
Percona Kubernetes for Percona Server
for MongoDB Documentation

Release 1.1.0

Percona LLC and/or its affiliates 2009-2019

Jul 15, 2019

CONTENTS

I Overview 3

II Installation 9

III Configuration 27

IV Reference 57

i

ii

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

The Percona Kubernetes Operator for Percona Server for MongoDB automates the creation, modification, or deletion
of items in your Percona Server for MongoDB environment. The Operator contains the necessary Kubernetes settings
to maintain a consistent Percona Server for MongoDB instance.

The Percona Kubernetes Operators are based on best practices for the configuration of a Percona Server for MongoDB
replica set. The Operator provides many benefits but saving time, a consistent environment are the most important.

The operator was developed and tested for the following configurations only:

• Percona Server for MongoDB 3.6 and Percona Server for MongoDB 4.0

• OpenShift 3.11 and OpenShift 4.0

Other options may or may not work.

Backups are not yet supported with Percona Server for MongoDB 4.0. Backups are supported for Percona Server for
MongoDB 3.6.

Also, the current PSMDB on Kubernetes implementation does not support Percona Server for MongoDB sharding.

CONTENTS 1

https://github.com/percona/percona-server-mongodb-operator

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

2 CONTENTS

Part I

Overview

3

CHAPTER

ONE

DESIGN OVERVIEW

The design of the operator is tighly bound to the Percona Server for MongoDB replica set, which is briefly described
in the following diagram.

A replica set consists of one primary server and several secondary ones (two in the picture), and the client application
accesses the servers via a driver.

To provide high availability the Operator uses node affinity to run MongoDB instances on separate worker nodes if
possible, and the database cluster is deployed as a single Replica Set with at least three nodes. If a node fails, the pod
with the mongod process is automatically re-created on another node. If the failed node was hosting the primary server,
the replica set initiates elections to select a new primary. If the failed node was running the Operator, Kubernetes will
restart the Operator on another node, so normal operation will not be interrupted.

Client applications should use a mongo+srv URI for the connection. This allows the drivers (3.6 and up) to retrieve
the list of replica set members from DNS SRV entries without having to list hostnames for the dynamically assigned
nodes.

Note: The Operator uses security settings which are more secure than the default Percona Server for MongoDB
setup. The initial configuration contains default passwords for all needed user accounts, which should be changed in
the production environment, as stated in the installation instructions.

5

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC)
is used to implement the automatic storage provisioning to pods. If a failure occurs, the Container Storage Interface
(CSI) should be able to re-mount storage on a different node. The PVC StorageClass must support this feature (Ku-
bernetes and OpenShift support this in versions 1.9 and 3.9 respectively).

The Operator functionality extends the Kubernetes API with PerconaServerMongoDB object, and it is implemented
as a golang application. Each PerconaServerMongoDB object maps to one separate PSMDB setup. The Operator
listens to all events on the created objects. When a new PerconaServerMongoDB object is created, or an existing one
undergoes some changes or deletion, the operator automatically creates/changes/deletes all needed Kubernetes objects
with the appropriate settings to provide a properly operating replica set.

6 Chapter 1. Design overview

CHAPTER

TWO

SYSTEM REQUIREMENTS

The following platforms are supported:

• OpenShift >=3.11

• Google Kubernetes Engine (GKE)

• Minikube

7

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

8 Chapter 2. SYSTEM REQUIREMENTS

Part II

Installation

9

CHAPTER

THREE

INSTALL PERCONA SERVER FOR MONGODB ON KUBERNETES

0. Clone the percona-server-mongodb-operator repository:

git clone -b release-1.0.0 https://github.com/percona/percona-server-mongodb-
→˓operator
cd percona-server-mongodb-operator

Note: It is crucial to specify the right branch with -b option while cloning the code on this step. Please be
careful.

1. The Custom Resource Definition for PSMDB should be created from the deploy/crd.yaml file. The Cus-
tom Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new
items (in our case resources which are the core of the operator).

$ kubectl apply -f deploy/crd.yaml

This step should be done only once; the step does not need to be repeated with any other Operator deployments.

2. Add the psmdb namespace to Kubernetes, and set the correspondent context for further steps:

$ kubectl create namespace psmdb
$ kubectl config set-context $(kubectl config current-context) --namespace=psmdb

3. The role-based access control (RBAC) for PSMDB is configured with the deploy/rbac.yaml file. Role-
based access is based on defined roles and the available actions which correspond to each role. The role and
actions are defined for Kubernetes resources in the yaml file. Further details about users and roles can be found
in Kubernetes documentation.

$ kubectl apply -f deploy/rbac.yaml

Note: Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
Kubernetes Engine can grant user needed privileges with the following command:

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-
→˓admin --user=$(gcloud config get-value core/account)

4. Start the operator within Kubernetes:

$ kubectl apply -f deploy/operator.yaml

11

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

5. Add the MongoDB Users secrets to Kubernetes. Additional names should be placed in the data section of the
deploy/mongodb-users.yaml file as login name and the base64-encoded passwords for the user accounts
(see Kubernetes documentation for details).

Note: The following command can be used to get base64-encoded password from a plain text string:

$ echo -n 'plain-text-password' | base64

After editing the yaml file, mongodb-users secrets should be created (or updated with the new passwords) using
the following command:

$ kubectl apply -f deploy/secrets.yaml

More details about secrets can be found in Users.

6. Install cert-manager if it is not up and running yet and apply ssl secrets with the following command:

Pre-generated certificates are awailable in the deploy/ssl-secrets.yaml secrets file for test purposes,
but we strongly recommend avoiding their usage on any production system.

$ kubectl apply -f <secrets file>

7. After the operator is started, Percona Server for MongoDB cluster can be created with the following command:

$ kubectl apply -f deploy/cr.yaml

The creation process may take some time. The process is over when both operator and replica set pod have
reached their Running status:

$ kubectl get pods
NAME READY STATUS RESTARTS
→˓AGE
my-cluster-name-rs0-0 1/1 Running 0 8m
my-cluster-name-rs0-1 1/1 Running 0 8m
my-cluster-name-rs0-2 1/1 Running 0 7m
percona-server-mongodb-operator-754846f95d-sf6h6 1/1 Running 0 9m

6. Check connectivity to newly created cluster

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-
→˓mongodb:3.6 --restart=Never -- bash -il
percona-client:/$ mongo "mongodb+srv://userAdmin:userAdmin123456@my-cluster-name-
→˓rs0.psmdb.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

12 Chapter 3. Install Percona server for MongoDB on Kubernetes

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.cert-manager.io/en/release-0.8/getting-started/install/kubernetes.html

CHAPTER

FOUR

INSTALL PERCONA SERVER FOR MONGODB ON OPENSHIFT

0. Clone the percona-server-mongodb-operator repository:

git clone -b release-1.0.0 https://github.com/percona/percona-server-mongodb-
→˓operator
cd percona-server-mongodb-operator

Note: It is crucial to specify the right branch with -b option while cloning the code on this step. Please be
careful.

1. The Custom Resource Definition for PSMDB should be created from the deploy/crd.yaml file. The Cus-
tom Resource Definition extends the standard set of resources which Kubernetes “knows” about with the new
items, in our case these items are the core of the operator.

This step should be done only once; it does not need to be repeated with other deployments.

$ oc apply -f deploy/crd.yaml

Note: Setting Custom Resource Definition requires your user to have cluster-admin role privileges.

An extra action is required if you want to manage PSMDB cluster with a non-privileged user. Please make shure
that cert-manager is already installed. The necessary permissions can be granted by applying the clusterrole:

$ oc create clusterrole psmdb-admin --verb="*" --resource=perconaservermongodbs.
→˓psmdb.percona.com,perconaservermongodbs.psmdb.percona.com/status,
→˓perconaservermongodbbackups.psmdb.percona.com,perconaservermongodbbackups.psmdb.
→˓percona.com/status,perconaservermongodbrestores.psmdb.percona.com,
→˓perconaservermongodbrestores.psmdb.percona.com/status,issuers.certmanager.k8s.
→˓io,certificates.certmanager.k8s.io
$ oc adm policy add-cluster-role-to-user psmdb-admin <some-user>

2. Create a new psmdb project:

$ oc new-project psmdb

3. Add role-based access control (RBAC) for PSMDB is configured with the deploy/rbac.yaml file. RBAC
is based on clearly defined roles and corresponding allowed actions. These actions are allowed on specific
Kubernetes resources. The details about users and roles can be found in OpenShift documentation.

$ oc apply -f deploy/rbac.yaml

13

https://docs.cert-manager.io/en/release-0.8/getting-started/install/openshift.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

4. Start the Operator within OpenShift:

$ oc apply -f deploy/operator.yaml

4. Add the MongoDB Users secrets to OpenShift. These secrets should be placed in the data section of the
deploy/secrets.yaml file as login names and base64-encoded passwords (see Kubernetes documenta-
tion for details).

Note: The following command can be used to return a base64-encoded password from a plain text string:

$ echo -n 'plain-text-password' | base64

When you have completed adding the additional information, the secrets should be created or updated with the
following command:

$ oc apply -f deploy/secrets.yaml

More details about secrets can be found in Users.

5. Install cert-manager if it is not up and running yet then generate and apply certificates as secrets according to
TLS document <TLS.html>:

Pre-generated certificates are awailable in the deploy/ssl-secrets.yaml secrets file for test purposes,
but we strongly recommend avoiding their usage on any production system.

$ oc apply -f <secrets file>

6. Percona Server for MongoDB cluster can be created at any time with the following two steps:

(a) Uncomment the deploy/cr.yaml field #platform: and edit the field to platform:
openshift. The result should be like this:

apiVersion: psmdb.percona.com/v1alpha1
kind: PerconaServerMongoDB
metadata:

name: my-cluster-name
spec:

platform: openshift
...

b (optional). In you’re using minishift, please adjust antiaffinity policy to none

affinity:
antiAffinityTopologyKey: "none"

...

(a) Create/apply the CR file:

$ oc apply -f deploy/cr.yaml

The creation process will take time. The process is complete when both the operator and the replica set pod
have reached their Running status:

$ oc get pods
NAME READY STATUS RESTARTS
→˓AGE
my-cluster-name-rs0-0 1/1 Running 0 8m

14 Chapter 4. Install Percona server for MongoDB on OpenShift

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.cert-manager.io/en/release-0.8/getting-started/install/openshift.html

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

my-cluster-name-rs0-1 1/1 Running 0 8m
my-cluster-name-rs0-2 1/1 Running 0 7m
percona-server-mongodb-operator-754846f95d-sf6h6 1/1 Running 0 9m

3. Check connectivity to newly created cluster. Please note that mongo client command shall be executed inside
the container manually.

$ oc run -i --rm --tty percona-client --image=percona/percona-server-mongodb:3.6 -
→˓-restart=Never -- bash -il
percona-client:/$ mongo "mongodb+srv://userAdmin:userAdmin123456@my-cluster-name-
→˓rs0.psmdb.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

15

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

16 Chapter 4. Install Percona server for MongoDB on OpenShift

CHAPTER

FIVE

INSTALL PERCONA SERVER FOR MONGODB ON MINIKUBE

Installing the PSMDB Operator on Minikube is the easiest way to try it locally without a cloud provider. Minikube
runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervisor, such as VirtualBox,
KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test Kubernetes application locally prior to
deploying it on a cloud.

The following steps are needed to run PSMDB Operator on minikube:

0. Install minikube, using a way recommended for your system. This includes the installation of the following
three components: #. kubectl tool, #. a hypervisor, if it is not already installed, #. actual minikube package

After the installation running minikube start should download needed virtualized images, then initialize
and run the cluster. After Minikube is successfully started, you can optionally run Kubernetes dashboard, which
visually represents the state of your cluster. Executing minikube dashboard will start the dashboard and
open it in your default web browser.

1. Clone the percona-server-mongodb-operator repository:

git clone -b release-1.1.0 https://github.com/percona/percona-server-mongodb-
→˓operator
cd percona-server-mongodb-operator

2. Deploy the operator with the following command:

kubectl apply -f deploy/bundle.yaml

3. Edit the deploy/cr.yaml file to change the following keys in replsets section, which would otherwise
prevent running Percona Server for MongoDB on your local Kubernetes installation:

(a) comment resources.requests.memory and resources.requests.cpu keys

(b) set affinity.antiAffinityTopologyKey key to "none"

Also, switch allowUnsafeConfigurations key to true.

4. Now apply the deploy/cr.yaml file with the following command:

kubectl apply -f deploy/cr.yaml

5. During previous steps, the Operator has generated several secrets, including the password for the admin user,
which you will need to access the cluster. Use kubectl get secrets to see the list of Secrets objects (by
default Secrets object you are interested in has my-cluster-name-secrets name). Then kubectl get
secret my-cluster-name-secrets -o yaml will return the YAML file with generated secrets, in-
cluding the MONGODB_USER_ADMIN and MONGODB_USER_ADMIN_PASSWORD strings, which should look
as follows:

17

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/concepts/configuration/secret/

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

...
data:
...
MONGODB_USER_ADMIN_PASSWORD: aDAzQ0pCY3NSWEZ2ZUIzS1I=
MONGODB_USER_ADMIN_USER: dXNlckFkbWlu

Here the actual login name and password are base64-encoded, and echo
'aDAzQ0pCY3NSWEZ2ZUIzS1I=' | base64 --decode will bring it back to a human-readable
form.

6. Check connectivity to a newly created cluster.

First of all, run percona-client and connect its console output to your terminal (running it may require some time
to deploy the correspondent Pod):

kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:4.
→˓0 --restart=Never -- bash -il

Now run mongo tool in the percona-client command shell using the login (which is userAdmin) and password
obtained from the secret:

mongo "mongodb+srv://userAdmin:userAdminPassword@my-cluster-name-rs0.default.svc.
→˓cluster.local/admin?replicaSet=rs0&ssl=false"

18 Chapter 5. Install Percona Server for MongoDB on Minikube

CHAPTER

SIX

SCALE PERCONA SERVER FOR MONGODB ON KUBERNETES AND
OPENSHIFT

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an application scaling.
Scaling a Deployment up or down ensures new Pods are created and set to available Kubernetes nodes.

Size of the cluster is controlled by a size key in the Custom Resource options configuration, as specified in the
Operator Options section. That’s why scaling the cluster needs nothing more but changing this option and applying
the updated configuration file. This may be done in a specifically saved config, or on the fly, using the following
command, which saves the current configuration, updates it and applies the changed version:

$ kubectl get psmdb/my-cluster-name -o yaml | sed -e 's/size: 3/size: 5/' | kubectl
→˓apply -f -

In this example we have changed the size of the Percona Server for MongoDB from 3, which is a minimum recom-
mended value, to 5 nodes.

Note: Using ‘‘kubectl scale StatefulSet_name‘‘ command to rescale Percona Server for MongoDB is not recom-
mended, as it makes ‘‘size‘‘ configuration option out of sync, and the next config change may result in reverting the
previous number of nodes.

19

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

20 Chapter 6. Scale Percona Server for MongoDB on Kubernetes and OpenShift

CHAPTER

SEVEN

UPDATE PERCONA SERVER FOR MONGODB OPERATOR

Starting from the version 1.1.0 the Percona Kubernetes Operator for MongoDB allows upgrades to newer versions.
The upgrade can be either semi-automatic or manual.

Note: Manual update mode is the recommended way for a production cluster.

Semi-automatic update

1. Edit the deploy/cr.yaml file, setting updateStrategy key to RollingUpdate.

2. Now you should apply a patch to your deployment, supplying necessary image names with a newer version
tag. This is done with the kubectl patch deployment command. For example, updating to the 1.1.0
version should look as follows:

kubectl patch deployment percona-server-mongodb-operator \
-p'{"spec":{"template":{"spec":{"containers":[{"name":"percona-server-mongodb-

→˓operator","image":"percona/percona-server-mongodb-operator:1.1.0"}]}}}}'

kubectl patch psmdb my-cluster-name --type=merge --patch '{
"spec": {

"image": "percona/percona-server-mongodb-operator:1.1.0-mongod4.0",
"backup": { "image": "percona/percona-server-mongodb-operator:1.1.0-backup

→˓" }
}}'

3. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout process
in real time using the kubectl rollout status command with the name of your cluster:

kubectl rollout status sts cluster1-pxc

Manual update

1. Edit the deploy/cr.yaml file, setting updateStrategy key to OnDelete.

2. Now you should apply a patch to your deployment, supplying necessary image names with a newer version
tag. This is done with the kubectl patch deployment command. For example, updating to the 1.1.0
version should look as follows:

21

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

kubectl patch deployment percona-server-mongodb-operator \
-p'{"spec":{"template":{"spec":{"containers":[{"name":"percona-server-mongodb-

→˓operator","image":"percona/percona-server-mongodb-operator:1.1.0"}]}}}}'

kubectl patch psmdb my-cluster-name --type=merge --patch '{
"spec": {"replsets":{ "image": "percona/percona-server-mongodb-operator:1.1.0-

→˓mongod4.0" },
"mongod": { "image": "percona/percona-server-mongodb-operator:1.1.0-

→˓mongod4.0" },
"backup": { "image": "percona/percona-server-mongodb-operator:1.1.0-

→˓backup" }
}}'

3. Pod with the newer Percona Server for MongoDB image will start after you delete it. Delete targeted Pods
manually one by one to make them restart in the desired order:

(a) Delete the Pod using its name with the command like the following one:

kubectl delete pod my-cluster-name-rs0-2

(b) Wait until Pod becomes ready:

kubectl get pod my-cluster-name-rs0-2

The output should be like this:

NAME READY STATUS RESTARTS AGE
my-cluster-name-rs0-2 1/1 Running 0 3m33s

4. The update process is successfully finished when all Pods have been restarted.

22 Chapter 7. Update Percona Server for MongoDB Operator

CHAPTER

EIGHT

MONITORING

The Percona Monitoring and Management (PMM) provides an excellent solution to monitor Percona Server for Mon-
goDB.

The following steps are needed to install both PMM Client and PMM Server. The PMM Client and PMM Server are
preconfigured to monitor Percona Server for MongoDB on Kubernetes or OpenShift.

1. The recommended installation approach is based on using helm - the package manager for Kubernetes, which
will substantially simplify further steps. Install helm following its official installation instructions.

2. Using helm, add the Percona chart repository and update the information for the available charts as follows:

$ helm repo add percona https://percona-charts.storage.googleapis.com
$ helm repo update

3. Use helm to install PMM Server:

$ helm install percona/pmm-server --name monitoring --set platform=openshift --
→˓set credentials.username=clusterMonitor --set "credentials.
→˓password=clusterMonitor123456"

You must specify the correct options in the installation command:

• platform should be either kubernetes or openshift depending on which platform are you using.

• name should correspond to the serverHost key in the pmm section of the deploy/cr.yaml file
with a “-service” suffix, the default --name monitoring part of the command corresponds to a
monitoring-service value of the serverHost key.

• credentials.username should correspond to the MONGODB_CLUSTER_MONITOR_USER base64
decoded value of key in the the deploy/secrets.yaml file.

• credentials.password should correspond to a value of the
MONGODB_CLUSTER_MONITOR_PASSWORD base64 decoded value of key specified in de-
ploy/secrets.yaml secrets file. Note - the password specified in this example is the default development
mode password and is not intended to be used on production systems.

4. You must edit and update the pmm section in the deploy/cr.yaml file.

• set pmm.enabled=true

• ensure the serverHost (the PMM service name is monitoring-service by default) is the same
as value specified for the name parameter on the previous step, but with an added additional -service
suffix.

• make sure the PMM_USER and PMM_PASSWORD keys in the deploy/secrets.yaml secrets file are the same
as base64 decoded equivalent values specified for the credentials.username and credentials.

23

https://www.percona.com/doc/percona-monitoring-and-management/index.html
https://github.com/helm/helm
https://docs.helm.sh/using_helm/#installing-helm
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/secrets.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/secrets.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/secrets.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/secrets.yaml

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

password parameters on the previous step (if not, fix the value and apply with the kubectl apply
-f deploy/secrets.yaml command).

When done, apply the edited deploy/cr.yaml file:

$ kubectl apply -f deploy/cr.yaml

5. Check that correspondent Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors
on the previous steps:

$ kubectl get pods
$ kubectl logs my-cluster-name-rs0-0 -c pmm-client

6. Run the following command:

kubectl get service/monitoring-service -o wide

In the results, locate the the EXTERNAL-IP field. The external-ip address can be used to access PMM via https
in a web browser, with the login/password authentication, and the browser is configured to show Percona Server
for MongoDB metrics.

24 Chapter 8. Monitoring

https://www.percona.com/doc/percona-monitoring-and-management/index.metrics-monitor.dashboard.html#pmm-dashboard-mongodb-list
https://www.percona.com/doc/percona-monitoring-and-management/index.metrics-monitor.dashboard.html#pmm-dashboard-mongodb-list

CHAPTER

NINE

USE DOCKER IMAGES FROM A CUSTOM REGISTRY

Using images from a private Docker registry may required for privacy, security or other reasons. In these cases,
Percona Server for MongoDB Operator allows the use of a custom registry This following example of the Operator
deployed in the OpenShift environment demonstrates the process:

1. Log into the OpenShift and create a project.

$ oc login
Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin
Password:
Login successful.
$ oc new-project psmdb
Now using project "psmdb" on server "https://192.168.1.100:8443".

2. You need obtain the following objects to configure your custom registry access:

• A user token

• the registry IP address

You can view the token with the following command:

$ oc whoami -t
ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

The following command returns the registry IP address:

$ kubectl get services/docker-registry -n default
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

3. Use the user token and the registry IP address to login to the registry:

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s 172.30.162.
→˓173:5000
Login Succeeded

4. Use the Docker commands to pull the needed image by its SHA digest:

$ docker pull docker.io/perconalab/percona-server-mongodb-
→˓operator@sha256:69c935ac93d448db76f257965470367683202f725f50d6054eae1c3d2e731b9a
Trying to pull repository docker.io/perconalab/percona-server-mongodb-operator ...
sha256:69c935ac93d448db76f257965470367683202f725f50d6054eae1c3d2e731b9a: Pulling
→˓from docker.io/perconalab/percona-server-mongodb-operator
Digest: sha256:69c935ac93d448db76f257965470367683202f725f50d6054eae1c3d2e731b9a
Status: Image is up to date for docker.io/perconalab/percona-server-mongodb-
→˓operator@sha256:69c935ac93d448db76f257965470367683202f725f50d6054eae1c3d2e731b9a

25

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

5. The following method can push an image to the custom registry for the example OpenShift PSMDB project:

$ docker tag \
docker.io/perconalab/percona-server-mongodb-

→˓operator@sha256:69c935ac93d448db76f257965470367683202f725f50d6054eae1c3d2e731b9a
→˓\

172.30.162.173:5000/psmdb/percona-server-mongodb-operator:0.2.1-mongod3.6
$ docker push 172.30.162.173:5000/psmdb/percona-server-mongodb-operator:0.2.1-
→˓mongod3.6

6. Verify the image is available in the OpenShift registry with the following command:

$ oc get is
NAME DOCKER REPO
→˓ TAGS UPDATED
percona-server-mongodb-operator docker-registry.default.svc:5000/psmdb/percona-
→˓server-mongodb-operator 0.2.1-mongod3.6 2 hours ago

7. When the custom registry image is available, edit the the image: option in deploy/
operator.yaml configuration file with a Docker Repo + Tag string (it should look like‘‘docker-
registry.default.svc:5000/psmdb/percona-server-mongodb-operator:0.2.1-mongod3.6‘‘)

Note: If the registry requires authentication, you can specify the imagePullSecrets option for all images.

8. Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml file.

9. Now follow the standard Percona Server for MongoDB Operator installation instruction.

Percona certified images

Following table presents Percona’s certified images to be used with the Percona Server for MongoDB Operator:

Image Digest
percona/percona-server-mongodb-
operator:0.3.0

69d2018790ed14de1a79bef1fd7afc5fb91b57374f1e4ca33e5f48996646bb3e

percona/percona-server-mongodb-
operator:0.3.0-mongod3.6.10

a02a10c9e0bc36fac2b1a7e1215832c5816abfbbe0018fca61d133835140b4e8

percona/percona-server-mongodb-
operator:0.3.0-mongod4.0.6

0849fee6073e85414ca36d4f394046342d623292f03e9d3afd5bd5b02e6df812

percona/percona-server-mongodb-
operator:0.3.0-backup

5a32ddf1194d862b5f6f3826fa85cc4f3c367ccd8e69e501f27b6bf94f7e3917

perconalab/pmm-client:1.17.1 f762cda2eda9ef17bfd1242ede70ee72595611511d8d0c5c46931ecbc968e9af

26 Chapter 9. Use Docker images from a custom registry

Part III

Configuration

27

CHAPTER

TEN

USERS

During installation, the Operator requires Kubernetes Secrets to be deployed before the Operator is started. The name
of the required secrets can be set in deploy/cr.yaml under the spec.secrets section.

Unprivileged users

There are no unprivileged (general purpose) user accounts created by default. If you need general purpose users, please
run commands below:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:3.6
→˓--restart=Never -- bash -il
mongodb@percona-client:/$ mongo "mongodb+srv://userAdmin:userAdmin123456@my-cluster-
→˓name-rs0.psmdb.svc.cluster.local/admin?replicaSet=rs0&ssl=false"
rs0:PRIMARY> db.createUser({

user: "myApp",
pwd: "myAppPassword",
roles: [

{ db: "myApp", role: "readWrite" }
],
mechanisms: [

"SCRAM-SHA-1"
]

})

Now check the newly created user:

$ kubectl run -i --rm --tty percona-client --image=percona/percona-server-mongodb:3.6
→˓--restart=Never -- bash -il
mongodb@percona-client:/$ mongo "mongodb+srv://myApp:myAppPassword@my-cluster-name-
→˓rs0.psmdb.svc.cluster.local/admin?replicaSet=rs0&ssl=false"
rs0:PRIMARY> use myApp
rs0:PRIMARY> db.test.insert({ x: 1 })
rs0:PRIMARY> db.test.findOne()

MongoDB System Users

Default Secret name: my-cluster-name-mongodb-users

Secret name field: spec.secrets.users

29

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

The operator requires system-level MongoDB users to automate the MongoDB deployment.

Warning: These users should not be used to run an application.

User
Purpose

Username Secret Key Password Secret Key

Backup/Restore MONGODB_BACKUP_USER MONGODB_BACKUP_PASSWORD
Cluster Admin MONGODB_CLUSTER_ADMIN_USER MONGODB_CLUSTER_ADMIN_PASSWORD
Cluster
Monitor

MON-
GODB_CLUSTER_MONITOR_USER

MON-
GODB_CLUSTER_MONITOR_PASSWORD

User Admin MONGODB_USER_ADMIN_USER MONGODB_USER_ADMIN_PASSWORD

Backup/Restore - MongoDB Role: backup, clusterMonitor, restore

Cluster Admin - MongoDB Role: clusterAdmin

Cluster Monitor - MongoDB Role: clusterMonitor

User Admin - MongoDB Role: userAdmin

Development Mode

To make development and testing easier, deploy/mongodb-users.yaml secrets file contains default passwords
for MongoDB system users.

The development-mode credentials from deploy/mongodb-users.yaml are:

Secret Key Secret Value
MONGODB_BACKUP_USER backup
MONGODB_BACKUP_PASSWORD backup123456
MONGODB_CLUSTER_ADMIN_USER clusterAdmin
MONGODB_CLUSTER_ADMIN_PASSWORD clusterAdmin123456
MONGODB_CLUSTER_MONITOR_USER clusterMonitor
MONGODB_CLUSTER_MONITOR_PASSWORD clusterMonitor123456
MONGODB_USER_ADMIN_USER userAdmin
MONGODB_USER_ADMIN_PASSWORD userAdmin123456

Warning: Do not use the default MongoDB Users in production!

MongoDB Internal Authentication Key (optional)

Default Secret name: my-cluster-name-mongodb-key

Secret name field: spec.secrets.key

By default, the operator will create a random, 1024-byte key for MongoDB Internal Authentication if it does not
already exist. If you would like to deploy a different key, create the secret manually before starting the operator.

30 Chapter 10. Users

https://docs.mongodb.com/manual/reference/built-in-roles/#backup
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterMonitor
https://docs.mongodb.com/manual/reference/built-in-roles/#restore
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterAdmin
https://docs.mongodb.com/manual/reference/built-in-roles/#clusterMonitor
https://docs.mongodb.com/manual/reference/built-in-roles/#userAdmin
https://docs.mongodb.com/manual/core/security-internal-authentication/

CHAPTER

ELEVEN

CUSTOM RESOURCE OPTIONS

The operator is configured via the spec section of the deploy/cr.yaml file. This file contains the following spec sections:

Key Value
type

Default Description

plat-
form

string kuber-
netes

Override/set the Kubernetes platform: kubernetes or openshift. Set openshift
on OpenShift 3.11+

ver-
sion

string 3.6.8 The Dockerhub tag of percona/percona-server-mongodb to deploy

secrets subdoc Operator secrets section
re-
plsets

array Operator MongoDB Replica Set section

pmm subdoc Percona Monitoring and Management section
mon-
god

subdoc Operator MongoDB Mongod configuration section

backup subdoc Percona Server for MongoDB backups section

Secrets section

Each spec in its turn may contain some key-value pairs. The secrets one has only two of them:

Key Value
Type

Example Description

key string my-cluster-name-mongodb-keyThe secret name for the MongoDB Internal Auth Key. This secret is
auto-created by the operator if it doesn’t exist.

users string my-cluster-name-mongodb-usersThe secret name for the MongoDB users required to run the
operator. This secret is required to run the operator.

Replsets section

The replsets section controls the MongoDB Replica Set.

Key Value Type Example Description
name string rs 0 The name of the MongoDB Replica Set
size int 3 The size of the MongoDB Replica Set, must be >= 3 for High-Availability
storageClass string Set the Kubernetes Storage Class to use with the MongoDB Persistent Volume Claim
arbiter.enabled boolean f Enable or disable creation of Replica Set Arbiter nodes within the cluster
arbiter.size int The number of Replica Set Arbiter nodes within the cluster

Continued on next page

31

https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://hub.docker.com/r/perconalab/percona-server-mongodb-operator/tags/
https://docs.mongodb.com/manual/core/security-internal-authentication/
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/replication/#redundancy-and-data-availability
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://docs.mongodb.com/manual/core/replica-set-arbiter/
https://docs.mongodb.com/manual/core/replica-set-arbiter/

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

Table 11.1 – continued from previous page
Key Value Type Example Description
arbiter.afinity.antiAffinityTopologyKey string kubernetes.io/hostname The Kubernetes topologyKey node affinity constraint for the Arbiter
arbiter.tolerations.key string node.alpha.kubernetes.io/unreachable The Kubernetes Pod tolerations key for the Arbiter nodes
arbiter.tolerations.operator string Exists The Kubernetes Pod tolerations operator for the Arbiter nodes
arbiter.tolerations.effect string NoExecute The Kubernetes Pod tolerations effect for the Arbiter nodes
arbiter.tolerations.tolerationSeconds int 6000 The Kubernetes Pod tolerations time limit for the Arbiter nodes
arbiter.priorityClassName string high priority The Kuberentes Pod priority class for the Arbiter nodes
arbiter.annotations.iam.amazonaws.com/role string role-arn The AWS IAM role for the Arbiter nodes
arbiter.labels label rack: rack-22 The Kubernetes affinity labels for the Arbiter nodes
arbiter.nodeSelector label disktype:ssd The Kubernetes nodeSelector affinity constraint for the Arbiter nodes
expose.enabled boolean false Enable or disable exposing MongoDB Replica Set nodes with dedicated IP addresses
expose.exposeType string ClusterIP the IP address type to be exposed
resources.limits.cpu string Kubernetes CPU limit for MongoDB container
resources.limits.memory string Kubernetes Memory limit for MongoDB container
resources.limits.storage string Kubernetes Storage limit for Persistent Volume Claim
resources.requests.cpu string The Kubernetes CPU requests for MongoDB container
resources.requests.memory string The Kubernetes Memory requests for MongoDB container
volumeSpec.emptyDir string {} The Kubernetes emptyDir volume, i.e. the directory which will be created on a node, and will be accessible to the MongoDB Pod containers
volumeSpec.hostPath.path string /data Kubernetes hostPath volume, i.e. the file or directory of a node that will be accessible to the MongoDB Pod containers
volumeSpec.hostPath.type string Directory The Kubernetes hostPath volume type
volumeSpec.persistentVolumeClaim.storageClassName string standard The Kubernetes Storage Class to use with the MongoDB container Persistent Volume Claim
volumeSpec.persistentVolumeClaim.accessModes array ["ReadWriteOnce"] The Kubernetes Persistent Volume access modes for the MongoDB container
volumeSpec.resources.requests.storage string 3Gi The Kubernetes Persistent Volume size for the MongoDB container
affinity.antiAffinityTopologyKey string kubernetes.io/hostname The Kubernetes topologyKey node affinity constraint for the Replica Set nodes
tolerations.key string node.alpha.kubernetes.io/unreachable The Kubernetes Pod tolerations key for the Replica Set nodes
tolerations.operator string Exists The Kubernetes Pod tolerations operator for the Replica Set nodes
tolerations.effect string NoExecute The Kubernetes Pod tolerations effect for the Replica Set nodes
tolerations.tolerationSeconds int 6000 The Kubernetes Pod tolerations time limit for the Replica Set nodes
annotations.iam.amazonaws.com/role string role-arn The AWS IAM role for the Replica Set nodes
labels label rack: rack-22 The Kubernetes affinity labels for the Replica Set nodes
nodeSelector label disktype: ssd The Kubernetes nodeSelector affinity constraint for the Replica Set nodes
podDisruptionBudget.maxUnavailable int 1 The Kubernetes Pod distribution budget limit specifying the maximum value for unavailable Pods
podDisruptionBudget.minAvailable int 1 The Kubernetes Pod distribution budget limit specifying the minimum value for available Pods

PMM Section

The pmm section in the deploy/cr.yaml file contains configuration options for Percona Monitoring and Management.

Key Value
Type

Example Description

enabled boolean false Enables or disables monitoring Percona Server for
MongoDB with PMM

image string perconalab/
pmm-client:1.17.1

PMM Client docker image to use

server-
Host

string monitoring-service Address of the PMM Server to collect data from the
Cluster

32 Chapter 11. Custom Resource options

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://docs.mongodb.com/manual/replication/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://www.percona.com/doc/percona-monitoring-and-management/index.metrics-monitor.dashboard.html

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

Mongod Section

The largest section in the deploy/cr.yaml file contains the Mongod configuration options.

backup section

The backup section in the deploy/cr.yaml file contains the following configuration options for the regular Percona
Server for MongoDB backups.

Key Value
Type

Example Description

annota-
tions.iam.amazonaws.com/role

string role-arn The AWS IAM role for the backup storage nodes

labels label rack:
rack-22

The Kubernetes affinity labels for the backup storage
nodes

nodeSelector label disktype:
ssd

The Kubernetes nodeSelector affinity constraint for the
backup storage nodes

coordina-
tor.requests.storage

string 1Gi The Kubernetes Persistent Volume size for the MongoDB
Coordinator container

coordina-
tor.requests.storageClass

string aws-gp2 Sets the Kubernetes Storage Class to use with the
MongoDB Coordinator container

coordinator.debug string false Enables or disables debug mode for the MongoDB
Coordinator operation

tasks.name string sat-night-backupThe backup name
tasks.enabled boolean true Enables or disables this exact backup
tasks.schedule string 0 0 * * 6 The scheduled time to make a backup, specified in the

crontab format
tasks.storageName string st-us-west The name of the S3-compatible storage for backups,

configured in the storages subsection
tasks.compressionType string gzip The backup compression format

11.4. Mongod Section 33

https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://en.wikipedia.org/wiki/Cron

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

34 Chapter 11. Custom Resource options

CHAPTER

TWELVE

PROVIDING BACKUPS

Percona Server for MongoDB Operator allows taking cluster backup in two ways. Scheduled backups are configured
in the deploy/cr.yaml file to be executed automatically at the selected time. On-demand backups can be done manually
at any moment. Both ways use the Percona Backup for MongoDB tool.

The backup process is controlled by the Backup Coordinator daemon residing in the Kubernetes cluster alongside the
Percona Server for MongoDB, while actual backup images are stored separately on any Amazon S3 or S3-compatible
storage.

Making scheduled backups

Since backups are stored separately on the Amazon S3, a secret with AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY should be present on the Kubernetes cluster. These keys should be saved to the
deploy/backup-s3.yaml file and applied with the appropriate command, e.g. kubectl apply -f deploy/
backup-s3.yaml (for Kubernetes).

A backup schedule is defined in the backup section of the deploy/cr.yaml file. This section contains three subsections:

• storages contains data needed to access the S3-compatible cloud to store backups.

• coordinator configures the Kubernetes limits and claims for the Percona Backup for MongoDB Coordinator
daemon.

• tasks schedules backups (the schedule is specified in crontab format).

This example uses Amazon S3 storage for backups:

...
backup:

enabled: true
version: 0.3.0
...
storages:
s3-us-west:

type: s3
s3:

bucket: S3-BACKUP-BUCKET-NAME-HERE
region: us-west-2
credentialsSecret: my-cluster-name-backup-s3

tasks:
- name: daily-s3-us-west
enabled: true
schedule: "0 0 * * *"
storageName: s3-us-west

35

https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-backup-mongodb
https://github.com/percona/percona-backup-mongodb#coordinator
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/backup-s3.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

compressionType: gzip
...

Note: If you use some S3-compatible storage instead of the original Amazon S3, one more key is needed in the
s3 subsection: the endpointUrl, which points to the actual cloud used for backups and is specific to the cloud
provider.

For example, the Google Cloud key is the following:

endpointUrl: https://storage.googleapis.com

The options within these three subsections are further explained in the Operator Options.

One option which should be mentioned separately is credentialsSecret which is a Kubernetes se-
cret for backups. The Sample backup-s3.yaml can be used as a template to create this secret ob-
ject. Verify that the yaml contains the proper name value which must be equal to the one spec-
ified for credentialsSecret, i.e. my-cluster-name-backup-s3 for example, and also proper
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY keys. After editing is finished, secrets object should
be created or updated using the following command:

$ kubectl apply -f deploy/backup-s3.yaml

Making on-demand backup

To make on-demand backup, user should run the PBM Control tool inside of the coordinator container, supplying it
with needed options, like in the following example:

kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-
→˓backup-pbmctl --restart=Never -- \
run backup \
--server-address=<cluster-name>-backup-coordinator:10001 \
--storage <storage> \
--compression-algorithm=gzip \
--description=my-backup

Don’t forget to specify the name of your cluster instead of the <cluster-name> part of the Backup Coordinator
URL (the same cluster name is specified in the deploy/cr.yaml file). Also the <storage> placeholder should be
substituted with the storage name, which is located in the backups\storages subsection in deploy/cr.yaml file.

Restore the cluster from a previously saved backup

To restore a previously saved backup you must specify the backup name. A list of the available backups can be obtained
from the Backup Coordinator as follows (you must use the correct Backup Coordinator’s URL and the correct storage
name for your environment):

kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-
→˓backup-pbmctl --restart=Never -- list backups --server-address=<cluster-name>-
→˓backup-coordinator:10001

Now, restore the backup, substituting the cluster-name and storage values and using the selected backup name instead
of backup-name:

36 Chapter 12. Providing Backups

https://cloud.google.com
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/backup-s3.yaml
https://github.com/percona/percona-backup-mongodb#pbm-control-pbmctl
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-
→˓backup-pbmctl --restart=Never -- \
run restore \
--server-address=<cluster-name>-backup-coordinator:10001 \
--storage <storage> \
backup-name

12.3. Restore the cluster from a previously saved backup 37

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

38 Chapter 12. Providing Backups

CHAPTER

THIRTEEN

CREATING A PRIVATE S3-COMPATIBLE CLOUD FOR BACKUPS

As it is mentioned in backups any cloud storage which implements the S3 API can be used for backups. The one way
to setup and implement the S3 API storage on Kubernetes or OpenShift is Minio - the S3-compatible object storage
server deployed via Docker on your own infrastructure.

Setting up Minio to be used with Percona Server for MongoDB Operator backups involves following steps:

1. Install Minio in your Kubernetes or OpenShift environment and create the correspondent Kubernetes Service as
follows:

helm install \
--name minio-service \
--set accessKey=some-access-key \
--set secretKey=some-secret-key \
--set service.type=ClusterIP \
--set configPath=/tmp/.minio/ \
--set persistence.size=2G \
--set environment.MINIO_REGION=us-east-1 \
stable/minio

Don’t forget to substitute default some-access-key and some-secret-key strings in this command
with actual unique key values. The values can be used later for access control. The storageClass option
is needed if you are using the special Kubernetes Storage Class for backups. Otherwise, this setting may be
omitted. You may also notice the MINIO_REGION value which is may not be used within a private cloud. Use
the same region value here and on later steps (us-east-1 is a good default choice).

2. Create an S3 bucket for backups:

kubectl run -i --rm aws-cli --image=perconalab/awscli --restart=Never -- \
bash -c 'AWS_ACCESS_KEY_ID=some-access-key \
AWS_SECRET_ACCESS_KEY=some-secret-key \
AWS_DEFAULT_REGION=us-east-1 \
/usr/bin/aws \
--endpoint-url http://minio-service:9000 \
s3 mb s3://operator-testing'

This command creates the bucket named operator-testing with the selected access and secret keys (sub-
stitute some-access-key and some-secret-key with the values used on the previous step).

3. Now edit the backup section of the deploy/cr.yaml file to set proper values for the bucket (the S3 bucket
for backups created on the previous step), region, credentialsSecret and the endpointUrl (which
should point to the previously created Minio Service).

...
backup:
enabled: true

39

https://www.minio.io/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

version: 0.3.0
...
storages:

minio:
type: s3
s3:
bucket: operator-testing
region: us-east-1
credentialsSecret: my-cluster-name-backup-minio
endpointUrl: http://minio-service:9000

...

The option which should be specially mentioned is credentialsSecret which is a Kubernetes se-
cret for backups. Sample backup-s3.yaml can be used to create this secret object. Check that the
object contains the proper name value and is equal to the one specified for credentialsSecret,
i.e. my-cluster-name-backup-minio in the backup to Minio example, and also contains the proper
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY keys. After you have finished editing the file, the
secrets object are created or updated when you run the following command:

$ kubectl apply -f deploy/backup-s3.yaml

4. When the setup process is completed, making the backup is based on a script. Following example illustrates
how to make an on-demand backup:

kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-
→˓backup-pbmctl --restart=Never -- \
run backup \
--server-address=<cluster-name>-backup-coordinator:10001 \
--storage <storage> \
--compression-algorithm=gzip \
--description=my-backup

Don’t forget to specify the name of your cluster instead of the <cluster-name> part of the Backup Coordi-
nator URL (the cluster name is specified in the deploy/cr.yaml file). Also substitute <storage>with the actual
storage name located in a subsection inside of the backups in the deploy/cr.yaml file. In the earlier example
this value is minio.

5. To restore a previously saved backup you must specify the backup name. With the proper Backup Coordinator
URL and storage name, you can obtain a list of the available backups:

kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-
→˓backup-pbmctl --restart=Never -- list backups --server-address=<cluster-name>-
→˓backup-coordinator:10001

Now, restore the backup, using backup name instead of the backup-name parameter:

kubectl run -it --rm pbmctl --image=percona/percona-server-mongodb-operator:0.3.0-
→˓backup-pbmctl --restart=Never -- \
run restore \
--server-address=<cluster-name>-backup-coordinator:10001 \
--storage <storage> \
backup-name

40 Chapter 13. Creating a private S3-compatible cloud for backups

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/backup-s3.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml

CHAPTER

FOURTEEN

ENABLING REPLICA SET ARBITER NODES

Percona Server for MongoDB replication model is based on elections, when nodes of the Replica Set choose which
node becomes the primary node. Elections are the reason to avoid an even number of nodes in the cluster. The cluster
should have at least three nodes. Normally, each node stores a complete copy of the data, but there is also a possibility,
to reduce disk IO and space used by the database, to add an arbiter node. An arbiter cannot become a primary and
does not have a complete copy of the data. The arbiter does have one election vote and can be the odd number for
elections. The arbiter does not demand a persistent volume.

Percona Server for MongoDB Operator has the ability to create Replica Set Arbiter nodes if needed. This feature can
be configured in the Replica Set section of the deploy/cr.yaml file:

• set arbiter.enabled option to true to allow Arbiter nodes,

• use arbiter.size option to set the desired amount of the Replica Set nodes which should be Arbiter ones
instead of containing data.

41

https://www.percona.com/blog/2018/05/17/mongodb-replica-set-transport-encryption-part-1/
https://docs.mongodb.com/manual/core/replica-set-elections/#replica-set-elections
https://docs.mongodb.com/manual/core/replica-set-elections/#replica-set-elections
https://docs.mongodb.com/manual/core/replica-set-arbiter/
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

42 Chapter 14. Enabling Replica Set Arbiter nodes

CHAPTER

FIFTEEN

EXPOSING CLUSTER NODES WITH DEDICATED IP ADDRESSES

When Kubernetes creates Pods, each Pod has an IP address in the internal virtual network of the cluster. Creating and
destroying Pods is a dynamic process, therefore binding communication between Pods to specific IP addresses would
cause problems as things changes over time as a result of the cluster scaling, maintenance, etc.. Due to this chang-
ing environment, you should connect to Percona Server for MongoDB via Kubernetes internal DNS names in URI
(e.g. mongodb+srv://userAdmin:userAdmin123456@<cluster-name>-rs0.<namespace>.svc.
cluster.local/admin?replicaSet=rs0&ssl=false). It is strictly recommended.

Sometimes you cannot communicate to the Pods using the Kubernetes internal DNS names. To make Pods of the
Replica Set accessible, Percona Server for MongoDB Operator can assign a Kubernetes Service to each Pod.

This feature can be configured in the Replica Set section of the deploy/cr.yaml file:

• set ‘expose.enabled’ option to ‘true’ to allow exposing Pods via services,

• set ‘expose.exposeType’ option specifying the IP address type to be used:

– ClusterIP - expose the Pod’s service with an internal static IP address. This variant makes MongoDB
Pod only reachable from within the Kubernetes cluster.

– NodePort - expose the Pod’s service on each Kubernetes node’s IP address at a static port. ClusterIP
service, to which the node port will be routed, is automatically created in this variant. As an advantage, the
service will be reachable from outside the cluster by node address and port number, but the address will be
bound to a specific Kubernetes node.

– LoadBalancer - expose the Pod’s service externally using a cloud provider’s load balancer. Both Clus-
terIP and NodePort services are automatically created in this variant.

If this feature is enabled, URI looks like mongodb://userAdmin:userAdmin123456@<ip1>:<port1>,
<ip2>:<port2>,<ip3>:<port3>/admin?replicaSet=rs0&ssl=false All IP adresses should be di-
rectly reachable by application.

43

https://kubernetes.io/docs/concepts/services-networking/service/
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

44 Chapter 15. Exposing cluster nodes with dedicated IP addresses

CHAPTER

SIXTEEN

BINDING PERCONA SERVER FOR MONGODB COMPONENTS TO
SPECIFIC KUBERNETES/OPENSHIFT NODES

The operator does a good job of automatically assigning new pods to nodes to achieve balanced distribution across the
cluster. There are situations when you must ensure that pods land on specific nodes: for example, for the advantage of
speed on an SSD-equipped machine, or reduce costs by choosing nodes in the same availability zone.

The appropriate (sub)sections (replsets, replsets.arbiter, and backup) of the deploy/cr.yaml file contain
the keys which can be used to do assign pods to nodes.

Node selector

The nodeSelector contains one or more key-value pairs. If the node is not labeled with each key-value pair from
the Pod’s nodeSelector, the Pod will not be able to land on it.

The following example binds the Pod to any node having a self-explanatory disktype: ssd label:

nodeSelector:
disktype: ssd

Affinity and anti-affinity

Affinity defines eligible pods that can be scheduled on the node which already has pods with specific labels. Anti-
affinity defines pods that are not eligible. This approach is reduces costs by ensuring several pods with intensive data
exchange occupy the same availability zone or even the same node or, on the contrary, to spread the pods on different
nodes or even different availability zones for high availability and balancing purposes.

Percona Server for MongoDB Operator provides two approaches for doing this:

• simple way to set anti-affinity for Pods, built-in into the Operator,

• more advanced approach based on using standard Kubernetes constraints.

Simple approach - use antiAffinityTopologyKey of the Percona Server for MongoDB
Operator

Percona Server for MongoDB Operator provides an antiAffinityTopologyKey option, which may have one
of the following values:

• kubernetes.io/hostname - Pods will avoid residing within the same host,

• failure-domain.beta.kubernetes.io/zone - Pods will avoid residing within the same zone,

45

https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

• failure-domain.beta.kubernetes.io/region - Pods will avoid residing within the same region,

• none - no constraints are applied.

The following example forces Percona Server for MongoDB Pods to avoid occupying the same node:

affinity:
antiAffinityTopologyKey: "kubernetes.io/hostname"

Advanced approach - use standard Kubernetes constraints

The previous method can be used without special knowledge of the Kubernetes way of assigning Pods to specific
nodes. Still, in some cases, more complex tuning may be needed. In this case, the advanced option placed in the
deploy/cr.yaml file turns off the effect of the antiAffinityTopologyKey and allows the use of the standard
Kubernetes affinity constraints of any complexity:

affinity:
advanced:

podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: security
operator: In
values:
- S1

topologyKey: failure-domain.beta.kubernetes.io/zone
podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:

labelSelector:
matchExpressions:
- key: security
operator: In
values:
- S2

topologyKey: kubernetes.io/hostname
nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/e2e-az-name
operator: In
values:
- e2e-az1
- e2e-az2

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:

matchExpressions:
- key: another-node-label-key
operator: In
values:
- another-node-label-value

See explanation of the advanced affinity options in Kubernetes documentation.

46Chapter 16. Binding Percona Server for MongoDB components to Specific Kubernetes/OpenShift
Nodes

https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is expressed as a
key with and operator, which is either exists or equal (the equal variant requires a corresponding value for
comparison).

Toleration should have a specified effect, such as the following:

• NoSchedule - less strict

• PreferNoSchedule

• NoExecute

When a taint with the NoExecute effect is assigned to a node, any pod configured to not tolerating this taint is
removed from the node. This removal can be immediate or after the tolerationSeconds interval. The following
example defines this effect and the removal interval:

tolerations:
- key: "node.alpha.kubernetes.io/unreachable"

operator: "Exists"
effect: "NoExecute"
tolerationSeconds: 6000

The Kubernetes Taints and Toleratins contains more examples on this topic.

Priority Classes

Pods may belong to some priority classes. This flexibility allows the scheduler to distinguish more and less important
Pods when needed, such as the situation when a higher priority Pod cannot be scheduled without evicting a lower
priority one. This ability can be accomplished by adding one or more PriorityClasses in your Kubernetes cluster, and
specifying the PriorityClassName in the deploy/cr.yaml file:

priorityClassName: high-priority

See the Kubernetes Pods Priority and Preemption documentation to find out how to define and use priority classes in
your cluster.

Pod Disruption Budgets

Creating the Pod Disruption Budget is the Kubernetes method to limit the number of Pods of an application that can
go down simultaneously due to voluntary disruptions such as the cluster administrator’s actions during a deployment
update. Distribution Budgets allow large applications to retain their high availability during maintenance and other
administrative activities. The maxUnavailable and minAvailable options in the deploy/cr.yaml file can be
used to set these limits. The recommended variant is the following:

podDisruptionBudget:
maxUnavailable: 1

16.3. Tolerations 47

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

48Chapter 16. Binding Percona Server for MongoDB components to Specific Kubernetes/OpenShift
Nodes

CHAPTER

SEVENTEEN

LOCAL STORAGE SUPPORT FOR THE PERCONA SERVER FOR
MONGODB OPERATOR

Among the wide rage of volume types, supported by Kubernetes, there are two volume types which allow Pod con-
tainers to access part of the local filesystem on the node the emptyDir and hostPath.

emptyDir

A Pod emptyDir volume is created when the Pod is assigned to a Node. The volume is initially empty and is erased
when the Pod is removed from the Node. The containers in the Pod can read and write the files in the emptyDir
volume.

The emptyDir options in the deploy/cr.yaml file can be used to turn the emptyDir volume on by setting the directory
name.

The emptyDir is useful when you use Percona Memory Engine.

hostPath

A hostPath volume mounts an existing file or directory from the host node’s filesystem into the Pod. If the pod is
removed, the data persists in the host node’s filesystem.

The volumeSpec.hostPath subsection in the deploy/cr.yaml file may include path and type keys to set the
node’s filesystem object path and to specify whether it is a file, a directory, or something else (e.g. a socket):

volumeSpec:
hostPath:
path: /data
type: Directory

Please note, you must created the hostPath manually and should have following attributes:

• access permissions

• ownership

• SELinux security context

The hostPath volume is useful when you perform manual actions during the first run and require improved disk
performance. Consider using the tolerations settings to avoid a cluster migration to different hardware in case of a
reboot or a hardware failure.

More details can be found in the official hostPath Kubernetes documentation.

49

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/inmemory.html
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://github.com/percona/percona-server-mongodb-operator/blob/master/deploy/cr.yaml
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

50 Chapter 17. Local Storage support for the Percona Server for MongoDB Operator

CHAPTER

EIGHTEEN

TRANSPORT LAYER SECURITY (TLS)

The Percona Kubernetes Operator for PSMDB uses Transport Layer Security (TLS) cryptographic protocol for the
following types of communication:

• Internal - communication between PSMDB instances in the cluster

• External - communication between the client application and the cluster

The internal certificate is also used as an authorization method.

TLS security can be configured in two ways: Percona Server for MongoDB Operator can use a cert-manager for
automatic certificates generation, but also supports manual certificates generation. The following subsections cover
these two ways to configure TLS security with the Operator, as well as explains how to temporarily disable it if needed.

• Install and use the cert-manager

– About the cert-manager

– Installation of the cert-manager

• Generate certificates manually

• Run PSMDB without TLS

Install and use the cert-manager

About the cert-manager

A cert-manager is a Kubernetes certificate management controller which widely used to automate the management
and issuance of TLS certificates. It is community-driven, and open source.

When you have already installed cert-manager and deploy the operator, the operator requests a certificate from the
cert-manager. The cert-manager acts as a self-signed issuer and generates certificates. The Percona Operator self-
signed issuer is local to the operator namespace. This self-signed issuer is created because PSMDB requires all
certificates are issued by the same CA.

The creation of the self-signed issuer allows you to deploy and use the Percona Operator without creating a clusteris-
suer separately.

Installation of the cert-manager

The steps to install the cert-manager are the following:

51

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

• Create a namespace

• Disable resource validations on the cert-manager namespace

• Install the cert-manager.

The following commands perform all the needed actions:

kubectl create namespace cert-manager
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true
kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.7/
→˓deploy/manifests/cert-manager.yaml

After the installation, you can verify the cert-manager by running the following command:

kubectl get pods -n cert-manager

The result should display the cert-manager and webhook active and running.

Generate certificates manually

To generate certificates manually, follow these steps:

1. Provision a Certificate Authority (CA) to generate TLS certificates

2. Generate a CA key and certificate file with the server details

3. Create the server TLS certificates using the CA keys, certs, and server details

The set of commands generate certificates with the following attributes:

• Server-pem - Certificate

• Server-key.pem - the private key

• ca.pem - Certificate Authority

You should generate certificates twice: one set is for external communications, and another set is for internal ones. A
secret created for the external use must be added to cr.yaml/spec/secretsName. A certificate generated for
internal communications must be added to the cr.yaml/spec/sslInternalSecretName.

Supposing that your cluster name is my-cluster-name-rs0, the instructions to generate certificates manually are
as follows:

CLUSTER_NAME=my-cluster-name-rs0
cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca

{
"CN": "Root CA",
"key": {

"algo": "rsa",
"size": 2048

}
}

EOF

cat <<EOF > ca-config.json
{
"signing": {

"default": {
"expiry": "87600h",

52 Chapter 18. Transport Layer Security (TLS)

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

"usages": ["signing", "key encipherment", "server auth", "client auth"]
}

}
}

EOF

cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - |
→˓cfssljson -bare server
{
"hosts": [

"${CLUSTER_NAME}",
"*.${CLUSTER_NAME}"

],
"CN": "${CLUSTER_NAME/-rs0}",
"key": {

"algo": "rsa",
"size": 2048

}
}

EOF
cfssl bundle -ca-bundle=ca.pem -cert=server.pem | cfssljson -bare server

kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.
→˓pem --from-file=tls.key=server-key.pem --from-file=ca.crt=ca.pem --type=kubernetes.
→˓io/tls

cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json - |
→˓cfssljson -bare client
{
"hosts": [

"${CLUSTER_NAME}",
"*.${CLUSTER_NAME}"

],
"CN": "${CLUSTER_NAME/-rs0}",
"key": {

"algo": "rsa",
"size": 2048

}
}

EOF

kubectl create secret generic my-cluster-name-ssl --from-file=tls.crt=client.pem --
→˓from-file=tls.key=client-key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls

Run PSMDB without TLS

Omitting TLS is also possible, but we recommend that you run your cluster with the TLS protocol enabled.

TLS protocol can be disabled (e.g. for demonstration purposes) by editing the cr.yaml/spec/
allowUnstafeConfigurations setting to true.

18.3. Run PSMDB without TLS 53

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

54 Chapter 18. Transport Layer Security (TLS)

CHAPTER

NINETEEN

DATA AT REST ENCRYPTION

Data at rest encryption in Percona Server for MongoDB is supported by the Operator since version 1.1.0.

..note:: “Data at rest” means inactive data stored as files, database records, etc.

Following options the mongod section of the deploy/cr.yaml file should be edited to turn this feature on:

1. The security.enableEncryption key should be set to true (the default value).

2. The security.encryptionCipherMode key should specify proper cipher mode for decryption. The
value can be one of the following two variants: * AES256-CBC (the default one for the Operator and Percona
Server for

MongoDB)

• AES256-GCM

3. security.encryptionKeySecret should specify a secret object with the encryption key:

mongod:
...
security:

...
encryptionKeySecret: my-cluster-name-mongodb-encryption-key

Encryption key secret will be created automatically if it doesn’t exist. If you would like to create it yourself,
take into account that the key must be a 32 character string encoded in base64.

55

https://www.percona.com/doc/percona-server-for-mongodb/LATEST/data_at_rest_encryption.html
https://docs.mongodb.com/manual/tutorial/configure-encryption/#local-key-management

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

56 Chapter 19. Data at rest encryption

Part IV

Reference

57

CHAPTER

TWENTY

KUBERNETES FOR PERCONA SERVER FOR MONGODB 1.1.0
RELEASE NOTES

Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0

Percona announces the general availability of Percona Kubernetes Operator for Percona Server for MongoDB 1.1.0
on July 15, 2019. This release is now the current GA release in the 1.1 series. Install the Kubernetes Operator for
Percona Server for MongoDB by following the instructions. Please see the GA release announcement.

The Operator simplifies the deployment and management of the Percona Server for MongoDB in Kubernetes-based
environments. It extends the Kubernetes API with a new custom resource for deploying, configuring and managing
the application through the whole life cycle.

The Operator source code is available in our Github repository. All of Percona’s software is open-source and free.

New features and improvements:

• Now the Percona Kubernetes Operator allows upgrading Percona Server for MongoDB to newer versions, either
in semi-automatic or in manual mode.

• Also, two modes are implemented for updating the Percona Server for MongoDB mongod.conf configuration
file: in automatic configuration update mode Percona Server for MongoDB Pods are immediately re-created to
populate changed options from the Operator YAML file, while in manual mode changes are held until Percona
Server for MongoDB Pods are re-created manually.

• Percona Server for MongoDB data-at-rest encryption is now supported by the Operator to ensure that encrypted
data files cannot be decrypted by anyone except those with the decryption key.

• A separate service account is now used by the Operator’s containers which need special privileges, and all other
Pods run on default service account with limited permissions.

• User secrets are now generated automatically if don’t exist: this feature especially helps reduce work in repeated
development environment testing and reduces the chance of accidentally pushing predefined development pass-
words to production environments.

• The Operator is now able to generate TLS certificates itself which removes the need in manual certificate gen-
eration.

• The list of officially supported platforms now includes the Minikube, which provides an easy way to test the
Operator locally on your own machine before deploying it on a cloud.

• Also, Google Kubernetes Engine 1.14 and OpenShift Platform 4.1 are now supported.

Percona Server for MongoDB is an enhanced, open source and highly-scalable database that is a fully-compatible,
drop-in replacement for MongoDB Community Edition. It supports MongoDB protocols and drivers. Percona Server
for MongoDB extends MongoDB Community Edition functionality by including the Percona Memory Engine, as well
as several enterprise-grade features. It requires no changes to MongoDB applications or code.

59

https://www.percona.com/doc/kubernetes-operator-for-psmongodb/kubernetes.html
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/kubernetes.html
https://www.percona.com/blog/2019/05/29/percona-kubernetes-operators/
https://www.percona.com/software/mongo-database/percona-server-for-mongodb
https://github.com/percona/percona-server-mongodb-operator
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/update.html
https://www.percona.com/doc/percona-server-for-mongodb/LATEST/data_at_rest_encryption.html
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/users.html
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/TLS.html
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/minikube.html
https://www.percona.com/software/mongo-database/percona-server-for-mongodb

Percona Kubernetes for Percona Server for MongoDB Documentation, Release 1.1.0

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system.

Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0

Percona announces the general availability of Percona Kubernetes Operator for Percona Server for MongoDB 1.0.0
on May 29, 2019. This release is now the current GA release in the 1.0 series. Install the Kubernetes Operator for
Percona Server for MongoDB by following the instructions. Please see the GA release announcement. All of Percona’s
software is open-source and free.

The Percona Kubernetes Operator for Percona Server for MongoDB automates the lifecycle of your Percona Server
for MongoDB environment. The Operator can be used to create a Percona Server for MongoDB replica set, or scale
an existing replica set.

The Operator creates a Percona Server for MongoDB replica set with the needed settings and provides a consistent Per-
cona Server for MongoDB instance. The Percona Kubernetes Operators are based on best practices for configuration
and setup of the Percona Server for MongoDB.

The Kubernetes Operators provide a consistent way to package, deploy, manage, and perform a backup and a restore
for a Kubernetes application. Operators deliver automation advantages in cloud-native applications and may save time
while providing a consistent environment.

The advantages are the following:

• Deploy a Percona Server for MongoDB environment with no single point of failure and environment can
span multiple availability zones (AZs).

• Deployment takes about six minutes with the default configuration.

• Modify the Percona Server for MongoDB size parameter to add or remove Percona Server for MongoDB
replica set members

• Integrate with Percona Monitoring and Management (PMM) to seamlessly monitor your Percona Server
for MongoDB

• Automate backups or perform on-demand backups as needed with support for performing an automatic
restore

• Supports using Cloud storage with S3-compatible APIs for backups

• Automate the recovery from failure of a Percona Server for MongoDB replica set member

• TLS is enabled by default for replication and client traffic using Cert-Manager

• Access private registries to enhance security

• Supports advanced Kubernetes features such as pod disruption budgets, node selector, constraints, tolera-
tions, priority classes, and affinity/anti-affinity

• You can use either PersistentVolumeClaims or local storage with hostPath to store your database

• Supports a replica set Arbiter member

• Supports Percona Server for MongoDB versions 3.6 and 4.0

Installation

Installation is performed by following the documentation installation instructions for Kubernetes and OpenShift.

60 Chapter 20. Kubernetes for Percona Server for MongoDB 1.1.0 Release Notes

https://jira.percona.com/secure/Dashboard.jspa
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/kubernetes.html
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/kubernetes.html
https://www.percona.com/blog/2019/05/29/percona-kubernetes-operators/
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/kubernetes.html
https://www.percona.com/doc/kubernetes-operator-for-psmongodb/openshift.html

INDEX

Symbols
1.0.0 (release notes), 60
1.1.0 (release notes), 59

61

	I Overview
	II Installation
	III Configuration
	IV Reference

