further use to restore the backup:

Starting backup '2022-06-15T08:18:44Z'....
Waiting for '2022-06-15T08:18:44Z' backup.......... done

pbm-conf> pbm status -s backups

Backups:

FS /data/pbm
Snapshots:
2022-06-15T08:18:44Z 28.23KB <logical> [complete: 2022-06-15T08:18:497]

5. The rest of operations will be carried out on your destination cluster in a Kubernetes-based environment of
your choice. These actions are described in the How to restore backup to a new Kubernetes-based
environment guide. Just use the proper name of the backup (2022-06-15T08:18:44z) in the above
example, and proper parameters specific to your cloud storage (e.g. the pbm-test-bucket bucket name we
used above).

CONTACT US
For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

163 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://docs.percona.com/percona-backup-mongodb/installation.html
https://docs.percona.com/percona-backup-mongodb/initial-setup.html#configure-authentication-in-mongodb
https://www.percona.com/blog/moving-mongodb-cluster-to-a-different-environment-with-percona-backup-for-mongodb/
https://docs.percona.com/percona-backup-mongodb/initial-setup.html#configure-remote-backup-storage
https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15.5 How to use backups to move the external database to Kubernetes

Last update: 2023-03-13

164 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.6 Install Percona Operator for MongoDB in multi-namespace (cluster-wide) mode

15.6 Install Percona Operator for MongoDB in multi-namespace (cluster-wide)
mode

By default, Percona Operator for MongoDB functions in a specific Kubernetes namespace. You can create
one during installation (like it is shown in the installation instructions) or just use the default namespace.
This approach allows several Operators to co-exist in one Kubernetes-based environment, being separated
in different namespaces:

— &3 -
Kubernetes API l
4 ‘ N I A
Operator Operator
DB Pod 1 DB Pod 2 DB Pod N DB Pod 1 DB Pod N
Percona Server for MongoDB Percona Server for MongoDB
Namespace (psmdb1l) Namespace (psmdbN)
\ J
. ¢ 4

bl 1
Q O~ Q -

Still, sometimes it is more convenient to have one Operator watching for Percona Server for MongoDB
Custom Resources in several namespaces.

We recommend running Percona Operator for MongoDB in a traditional way, limited to a specific
namespace. But it is possible to run it in so-called cluster-wide mode, one Operator watching several
namespaces, if needed:

165 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.6 Install Percona Operator for MongoDB in multi-namespace (cluster-wide) mode

4)
—> +“—> @ Percona Operator for MongoDB
Kubernetes API
! Operator Namespace (psmdb-operator)
\ J
4 N\ [/ \ [)
—p 6 e eoe eoe XX
DB Pod 1 DB Pod 2 DB Pod DB Pod
Percona Server for MongoDB Namespace Namespace
Namespace (psmdbl smdb2 smdbN
L Y (p)) Y) P
— -

b1 i ;
Q Q-0 -

/" Note

Please take into account that if several Operators are configured to watch the same namespace, it is entirely
unpredictable which one will get ownership of the Custom Resource in it, so this situation should be avoided.

To use the Operator in such cluster-wide mode, you should install it with a different set of configuration
YAML files, which are available in the deploy folder and have filenames with a special cw- prefix: e.g.
deploy/cw-bundle.yaml.

While using this cluster-wide versions of configuration files, you should set the following information there:

+ subjects.namespace option should contain the namespace which will host the Operator,

* WATCH_NAMESPACE key-value pairin the env section should have value equal to a comma-separated list
of the namespaces to be watched by the Operator, and the namespace in which the Operator resides
(or just a blank string to make the Operator deal with all namespaces in a Kubernetes cluster).

166 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.6 Install Percona Operator for MongoDB in multi-namespace (cluster-wide) mode

The following simple example shows how to install Operator cluster-wide on Kubernetes.

1. First of all, clone the percona-server-mongodb-operator repository:

$ git clone -b v1.15.0 https://github.com/percona/percona-server-mongodb-operator
$ cd percona-server-mongodb-operator

2. Let’s suppose that Operator's namespace should be the psmdb-operator one. Create it as follows:
$ kubectl create namespace psmdb-operator

Namespaces to be watched by the Operator should be created in the same way if not exist. Let’s say the
Operator should watch the psmdb hamespace:

$ kubectl create namespace psmdb

3. Edit the deploy/cw-bundle.yaml configuration file to set proper namespaces:
subjects:
- kind: ServiceAccount

name: percona-server-mongodb-operator
namespace: "psmdb-operator"

env:
- name: WATCH NAMESPACE
value: "psmdb"

4. Apply the deploy/cw-bundle.yaml file with the following command:
$ kubectl apply -f deploy/cw-bundle.yaml -n psmdb-operator

5. After the Operator is started, Percona Server for MongoDB can be created at any time by applying the
deploy/cr.yaml configuration file, like in the case of normal installation:

$ kubectl apply -f deploy/cr.yaml -n psmdb

The creation process may take some time. When the process is over your cluster will obtain the ready
status. You can check it with the following command:

$ kubectl get psmdb

1 —
2m—

i= Expected output v
NAME ENDPOINT STATUS AGE
my-cluster-name my-cluster-name-mongos.psmdb.svc.cluster.local ready 5m26s

167 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.6.1 Verifying the cluster operation

15.6.1 Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get psmdb command finally shows you the
cluster status as ready, you can try to connect to the cluster.

1. You will need the login and password for the admin user to access the cluster. Use kubectl get secrets
command to see the list of Secrets objects (by default the Secrets object you are interested in has my-
cluster-name-secrets name). Then kubectl get secret my-cluster-name-secrets -o yaml command will
return the YAML file with generated Secrets, including the MONGODB DATABASE ADMIN and
MONGODB_DATABASE_ADMIN_PASSWORD strings, which should look as follows:

data:
MONGODB_DATABASE_ADMIN PASSWORD: aDAzQOpCY3NSWEZ2ZUIzS1I=
MONGODB DATABASE ADMIN USER: ZGFOYWJhc2VBZGlpbg==

Here the actual login name and password are base64-encoded. Use echo 'aDAzQOpCY3NSWEZ2ZUIzS1I=' |
base64 --decode command to bring it back to a human-readable form.

2.Run a container with a MongoDB client and connect its console output to your terminal. The following
command will do this, naming the new Pod percona-client:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:6.0.9-7
--restart=Never --env="POD NAMESPACE=psmdb" -- bash -il

Executing it may require some time to deploy the correspondent Pod.

3.Now run mongo tool in the percona-client command shell using the login (which is normally
databaseAdmin) and a proper password obtained from the Secret. The command will look different
depending on whether sharding is on (the default behavior) or off:

if sharding is on

$ mongo "mongodb://databaseAdmin:databaseAdminPassword@my-cluster-name-
mongos.psmdb.svc.cluster.local/admin?ssl=false"

if sharding is off

$ mongo "mongodb+srv://databaseAdmin:databaseAdminPassword@my-cluster-name-
rs0.psmdb.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-05-23

168 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15.7 How to carry on low-level manual upgrades of Percona Server for MongoDB

15.7 How to carry on low-level manual upgrades of Percona Server for
MongoDB

Percona Operator for MongoDB supports upgrades of the database management system (Percona Server
for MongoDB) starting from the Operator version 1.1.0. The Operator 1.5.0 had automated such upgrades with
a new upgrade strategy called Smart Update. Smart Update automates the upgrade process while giving
the user full control over updates, so it is the most convenient upgrade strategy.

Still there may be use cases when automatic upgrade of Percona Server for MongoDB is not an option (for
example, you may be using Percona Server for MongoDB with the Operator version 1.5.0 or earlier), and you
have to carry on upgrades manually.

Percona Server for MongoDB can be upgraded manually using one of the following upgrade strategies:

* Rolling Update, initiated manually and controlled by Kubernetes,

» On Delete, done by Kubernetes on per-Pod basis when Pods are manually deleted.

Warning

In case of Smart Updates, the Operator can either detect the availability of the Percona Server for MongoDB
version or rely on the user’s choice of the version. In both cases Pods are restarted by the Operator automatically
in the order, which assures the primary instance to be updated last, preventing possible connection issues until
the whole cluster is updated to the new settings. Kubernetes-controlled Rolling Update can’t guarantee that Pods
update order is optimal from the Percona Server for MongoDB point of view.

169 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#update-strategies

15.7.1 Rolling Update strategy and semi-automatic updates

15.7.1 Rolling Update strategy and semi-automatic updates
Semi-automatic update of Percona Server for MongoDB can be done as follows:

1. Edit the deploy/cr.yaml file, setting updateStrategy key to RollingUpdate.

2. Now you should apply a patch to your Custom Resource, setting necessary image names with a newer
version tag.

/7" Note

Check the version of the Operator you have in your Kubernetes environment. Please refer to the Operator
upgrade guide to upgrade the Operator and CRD, if needed.

Patching Custom Resource is done with the kubectl patch psmdb command. Actual image names can be
found in the list of certified images. For example, updating to the 1.15.0 version should look as follows:

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{

"spec": {
"crVersion":"1.15.0",
"image": "percona/percona-server-mongodb:4.4.24-23",
"backup": { "image": "percona/percona-backup-mongodb:2.3.0" },
"pmm": { "image": "percona/pmm-client:2.39.0" }

I

Warning

The above command upgrades various components of the cluster including PMM Client. It is highly
recommended to upgrade PMM Server before upgrading PMM Client. If it wasn't done and you would like to
avoid PMM Client upgrade, remove it from the list of images, reducing the last of two patch commands as
follows:

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{

"spec": {
"crVersion":"1.15.0",
"image": "percona/percona-server-mongodb:4.4.24-23",
"backup": { "image": "percona/percona-backup-mongodb:2.3.0" }
HH

3. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout
process in real time with the kubectl rollout status command with the name of your cluster:

$ kubectl rollout status sts my-cluster-name-rs0

170 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html

15.7.2 Manual upgrade (the On Delete strategy)

15.7.2 Manual upgrade (the On Delete strategy)

Manual update of Percona Server for MongoDB can be done as follows:

171 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.7.2 Manual upgrade (the On Delete strategy)

1 Edit the deploy/cr.yaml file, setting updateStrategy key to OnDelete.

2. Now you should apply a patch to your Custom Resource, setting necessary image names with a newer
version tag.

/" Note

Check the version of the Operator you have in your Kubernetes environment. Please refer to the Operator
upgrade guide to upgrade the Operator and CRD, if needed.

Patching Custom Resource is done with the kubectl patch psmdb command. Actual image names can be
found in the list of certified images. For example, updating to the 1.15.0 version should look as follows.

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{

"spec": {
"crVersion":"1.15.0",
"image": "percona/percona-server-mongodb:4.4.24-23",
"backup": { "image": "percona/percona-backup-mongodb:2.3.0" },
"pmm": { "image": "percona/pmm-client:2.39.0" }

I3

Warning

The above command upgrades various components of the cluster including PMM Client. It is highly
recommended to upgrade PMM Server before upgrading PMM Client. If it wasn't done and you would like to
avoid PMM Client upgrade, remove it from the list of images, reducing the last of two patch commands as
follows:

$ kubectl patch psmdb my-cluster-name --type=merge --patch '{

"spec": {
"crVersion":"1.15.0",
"image": "percona/percona-server-mongodb:4.4.24-23",

"backup": { "image": "percona/percona-backup-mongodb:2.3.0" }
I

3. The Pod with the newer Percona Server for MongoDB image will start after you delete it. Delete targeted
Pods manually one by one to make them restart in the desired order:

a. Delete the Pod using its name with the command like the following one:
$ kubectl delete pod my-cluster-name-rs0-2
b. Wait until Pod becomes ready:
$ kubectl get pod my-cluster-name-rs0-2
The output should be like this:

NAME READY STATUS RESTARTS AGE
my-cluster-name-rs0@-2 1/1 Running 0 3m33s

4. The update process is successfully finished when all Pods have been restarted (including the mongos and
Config Server nodes, if Percona Server for MongoDB Sharding is on).

172 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/how-to/upgrade.html

15.7.2 Manual upgrade (the On Delete strategy)

CONTACT US
For free technical help, visit the Percona Community Forum.
To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: 2023-03-22

173 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://forums.percona.com/c/mongodb/percona-kubernetes-operator-for-mongodb/29?utm_campaign=Doc-20pages
https://jira.percona.com/projects/K8SPSMDB/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

15.8 Monitor Kubernetes

15.8 Monitor Kubernetes

Monitoring the state of the database is crucial to timely identify and react to performance issues. Percona
Monitoring and Management (PMM) solution enables you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it's important
to have metrics that can depict the state of the Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has been
tested with the PMM server as the centralized data storage and the Victoria Metrics Kubernetes monitoring
stack as the metrics collector. These steps may also apply if you use another Prometheus-compatible
storage.

15.8.1 Considerations

In this setup, we use Victoria Metrics Kubernetes monitoring stack Helm chart. When customizing the chart's
values, consider the following:

» Since we use the PMM Server for monitoring, there is no need to store the data in Victoria Metrics
Operator. Therefore, the Victoria Metrics Helm chart is installed with the vmsingle.enabled and
vmcluster.enabled parameters setto false in this setup.

» The Prometheus node exporter is not installed by default since it requires privileged containers with the
access to the host file system. If you need the metrics for Nodes, enable the Prometheus node exporter
by setting the prometheus-node-exporter.enabled flag in the Victoria Metrics Helm chart to true.

- Check all the role-based access control (RBAC) rules of the victoria-metrics-k8s-stack chart and the
dependencies chart, and modify them based on your requirements.

15.8.2 Pre-requisites
To set up monitoring of Kubernetes, you need the following:

1. PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an AWS
instance. Please refer to the official PMM documentation for the installation instructions.
2. Helm va3.

3. kubectl.

174 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.percona.com/percona-monitoring-and-management/details/architecture.html#pmm-server
https://github.com/VictoriaMetrics/helm-charts/tree/master/charts/victoria-metrics-k8s-stack
https://helm.sh/docs/topics/rbac/
https://docs.percona.com/percona-monitoring-and-management/setting-up/server/index.html
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/

15.8.3 Procedure

15.8.3 Procedure

Set up authentication in PMM Server

To access the PMM Server resources and perform actions on the server, configure authentication.

175 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.8.3 Procedure

1. Get the PMM APl key. The key must have the role “Admin”.

From PMM UI

Generate the PMM API key

From command line

You can query your PMM Server installation for the APl Key using curl and jq utilities. Replace

<login>:<password>@<server host> placeholders with your real PMM Server login, password, and hostname
in the following command:

$ API KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d

"{"name":"operator", "role": "Admin"}' "https://<login>:<password>@<server host>/graph/
api/auth/keys" | jq .key)

/7" Note

The APl key is not rotated.

2. Encode the API key with base64.
in Linux
$ echo -n <API-key> | base64 --wrap=0
in macOS

$ echo -n <API-key> | base64

3. Create the Namespace where you want to set up monitoring. The following command creates the

Namespace monitoring-system. You can specify a different name. In the latter steps, specify your
namespace instead of the <namespace> placeholder.

$ kubectl create namespace monitoring-system

. Create the YAML file for the Kubernetes Secrets and specify the base64-encoded API key value within. Let's
name this file pmm-api-vmoperator.yaml.

yaml title="pmm-api-vmoperator.yaml"
apiVersion: vl
data:
api key: <base-64-encoded-API-key>
kind: Secret
metadata:
name: pmm-token-vmoperator
#namespace: default
type: Opaque

5. Create the Secrets object using the YAML file you created previously. Replace the <filename> placeholder
with your value.

$ kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>

6. Check that the secret is created. The following command checks the secret for the resource named pmm-

token-vmoperator (as defined in the metadata.name option in the secrets file). If you defined another
resource name, specify your value.

176 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://docs.percona.com/percona-monitoring-and-management/details/api.html#api-keys-and-authentication
https://kubernetes.io/docs/concepts/configuration/secret/

15.8.3 Procedure

$ kubectl get secret pmm-token-vmoperator -n <namespace>

Create a ConfigMap to mount for kube-state-metrics

The kube-state-metrics (KSM) is a simple service that listens to the Kubernetes API server and generates
metrics about the state of various objects - Pods, Deployments, Services and Custom Resources.

To define what metrics the kube-state-metrics should capture, create the ConfigMap and mount it to a
container.

Use the example configmap.yaml configuration file to create the ConfigMap.

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-
operator-k8s-stack/ksm-configmap.yaml -n <namespace>

As a result, you have the customresource-config-ksm ConfigMap created.

Install the Victoria Metrics Kubernetes monitoring stack

1. Add the dependency repositories of victoria-metrics-k8s-stack chart.

$ helm repo add grafana https://grafana.github.io/helm-charts
$ helm repo add prometheus-community https://prometheus-community.github.io/helm-charts

2. Add the Victoria Metrics Kubernetes monitoring stack repository.
$ helm repo add vm https://victoriametrics.github.io/helm-charts/
3. Update the repositories.

$ helm repo update

177 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/Percona-Lab/k8s-monitoring/blob/main/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/main/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack

15.8.3 Procedure

4 Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the following
configuration:

« the URL to access the PMM server in the externalVM.write.url option in the format <PMM-SERVER-URL>/
victoriametrics/api/vl/write. The URL can contain either the IP address or the hostname of the PMM

server.

« the unique name or an ID of the Kubernetes cluster in the vmagent.spec.externallLabels.k8s_cluster_ id
option. Ensure to set different values if you are sending metrics from multiple Kubernetes clusters to

the same PMM Server.

178 of 313 Percona LLC and/or its affiliates, © 2009 - 2023

15.8.3 Procedure

Command line

Use the following command to install the Victoria Metrics Operator and pass the required configuration.
The vm-k8s value command is the Release name. You can use a different name. Replace the <namespace>
placeholder with your value. The Namespace must be the same as the Namespace for the Secret and

ConfigMap:

$ helm install vm-k8s vm/victoria-metrics-k8s-stack \
-f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-

stack/values.yaml \
--set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1l/write \

--set vmagent.spec.externallLabels.k8s cluster id=<UNIQUE-CLUSTER-IDENTIFER/NAME> \
-n <namespace>

To illustrate, say your PMM Server URL is https://pmm-example.com, the cluster ID is test-cluster and the
Namespace is monitoring-system. Then the command would look like this:

$ helm install vm-k8s vm/victoria-metrics-k8s-stack \
-f https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/main/vm-operator-k8s-

stack/values.yaml \
--set externalVM.write.url=https://pmm-example.com/victoriametrics/api/vl/write \

--set vmagent.spec.externallLabels.k8s cluster id=test-cluster> \
-n monitoring-system

Configuration file

a. Edit the values.yaml

externalVM:
write:
Replace PMM-SERVER-URL with valid URL of PMM Server
url: "https://<PMM-SERVER-URL>//victoriametrics/api/v1l/write"

vmagent:
spec for VMAgent crd
https://docs.victoriametrics.com/operator/api.html#vmagentspec

spec:
selectAllByDefault: true
image:
tag: v1.91.3
scrapelnterval: 25s
externallLabels:

k8s cluster id: <cluster-name>

Optionally, check the rest of the file and make changes. For example, if you plan to gather metrics for
Nodes with the Prometheus node exporter, set the prometheus-node-exporter.enabled optionto true.

b. Run the following command to install the Victoria Metrics kubernetes monitoring stack. The vm-k8s
value is the Release name. You can use a different name. Replace the <namespace> placeholder with
your value. The Namespace must be the same as the Namespace for the Secret and ConfigMap.

$ kubectl apply -f values.yaml -n <namespace>

/" Note

The example values.yaml file is taken from the victoria-metrics-k8s-stack version 0.17.5. The fields and default
values may differ in newer releases of the victoria-metrics-k8s-stack Helm chart. Please check them if you are
using a different version of the victoria-metrics-k8s-stack Helm chart.

179 of 313 Perco<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>